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ABSTRACT

Dataset distillation aims to compress training data into fewer examples via a teacher,
from which a student can learn effectively. While its success is often attributed
to structure in the data, modern neural networks also memorize specific facts, but
if and how such memorized information can be transferred in distillation settings
remains less understood. While this transfer may be desirable in some applications,
it also raises privacy concerns, where preventing such leakage is crucial. In this
work, we show that students trained on soft labels from teachers can indeed achieve
non-trivial accuracy on held-out memorized data they never directly observed.
This effect persists on structured data when the teacher has not generalized. To
understand this effect in isolation, we consider finite random i.i.d. datasets where
generalization is a priori impossible and a successful teacher fit implies pure
memorization. Still, students can learn non-trivial information about the held-out
data, in some cases up to perfect accuracy. For multinomial logistic classification
and single layer MLPs, we show this corresponds to the setting where the teacher
can be recovered functionally – the student matches the teacher’s predictions on all
possible inputs, including the held-out memorized data. We empirically show that
these phenomena strongly depend on the sample complexity and the temperature
with which the logits are smoothed, but persist across varying network capacities,
architectures and dataset compositions.

1 INTRODUCTION

With the advent of foundation models, it has become of great interest to exploit and transfer their ca-
pabilities to other models and finetuning and distillation make this possible in practice. In distillation,
a student model is trained on data derived from a teacher model (Hinton et al., 2014; Xu et al., 2024);
dataset distillation specifically focuses on finding a minimal training set that achieves high perfor-
mance for similarly sized teacher and student models (Cazenavette et al., 2023; Yu et al., 2024; Yang
et al., 2024). A central mechanism is the use of soft labels, where the teacher’s logits are transformed
into probability distributions that the student is trained to match (Buciluǎ et al., 2006; Ba & Caruana,
2014; Hinton et al., 2015). This simple idea has been remarkably effective and remains competitive for
modern architectures (Gou et al., 2021a; Yu et al., 2024; Xu et al., 2024; Qin et al., 2024). While there
have been theoretical attempts to explain the benefits of soft labels (Phuong & Lampert, 2019; Sagli-
etti & Zdeborova, 2022; Menon et al., 2021; Boix-Adsera, 2024; Dissanayake et al., 2025), it remains
unclear what exactly the “dark knowledge” (Hinton et al., 2015) in soft labels is, and how to quantify it.

Among the hypotheses on the regularizing benefits of soft labels (Müller et al., 2019; Yuan et al., 2020;
Zhou et al., 2021), one line of reasoning suggests that they are effective because they encode latent
structure in the data distribution (Phuong & Lampert, 2019; Menon et al., 2021). This view explains
empirical successes in image classification and language, where soft labels regularize the student
by exposing correlations in the teacher’s predictions (Qin et al., 2024; Xu et al., 2024). However,
success in large-scale models does not rely on structure alone: such models not only generalize from
data distributions but also memorize singular facts and associations (Chen et al., 2024). This raises
the question of whether soft labels also convey memorized information, and if students can inherit
it during distillation. So far, this issue has been studied mainly from a privacy perspective: soft
labels and related outputs may leak memorized training information, enabling the recovery of private
attributes (Ma et al., 2024; Cloud et al., 2025). Yet, these works focus on attack scenarios, and the
question of how memorization behaves in benign distillation is still open.
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Figure 1: Information leakage via soft labels. We examine fully connected networks with ReLU
activations and p = 100 hidden neurons and biases. A teacher network is trained on 2D input
data DT

⋆ with i.i.d. random uniform labels drawn from {1, 2, 3}. (A) visualizes DT
⋆ and teacher

decision boundaries which achieve 100% accuracy. Then, DT
⋆ is partitioned into two disjoint sets

DS
train and DS

test (60%, 40%). We examine 2 settings: Training student networks via cross-entropy
(B) on the class label only, making the student independent from the teacher, and (C) on soft labels
obtained from the teacher via softmax on the logits. While the independent model only achieves
trivial accuracy of ∼ 30%, students that fit the teacher’s soft labels achieve non-trivial test accuracy
of ∼ 50%. Markers indicate data from the test set, and whether it was classified wrongly (×) or
correctly (◦). We report averages and the standard error on the mean over 5 runs. (D) The decision
boundaries for teacher (black) and student (blue). Appendix A contains further examples.

We therefore ask:

Do the teacher’s soft labels encode memorized knowledge?
– And if yes, can students pick up this non-trivial information?

To address this, we study memorization transfer in small empirical models that allow for precise
control and measurement, rather than attempting to analyze large-scale systems directly. We isolate
the role of memorization in distillation with soft labels by training teacher networks to memorize a
finite training dataset of input–label pairs. We then distill their “memorized” knowledge into soft
labels, to train students who see only a fraction of those pairs, and are evaluated on the held-out
remainder. We apply this protocol both to (i) small transformers on structured algorithmic tasks and
(ii) fully connected networks on uncorrelated in- and output. While in (i) we exploit early stopping
to obtain memorizing teachers, (ii) does not have a latent structure by design which always implies
teacher memorization. Despite its simplicity, the controlled memorization-only setting (ii) has, to our
knowledge, not been studied previously in the distillation literature.

For both cases we answer our original question positively: From training on the teacher’s soft labels
a student can indeed learn non-trivial information about held-out memorized data. A simple visual
example for distillation in two dimensions is shown in Fig. 1. This has consequences both for the
efficient transferability of memorized knowledge, as well as the leakage of private information. We
summarize our specific contributions below1:

• We demonstrate for both structured but memorized datasets and purely random i.i.d. data
that students trained on teacher’s soft labels can consistently recover non-trivial – in some
cases perfect – accuracy on data the teacher memorized but the student never saw.

• We show that this effect depends strongly on the temperature with which the soft labels
are created from the teacher logits and can be interpreted as a regularizer that interpolates
between fitting the teacher function and recovering only the ground-truth training labels.

• For random i.i.d. data, we show that in logistic regression, simple closed-form capacity and
identifiability thresholds separate distinct leakage regimes, and that these thresholds extend
to the multi-class case with similar qualitative behavior. For ReLU MLPs, the soft label
memorizing and teacher-matching solutions are distinct; the student transitions from the
former to the latter only once the teacher is identifiable, with a sudden jump in accuracy.

1Our results and the code to reproduce them are available at supplementary.material.
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2 RELATED WORK

Distillation. Soft labels have been central to knowledge distillation since its inception (Buciluǎ
et al., 2006; Ba & Caruana, 2014; Hinton et al., 2015), and remain competitive across domains (Gou
et al., 2021b; Xu et al., 2024). Their effectiveness has been linked to regularization effects (Müller
et al., 2019; Yuan et al., 2020) and to encoding statistical structure aligned with the data distribu-
tion (Phuong & Lampert, 2019; Menon et al., 2021). Theoretical investigations of their effectiveness
have considered simplified models such as deep linear networks or linear representations (Phuong &
Lampert, 2019; Boix-Adsera, 2024; Dissanayake et al., 2025; Zhang et al., 2023). In a similar setting
as ours, Saglietti & Zdeborova (2022) analyze regularization transfer from teacher to student, but
take a teacher as a generating model itself rather than letting it memorize a fixed dataset.
In parallel, dataset distillation constructs small datasets that transfer capabilities for faster train-
ing (Wang et al., 2018; Yu et al., 2024), with similar effects observed even with arbitrary trans-
fer sets (Yang et al., 2024; Nayak et al., 2021). These findings suggest that distillation success
depends less on input realism than on whether the teacher function can be inferred from supervi-
sion (Cazenavette et al., 2023). In contrast, we analyze matched-capacity teachers and students on
memorized data without input modification. While we do not modify the input distribution, our
analysis shows that when the data is sufficient to identify the teacher, and softmax temperatures are
high, the student can learn the teacher functionally rather than merely class labels. This contrasts
with work on unlearning, where distillation is used to suppress specific capabilities robustly rather
than retain unrelated capabilities (Lee et al., 2025). This difference highlights the importance of
understanding when distillation preserves or erases information, as we do through different data
regimes in toy examples.

Memorization. Zhang et al. (2017) famously showed that deep networks can fit easily random
labels, demonstrating their large memorization capacity. We extend this observation by studying
how such memorized information can be transferred via distillation with soft labels. This is relevant
for modern large language models which do not memorize their training corpus, but simultaneously
require factual recall (Chen et al., 2024). However, memorizing additional facts incurs a linear cost
in model parameters (Lu et al., 2024). Bansal et al. (2022) distinguish example-level and heuristic
memorization, where the latter relies on shortcuts or spurious correlations, which is known to hurt
generalization (Bayat et al., 2025). In our random data setup, correlations in the dataset arise only
from its finiteness, and our analysis in the large data and parameter limit rules out any spurious effects
incurred by the finiteness.

Privacy. In privacy, the goal is often to create models that are only weakly dependent on individual
training datapoints, preventing their recovery through queries or learning (Dwork et al., 2014). One
specific setting focuses on hiding the labels of training data (Ghazi et al., 2021). This goal inherently
contrasts with memorization, which requires retaining labels for single examples (Ma et al., 2024).
While these objectives are rarely analyzed together, we consider a teacher that memorizes data and
ask under what circumstances the label information of held-out teacher data can remain hidden from
the student during soft label training. A practical example is given in (Cloud et al., 2025), where
a student LLM is fine-tuned on random data sampled from a teacher that encodes a hidden trait.
Training on unrelated memorized data causes the student to acquire the hidden trait, mirroring our
observations in toy models. This illustrates that while soft labels can efficiently convey memorized
teacher information, they can also create potential privacy risks, further motivating the analysis of our
similar toy setting.

3 NOTATION AND EXPERIMENTAL SETTING

Data. We consider input-output pairs in a classification setting, where input coordinates are x ∈ Rd

and there are c possible distribute labels y. The data is available either through the finite set D
(Section 4) or a generating model from which we can sample i.i.d. (Section 5). For training the teacher
we define the finite teacher dataset of n such samples (elements) from D as DT

⋆ = {(xµ, yµ)}nµ=1.
To evaluate generalization of the teacher we consider Dval, which is either D \ DT

⋆ or an independent
sample. To train the student, the teacher dataset DT

⋆ is randomly partitioned into two disjoint subsets:
the student training set DS

train and the student test set DS
test. We refer to ρ = |DS

train|/n as the student’s
training data fraction.

3
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Figure 2: Information leakage via soft labels for structured data in transformers. (A) Loss
curves for small transformers trained on the 30% of the modular addition task with p = 113. The
models 1⃝, 2⃝ and 3⃝ are stopped after different training times. (B) Students with a matching
architecture trained on the respective teachers (rows) with different softmax temperatures τ (columns).
We show the students train and test error, and their accuracy on Dval. For comparison, we show the
teachers validation accuracy as a horizontal line, marked with a green star. Appendix C.1 describes
architecture and training details. The same experiment is repeated for ReLU MLPs in Appendix C.3.

Models and Training. All models we consider are parameterized functions fθ : Rd → Rc that
map inputs x to class logits z ∈ Rc. Predictions are obtained by applying an argmax over the output
logits. We use the cross entropy loss for supervised classification. For y ∈ Rc being the one-hot
encoded label vectors, for the teacher, the cross-entropy loss with temperature τ is

LCE({xµ,yµ}n) = −
∑
i

c∑
k=1

(yµ)k log [στ=1 (fθ (x
µ))k] ; στ (z)k =

exp(zk/τ)∑c
j=1 exp(zj/τ)

.

To transfer the knowledge from a teacher f⋆ to a student fθ we train them using the teacher’s soft
labels. This is achieved using cross-entropy loss, but instead of the ground truth one-hot vector
yµ we use a given teacher network’s soft labels ŷµ = στ (f

⋆(xµ)). We train using the Adam
optimizer (Kingma, 2014) with full batches and default PyTorch settings (Paszke et al., 2019).

Evaluation. We report accuracies of the teacher and student: accT⋆ (teacher on DT
⋆), accStrain

(student on DS
train), accStest (student on DS

test), acc
T
val (teacher on Dval), and accSval (student on Dval).

When the teacher overfits the training data accT⋆ > accTval, we consider it to be memorizing. For D
where the c labels are sampled uniformly at random, independently of the input, both accTval and
accSval reduce to random guessing at 1/c, so teacher memorization requires accT⋆ > 1/c.

4 LEAKING HELD-OUT MEMORIES WITH LATENT STRUCTURE

To complement our 2D toy setting from Fig. 1, we now study whether the leakage of memorized
information through soft labels also occurs in more realistic architectures and structured data. Specifi-
cally, we use the modular addition task and a single layer transformer following Nanda et al. (2023).
This setting training exhibits two phases: Even though the teacher quickly learns to fit the training
set perfectly, generalization to the task is delayed. This allows us to isolate two different settings:
Teachers that memorize their training set without discovering structure, and those that generalize.
From this, we examine how student learning varies based on what the teacher has learned and how
this impacts the soft labels leakage of memorized information.

Memorization and generalization in modular addition. The modular addition task requires
adding two integers a, b ∈ [0, p] modulo p. We consider the case where this task is available as a
dataset of tuples with one-hot encoded tokens x = (a, b, p) ∈ {0, 1}3p with the label y ∈ [0, p− 1].
For our experiments we consider only the case where p = 113, so that the size of the complete
data distribution is |D| = 1132 = 12, 769. We train the teacher on 30% of this data, the set DT

⋆

4
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(n = 3, 830). The other part of the original dataset D is kept aside for validation in Dval. When
training a student we split DT

⋆ into two disjoint sets DS
train and DS

test, where |DS
train| = ρn.

We train transformer architectures with a single layer (see Appendix C.1). To analyze teachers that
have memorized the input data (accT⋆ > accTval) to different degrees, we early stop the training, see
Fig. 2(A). At checkpoint 1⃝ and 2⃝ there is memorization to different degrees, and at 3⃝ the teacher
generalizes. In the following, we use these teachers to train students via soft labels, and contrary
to their early-stopped teachers we always train them until convergence (100 steps). Since the phase
transition in this specific setting where the student starts to be able to learn the data is at ρ ≈ 0.75, a
student with τ → 0 would obtain perfect generalization. We use different temperatures τ to generate
the soft labels; results as shown in Fig. 2(B). Importantly, we observe that accStrain is always 100%,
regardless of ρ and τ .

Soft labels may leak memorized information in transformers. In Fig. 2(B, first row, left), at
τ = 10 for teacher 1⃝, we observe that for small ρ, i.e. small training sets DS

train, the student achieves
higher accStest (orange) than accSval (dashed green). This means that indeed the soft labels are leaking
some information on the training set DT

⋆ , that accuracy on DS
test is higher than for Dval. This indicates

that the soft labels leak information specific to the teacher’s training set DT
⋆ and allow the student

to recover held-out memorized samples, while they do not improve performance on Dval similarly
strongly. As the fraction of seen teacher data ρ grows, accStest reaches 1.0, and accSval approaches
accTval: The teacher information is . A similar but more abrupt transition occurs for teacher 2⃝ at the
same τ = 10 (middle row, left).
These results parallel our earlier observations from Fig. 1: For some DS

train training on the teacher’s
soft labels leads to non-trivial accuracy on DS

test, which is importantly higher than that on Dval
(analogous to random guessing previously). Unlike the 2D case, however, here the student can
perfectly generalize to the held-out DS

test. At the same time, despite 5× longer training than the
teacher, at τ = 10, these students fail to generalize to Dval when distilled from the non-generalizing
teachers 1⃝ and 2⃝. Instead they match accTval. This shows that while soft labels can leak memorized
inputs, they can also prevent the student from learning latent structure that undertrained memorizing
teachers have not discovered.

Higher temperatures are more data efficient for fitting the teacher. At lower temperatures τ ,
where the soft labels resemble one-hot labels and contain less information about the teacher, the
student can outperform the teacher and generalize to Dval. As shown in Fig.2(B, right column), at
τ = 0.1 student performance even becomes independent of the teacher. The student either fails to
generalize due to insufficient data (e.g., at ρ = 0.7), or exhibits delayed generalization (learning
curves Appendix C.2). Only for larger τ = 10, learning from the generalizing teacher 3⃝ requires
less data with almost immediate generalization on Dval and for the memorizing teachers 1⃝ & 2⃝ the
students matches their function. This highlights that higher temperatures both improve data efficiency
and convergence speed, and increase the leakage of teacher-specific memorized information.

5 LEAKAGE IN THE PURE MEMORIZATION SETTING

In the previous section, we used accTval as a proxy for the amount of teacher memorization. However,
a low accTval does not rule out that the model internally captures some underlying structure, even if it
was not predictive. To isolate memorization in a controlled setting and to characterize the leakage
behavior theoretically, we now consider a data model where there is no structure in the data a priori
– analogous to the introductory example from Fig. 1: The entries of the input x are sampled i.i.d.
from a Gaussian xi ∼ N (0, 1) and the labels y ∈ {1, . . . , c} are sampled uniformly and i.i.d. from c
classes. The inputs and labels are independent by design, so any teacher needs to memorize the finite
dataset DT

⋆ , failing to generalize to Dval.
In the following, we analyze logistic regression, where we can derive closed-form thresholds for
the recovery of DT

⋆ in the high-dimensional limit. We consider its multi-class version and show
how the same threshold scales in c. To estimate the impact of more complex non-linear teachers we
analyze leakage in one hidden layer ReLU MLPs. In Appendix B, we show that a teacher GPT-2
model (Radford et al., 2019) fine tuned on a dataset of randomly associated sequences of tokens and
classes can also exhibit non-trivial test accuracy accStest on held-out sequences.
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Figure 3: Binary logistic regression. (A.1) We show the training accuracy of the teacher on DT
⋆

for ρ = 0.8 and the students training (A.2) and testing accuracies (A.3) of the student on the two
partitions of DT

⋆ . While the teacher is trained via Adam on the logistic loss, the student solutions are
obtained from the teacher logits on DS

train using the pseudo-inverse. The thresholds αT
label, α

S
label(ρ)

and αS
id(ρ) are highlighted in green, pink and blue. (B) depicts the different regimes of teacher/student

learning as a function of ρ and the sample complexity α. The dimension is fixed at d = 1, 600 and
n is varied. We distinguish whether the student fits DS

train with accStrain ≥ 0.99 (gray/blue/green) or
not (red/orange). In the regime where it fits the DT

⋆ , gray implies that the student learns only close
to trivial accuracy (accStest < 0.55), blue that it is non-trivial (accStest < 0.99) and green is perfect
(accStest ≥ 0.99). We measure the MSE loss directly on the teacher logit (see Appendix D.1) to
evaluate whether the student learned the teacher (orange) or not (red) – with a threshold set at 0.1.

5.1 MULTINOMIAL LOGISTIC REGRESSION

For multinomial logistic regression we consider linear models fW(x) = W · x with W ∈ Rc×d that
are trained via cross-entropy, known as multinomial logistic regression or softmax regression. In
distillation this limits us to a setting where teacher and student architecture match.

Formal analysis: leakage in logistic regression. We first consider the case of only two classes,
logistic regression2. When we have direct access to the logit, the problem of recovering the teacher
weights W under the square loss is equivalent to solving an (over- or under-parameterized) least
squares problem, by means of the pseudo-inverse of the input matrix with the logits, i.e., Ŵ = X+z
where X ∈ Rns

train×d; z = fW(X) ∈ Rns
train and ns

train = |DS
train|.

We consider different sample complexities α = n/d. Fig. 3(A) shows the accuracy of the teacher
on DT

⋆ , and the train and test accuracies of the student on DS
train and DS

test as a function of α at fixed
training set size ρ = 0.8. We observe that the accT⋆ and accStrain start decaying from 1.0 at a given α.
The test accuracy grows monotonically in α from the trivial random guessing accuracy up to perfect
accuracy, and at some point it decreases again. The general phenomenology concentrates for large d
and n, as a function of ρ, resulting in three thresholds that can be defined in terms of α = n/d:

α ≤ αT
label – teacher memorization capacity: The teacher can fit all input-class pairs in DT

⋆ . In the
proportional limit when d, n → ∞, Cover’s Theorem (Cover, 1965) states that αT

label ≤ 2 .

a ≥ αS
id(ρ) – identifiability threshold: The student can identify the teacher using the logits, measured

through the mean squared error loss on the teacher logits, which occurs at αS
id = 1/ρ, as the input

matrix X becomes invertible.

α ≤ αS
label(ρ) – student memorization capacity: The student can fit all data from DS

train via the
input-logit pairs from the teacher.

For finite sizes, we observe that the teacher memorization capacity αT
label(d = 1600) ≃ 1.96 is

already close to the infinite d limit of α = 2. Beyond this threshold, the student cannot fit DS
train

perfectly anymore, as it is not memorized by the teacher and information is corrupted. However,
when the teacher does memorize DT

⋆ perfectly, the student obtains perfect accuracy on DS
train through

the logit training set. In this case, we observe that the logits contain a weak signal on the other
held-out memorized data and allow the student to obtain accStest ≥ 55% for large enough α and ρ, as
shown in Fig. 3(A.3); some information on the held-out data is leaking.
In terms of α, accStest grows monotonically, e.g. for αS

id(ρ = 0.8, d = 1600) ≃ 1.26, where reaches
accStest ≥ 0.99 – even though a fifth of the memorized data that was held-out. This means that the

2Here, we exceptionally consider f : Rd → R as this is the usual setup of the two class classification
problem. The class is then determined by the sign of the single output logit z.
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Figure 4: Impact of (temperature τ — number of classes c). (A) For the setting with c = 2
possible classes and d = 1000, we show the capacity and learning thresholds αT

label (green), αS
label

(pink), αS
id (blue) and αS-shuffle

label (red) as a function of the softmax temperature τ and the sample
complexity α; accuracies are reported in Appendix D.2. (B) We take the number of classes as
c = {2, 5, 10, 20, 30, 40, 50}, the larger c the darker the color, and give train and test accuracies
in varying scales α · {c,

√
c, log c}. Here ρ = 0.55 is fixed and d ∈ {100, 1000} is varied for

computational efficiency depending on α and τ = 10.

student can indeed recover the hidden memorized data by recovering the teacher weights W.
Fig. 3(B) shows the different phases can be delineated as a function of α and ρ for a finite fixed
d = 1600: low/no leakage where accStest < 0.55, weak leakage of information accStest ∈ (0.55, 0.99),
full recovery of the held-out memorized data accStest ≥ 0.99 and failed teacher memorization beyond
αT

label. We can separate the latter regime into two depending on ρ and α, whether the student is able
to recover the (non-memorizing) teacher or not, depending on X’s invertibility.
The impact of temperature on memorization. In practical distillation with more expressive
networks one cannot simply invert but instead one minimizes the cross-entropy loss on soft labels via
gradient methods. Creating soft labels from a students logits requires choosing a temperature τ in
the softmax function equation 1. With τ → 0 one recovers the one hot encodings of the labels and
thereby destroys any information that would have been embedded by the teacher. At the other limit,
when τ → ∞, the soft labels become uniform and information about the labels and the teacher is
destroyed.
For the case of multinomial regression with two classes Fig. 4(A) shows the relevant thresholds in
terms of α = n/(dc) and on the temperature τ for a fixed ρ = 0.8 (for accuracies see Appendix D.2).
Next to αT

label, α
S
id(ρ, τ), and αS

label(ρ, τ), we introduce another threshold, αS-shuffle
label (ρ, τ), derived from

a controlled experiment. For each input x with class y in DS
test, we assign a soft label sampled from

a different teacher input x′ within the same class (y = y′). This procedure preserves the correct
class identity – the highest soft label entry still corresponds to y – but removes any teacher-specific
information about x. As a result, the student sees noisy supervision: It is class-consistent but the
correlation between the rest of the soft label and input is broken. We then define αS-shuffle

label (ρ, τ) as the
point at which this noise prevents the student from learning the class signal.
In Fig. 4(A), we observe that αS-shuffle

label transitions from αS
id to αT

label as τ increases. This supports
interpreting τ as a hyperparameter that shifts the training objective between fitting soft labels and
teacher function (high τ ) and recovering class identity (low τ ).
Multiple classes c > 2. As the number of classes increases, the student has a c-sized soft label
available per training sample, which can contain information about other samples. At the same time,
the model size of both teacher and student scales with a factor of c. We observe empirically that the
behavior for several classes is consistent with that for two classes: The student can learn non-trivial
information about held-out memorized samples and achieve up tp 100% accuracy from the soft labels.
In Fig. 4(B) we observe the scaling behavior of the four relevant thresholds in terms of the number of
classes c for a fixed ρ = 0.8 and τ = 10, leading to αS

id ∼ 1/c, the scaling of αT
label ∼ αS

label ∼ 1/ log c
and αS-shuffle

label ∼ 1/
√
c. Naturally, only the scaling of αT

label is independent of ρ and τ . Specifically
the scaling of αS

label at τ → 0 should arrive at αT
label. Nonetheless, the order of the thresholds in α

remains the same, retaining the original dependence. In Appendix D.2 we confirm this for varying
temperatures and a fixed c = 10, where the phenomena are consistent with c = 2.

5.2 TWO MECHANISMS FOR LEAKING MEMORIZED INFORMATION IN RELU MLPS

In this section, we show that ReLU MLPs already exhibit more complex behavior for the same
random uncorrelated inputs and labels as before than the multinomial regression case. In Fig. 5
we consider a matched teacher and student, ReLU MLPs with a single hidden layer, with c = 100

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

classes. On the x-axis we vary the fraction ρ of DT
⋆ that is observed by the student. In Fig. 5(A), the

accStrain and accStest exhibit a similar phenomenon as before for the logistic regression in Fig. 3(D):
While the student memorizes its own training set perfectly, the accuracy accStest on the held-out data
is non-trivial and increases monotonically as more and more data from DT

⋆ is available. However, at a
higher sample complexity shown in panel (B) of the same figure, we observe two new phenomena: A
first observation is the presence of a phase where accStest slowly drops while the teacher accuracy
accT⋆ remains perfect. Meanwhile, accStest is lower than for the same ρ at lower sample complexity α.
This is inconsistent with the previous observation, where larger DT

⋆ helped identifying the teacher
better and therefore led to higher accuracy. A second observation is the marked jump after the drop
in accStrain, where both accStrain and accStest immediately rise to 100% accuracy.

0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(A) n = 25, 000

accS
test

accS
train

accS
val

accT

0.2 0.4 0.6 0.8

(B) n = 100, 000

Figure 5: Both teacher and student are MLPs with a single
hidden layer of size p = 500 and ReLU activations. The
inputs are d = 1000 and c = 100. The teacher successfully
memorizes a training set DT

⋆ of size 25,000 (A) and 100,000
(B). We track the accuracies on both via accStrain and accStest,
with the standard error on the mean reported for 10 runs. In
all cases shown here, some information is leaked statistically,
allowing the student to surpass trivial performance on data
not seen by the teacher (accSval), in some cases reaching up
to 100% test accuracy.

Memorization fails before teacher
identification succeeds: αS

label < αS
id.

To understand these phenomena better,
we turn to a more complete picture of
the phase space in Fig. 6(A). Next to
the regions already identified for the
logistic regression in Fig. 3(B), we
split the regions where a weak leak-
age is detected into two parts: The
one where the student perfectly learns
DS

train and the one where the student
does not memorize the training data.
In Fig. 6(B.2) it is further visible that
accStest decreases before it increases
as a function of the sample complex-
ity α. To understand this behavior we
observe accStrain and accStest as func-
tions of training time in Fig. 6(C.3).
There, a sudden jump in train and test
accuracy occurs as a function of stu-
dent training time at around t ∼ 100. While before the jump, the training and testing accuracy are
at different levels (and already non-trivial for the student), they jointly jump to 100% accuracy. In
Appendix D.3 it is shown that this jump coincides with a drop in the CE loss on the teacher distribution
and that just before the transition, accStrain approaches that of a student trained on intra-class sampled
soft labels. This suggests that for ReLU MLPs, there may be two distinct weight configurations: One
where the student memorizes the soft labels, and another where it functionally matches the teacher.
This distinction was not present for multinomial logistic regression.

Memorizing the soft labels vs. generalizing on the teacher function. These observations suggest
that the student can learn two functionally different solutions that both leak information about held-out
memorized data, but differently: One solution memorizes the teacher’s soft labels representing DS

train,
and another generalizing solution matches the teacher functionally. This extends the picture from
the multinomial regression, in that not only weakly (and fully) learning the teacher function leads
to non-trivial leakage on the held-out set, but also a solution that truly memorizes the soft labels
can capture some additional structure on held-out data. Whether one or the other solution is learned
depends non-trivially on the respective capacity thresholds, the algorithm, and the ratio between the
teacher and student capacity. In Appendix D.4 we provide some additional ablations that explore how
increasing the parameters via the hidden layer size p and the relative capacity of teacher and student
in an unmatched setting impact accStest.

Localizing the information in the soft labels. In Appendix D.4 we test the effect of removing an
input class ci from DS

train and removing it from the soft labels by zeroing it out for all other classes
cj ̸= ci. We find that while removing the inputs can still lead to a non-trivial accuracy on ci in DS

test,
removing the corresponding soft label entries is detrimental for test performance. Likewise, zeroing
out the smallest k values in every soft label negatively affects accStest. This leads us to hypothesize
that the common practice of using only the top-k largest values may not allow for generalizing on the
memorized information.
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Figure 6: Leakage in 1-hidden layer ReLU networks. The teacher and student architectures match
as single hidden layer ReLU networks with p = 500 for varying settings of sample complexity
α = n/(dc) and student training fractions ρ. The number of samples n is changed while c = 100 and
d = 1000 and the temperature τ = 20 are fixed. Each experiment is repeated 5 times and average
accuracies are reported. (A) Different regimes distinguish the type of generalization the student
achieves: (blue) weakly with memorization of DS

train; (light blue) weakly but without memorization
of DS

train; (green) perfectly generalizing to held-out memorized data; (orange) the teacher cannot
memorize DT

⋆ but the student fits the teacher nonetheless; (red) the teacher cannot fit DT
⋆ and the

student does not discover the teacher either. (B) accT⋆ , acc
S
train and accStest. (C) Accuracy as a

function of training time t for fixed ρ = 0.65 and different sample complexities α as marked with
white circles in (A) and (B), varying n and keeping d = 1000. For comparison, we show averages of
accT⋆ and accSval at the end of training as horizontal lines.

6 DISCUSSION AND CONCLUSION

In this work, we study how memorized data influences distillation. We analyze both structured
data with teachers at varying levels of memorization or generalization as well as teachers that
memorized data without a latent structure. We show that students can acquire information about
memorized teacher data that was held out during their training from the teachers soft labels. By
evaluating performances across teacher and student, we identify distinct regimes: In some, the student
memorizes soft labels via statistical leakage; in others, it generalizes the teachers function. Our
findings serve as a proof of concept to understand that memorized information can be transferred
between models.
Limitations. Our analysis is restricted to synthetic datasets that are either structured or explicitly
memorized and do not capture all aspects of natural data distributions. While this setup allows for
precise control and analysis, it limits the immediate application of our findings to real-world tasks.
Additionally, we focus on simple models such as logistic regression, single-layer ReLU MLPs and
small transformers to enable theoretical insight and controlled empirical study. Even though we show
that leakage also occurs for one instance of a large language model with synthetic data, it remains
unclear to what extent the identified leakage regimes and thresholds translate to deeper architectures.
In particular, we did not explore the role of regularization and optimization that may influence the
models capacity. Finally, we only consider memorization and soft labels, which excludes broader
knowledge and dataset distillation settings where the teacher jointly learns generalizing structure and
memorized data.
Future work. On the theoretical side, our framework motivates a capacity analysis of multinomial
logistic regression and single layer networks, to identify information-theoretic and algorithmic
capacity thresholds for classification. On the practical side, it is important to understand how models
represent both memorized and generalized content jointly, and in particular how this knowledge can
be transferred for efficient dataset distillation, or whether it can be hidden for privacy reasons.
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nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability, 2023. URL https://arxiv.org/abs/2301.
05217.

Gaurav Kumar Nayak, Konda Reddy Mopuri, and Anirban Chakraborty. Effectiveness of arbi-
trary transfer sets for data-free knowledge distillation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), pp. 1430–1438, January 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
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A VISUAL EXAMPLE FOR d = 2 AND c = 20

As another example that can be visualized analogously to Fig. 1, we show a random dataset again in
two dimensions but with 20 classes in Fig. 7.

Figure 7: Information leakage via soft labels for c = 20. We examine fully connected networks
with ReLU activations and p = 300 hidden neurons. A teacher network is trained on 2D input data
DT

⋆ with i.i.d. random uniform labels drawn from 20 classes visualized in a spectrum of colors. (A)
Visualizes DT

⋆ and teacher decision boundaries which achieve 100% accuracy. Then, teacher data
is partitioned into two disjoint sets DS

train and DS
test at (60%, 40%) ratios. We examine 2 settings:

Training student networks via cross-entropy (B) on the class information only, making the student
independent from the teacher, and (C) on soft labels obtained from the teacher via softmax on the
logits with temperature τ = 20. While the independently trained model only achieves close to trivial
accuracy of ∼ 6%, students that fit the teacher’s soft labels achieve non-trivial test accuracy of
∼ 66%. Red and green indicate data from the test set, and whether it was classified wrongly or
correctly. We show the average test accuracy and standard error on the mean over 5 runs. (D) The
decision boundaries between teacher (black) and student (purple) correspond very well.

B DATASET DISTILLATION FOR FINETUNED GPT-2 CLASSIFIERS ON
RANDOM SEQUENCES

Figure 8: Leakage in a large language model
for synthetic data. accStrain and accStest for GPT-
2 classifier students trained using different ρ frac-
tions of random sentences memorized by a teacher
with the same architecture (both pre-trained). The
size of the memorized training set is n = 6000
sentences made of three random numbers up to
1000, each with one of 1000 classes assigned ran-
domly.

In order to test whether the phenomena observed
in Section 5 extends also to random sequence
data, we examine a similar setting with a GPT-
2 architecture (Radford et al., 2019). We con-
sider sequences x =‘429 3507 345’, where
each sequence concatenates three random num-
bers sampled uniformly and i.i.d. between 1 and
1000, with a random class y out of 1000 pos-
sible classes. In our setting DT

⋆ contains 6000
samples of such sequences and their classes. We
equip the next-token prediction backbone GPT-2
with a linear classifier head. We use the stan-
dard tokenizer and train the teacher on DT

⋆ for
100 epochs using AdamW with a learning rate of
5× 10−4.
After successful training, when the teacher mem-
orizes the sentences with 100% accuracy, we ex-
tract the teacher’s logits for its training data and
create soft labels, with temperature τ = 20. We
train different the students for different fractions
ρ = {0.2, 0.5, 0.8} for 200 epochs, but otherwise
use the same settings as for the teacher. After con-
vergence all three students reach accStrain ≃ 99.5% and accStest = {0.213, 0.524, 0.652} (Fig. 8) –
while the test accuracy of random guessing is approximately accSval = 0.1%. For seeing only 80%
of the teachers data, the student achieves > 60% accuracy on the held-out data. This suggests that,
similar to single-layer models, an over-parameterized language model may recover a non-trivial
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fraction of the teacher’s held-out memorized data. However, despite some exploration of different
parameters, we did not yet observe a setting where the teacher function is exactly recovered as for the
MLPs, i.e. where the student reaches accStest = 100%.

C SUPPLEMENTARY MATERIAL FOR MODULAR ADDITION

C.1 IMPLEMENTATION DETAILS FOR THE TRANSFORMER

As an architecture we consider the single layer transformer from Nanda et al. (2023). It embeds the
p+ 1 tokens into 128 dimensions. There is a dot-product attention layer with 4 heads followed by a
ReLU MLP with a single hidden layer of 4 · 128 dimensions. A readout layer maps its outputs to the
p classes.
By design the prediction is autoregressive, but in this case only the last predicted token is relevant and
included in the training loss. It becomes a parameterized function f : R3(p+1) → Rp where c = p
and d = 3p.
During training we use weight decay set to 1.0 and use full batches, which recovers the setting in
which grokking was observed (Nanda et al., 2023). We train using the Adam optimizer and a learning
rate of 0.001.

C.2 GENERALIZATION SPEED

We examine how fast (in terms of training time) a student reaches perfect accuracy when trained on
the soft labels from a perfectly generalizing teacher. In Fig. 9 we show exemplary learning curves for
the results from Fig. 2 with teacher 3⃝ in the main Section 4.
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small training set, large temperature
= 0.3; = 10

0 100 200 300 400
training steps

large training set, small temperature
= 0.9; = 0.1

accS
val

accS
test

accS
train

Figure 9: Comparison of the training, test and validation accuracy for transformer students (training
and test data were seen by the teacher), for a single run from data used in Fig. 2(A). (Left) The student
learning from a small training set (ρ = 0.3) with a high temperature (τ = 10) not only memorizes its
training data fast but generalizes on the held-out teacher train set and validation set after only few
epochs. (Right) A student that sees a large training set at a smaller temperature however, exhibits
grokking in a similar fashion as the original teacher (see Fig. 2(A) ).

C.3 MODULAR ADDITION WITH MLPS

In addition to small transformers, we repeat the experiment from the main text Fig. 2 with 2-hidden
layer ReLU MLPs with 200 hidden neurons each in Fig. 10.

We also stop the models training at three different points 1⃝, 2⃝ and 3⃝, which exhibit almost none,
very weak and good generalization. In analogy to the transformer, at low temperatures the student’s
behavior becomes independent of the time at which the teacher training was stopped. Also, for higher
temperatures and memorizing students, the accStest reaches higher values than accSval, indicating that
the soft labels only transfer information about the memorized labels but not the tasks structure and
even prevent the students from generalizing.
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Figure 10: Same experiments as in Fig. 2, but with teacher and student architectures that are 2-hidden
layer ReLU MLPs. (A) Teacher training that was stopped at different points in training, leading to the
teachers 1⃝, 2⃝ and 3⃝. (B) Accuracies after training from the student for learning from the different
teachers, at different ρ and τ .

D SUPPLEMENTARY MATERIAL FOR RANDOM DATA

D.1 LOGISTIC REGRESSION: TRAINING STUDENTS FROM THE LOGIT

We define the mean squared error between the teacher fT and the student fS on the dataset D =
{xµ, yµ}nµ=1 as:

mse(fT , fS ,D) =
1

n

n∑
µ=1

(
fS(xµ)− fT (xµ)

)2
. (1)

Let the matching accuracy of the student with respect to the teacher on the student test set be

accSmatch-T =
1

n

n∑
µ=1

1

[
argmax

j
fS
j (x

µ) = argmax
j

fT
j (xµ)

]
, (2)

where fT
j (x) and fS

j (x) denote the logits assigned to class j by the teacher and student, respectively.

Fig. 11 shows the different values of accT⋆ , acc
S
train, acc

S
test, acc

S
match-T,mse(fT , fS ,DS

train) and
mse(fT , fS ,DS

test) for ρ and α = n/d.
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Figure 11: We train logistic regression teacher to fit DT
⋆ , and recover a student via the teacher logit via

a pseudo-inverse. We change the number of samples and keep d = 1600 while we change α = n/d.
Every point reports the mean of 5 experiments with different teacher, student and model initializations.
For training the teacher we used Adam, learning rate 0.001 and for 10, 000 steps.

D.2 VARYING THE TEMPERATURE FOR MULTINOMIAL LOGISTIC REGRESSION

In Fig. 12 we show that the temperature influences whether or not held-out teacher data is leaked to
the student for different ρ and α in multinomial logistic regression with c = 2.
In addition, the original measurements that lead to the phase diagram for c = 2 in Fig. 4(A) are
shown in Fig. 13. We show the same experiment for c = 10 in Fig. 14.
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Figure 12: For multinomial regression with two classes and α = n/(dc), and d = 1000 we report the
impact of different temperature in the softmax on accStest. Experiments are repeated 5 times. We train
the teacher with Adam and learning rate 0.0001 for 1000 epochs and the student with learning rate
0.001 for 5000 steps.
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Figure 13: For multinomial regression with two classes ρ = 0.8 and d = 1000 we report accuracies
for teacher and training data for two experimental settings. The top row is our standard setting and
the bottom row re-shuffles the input-soft label assignment within the classes in DS

train.

0.1 0.2 0.3 0.4 0.5
= n/(dc)

100

101

(B) c = 10

Figure 14: Same setting as Fig. 13, but with c = 10 classes instead of 2. The lines in (B) are the
thresholds αT

label (green), αS
label (pink), αS

id (blue) and αS-shuffle
label (red) as a function of the softmax

temperature τ and the sample complexity α.

D.3 SUPPLEMENTARY TRAINING INFORMATION

We supplement the accuracy curves from Fig. 15 for the single hidden layer ReLU MLP with the
corresponding losses in Fig. 16, for different sample complexities α = n/(dc). It is visible, that
around the same moment where the jump in accuracy occurs for Fig. 15(C.3), the loss also drops
significantly.

In Fig. 15 we compare the learning curves from the students in Fig. 6(C) with those from the students
which trains on the within-class shuffled soft labels. In the third panel it is visible, that before the
student generalizes to the teacher function, it obtains the same accuracy as the shuffled student.
Before this third panel, the accuracy is matching well, whereas for the forth panel the difference
comes about quickly. This supports the intuition that the student first attempts to truly memorize, and
then generalizes the teacher structure in the third panel.
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Figure 15: Accuracies for ReLU MLPs from Fig. 6(C), but this time compared with runs where the
input data was shuffled within classes, in red. Again, the input dimension is d = 1000 with c = 100
classes and from left to right the teacher saw n = 103 × {15, 50, 100, 200} samples, of which the
student was trained with a ρ = 0.65 fraction. There are 5 runs for the normal student, and 2 for the
student that receives the altered teacher data for training.
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Figure 16: Cross entropy loss on DS
train and DS

test for the results from Fig. 15(C). The input dimension
is d = 1000 with c = 100 classes and from left to right the teacher saw n = 103×{15, 50, 100, 200}
samples, of which the student was trained with a ρ = 0.65 fraction. We show the average (wide line)
and single runs (thin lines) for 5 runs each.

D.4 ABLATIONS FOR RELU MLPS

D.4.1 VARYING THE SOFT LABEL CONTENT

In this section we conduct several ablations, to understand which information in the soft labels is
crucial for obtaining a good accStest. We conduct three experiments, where we:

• Remove small soft label entries: We zero out the entries of the smallest k values of the c soft
labels for a given input. This leads to the rest of the vector not summing to one anymore,
but the cross-entropy loss can still be computed.

• Remove a single class from the training data: We remove the class c from the training data,
and evaluate on the test data.

• Remove a single class from other classes soft label vectors: We specifically zero out the
class c value in the teacher soft labels for all classes c′ ̸= c.

In Fig. 17(A) we observe the effect of removing parts of the logits. Already removing a single
entry is critical when the normal student would otherwise have learned the teacher. Removing more
deteriorates performance in accuracy quickly, indicating that accessing the complete soft label is
important to recover held-out memorized items.

In Fig. 17(B) we observe that removing the class c from the soft labels is detrimental to the accuracy
on that class in the test set (accSc=1) but is maintained almost at a normal level for other classes. The
average performance on the other hand is affected only little. In contrast, when we remove the class c
completely from the training set, but leave it intact in other classes’ soft labels, the held-out sample
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accuracy remains at a high level for class c, as well as the others. This further emphasizes that a lot of
information is contained in the soft labels, and that especially the relational information to the class
can help a lot.
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Figure 17: We consider ReLU MLPs with a single hidden layer where student and teacher have
p = 500. We keep d = 1000, c = 100 and the fraction on which the student is trained is ρ = 0.7,
and we use a temperature of τ = 20. (A) We compare zeroing out the smallest k ∈ {1, 10, 50} out of
the 100 values from the soft label vector in the training data with a student trained on the unaltered
data. (B) We also compare removing samples with class c (here c = 1 w.l.o.g.) from the training
data completely, removing the soft labels of all training data DS

train whenever the true labels is not c.
Every point is the average of 5 random datasets and initializations, with the standard error on the
mean shown as bars.
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D.4.2 VARYING THE HIDDEN LAYER SIZE OF TEACHERS AND STUDENTS

In the following, we vary the sizes of the hidden layers in the teacher and student single layer ReLU
MLPs, calling them pT and pS respectively. We first keep ρ = 0.45 fixed and keep the temperature
τ = 20. In Fig. 18 and 19, we vary pT and pS in isolation or together respectively.

In running our experiments for Fig. 18 we keep d constant and vary n and pT = pS , but instead
of plotting the resulting accuracies over α = n/(dc) as in the main we plot them over α/pS . This
incorporates the hidden layer size p in the denominator that represents the number of parameters of
the model, and indeed the curves fall together quite accurately.

In Fig. 18 we repeat the same experiment, but now keeping pT = 500 and varying the student pS .
As we can see, this improves accStrain for e.g. ρ = 0.7. This is expected as the student with more
neurons has a higher capacity to learn the soft labels, which is the phase for the given ρ.
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Figure 18: For ReLU MLPs we vary the teacher and students hidden layer sizes pT = pS jointly. We
keep ρ = 0.45, c = 100, d = 1000, and vary n ∈ d · {12.5, 25, 50, 75, 100, 125, 150, 17, 200}, with
hidden layer sizes as in the legend. Experiments here are repeated once.
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Figure 19: For ReLU MLPs we keep the teacher hidden layer sizes pT = 500 and vary the studens
hidden layer size pS . We keep ρ = 0.45, c = 100, d = 1000, and vary n with hidden layer sizes as
in the legend. Experiments here are repeated once.
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In Fig. 20 we zoom into the phase where the student is not matching the teacher but still finding a
non-trivial accStest > accSval on the held-out memorized teacher data. While we keep the teacher size
fixed at pT = 500 we observe that lowering the capacity of the student is optimal for all sizes of the
dataset. On the other hand, for larger pS the accuracy decreases but not in a linear way - e.g. for
ρ = 0.3 students with pS = 250 are as good as students with pS = 1000.
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Figure 20: The teacher hidden layer size for the ReLU MLP is kept at pT =
500, while we vary the data size fraction ρ and the student hidden layer size pS ∈
{100, 200, 250, 300, 400, 500, 600, 750, 1000, 2000}. We report the test accuracy and accSval over
the student with pS = 500. Experiments are repeated 5 times and the standard error on the mean is
reported.
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D.4.3 VARYING THE NUMBER OF CLASSES

Finally, we examine the effect of the number of classes in Fig. 21. When we scale the x-axis as n/d,
the behavior we described in the main for the different classes remains similar.
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Figure 21: For ReLU MLPs with p = 500 for both teacher and student, we vary the number of
classes c ∈ {20, 50, 90, 100, 110} and show the student’s accuracy on DS

train,DS
test in a single run, and

compare with the teacher accuracy.

E COMPUTATIONAL RESOURCES

All experiments can be run both on a CPU or GPU - for multinomial logistic regression a CPU may
be faster than a GPU.
The most computational intensive were the phase diagrams Fig. 4a) with 13 compute days, and
Fig. 6a) with roughly 10 compute days on a GPU. In both cases though, we ran the full pipeline for
parallel experiments on a single machine with an NVIDIA RTX A5000 within roughly two days.
Since many of the experiments are run for different seeds to obtain error bars, running the experiments
once is roughly a factor 5 faster than running all. Since experiments do not require large resources
they can be parallelized easily.
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