
Under review as a conference paper at ICLR 2024

CONNECTING THE PATCHES: MULTIVARIATE LONG-
TERM FORECASTING USING GRAPH AND RECURRENT
NEURAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Many Transformer-based models have achieved great performance on multivari-
ate long-term time series forecasting (MLTSF) tasks in the past few years, but
they are ineffective in capturing cross-channel dependencies and temporal order
information. In multivariate time series analysis, the cross-channel dependencies
can help the model understand the correlations between multivariate time series,
and the consistency of time series is also essential for more accurate predictions.
Therefore, we propose GRformer, adopting the Graph neural network (GNN) and
position encoding based on recurrent neural network (RNN) to better process mul-
tivariate time series data. We design a mix-hop propagation layer and embed it in
the feedforward neural network to encourage proper interaction between different
time series. To introduce temporal order information, we use a multi-layer RNN to
recursively generate positional embeddings for sequence elements. Experiments
on eight real-world datasets show that our model can achieve more accurate pre-
dictions on MLTSF tasks.

1 INTRODUCTION

Time series forecasting is an indispensable part of many fields, such as traffic flow forecasting (Guo
et al., 2019), energy management (Uremović et al., 2022), weather forecasting (Zhang et al., 2022),
and finance (Sezer et al., 2020), etc.

In the past few years, Transformer-based models have achieved great success in various fields, such
as natural language processing (NLP) (Kalyan et al., 2021), computer vision (CV) (Han et al., 2022),
etc. This trend extends to multivariate long-term time series forecasting (MLTSF) tasks (Wen et al.,
2022). Models like Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021), and FEDformer
(Zhou et al., 2022a) make better predictions than previous works (Lai et al., 2018; Bai et al., 2018)
based on recurrent neural network (RNN) or convolutional neural network (CNN). Most of these
Transformer models adopt the channel-mixing strategy. They extract features from all sequence
values at each time step and use the self-attention mechanism (Vaswani et al., 2017) to capture
long-term temporal dependencies globally. However, the effectiveness of these Transformer-based
models has been challenged by DLinear (Zeng et al., 2023), which introduces a channel-independent
strategy and makes more accurate predictions with a simple linear model. Recently, an improved
Transformer-based model PatchTST (Nie et al., 2023) is proposed. PatchTST applies the atten-
tion mechanism independently to patches so that the distribution of attention weights varies across
different channels, thus enabling the model to distinguish time series with different behaviors.

However, various correlations may exist between different channels of multivariate time series, as
shown in Figure 1(a), and this could be an important factor in multivariate time series forecasting.
Current Transformer-based models are ineffective in capturing the cross-channel dependencies of the
time series. For channel-mixing Transformer models, the weight matrices of Multilayer Perceptron
(MLP) layers of the feedforward network in Encoder and Decoder multiply with the input embed-
dings, which implicitly capture the channel dependencies of different time series. But such operation
may result in chaotic information interactions, as shown in Figure 1(b). For channel-independent
models, recent studies emphasize the individuality of different time series while ignoring the com-
monalities between different channels.

1

Under review as a conference paper at ICLR 2024

(a) Pearson correlative coefficient matrices on Weather, Electricity, ETTh2, and ILI.

(b) MLP weight matrices product results of previous channel-mixing Transformer-based models on Weather,

Electricity, ETTh2, and ILI. The weight matrices’ parameters are obtained from Informer.

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

Figure 1: The correlation heat maps of four datasets: Weather, Electricity, Electricity Transformer
Temperature-hourly (we choose ETTh2), Influenza-Like Illness (ILI). The number of channels in
Weather, Electricity, ETTh2, ILI are 21, 321, 7 and 7 respectively. (a) shows the linear correla-
tion between different channels. (b) is the equivalent correlation matrices obtained by multiplying
the weight matrices of the MLP layers of embedding projectors and the feedforward network in
Encoders and Decoders of Informer (Zhou et al., 2021). The data distribution is highly dispersed,
implicitly resulting in chaotic information interactions.

Furthermore, time series analysis is based on continuous data points (Zeng et al., 2023). The strict
order of the sequence elements is important because temporal order is a crucial factor in determining
the trend, periodicity, and other characteristics of time series data. Most of the present Transformer-
based models use fixed or learnable position encoding methods (Vaswani et al., 2017; Devlin et al.,
2018; Liu et al., 2019) to inject position-wise information to sequence tokens. Although these meth-
ods can help models understand positional variance, they don’t explicitly consider strict temporal
order information and have the problem of information loss and redundancy when facing long-term
time series (Dehghani et al., 2019).

Therefore, we propose GRformer, an improved Transformer-based model for MLTSF tasks. To cap-
ture the correlations among the channels of multivariate time series, we design a graph convolutional
module, motivated by (Wu et al., 2020). The module consists of a mix-hop propagation layer that
can make different channels focusing on their multi-hop neighbors. To help the model identify the
importance of neighborhoods’ information of different hops, we parameterize a matrix to assign
different weights to them. To obtain an adjacency matrix that correctly represents the correlations
between different channels, we use the Pearson correlation coefficient algorithm (Cohen et al., 2009)
and a filter function. To capture temporal order information, we use a multi-layer RNN to generate
positional embeddings. The sequential modeling capability of RNN helps to generate positional
encodings with temporal order information, thus enabling the model to make use of the strict order
information of the time series. The main contributions of this paper are:
• We propose a Pearson coefficient-based graph constructing module and use an improved mix-hop

propagation layer to capture the cross-channel dependencies of time series so that each channel
can focus on others that are highly correlated with it. We embed this layer in the feedforward
network to integrate graph neural network with Transformer.

• We design a multi-layer RNN structure for position encoding so that the representations at differ-
ent time steps can carry strict temporal order information.

• We conduct extensive experiments on eight commonly used datasets. Our model ranks first in per-
formance on seven of these datasets and achieves performance improvement with a 5.7% decrease
in Mean Square Error (MSE) and a 6.1% decrease in Mean Absolute Error (MAE) compared to
the current state-of-the-art (SOTA) model.

2

Under review as a conference paper at ICLR 2024

2 RELATED WORK

Transformer-based models perform well in modeling long-term temporal dependencies with their
self-attention mechanism. However, the quadratic complexity to the length of a sequence limits
these models’ application on long-term time series forecasting and leads to researches on this is-
sue. LogTrans (Li et al., 2019) proposes LogSparse attention to solve locality-agnostics and mem-
ory bottlenecks. Reformer (Kitaev et al., 2020) replaces the dot-product attention with a locality-
sensitive hashing attention. Informer (Zhou et al., 2021) proposes a self-attention distillation oper-
ation called ProbSparse, which selects top-k elements of the attention weight matrix based on KL
divergence. Autoformer (Wu et al., 2021) adopts a temporal decomposition approach and introduces
a self-correlation mechanism to replace self-attention. Pyraformer (Liu et al., 2022b) introduces a
pyramidal attention module to summarize features at different resolutions and model the tempo-
ral dependencies. FEDFormer (Zhou et al., 2022a) learns from Fourier decomposition and applies
Transformer in the frequency domain rather than the temporal domain.

Most of the above models adopt the point-wise attention and channel-mixing strategy. Specifically,
elements of different sequences at each time step are first mapped to a feature representation and then
fed into the encoder for further processing. However, the same attention weight will be assigned to
elements at the same time step. This approach ignores the various behaviors of multivariate time
series, and the MLP layers in the feedforward neural network may further cause chaotic interactions
among time series.

Recently, some channel-independent models have been proposed. These models emphasize process-
ing each channel of the multivariate time series independently. DLinear (Zeng et al., 2023) utilizes
a simple linear layer to convert each channel directly to the output sequence. It challenges the effec-
tiveness of previous Transformer models with an outstanding prediction accuracy. PatchTST (Nie
et al., 2023) borrows the ideas of Dlinear and Vision Transformer (Dosovitskiy et al., 2021), divid-
ing the sequence of each channel into patches and using a patch-wise attention. This approach can
enrich the semantics of extracted features and distinguish the various behaviors of different chan-
nels. However, these models ignore the correlations between different channels of multivariate time
series. Crossformer (Zhang & Yan, 2023) proposes a two-stage attention approach. It uses a Cross-
Time attention layer to process patches like PatchTST, and uses a Cross-Dimension attention layer
to make patches from different channels interact, thus capturing the correlations between different
channels. However, the use of decoder and the routing mechanism in the Cross-Dimension attention
layer limits its predictive performance (Zhou et al., 2022b).

3 METHODOLOGY

3.1 PROBLEM DEFINITION

We consider the MLTSF task as follows: given a multivariate time series X ={
x(1,t), x(2,t), ..., x(M,t)

}L

t=1
, we predict the future values Y =

{
y(1,t), y(2,t), ..., y(M,t)

}L+τ

t=L+1
,

where L refers to the length of the look-back window, M represents the number of sequences, and
τ is the prediction horizons.

We use graph structure to capture correlations between different time series. Graph is used to de-
scribe the relationships between different entities within a network, and it can be represented as
G = (V, E), where V is the set of nodes and E is the set of edges. We abstract individual time series
as nodes, that is, |V| = M . We use an adjacency matrix A ∈ R|V|×|V| to store the graph where
Ai,j = c > 0 if there is a high-intensity correlation between two time series x(i) and x(j) (i ̸= j),
otherwise, Ai,j = 0.

3.2 MODEL STRUCTURE

The overall architecture of GRformer is shown in Figure 2(a). We capture the temporal and chan-
nel dependencies independently by extracting temporal order information and encouraging different
channels to interact with each other. For temporal dependencies, we introduce a RNN-based position
encoding method to help our model understand temporal order information. For channel dependen-
cies, we first initialize an adjacency matrix using the Pearson correlation coefficient algorithm and

3

Under review as a conference paper at ICLR 2024

Instance Norm

Encoder

Flatten + Linear

Output：Multivariate Sequence

Multi-head Attention

Add & Norm

Add & Norm𝐧 ×

Graph Constructing

mix-hop

propagation

layer (c)

RNN-based

Position Encoding (b)
Adjacency

Matrix

(a) The architecture of GRformer

(b) RNN-based Position Encoding

Mix Mix Mix

𝒘𝒆𝒊𝒈𝒉𝒕

𝐇𝒐𝒖𝒕

𝐀 𝐀 𝐀

(c) mix-hop propagation archetecture

···

𝐇(0)

𝐇(1)𝐇(0) 𝐇(𝐾)𝐇(2)

Instance Denorm

Patching

Input

Subsequences

Representations

···

···

···

···

Input: Multivariate Sequence

𝐱(𝑖)
𝑑 ∈ ℝ𝑁×𝑑𝑖𝑚

𝐱(𝑖,1)
𝑑 𝐱(𝑖,2)

𝑑 𝐱(𝑖,𝑁)
𝑑

𝐄(𝑖) ∈ ℝ𝑁×𝑑𝑖𝑚

𝐱(𝑖)
𝑝

∈ ℝ𝑁×𝑃 ···

···

Linear

···

𝑟(𝑖,1)
(𝐶)

𝑟(𝑖,2)
(𝐶)

𝑟(𝑖,𝑁)
(𝐶)

···

𝑝𝑜𝑠(𝑖) ∈ ℝ𝑁×𝑑𝑖𝑚

RNN RNNRNN

Figure 2: The architecture of GRformer. (a) Each channel of multivariate time series is divided
into patches. The multi-layer RNN injects temporal order information and the mix-hop propagation
layer captures cross-channel dependencies. (b) The representations of patches of a channel are
passed through a multi-layer RNN to generate positional embeddings. The hidden state of the j-th
unit in the (c − 1)-th layer is passed to the j-th unit in the c-th layer and the (j + 1)-th unit in the
(c− 1)-th layer. (c) The mix-hop module aggregates the information of multi-hop neighbors.

then use a graph convolutional module embedded in the feedforward network to aggeregate the in-
formation from different channels. The module consists of a mix-hop propagation layer, which can
effectively capture the relationships between different time series channels. Finally, we get outputs
through a Flatten layer and Feature Head because a recent research (Zhou et al., 2022b) argues
that the Transformer decoder may cause model performance degradation in long-term time series
forecasting tasks.

3.2.1 RNN-BASED POSITION ENCODING

Previous transformer-based models represent elements at different positions in the sequence by in-
jecting positional variance information. However, unlike other sequence data, time series data has
strong temporal continuity. In order for the model to make use of the strict temporal order of the time
series, we consider using a multi-layer RNN to inject enhanced positional contextual information
into the sequence tokens.

Each channel univariate sequence x(i) is first divided into patches xp
(i) ∈ RN×P and then passed

through a linear layer to generate representations xd
(i) ∈ RN×dim. The variable P is the length

of each patch, S refers to the stride between different patches, and N is the number of patches
which is calculated by N = ⌊L−P

S + 1⌋. Each representation is fed into the corresponding RNN
unit, as shown in Figure 2(b). We concatenate the hidden states of the last layer to get positional
embeddings. The detailed progress is defined in Eq 1:

r
(c)
(i,j) = RNN(r

(c)
(i,j−1), r

(c−1)
(i,j)), c ∈ {1, 2, ..., C}

pos(i) = Concat(r
(C)
(i,1), r

(C)
(i,2), ..., r

(C)
(i,N))

E(i) = xd
(i) + pos(i)

(1)

4

Under review as a conference paper at ICLR 2024

where RNN(·) could be any kinds of RNN model, such as RNN, LSTM and GRU. C denotes the
number of RNN layers. xd

(i,j) represents the j-th patch representation of the i-th channel. r
(c)
(i,j) is

the hidden state obtained from the corresponding j-th RNN unit in the c-th layer and r
(0)
(i,j) = xd

(i,j).
The variable pos(i) and E(i) are the positional embeddings and final representations of the i-th
channel respectively. The obtained positional embeddings ensure the positional variance of each
time step and introduce strict temporal order information by recursively generating embeddings at
later positions using the preceding ones. The RNN structure does not directly determine the final
embeddings output, so the gradient vanishing problem is alleviated to some extent.

3.2.2 GRAPH CONSTRUCTING

Before the training progress, we first generate a graph structure based on Pearson correlation
coefficient algorithm. For a time series channel pair (x(i), x(j)), where i ̸= j, we calculate
the Pearson correlation coefficient between them. The results are saved in a correlation matrix
APearson ∈ RM×M , where APearson

i,j = APearson
j,i = ρx(i),x(j)

=
conv(x(i),x(j))

σx(i)
σx(j)

. The function

conv(x(i), x(j)) is the covariance of (x(i), x(j)) and σ is the standard deviation. We use a filter
function f and retain top-k elements to get the adjacency matrix A. The definition is as follows:

f(x) =

{
x, if x > λ

0, if x ≤ λ
(2)

A = argtopk(f(APearson)) (3)

where the function argtopk(·) returns the top-k largest values of each row in a matrix, λ is a thresh-
old hyperparameter to filter the correlation of different time series.

Our graph structure ensures that relationships are established for those highly correlated time series
channels. Some recent works (Wu et al., 2020; Liu et al., 2022a) adopt adaptive graph learning
layers to generate a graph. However, these approaches ignore the inherent relationships between
time series and bring extra computation complexity of O(M2). Our method is independent of the
training process and does not have extra complexity.

3.2.3 MIX-HOP PROPAGATION

We embed a mix-hop propagation layer into the feedforward neural network to aggregate the infor-
mation of a channel with its related neighbors, motivated by (Wu et al., 2020). As depicted in Figure
2(c), we first propagate multi-hop neighbor information in the graph structure, defined as follows:

H
(k)
i,j = αH

(0)
i,j + (1− α)ÃH

(k−1)
i,j

Ã = D̃−1(A+ I)

D̃ii = 1 +
∑N

j=1
Aij

(4)

where H(0) is each node’s original state outputted by the preceding multi-head attention layer. To
avoid the nodes’ hidden states converging to a single point, we use (A + I) to establish the self-
correlation of a node and a hyperparameter α to retain a proportion of nodes’ original states during
the propagation process. D̃ is the degree matrix of (A + I) and Ã is the normalized adjacency
matrix. We use a weighted matrix to aggregate the results of different depths of propagation. The
process is defined as Eq 5:

weight = Softmax(Parameter(a1, a2, ..., aK))

Hout
i,j =

∑K

k=1
H

(k)
i,j · weightk

(5)

where K represents the depth of message propagation and weight is a learnable parameter contain-
ing K variables randomly initialized. We use the Softmax function to assign different weights to the
multi-hop neighbor information. We sum the results and get the final output Hout

i,j .

5

Under review as a conference paper at ICLR 2024

3.2.4 LOSS FUNCTION

We use MAE Loss, which measures the average absolute discrepancy between predicted values and
ground truth. The definition of the Loss function is as follows:

L(Y, Ŷ) =
1

|Y |

|Y |∑
i=1

|y(i) − ŷ(i)|. (6)

where Y is the ground truth, and Ŷ represents the predicted values.

3.2.5 INSTANCE NORMALIZATION

The statistical properties of time series usually change over time, resulting in a changing data dis-
tribution. Time series in the real world usually conform to the characteristics of non-stationary se-
quences(Du et al., 2021). Therefore, we consider using an instance normalization technique called
RevIN (Kim et al., 2022) to alleviate the distribution drift problem. RevIN eliminates non-stationary
statistics in the input sequence and improves the robustness of the model by normalizing the input
sequences and denormalizing the output of the model. The instance normalization process corre-
sponds to the Instance Norm module and the Instance Denorm module in Figure 2(a).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Table 1: Statistics of popular datasets
for benchmark.

Dataset Metrics Frequency Length

Weather 21 10 min 52696
Electricity 321 1 hour 26304
Traffic 862 1 hour 17544
ETTh1 7 1 hour 17420
ETTh2 7 1 hour 17420
ETTm1 7 15 min 69680
ETTm2 7 15 min 69680
ILI 7 7 day 966

Datasets. We evaluate our model on 8 real-
world datasets: Weather, Electricity, Traffic, 4 ETT
datasets(ETTh1, ETTh2, ETTm1, ETTm2), and ILI.
These datasets are extensively utilized, covering multi-
ple fields including weather, energy, transportation, and
healthcare. The statistics of the datasets are shown in Ta-
ble 1. ETT and ILI have a small number of sequences,
and the correlations between different channels are sim-
ple. Weather, Electricity, and Traffic have a large num-
ber of sequences, and the cross-channel dependencies in
these datasets are complex. More detailed information of
the datasets is in Appendix A.1.1.

Baselines. We select the following Transformer-based
models and non-Transformer-based models including
PatchTST (Nie et al., 2023), Crossformer (Zhang & Yan, 2023), FEDformer (Zhou et al., 2022a),
Autoformer (Wu et al., 2021), and DLinear (Zeng et al., 2023). Full information and descriptions of
the baselines can be found in Appendix A.1.2.

Experimental Settings. We follow the settings in (Nie et al., 2023) and use different look-back
windows L and future predicting horizons τ . For GRformer, PatchTST, Crossformer, and Dlinear,
we set L = 104 and τ ∈ {24, 36, 48, 60} for ILI that has a very small amount of data, while
L = 336 and τ ∈ {96, 192, 336, 720} for other datasets. For other Transformer-based models,
we use the default look-back window L = 96. Considering that PatchTST and Crossformer use the
patching technique as GRformer, we set P = 24 and S = 2 on ILI while P = 16 and S = 8 on other
datasets for all three models. We evaluate GRformer with C ∈ {1, 2, 3}, λ ∈ {0.8, 0.6, 0.4, 0.2}
and α ∈ {0.03, 0.05, 0.1, 0.15} and choose the best results. For the selection of metrics to evaluate
the performance, we utilize MSE and MAE. More detailed settings can be found in Appendix A.1.3
and A.1.4.

Results. Table 2 shows the results of multivariate long-term forecasting. Overall, our model
achieves better performance than other baselines on all datasets with different prediction lengths.
Specifically, compared with the current SOTA Transformer-based model PatchTST, the MSE is re-
duced by 4.06% and the MAE is reduced by 5.08% on average. The improvement of MSE and
MAE reaches to 12.94% and 12.78% on average compared with DLinear, the current best non-
Transformer-based model for MLTSF. To evaluate the influence of the loss function, we test our

6

Under review as a conference paper at ICLR 2024

model using MSE Loss, MAE Loss (the default loss function), and Huber Loss. GRformer achieves
optimal average performance when using the MAE loss. MSE Loss takes the square of the predic-
tion error, which is more sensitive to outliers. This result indicates that our model is more robust
to outliers. Overall, GRformer shows excellent performance in the cases of both normal conditions
and frequent outliers. The detailed definition and results of different loss functions can be found in
Appendix A.3. The Crossformer can also capture cross-channel dependencies between time series.
However, the predictive performance of Crossformer is not very stable, which may be related to its
utilization of the decoder and the unstable routing mechanism. Compared to Crossformer, our model
is additionally capable of capturing temporal order information, resulting in the better performance.
We also conduct experiments on univariate time series forecasting, the detailed results can be found
in Appendix A.2.

Table 2: Experimental results of MLTSF task on 8 real-world datasets. Models with ∗ follow the
experimental results from the original papers and PatchTST. The best results are in bold and the
second best results are underlined.

Models GRformer PatchTST DLinear FEDformer* Autoformer* Crossformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.147 0.184 0.152 0.200 0.176 0.226 0.238 0.314 0.249 0.329 0.156 0.218
192 0.192 0.232 0.196 0.237 0.219 0.261 0.275 0.329 0.325 0.370 0.198 0.262
336 0.245 0.273 0.249 0.283 0.266 0.296 0.339 0.377 0.351 0.391 0.266 0.295
720 0.318 0.325 0.321 0.334 0.333 0.342 0.389 0.409 0.415 0.426 0.327 0.363

Traffic

96 0.363 0.224 0.367 0.251 0.410 0.282 0.576 0.359 0.597 0.371 0.503 0.281
192 0.385 0.232 0.385 0.259 0.423 0.287 0.610 0.380 0.607 0.382 0.537 0.329
336 0.394 0.239 0.398 0.265 0.436 0.296 0.608 0.375 0.623 0.387 0.552 0.356
720 0.433 0.258 0.434 0.287 0.466 0.315 0.621 0.375 0.639 0.395 0.598 0.377

Electricity

96 0.126 0.217 0.130 0.222 0.140 0.237 0.186 0.302 0.196 0.313 0.137 0.238
192 0.142 0.234 0.147 0.240 0.153 0.249 0.197 0.311 0.211 0.324 0.159 0.268
336 0.155 0.248 0.165 0.258 0.169 0.267 0.213 0.328 0.214 0.327 0.173 0.286
720 0.184 0.276 0.202 0.291 0.203 0.301 0.233 0.344 0.236 0.342 0.210 0.304

ETTh1

96 0.365 0.387 0.371 0.397 0.375 0.397 0.376 0.415 0.435 0.446 0.402 0.418
192 0.406 0.412 0.412 0.422 0.413 0.420 0.423 0.446 0.456 0.457 0.469 0.458
336 0.430 0.429 0.437 0.437 0.439 0.443 0.441 0.462 0.486 0.487 0.588 0.540
720 0.429 0.452 0.451 0.466 0.479 0.493 0.469 0.492 0.515 0.517 0.725 0.610

ETTh2

96 0.274 0.332 0.274 0.336 0.289 0.353 0.332 0.374 0.332 0.368 0.706 0.587
192 0.337 0.373 0.338 0.376 0.383 0.418 0.407 0.446 0.426 0.434 0.855 0.689
336 0.355 0.390 0.356 0.397 0.448 0.465 0.400 0.447 0.477 0.479 1.013 0.767
720 0.382 0.417 0.385 0.425 0.605 0.551 0.412 0.469 0.453 0.490 1.131 0.800

ETTm1

96 0.281 0.326 0.290 0.342 0.299 0.343 0.326 0.390 0.510 0.492 0.299 0.353
192 0.325 0.356 0.344 0.387 0.336 0.364 0.365 0.415 0.514 0.495 0.344 0.387
336 0.357 0.377 0.366 0.392 0.369 0.386 0.392 0.425 0.510 0.492 0.421 0.438
720 0.417 0.413 0.419 0.425 0.425 0.421 0.446 0.458 0.527 0.493 0.562 0.524

ETTm2

96 0.161 0.246 0.166 0.254 0.167 0.260 0.180 0.271 0.205 0.293 0.269 0.362
192 0.213 0.284 0.222 0.294 0.224 0.303 0.252 0.318 0.278 0.336 0.462 0.463
336 0.266 0.319 0.277 0.330 0.281 0.342 0.324 0.364 0.343 0.379 0.741 0.600
720 0.351 0.372 0.366 0.386 0.397 0.421 0.410 0.420 0.414 0.419 1.160 0.792

ILI

24 1.281 0.731 1.422 0.789 2.215 1.081 2.624 1.095 2.906 1.182 3.537 1.215
36 1.104 0.671 1.497 0.847 1.963 0.963 2.516 1.021 2.585 1.038 3.559 1.222
48 1.255 0.718 1.438 0.813 2.130 1.024 2.505 1.041 3.024 1.145 3.776 1.257
60 1.314 0.737 1.530 0.868 2.368 1.096 2.742 1.122 2.761 1.114 3.932 1.285

4.2 ABLATION STUDY

For position encoding, we adopt three different approaches to generate positional embeddings,
namely fixed position encoding, learnable position encoding, and RNN-based position encoding.
We use MSE as the loss function for these three methods. For capturing the correlation of time se-
ries, we design two sets of experimental conditions: one using the mix-hop propagation layer while
the other not. We adopt MAE loss for these two conditions using GNN. We test our model with
different RNN layers C, Pearson coefficient filter threshold λ, top-k number and propagation ratio
α and choose the best results. All results are in Appendix A.5.1, A.5.2, A.5.3 and A.5.4.

As shown in Table 3, compared to learnable position encoding(i.e. PatchTST), RNN-based position
encoding achieved reductions of 2.51% and 1.83% in MSE and MAE on average, while the graph
convolutional module achieves 0.65% and 3.63%. Although the fixed position encoding can make
different time steps distinguishable, its fixed embedding values do not contain much temporal or-
der information. The learnable position encoding implicitly learns temporal order information to
some extent and performs better compared to the fixed strategy. Our RNN-based position encod-
ing adopts an explicit structure and can provide positional embeddings with more specific temporal
order information, thus enhancing the model’s ability to adapt to time series data.

7

Under review as a conference paper at ICLR 2024

The results indicate that injecting temporal order information and make highly correlated time series
focus on each other’s features to obtain similar trends, periodicity, etc. can help to make more
accurate predictions.

Table 3: Ablation study of RNN-based position encoding and channel mixing strategy. There are
five cases listed: (a) only use RNN to generate all position embeddings (R); (b) only use learnable
position encoding, which is PatchTST (L); (c) only use fixed position encoding (F); (d) only use
graph convolution module (Mix-CN); (e) use both RNN-based position encoding and graph convo-
lution module, which is our GRformer (R & Mix-CN). The best results are in bold and second best
results are underlined.

Models R L F Mix-CN R & Mix-CN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.149 0.187 0.152 0.200 0.152 0.204 0.145 0.184 0.147 0.184
192 0.193 0.236 0.196 0.239 0.198 0.249 0.195 0.230 0.192 0.232
336 0.235 0.267 0.249 0.283 0.258 0.287 0.247 0.273 0.245 0.273
720 0.316 0.330 0.321 0.334 0.330 0.341 0.322 0.327 0.318 0.325

Traffic

96 0.356 0.241 0.367 0.251 0.370 0.255 0.382 0.232 0.363 0.224
192 0.378 0.251 0.385 0.259 0.388 0.265 0.395 0.239 0.385 0.232
336 0.392 0.260 0.398 0.265 0.402 0.275 0.407 0.249 0.394 0.239
720 0.426 0.281 0.436 0.287 0.441 0.292 0.451 0.274 0.443 0.258

Electricity

96 0.129 0.223 0.130 0.223 0.132 0.226 0.130 0.219 0.126 0.217
192 0.146 0.239 0.148 0.240 0.149 0.243 0.146 0.236 0.142 0.234
336 0.163 0.257 0.165 0.258 0.168 0.260 0.162 0.253 0.155 0.248
720 0.200 0.289 0.202 0.291 0.211 0.295 0.199 0.283 0.188 0.276

ETTh1

96 0.370 0.394 0.371 0.396 0.372 0.396 0.366 0.388 0.365 0.387
192 0.409 0.418 0.412 0.422 0.412 0.429 0.407 0.413 0.404 0.410
336 0.432 0.434 0.438 0.436 0.442 0.439 0.428 0.425 0.430 0.429
720 0.447 0.458 0.451 0.466 0.452 0.467 0.439 0.459 0.429 0.452

ETTh2

96 0.277 0.338 0.274 0.336 0.282 0.346 0.276 0.333 0.274 0.332
192 0.343 0.379 0.339 0.379 0.350 0.388 0.342 0.374 0.338 0.374
336 0.360 0.397 0.356 0.397 0.362 0.403 0.364 0.394 0.355 0.390
720 0.387 0.423 0.385 0.425 0.400 0.436 0.394 0.419 0.382 0.417

ETTm1

96 0.285 0.340 0.290 0.342 0.301 0.351 0.291 0.331 0.281 0.326
192 0.326 0.367 0.344 0.387 0.346 0.388 0.332 0.359 0.325 0.356
336 0.361 0.391 0.366 0.392 0.380 0.408 0.367 0.381 0.357 0.377
720 0.413 0.421 0.419 0.425 0.421 0.424 0.421 0.418 0.417 0.413

ETTm2

96 0.164 0.255 0.166 0.254 0.171 0.256 0.161 0.247 0.161 0.247
192 0.220 0.293 0.222 0.294 0.230 0.294 0.216 0.285 0.213 0.284
336 0.272 0.328 0.277 0.331 0.272 0.328 0.268 0.319 0.266 0.319
720 0.360 0.385 0.366 0.386 0.371 0.393 0.356 0.375 0.351 0.372

ILI

24 1.303 0.753 1.422 0.789 1.611 0.856 1.433 0.748 1.281 0.731
36 1.328 0.772 1.497 0.847 1.585 0.799 1.462 0.767 1.104 0.671
48 1.250 0.767 1.438 0.813 1.629 0.837 1.491 0.802 1.255 0.718
60 1.447 0.823 1.530 0.868 1.685 0.876 1.513 0.826 1.314 0.737

4.3 VARYING LOOK-BACK WINDOW

To see the effect of different sizes of look-back window, we conduct experiments with L ∈
{96, 192, 336, 720} and τ ∈ {96, 192, 336, 720}, and the results on three datasets are shown in
Figure 3. It can be found that as the look-back window size increases, Autoformer tends to over-
fit. Crossformer makes significant improvement, but its overall performance is biased and severely
affected by L, while GRformer achieves the best results and stable performance improvement. All
results of our model can be found in Appendix A.7.

Table 4: The computational complexity of different models. L represents the length of the historical
look-back window, M is the number of time series, P denotes the patch length, C is the number of
RNN layers, τ is the future prediction horizons, dim is the dimension of the latent state, and K is
the depth of propagation.

Models Position Encoding Encoder layer Decoder layer
Autoformer (Wu et al., 2021) O(1) O(L logL) O((L2 + τ) log(L2 + τ))

FEDformer (Zhou et al., 2022a) O(1) O(L) O(τ + L
2)

Crossformer (Zhang & Yan, 2023) O(LP) O(M(LP)2) O(M τ(τ+L)
P 2)

PatchTST (Nie et al., 2023) O(LP) O(M(LP)2) O(M τLdim
P)

GRformer (Ours) O(C L
P) O(KM(LP)2) O(M τLdim

P)

8

Under review as a conference paper at ICLR 2024

4.4 COMPLEXITY ANALYSIS

We analyze the computational complexity of the position encoding process, encoder, and decoder
of different models, the results are shown in Table 4. The computational complexity of simple
single-layer recurrent networks such as vanilla RNNs, LSTMs, and GRUs is linear with the length
of the input sequence. The patching operation reduces the number of sequence elements from L
to L

P . Therefore, the multi-layer RNN in GRformer has the computational complexity of O(C L
P).

Because of the channel-independent strategy, the attention weights need to be calculated for M
times, so there is O(M(LP)2) computational complexity of one attention layer. Additionally, the
gradients need to be aggregated from K-hop neighbors, resulting in the O(KM(LP)2) complexity
of the encoder layer. The Graph construction operation is independent of the training process, and
the mix-hop propagation layer is equivalent to matrix multiplication without gradient update, so
there isn’t extra computational complexity added. We replace the computational complexity of the
Decoder layer with that of Flatten layer with linear head because we use this module to get outputs.
The complexity is O(M τLdim

P), which is the same as PatchTST.

E
l
e
c
t
r
i
c
i
t
y

E
T
T
h
1

PatchTSTGRformer DLinear AutoformerCrossformer

Figure 3: The results of MSE using varying look-back window size L on three datasets: Electric-
ity, ETTh1, and ETTm2. The look-back windows L is selected from {96, 192, 336, 720}, and the
prediction horizons τ ∈ {96, 192, 336, 720}. A total of five models are listed: PatchTST, DLinear,
Autoformer, Crossformer, and our GRformer.

5 CONCLUSION

We propose GRformer, an improved Transformer-based MLTSF model with two key designs: a mix-
hop propagation layer in the feedforward network and RNN-based position encoding. Compared to
previous works, our mix-hop propagation layer demonstrates the effectiveness of capturing cross-
channel dependencies in multivariate time series forecasting tasks. To ensure proper correlations
between different channels, we take advantage of the Pearson correlation coefficient to generate a
reasonable graph structure. The RNN-based position encoding we adopt can not only distinguish
position difference information but also ensure that the obtained position embeddings have temporal
order information. This factor can’t be captured by previous MLTSF models.

There are still some questions that need to be answered. Although the RNN structure has been
used to optimize the position encoding process(Wang et al., 2019), there is still no strict theory or
indicator to measure the temporal order characteristic exhibited by the extracted features. What’s
more, the universality of MLTSF models in short-term forecasting and more practical application
scenarios still needs to be verified, such as cloud-edge workload forecasting (Wang et al., 2022)
in complex IoT business scenarios which contains more randomness. Future researches need to be
done to explore more diverse and complex scenarios.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, Yiteng
Huang, and Israel Cohen. Pearson correlation coefficient. Noise reduction in speech processing,
pp. 1–4, 2009.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Yuntao Du, Jindong Wang, Wenjie Feng, Sinno Pan, Tao Qin, Renjun Xu, and Chongjun Wang.
Adarnn: Adaptive learning and forecasting of time series. In Proceedings of the 30th ACM inter-
national conference on information & knowledge management, pp. 402–411, 2021.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pp. 922–929, 2019.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. IEEE transactions on
pattern analysis and machine intelligence, 45(1):87–110, 2022.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Katikapalli Subramanyam Kalyan, Ajit Rajasekharan, and Sivanesan Sangeetha. Ammus: A sur-
vey of transformer-based pretrained models in natural language processing. arXiv preprint
arXiv:2108.05542, 2021.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=cGDAkQo1C0p.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference
on research & development in information retrieval, pp. 95–104, 2018.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

10

http://arxiv.org/abs/1810.04805
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p

Under review as a conference paper at ICLR 2024

Dachuan Liu, Jin Wang, Shuo Shang, and Peng Han. Msdr: Multi-step dependency relation net-
works for spatial temporal forecasting. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 1042–1050, 2022a.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
casting. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022. OpenReview.net, 2022b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1):43–49, 1978.

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. Financial time series fore-
casting with deep learning: A systematic literature review: 2005–2019. Applied soft computing,
90:106181, 2020.

Niko Uremović, Marko Bizjak, Primož Sukič, Gorazd Štumberger, Borut Žalik, and Niko Lukač.
A new framework for multivariate time series forecasting in energy management system. IEEE
Transactions on Smart Grid, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Zhiwei Wang, Yao Ma, Zitao Liu, and Jiliang Tang. R-transformer: Recurrent neural network
enhanced transformer. arXiv preprint arXiv:1907.05572, 2019.

Ziliang Wang, Shiyi Zhu, Jianguo Li, Wei Jiang, KK Ramakrishnan, Yangfei Zheng, Meng Yan, Xi-
aohong Zhang, and Alex X Liu. Deepscaling: microservices autoscaling for stable cpu utilization
in large scale cloud systems. In Proceedings of the 13th Symposium on Cloud Computing, pp.
16–30, 2022.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transform-
ers with Auto-Correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems, 2021.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
753–763, 2020.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series fore-
casting? In Brian Williams, Yiling Chen, and Jennifer Neville (eds.), Thirty-Seventh AAAI Con-
ference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, pp. 11121–11128. AAAI
Press, 2023.

Gang Zhang, Dazhi Yang, George Galanis, and Emmanouil Androulakis. Solar forecasting with
hourly updated numerical weather prediction. Renewable and Sustainable Energy Reviews, 154:
111768, 2022.

11

http://arxiv.org/abs/1907.11692

Under review as a conference paper at ICLR 2024

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proc. 39th International
Conference on Machine Learning, 2022a.

Zanwei Zhou, Ruizhe Zhong, Chen Yang, Yan Wang, Xiaokang Yang, and Wei Shen. A k-variate
time series is worth k words: Evolution of the vanilla transformer architecture for long-term
multivariate time series forecasting. arXiv preprint arXiv:2212.02789, 2022b.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 EXPERIMENTAL DETAILS

A.1.1 DATASETS

We test our model on the following 8 real-world multivariate datasets following (Wu et al., 2021):

1. Weather1 contains 21 meteorological indicators for Germany in 2020, such as air pressure,
temperature, and humidity etc. The time interval for data records is 10 minutes.

2. Traffic2 records the road occupancy rates from 862 sensors on San Francisco Bay area
freeways from July 2016 to July 2018. The time frequency is one hour.

3. Electricity3 contains 321 customers’ hourly electricity consumption from July 2016 to July
2019.

4. ETT4 (Electricity Transformer Temperature) contains 7 indicators of an electricity trans-
former in two years, the dataset is divided to 1 and 2 according to the number of machines,
and based on the time interval between data records (1h and 15min), it is further marked as
h and m, namely ETTh1, ETTh2, ETTm1 and ETTm2.

5. ILI5 (Influenza-Like Illness) records the number of patients in different age groups in a
weekly frequency.

Note that for Weather, Traffic, Electricity and ILI, the ratio we split to train/validation/test set is
0.7/0.1/0.2. For ETTh1, ETTh2, ETTm1, and ETTm2, the train/validation/test set contains 12/4/4
months of data respectively.

A.1.2 BASELINES

The brief decription of our baseline methods is as follows:

1. Autoformer (Wu et al., 2021) uses series decomposition technique with Auto-Correlation
mechanism to capture cross-time dependency for long-term time series forecasting.

2. FEDformer (Zhou et al., 2022a) utilizes trend decomposition and Fourier transformation
techniques and use Transformer to process frequency domain features. It is the model with
best performance before DLinear.

3. DLinear (Zeng et al., 2023) decomposes time series into two different components, and
generates a single Linear layer for each of them. Such a simple design has defeated all the
complex transformer models proposed before it.

4. Crossformer (Zhang & Yan, 2023) is aware of the fact that segmenting subsequences in
LSTF is beneficial. Different from the current SOTA, it reintroduce channel mixing tech-
nique to serve its purpose of multivariate time series forecasting. To capture channel de-
pendencies between time series, it designs another attention layer, working with a routing
mechanism to reduce complexity.

5. PatchTST (Nie et al., 2023) adopts patching and channel independent techniques, making
semantic extraction of time series from a single time step to multiple time steps, and achieve
SOTA in LSTF models.

A.1.3 MODEL PARAMETERS

By default, we set hyperparameters shown in Table 6. The backbone of GRformer contains 3 encoder
layers, with hidden state dimension dim as 128 and multi-attention heads as 8. For the mix-hop layer
in feed forward network, the depth of propagation K is set to 2, while the two linear layers in the

1https://www.bgc-jena.mpg.de/wetter/
2https://pems.dot.ca.gov/
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4https://github.com/zhouhaoyi/ETDataset
5https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

13

Under review as a conference paper at ICLR 2024

feedforward network would transform the features from dim = 128 to d ff = 256 and then back to
dim = 128. Finally, the results will go through an GELU (Hendrycks & Gimpel, 2016) activation
function. Note that for datasets with less time series, namely ETTh1, ETTh2, ETTm1, ETTm2
and ILI, we will only keep top-2 elements of Pearson correlation coefficient matrix to generate the
adjacency matrix A.

We use the same historical look-back window L as 336 and future horizen steps T ∈
{96, 192, 336, 720} for GRformer, PatchTST, Crossformer and DLinear, to make a relatively fair
comparison. Note that for Crossformer, the original datasets, length of look-back window and fu-
ture horizens it uses are not the same as ours, but based on the fact that all the three models of
Crossformer, PatchTST and GRformer adopt Patching technique and are adapted to MLSTF task, it
is reasonable to keep the input and output lengths the same for these models. For dataset like ILI
that has few instances, we set L to 104 and do prediction on T ∈ {24, 36, 48, 60}.

For different datasets, we use optuna (Akiba et al., 2019) to retrieve the optimal parameters. We
tune a total of seven parameters, namely learning rate, dropout, RNN depth C, filter threshold λ,
top-k number, propagation depth K, and the propagation ratio α. The learning rate has the greatest
impact on the results, which is the main parameter of fine-tuning. Other parameters cause slight
differences in the final results. The searching space is shown in Table 5. The learning rate used in
different datasets are shown in Table 6. We adopt Adam optimizer to adjust model parameters for
minimizing the loss function.

Table 5: The searching space of learning rate, dropout, RNN depth C, filter threshold λ, top-k
number, propagation depth K, and the propagation ratio α.

Hyperparameter Searching Space
Learning rate {6.0e− 06, 1.0e− 05, 2.0e− 05, 3.0e− 05, 8.0e− 05, 1.0e− 04, 2.0e− 04, 3.0e− 04, 8.0e− 04, 1.0e− 03, 1.2e− 03, 2.0e− 03}

dropout {0.15, 0.2, 0.25, 0.3, 0.35, 0.4}
C {1, 2, 3}
λ {0.8, 0.6, 0.4, 0.2}

top-k
ETT & ILI {1, 2, 3}
Weather {2, 4, 8}
Electricity & Traffic {4, 8, 16, 32}

α {0.03, 0.05, 0.1, 0.15}

Table 6: The learning rate on different datasets. We use scientific notation to display the numerical
value of the learning rate.

Datasets Weather Traffic Electricity ETTh1 ETTh2 ETTm1 ETTm2 ILI
Learning rate 8.0e− 05 8.0e− 04 2.0e− 04 2.0e− 05 1.0e− 05 3.0e− 05 1.0e− 05 1.0e− 03

C 1 2 1 1 1 2 2 1
λ 0.4 0.4 0.6 0.8 0.8 0.8 0.8 0.8

top-k 4 16 8 3 3 3 3 2
α 0.1 0.05 0.15 0.05 0.1 0.05 0.1 0.05

As for the other baseline models, we will keep the same strategy as experiments in PatchTST.

A.1.4 ENVIRONMENTS

We run our experiments on Ubuntu 18.04 LTS Linux system, using cuda 11.8, Pytorch 2.0.0 and
Python 3.8. Due to the large scale of data magnitude variation, we choose different hardware facil-
ities for the experiment. For datasets like Weather, ETT, and ILI that have limited time series, we
select one RTX 3060-Ti GPU with 8GB of memory. For Electricity and Traffic, which have a very
large number of time series, we select two V100 GPUs, each of which has 32GB memory.

A.2 UNIVARIATE FORECASTING

We evaluate our model’s performance on univariate forecasting tasks using the ETT datasets. We try
to predict the specific variable ”Oil Temperature (OT)”. The results of different models are shown
in Table 7.

14

Under review as a conference paper at ICLR 2024

Table 7: Univariate forecasting results on ETT datasets with the future prediction horizons τ ∈
{96, 192, 336, 720}. The best results are in bold.

Models GRformer PatchTST DLinear FEDformer Autoformer Crossformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.056 0.179 0.055 0.179 0.056 0.180 0.079 0.215 0.071 0.206 0.062 0.190
192 0.071 0.205 0.071 0.215 0.071 0.204 0.104 0.245 0.114 0.262 0.071 0.208
336 0.087 0.235 0.085 0.232 0.098 0.244 0.119 0.270 0.107 0.258 0.076 0.214
720 0.099 0.249 0.087 0.232 0.189 0.359 0.142 0.299 0.126 0.283 0.098 0.247

ETTh2

96 0.126 0.277 0.129 0.282 0.131 0.279 0.128 0.271 0.153 0.306 0.196 0.351
192 0.165 0.322 0.168 0.328 0.176 0.329 0.185 0.330 0.204 0.351 0.257 0.411
336 0.184 0.345 0.185 0.351 0.209 0.367 0.231 0.378 0.246 0.389 0.283 0.433
720 0.199 0.359 0.224 0.383 0.276 0.426 0.278 0.420 0.268 0.409 0.375 0.501

ETTm1

96 0.026 0.122 0.026 0.121 0.028 0.123 0.033 0.140 0.056 0.183 0.084 0.239
192 0.040 0.150 0.039 0.150 0.045 0.156 0.058 0.186 0.081 0.216 0.102 0.261
336 0.053 0.174 0.053 0.173 0.061 0.182 0.084 0.231 0.076 0.218 0.127 0.293
720 0.073 0.203 0.074 0.207 0.080 0.210 0.102 0.250 0.110 0.267 0.121 0.279

ETTm2

96 0.063 0.181 0.065 0.186 0.063 0.183 0.067 0.198 0.065 0.189 0.096 0.241
192 0.091 0.224 0.094 0.231 0.092 0.227 0.102 0.250 0.110 0.267 0.133 0.285
336 0.119 0.261 0.120 0.265 0.119 0.261 0.130 0.279 0.154 0.305 0.169 0.326
720 0.166 0.317 0.171 0.322 0.175 0.320 0.178 0.325 0.182 0.335 0.283 0.429

A.3 RESULTS OF DIFFERENT LOSS FUNCTIONS

We conduct experiments for GRformer using different loss function, we test our model with Mean
Squared Error (MSE) Loss, Mean Absolute Error (MAE) Loss and Huber Loss. The specific defini-
tion of these loss functions are in Eq 7, Eq 8, and Eq 9.

MSE(Y, Ŷ) =
1

|Y |

|Y |∑
i=1

|Yi − Ŷi|2 (7)

MAE(Y, Ŷ) =
1

|Y |

|Y |∑
i=1

|Yi − Ŷi| (8)

HUBER(Y, Ŷ) =

{
1
2 · 1

|Y |
∑|Y |

i=1 |Yi − Ŷi|2, if |Yi − Ŷi| ≤ δ
1

|Y |
∑|Y |

i=1 δ|Yi − Ŷi| − 1
2δ

2, if |Yi − Ŷi| > δ
(9)

We use MAE Loss by default. For Huber Loss, we set δ = 1.0. We conduct experiments on the 8
datasets, the results are shown in Table 8.

A.4 HOMOSCEDASTICITY VERIFICATION

The correct expression of Pearson correlation coefficient for sequences depends on the homoscedas-
ticity of the data. Before the training progress, we standardize the data of each dataset to avoid the
impact of different sequences on model training due to different unit scales. The Pearson coefficient
results are obtained using the data with almost identical variance after standardization. We use the
’bartlett’ function from the Python ’scipy’ library for Bartlett variance analysis, and the results show
that the data used in our model conforms to the homoscedasticity hypothesis.

A.5 HYPERPARAMETER SENSITIVITY ANALYSIS

To verify whether GRformer is sensitive to the hyperparameters, we conduct experiments of varying
model parameters. The fine-tuned hyperparameters are: (a) RNN layer depth C, (b) Pearson coeffi-
cient matrix filter threshold λ, (c) top-k number for selecting edges in the adjacency matrix and (d)
propagation ratio α for aggregating information of different hops. For each setting, we repeat the
experiment 5 times with 100 epochs (with early-stop control) each time and report the average MAE
with a standard deviation. We change the parameter under investigation and fix other parameters
in each experiment. Overall, on different datasets, adjusting the number of hyperparameters does
not cause large fluctuations in the results. Different datasets also have their own preferences for dif-

15

Under review as a conference paper at ICLR 2024

Table 8: Experiments of different Loss functions on 8 datasets. Three cases are listed: (a) is GR-
former with MAE Loss, which is the default setting; (b) is GRformer with MSE Loss; (c) is GR-
former with Huber Loss. The best results are in bold.

Models GRformer(MAE) GRformer(MSE) GRformer(Huber)
Metric MSE MAE MSE MAE MSE MAE

Weather

96 0.147 0.184 0.150 0.199 0.149 0.191
192 0.192 0.232 0.196 0.243 0.196 0.236
336 0.245 0.273 0.250 0.286 0.248 0.279
720 0.318 0.325 0.322 0.336 0.321 0.331

Traffic

96 0.363 0.234 0.354 0.239 0.363 0.236
192 0.385 0.232 0.376 0.249 0.384 0.245
336 0.394 0.239 0.390 0.258 0.399 0.251
720 0.433 0.258 0.424 0.280 0.434 0.275

Electricity

96 0.126 0.217 0.128 0.224 0.128 0.221
192 0.142 0.234 0.145 0.240 0.146 0.238
336 0.155 0.248 0.165 0.261 0.162 0.256
720 0.184 0.276 0.198 0.290 0.196 0.285

ETTh1

96 0.365 0.387 0.372 0.395 0.370 0.390
192 0.406 0.412 0.410 0.419 0.409 0.416
336 0.430 0.429 0.434 0.436 0.432 0.433
720 0.429 0.452 0.446 0.465 0.437 0.459

ETTh2

96 0.274 0.332 0.284 0.342 0.277 0.336
192 0.337 0.373 0.347 0.383 0.346 0.381
336 0.355 0.390 0.372 0.403 0.360 0.393
720 0.382 0.417 0.399 0.433 0.385 0.420

ETTm1

96 0.281 0.326 0.287 0.342 0.285 0.336
192 0.325 0.356 0.332 0.370 0.327 0.363
336 0.357 0.377 0.367 0.395 0.362 0.387
720 0.417 0.413 0.422 0.424 0.425 0.420

ETTm2

96 0.161 0.246 0.165 0.256 0.161 0.249
192 0.213 0.284 0.220 0.294 0.212 0.286
336 0.266 0.319 0.273 0.328 0.266 0.320
720 0.351 0.372 0.359 0.383 0.349 0.371

ILI

24 1.281 0.731 1.417 0.782 1.393 0.746
36 1.104 0.671 1.277 0.751 1.336 0.735
48 1.255 0.718 1.283 0.759 1.286 0.710
60 1.314 0.737 1.612 0.864 1.486 0.790

ferent hyperparameters, this difference is obvious for hyperparameters related to the GNN module,
because the relationships between time series vary across different datasets.

A.5.1 RNN LAYER DEPTH

With the increase of RNN layer depth, more information from previous RNN units can be propagated
to the later ones. Considering that it makes it harder for the model to optimize the parameters of
RNN that is too deep, we conduct experiments of using RNN layers C ∈ {1, 2, 3}. The results can
be seen in Figure 4 (a). In most cases, the optimal result is obtained when the number of RNN layers
C equals to 1 or 2.

A.5.2 FILTER THRESHOLD FOR GRAPH CONSTRUCTION

The filter threshold λ is used to filter out sequence pairs that are not highly correlated. The smaller
the λ, the more likely the inter-sequence interactions are to be taken into account. A large λ may
result in insufficient sequence interaction information being used, while a small λ may make a se-
quence referencing more weakly correlated neighbors and introduce too much noise. The empirical
choice is that when the Pearson correlation coefficient is greater than 0.8, the two sequences can be
considered to be strongly positively correlated. However, in order to comprehensively consider the
interaction information between time series, we conduct the threshold selection experiments. We set
the top-k value to be the same as the number of sequences in each dataset to see the full impact of
the threshold. The results corresponding to different λ is shown in Figure 4 (b). In most cases, it is
better for datasets that have large number of sequences to consider more interactions. However, if λ
is set to 0.2, all the cases get the worst results, which indicate that a small threshold take too many
weakly correlated neighbors into account that too much noise is aggregated by one sequence. The
best threshold for Traffic, Electricity, ETTh1 and ETTm2 is λ = 0.4, λ = 0.6, λ = 0.8 and λ = 0.8
respectively.

16

Under review as a conference paper at ICLR 2024

(a) RNN layers 𝐶

(c) Top-K number

(d) Propagation ratio 𝛼

(b) Correlation coefficient matrix filter threshold 𝜆

Figure 4: Hyperparameter sensitivity of (a) RNN layers C, (b) coefficient matrix filter threshold
λ, (c) top-k number for selecting edges in the adjacency matrix and (d) propagation ratio α for
aggregating information of different hops.

A.5.3 TOP-K NEIGHBORS

The top-k value is to further filter the sequence pairs that meet the threshold. This allows a se-
quence to focus on the top-k sequence that is most relevant to it. A small top-k value may result
in insufficient sequence interaction information being used, while a large top-k value may make a
sequence referencing more relatively weakly correlated neighbors and introduce noise to some ex-
tent. To make sure that there are enough sequence pairs to choose from, we fix the value λ to 0.4
and try different top-k values for different datasets. For Traffic and Electricity, we select top-k from
{4, 8, 16, 32}. For ETTh1 and ETTm2, we select top-k from {1, 2, 3}. The results can be seen in
Figure 4 (c).

A.5.4 PROPAGATION RATIO

The propagation ratio α is used to maintain a part of the original embeddings of a patch without
information from its multi-hop neighbors. A large value of α constrains the sequence from exploring
its neighborhood. Overall, α causes slight difference on the model performance on different datasets,
in most cases, the smallest α can’t make the model to get the optimal results, therefore it is still
necessary to preserve a part of the original embeddings. The results are shown in Figure 4 (d).

A.6 MODEL EFFICIENCY

We compare GRformer’s predictive performance, training speed, and memory footprint to the rec-
ognized deep predictive models. The results are recorded using the official model configuration and
the same batch size 32. We visualized the model efficiency under datasets Traffic and ETTh1 in
Figure 5. Compared to the current most advanced model PatchTST (Nie et al., 2023), GRformer

17

Under review as a conference paper at ICLR 2024

consumes 91.7% more training time and 99.7% in ETTh1, and 88% more training time and 49.6%
more memory in Traffic. This is mainly caused by the use of multi-hop GNN module, because the
gradients from multi-hop neighbors need to be storaged and backpropagated with different weights.

Considering the recursive nature of RNN, we also conduct experiments using different RNN layers
to see how much computing resource does the RNN position encoding cost. As shown in Table
9, the conditions are different with different layers of RNN. For simple one-layer RNN position
encoding (we use ’R-c’ to represent experimental settings with c-layer RNN), the model has almost
the same training speed and consumes 3.8% more memory than learnable position encoding in
ETTh1 on average, and needs 5.9% more training time and 5.3% more memory in Traffic. The gap
between RNN-based and learnable position encoding increase as the input sequence length L and
the layer number C of RNN become larger. Overall, RNN-based position encoding doesn’t result
in too much computational resource consumption. This indirectly proves that the main computing
resource consumption of the model is concentrated in the GNN module.

Figure 5: Model efficiency comparison with input length L = 336 and batch size = 32.

Table 9: The training speed and memory consumption of GRformer using only RNN-based position
encoding with different input length L and RNN layer depth C. dataset-L means the results are
recorded in a dataset using the input length of L. R-C denotes the model using C-layer RNN for
generating position encoding. L represents the model using learnable position encoding, which is
the same as PatchTST.

Model R-1 R-2 R-3 L

ETTh1-96 speed(ms) 12 13 14 12
mem(GB) 0.272 0.292 0.293 0.267

ETTh1-336 speed(ms) 24 26 28 24
mem(GB) 0.562 0.583 0.596 0.532

ETTh1-720 speed(ms) 34 37 41 31
mem(GB) 0.850 0.944 1.181 0.818

Traffic-96 speed(ms) 83 83 97 74
mem(GB) 11.875 13.207 14.063 4.678

Traffic-336 speed(ms) 172 212 239 167
mem(GB) 40.978 54.818 50.386 38.928

Traffic-720 speed(ms) 481 493 518 452
mem(GB) 127.242 145.046 146.172 119.672

A.7 VARING LOOK-BACK WINDOW

We set different length of look-back window to test our model’s ability of capturing long-term
dependencies, and explore whether there is underfitting or overfitting phenomenon. For ILI, we
set L ∈ {24, 64, 104, 144}, for other datasets, we set L ∈ {96, 192, 336, 720}. The results are
shown in Table 10.

A.8 DIVERSE GRAPH CONSTRUCTION METHODS

Besides using Pearson correlation coefficient, there are many more approches for constructing a
graph using the raw data, such as DTW (Sakoe & Chiba, 1978) and learnable adjacent matrix. We

18

Under review as a conference paper at ICLR 2024

Table 10: The prediction performance of GRformer with different historical look-back window. ’-’
in the table means out of memory.

L(τ) 96(24) 192(64) 336(104) 720(144)
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.173 0.205 0.157 0.192 0.147 0.184 0.145 0.182
192 0.219 0.247 0.202 0.234 0.192 0.232 0.189 0.227
336 0.275 0.291 0.258 0.277 0.245 0.273 0.244 0.270
720 0.354 0.341 0.335 0.331 0.318 0.325 0.315 0.324

Traffic

96 0.446 0.258 0.383 0.231 0.363 0.224 - -
192 0.454 0.261 0.401 0.237 0.385 0.232 - -
336 0.478 0.275 0.419 0.244 0.394 0.239 - -
720 0.496 0.281 0.460 0.267 0.433 0.258 - -

Electricity

96 0.162 0.243 0.134 0.221 0.126 0.217 0.127 0.217
192 0.172 0.253 0.149 0.236 0.142 0.234 0.144 0.233
336 0.187 0.269 0.164 0.252 0.155 0.248 0.160 0.249
720 0.228 0.310 0.201 0.290 0.184 0.276 0.195 0.278

ETTh1

96 0.375 0.386 0.372 0.384 0.365 0.387 0.367 0.396
192 0.424 0.417 0.415 0.413 0.406 0.412 0.403 0.421
336 0.462 0.435 0.447 0.429 0.430 0.429 0.424 0.426
720 0.471 0.462 0.442 0.454 0.429 0.452 0.427 0.454

ETTh2

96 0.280 0.330 0.278 0.331 0.274 0.332 0.273 0.334
192 0.357 0.379 0.345 0.376 0.337 0.373 0.339 0.375
336 0.399 0.412 0.374 0.399 0.355 0.390 0.366 0.398
720 0.409 0.430 0.392 0.419 0.382 0.417 0.404 0.435

ETTm1

96 0.311 0.339 0.294 0.329 0.281 0.326 0.286 0.331
192 0.362 0.367 0.333 0.355 0.325 0.356 0.329 0.359
336 0.293 0.289 0.363 0.378 0.357 0.377 0.362 0.380
720 0.456 0.427 0.425 0.417 0.417 0.413 0.409 0.410

ETTm2

96 0.173 0.252 0.166 0.274 0.161 0.246 0.161 0.248
192 0.239 0.296 0.225 0.288 0.213 0.284 0.223 0.292
336 0.301 0.336 0.277 0.323 0.266 0.319 0.269 0.322
720 0.403 0.393 0.368 0.379 0.351 0.372 0.347 0.374

ILI

24 0.331 1.102 1.459 0.743 1.281 0.731 1.446 0.775
36 2.067 0.884 1.557 0.767 1.104 0.671 1.363 0.747
48 1.999 0.884 1.602 0.802 1.255 0.718 1.350 0.769
60 2.122 0.925 0.763 0.851 1.314 0.737 1.486 0.811

19

Under review as a conference paper at ICLR 2024

conduct exporiments to see the difference of varying graph constructing methods. For DTW al-
gorithms, we calculate the distance Distance(i,j) between the i-th and j-th univariant time series,
and use 1

1+Distance(i,j)
as the correlation coefficient between them. For learnable adjacency ma-

trix, we randomly initialize an adjacency matrix Aθ ∈ RC×C and parameterize it. We fix other
hyperparameters to fairly compare these three methods.

All the results can be seen in Table 11. Although DTW is more complex than Pearson correlated
coefficient algorithm, it does not have obvious significant performance improvement. Learnable
adjacency matrix performs better in some cases, and offer better flexibility, however, it costs too
much computing resources, and has a relatively slow training speed. Overall, the use of Pearson
correlation coefficient method is general and effective. In more complex application scenarios, other
graph constructing algorithms may generate better graph structures. Our graph constructing module
is independent of the training process, which makes the substitution of algorithms very convenient
and flexible.

A.9 ROBUSTNESS ANALYSIS

All results in the main text and appendix above are obtained using the fixed random seed 2023. We
train GRformer with three other random seeds to evaluate the robustness of our results, as shown
in Table 12. It can be seen that the variances are small, indicating the robustness against choice of
random seeds of our model.

A.10 VISUALIZATION

We visualize the long-term forecasting results of GRformer, PatchTST, DLinear, and Autoformer in
Figure 6. We predict 192 steps on ETTm2 and 60 steps on ILI. GRformer provides stable prediction
results which is the closest to the ground truth.

20

Under review as a conference paper at ICLR 2024

Table 11: The prediction performance of GRformer with different graph constructing methods: (a)
DTW algorithm, (b) learnable adjacency matrix and (c) Pearson correlated coefficient algorithm. ’-’
in the table means out of memory.

Models DTW Learnable Pearson
Metric MSE MAE MSE MAE MSE MAE

Weather

96 0.149 0.189 0.142 0.184 0.147 0.184
192 0.195 0.232 0.186 0.228 0.192 0.232
336 0.246 0.273 0.237 0.253 0.245 0.273
720 0.320 0.327 0.284 0.288 0.318 0.325

Traffic

96 0.370 0.228 - - 0.363 0.224
192 0.389 0.237 - - 0.385 0.232
336 0.400 0.246 - - 0.394 0.239
720 0.446 0.267 - - 0.433 0.258

Electricity

96 0.128 0.219 0.124 0.213 0.126 0.217
192 0.145 0.235 0.144 0.230 0.142 0.234
336 0.161 0.253 0.160 0.252 0.155 0.248
720 0.186 0.277 0.190 0.284 0.184 0.276

ETTh1

96 0.373 0.392 0.360 0.381 0.365 0.387
192 0.410 0.417 0.406 0.412 0.406 0.412
336 0.432 0.431 0.433 0.426 0.430 0.429
720 0.444 0.458 0.432 0.450 0.429 0.452

ETTh2

96 0.275 0.334 0.269 0.324 0.274 0.332
192 0.337 0.374 0.337 0.373 0.337 0.373
336 0.356 0.389 0.353 0.391 0.355 0.390
720 0.384 0.419 0.388 0.424 0.382 0.417

ETTm1

96 0.285 0.329 0.289 0.326 0.284 0.326
192 0.332 0.361 0.321 0.358 0.325 0.356
336 0.361 0.379 0.358 0.391 0.357 0.377
720 0.426 0.415 0.419 0.414 0.417 0.413

ETTm2

96 0.161 0.246 0.158 0.240 0.161 0.246
192 0.218 0.285 0.210 0.280 0.213 0.284
336 0.272 0.328 0.265 0.318 0.266 0.319
720 0.354 0.372 0.349 0.370 0.351 0.372

ILI

24 1.414 0.736 1.324 0.720 1.281 0.731
36 1.362 0.699 1.514 0.757 1.104 0.671
48 1.302 0.807 1.542 0.864 1.255 0.718
60 1.621 0.825 1.283 0.701 1.314 0.737

21

Under review as a conference paper at ICLR 2024

Table 12: Multivariate long-term forecasting results with different random seeds in different
datasets.

Model GRformer
Metric MSE MAE

Weather

96 0.1475±0.0002 0.1843±0.0004
192 0.1926±0.0006 0.231±0.0005
336 0.2463±0.0014 0.2246±0.0011
720 0.3188±0.0008 0.3259±0.0005

Traffic

96 0.3637±0.0011 0.2243±0.0004
192 0.3853±0.0008 0.3256±0.0007
336 0.3957±0.0014 0.2401±0.0008
720 0.4337±0.0006 0.2622±0.0008

Electricity

96 0.1262±0.0002 0.2173±0.0002
192 0.1422±0.0005 0.2347±0.0004
336 0.1554±0.0003 0.2488±0.0006
720 0.1864±0.0022 0.2773±0.0012

ETTh1

96 0.3655±0.0010 0.3868±0.0005
192 0.4048±0.0006 0.4113±0.0008
336 0.4312±0.0012 0.4305±0.0010
720 0.4369±0.0073 0.4585±0.0056

ETTh2

96 0.2751±0.0007 0.3330±0.0005
192 0.3378±0.0008 0.3743±0.0012
336 0.3562±0.0016 0.3907±0.0004
720 0.3846±0.0025 0.4229±0.0013

ETTm1

96 0.2853±0.0008 0.3265±0.0003
192 0.3254±0.0006 0.3571±0.0012
336 0.3601±0.0029 0.3786±0.0012
720 0.4223±0.0052 0.4141±0.0014

ETTm2

96 0.1608±0.0002 0.2460±0.0001
192 0.2142±0.0010 0.2842±0.0003
336 0.2688±0.0022 0.3207±0.0014
720 0.3515±0.0008 0.3728±0.0005

ILI

24 1.3075±0.0333 0.7337±0.0026
36 1.3392±0.1844 0.7293±0.0521
48 1.3731±0.1470 0.7479±0.0314
60 1.4249±0.0842 0.7742±0.0280

22

Under review as a conference paper at ICLR 2024

(b) The prediction results on ILI. The chosen variables are ’%WEIGHTED ILI’ and ’AGE 0-4’.

(a) The prediction results on ETTm2. The chosen variables are ’LULL’ and ’OT’.

Figure 6: The visulization of (a) 192-step prediction results on ETTm2 where L = 336, and (b)
60-step prediction results on ILI where L = 104. The variables chosen are ’Low UseLess Load
(LULL)’ and ’Oil Temperature (OT)’ in ETTm2 and ’% WEIGHTED ILI’ and ’AGE 0-4’ in ILI.
GRformer can offer the closest prediction results to the ground truth (in light blue).

23

	Introduction
	Related Work
	Methodology
	Problem Definition
	Model Structure
	RNN-based Position Encoding
	Graph Constructing
	Mix-hop Propagation
	Loss function
	Instance Normalization

	Experiments
	Experimental settings
	Ablation Study
	Varying look-back window
	Complexity Analysis

	Conclusion
	Appendix
	Experimental Details
	Datasets
	Baselines
	Model Parameters
	Environments

	Univariate forecasting
	Results of different Loss functions
	Homoscedasticity Verification
	Hyperparameter sensitivity analysis
	RNN layer depth
	Filter threshold for Graph Construction
	Top-K Neighbors
	Propagation ratio

	Model Efficiency
	Varing look-back window
	Diverse graph construction methods
	Robustness Analysis
	Visualization

