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Abstract

Reinforcement learning (RL) agents have long sought to approach the efficiency
of human learning. Humans are great observers who can learn by aggregating
external knowledge from various sources, including observations from others’
policies of attempting a task. Prior studies in RL have incorporated external
knowledge policies to help agents improve sample efficiency. However, it remains
non-trivial to perform arbitrary combinations and replacements of those policies,
an essential feature for generalization and transferability. In this work, we present
Knowledge-Grounded RL (KGRL), an RL paradigm fusing multiple knowledge
policies and aiming for human-like efficiency and flexibility. We propose a new
actor architecture for KGRL, Knowledge-Inclusive Attention Network (KIAN),
which allows free knowledge rearrangement due to embedding-based attentive
action prediction. KIAN also addresses entropy imbalance, a problem arising
in maximum entropy KGRL that hinders an agent from efficiently exploring the
environment, through a new design of policy distributions. The experimental
results demonstrate that KIAN outperforms alternative methods incorporating
external knowledge policies and achieves efficient and flexible learning. Our
implementation is available at https://github.com/Pascalson/KGRL.git.

1 Introduction

Reinforcement learning (RL) has been effectively used in a variety of fields, including physics [7, 35]
and robotics [15, 30]. This success can be attributed to RL’s iterative process of interacting with the
environment and learning a policy to get positive feedback. Despite being influenced by the learning
process of infants [32], the RL process can require a large number of samples to solve a task [1],
indicating that the learning efficiency of RL agents is still far behind that of humans.

What learning capabilities do humans possess, yet RL agents still missing? Studies in social
learning [4] have demonstrated that humans often observe the behavior of others in diverse situations
and utilize those strategies as external knowledge to accelerate their own exploration of solution-
space. This type of learning is very flexible for humans since they can freely reuse and update the
knowledge they already possess. The followings are the five properties (the last four have been
mentioned in [14]) that summarize the efficiency and flexibility of human learning. [Knowledge-
Acquirable]: Humans can develop their strategies by observing others. [Sample-Efficient]: Humans
require fewer interactions with the environment to solve a task by learning from external knowledge.
[Generalizable]: Humans can apply previously observed strategies, whether developed internally or
provided externally, to unseen tasks. [Compositional]: Humans can combine strategies from multiple
sources to form their knowledge set. [Incremental]: Humans do not need to relearn how to navigate
the entire knowledge set from scratch when they remove outdated strategies or add new ones.
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Figure 1: An illustration of knowledge-acquirable, compositional, and incremental properties in
KGRL. Joy first learns to ride a motorcycle by observing Amy skateboarding and Jack biking. Then
Joy learns to drive a car with the knowledge set expanded by Joy’s developed strategy of motorcycling.

Possessing all five learning properties remains challenging for RL agents. Previous work has endowed
an RL agent with the ability to learn from external knowledge (knowledge-acquirable) and mitigate
sample inefficiency [21, 25, 27, 36], where the knowledge focused in this paper is state-action
mappings (full definition in Section 3), including pre-collected demonstrations or policies. Among
those methods, some have also allowed agents to combine policies in different forms to predict optimal
actions (compositional) [25, 27]. However, these approaches may not be suitable for incremental
learning, in which an agent learns a sequence of tasks using one expandable knowledge set. In such
a case, whenever the knowledge set is updated by adding or replacing policies, prior methods, e.g.,
[27, 36], require relearning the entire multi-policy fusion process, even if the current task is similar to
the previous one. This is because their designs of knowledge representations are intertwined with the
knowledge-fusing mechanism, which restricts changing the number of policies in the knowledge set.

To this end, our goal is to enhance RL grounded on external knowledge policies with more flexibility.
We first introduce Knowledge-Grounded Reinforcement Learning (KGRL), an RL paradigm that
seeks to find an optimal policy of a Markov Decision Process (MDP) given a set of external policies
as illustrated in Figure 1. We then formally define the knowledge-acquirable, sample-efficient,
generalizable, compositional, and incremental properties that a well-trained KGRL agent can possess.

We propose a simple yet effective actor model, Knowledge-Inclusive Attention Network (KIAN),
for KGRL. KIAN consists of three components: (1) an internal policy that learns a self-developed
strategy, (2) embeddings that represent each policy, and (3) a query that performs embedding-based
attentive action prediction to fuse the internal and external policies. The policy-embedding and query
design in KIAN is crucial, as it enables the model to be incremental by unifying policy representations
and separating them from the policy-fusing process. Consequently, updating or adding policies to
KIAN has minimal effect on its architecture and does not require retraining the entire network.
Additionally, KIAN addresses the problem of entropy imbalance in KGRL, where agents tend to
choose only a few sub-optimal policies from the knowledge set. We provide mathematical evidence
that entropy imbalance can prevent agents from exploring the environment with multiple policies.
Then we introduce a new approach for modeling external-policy distributions to mitigate this issue.

Through experiments on grid navigation [5] and robotic manipulation [24] tasks, KIAN outperforms
alternative methods incorporating external policies in terms of sample efficiency as well as the ability
to do compositional and incremental learning. Furthermore, our analyses suggest that KIAN has
better generalizability when applied to environments that are either simpler or more complex.

Our contributions are:

• We introduce KGRL, an RL paradigm studying how agents learn with external policies while being
knowledge-acquirable, sample-efficient, generalizable, compositional, and incremental.

• We propose KIAN, an actor model for KGRL that fuses multiple knowledge policies with better
flexibility and addresses entropy imbalance for more efficient exploration.

• We demonstrate in experiments that KIAN outperforms other methods incorporating external
knowledge policies under different environmental setups.
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2 Related Work

A popular line of research in RL is to improve sample efficiency with demonstrations (RL from
demonstrations; RLfD). Demonstrations are examples of completing a task and are represented
as state-action pairs. Previous work has leveraged demonstrations by introducing them into the
policy-update steps of RL [8, 11, 21, 23, 28, 34]. For example, Nair et al. [21] adds a buffer of
demonstrations to the RL framework and uses the data sampled from it to calculate a behavior-
cloning loss. This loss is combined with the regular RL loss to make the policy simultaneously imitate
demonstrations and maximize the expected return. RLfD methods necessitate an adequate supply of
high-quality demonstrations to achieve sample-efficient learning, which can be time-consuming. In
addition, they are low-level representations of a policy. Consequently, if an agent fails to extract a
high-level strategy from these demonstrations, it will merely mimic the actions without acquiring a
generalizable policy. In contrast, our proposed KIAN enables an agent to learn with external policies
of arbitrary quality and fuse them by evaluating the importance of each policy to the task. Thus, the
agent must understand the high-level strategies of each policy rather than only imitating its actions.

Another research direction in RL focuses on utilizing sub-optimal external policies instead of
demonstrations to improve sample efficiency [25, 27, 36]. For instance, Zhang et al. [36] proposed
Knowledge-Guided Policy Network (KoGuN) that learns a neural network policy from fuzzy-rule
controllers. The neural network concatenates a state and all actions suggested by fuzzy-rule controllers
as an input and outputs a refined action. While effective, this method puts restrictions on the
representation of a policy to be a fuzzy logic network. On the other hand, Rajendran et al. [27]
presented A2T (Attend, Adapt, and Transfer), an attentive deep architecture that fuses multiple
policies and does not restrict the form of a policy. These policies can be non-primitive, and a learnable
internal policy is included. In A2T, an attention network takes a state as an input and outputs the
weights of all policies. The agent then samples an action from the fused distribution based on these
weights. The methods KoGuN and A2T are most related to our work. Based on their success, KIAN
further relaxes their requirement of retraining for incremental learning since both of them depend
on the preset number of policies. Additionally, our approach mitigates the entropy imbalance issue,
which can lead to inefficient exploration and was not addressed by KoGuN and A2T.

There exist other RL frameworks, such as hierarchical RL (HRL), that tackle tasks involving multiple
policies. However, these frameworks are less closely related to our work compared to the previously
mentioned methods. HRL approaches aim to decompose a complex task into a hierarchy of sub-tasks
and learn a sub-policy for each sub-task [2, 6, 13, 16–18, 20, 25, 31, 33]. On the other hand, KGRL
methods, including KoGuN, A2T, and KIAN, aim to address a task by observing a given set of
external policies. These policies may offer partial solutions, be overly intricate, or even have limited
relevance to the task at hand. Furthermore, HRL methods typically apply only one sub-policy to the
environment at each time step based on the high-level policy, which determines the sub-task the agent
is currently addressing. In contrast, KGRL seeks to simultaneously apply multiple policies within a
single time step by fusing them together.

3 Problem Formulation

Our goal is to investigate how RL can be grounded on any given set of external knowledge policies
to achieve knowledge-acquirable, sample-efficient, generalizable, compositional, and incremental
properties. We refer to this RL paradigm as Knowledge-Grounded Reinforcement Learning (KGRL).

A KGRL problem is a sequential decision-making problem that involves an environment, an agent,
and a set of external policies. It can be mathematically formulated as a Knowledge-Grounded Markov
Decision Process (KGMDP), which is defined by a tuple Mk = (S,A, T , R, ρ, γ,G), where S is
the state space, A is the action space, T : S ×A× S → R is the transition probability distribution,
R is the reward function, ρ is the initial state distribution, γ is the discount factor, and G is the
set of external knowledge policies. An external knowledge set G contains n knowledge policies,
G = {πg1 , . . . , πgn}. Each knowledge policy is a function that maps from the state space to the action
space, πgj (·|·) : S → A,∀ j = 1, . . . , n. A knowledge mapping is not necessarily designed for the
original Markov Decision Process (MDP), which is defined by the tuple M = (S,A, T ,R, ρ, γ).
Therefore, applying πgj to M may result in a poor expected return.
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The goal of KGRL is to find an optimal policy π∗(·|·;G) : S → A that maximizes the expected
return: Es0∼ρ,T ,π∗ [

∑T
t=0 γ

tRt]. Note that Mk and M share the same optimal value function,
V ∗(s) = max

π∈Π
ET ,π[

∑∞
k=0 γ

kRt+k+1|st = s], if they are provided with the same policy class Π.

A well-trained KGRL agent can possess the following properties: knowledge-acquirable, sample-
efficient, generalizable, compositional, and incremental. Here we formally define these properties.
Definition 3.1 (Knowledge-Acquirable). An agent can acquire knowledge internally instead of only
following G. We refer to this internal knowledge as an inner policy and denote it as πin(·|·) : S → A.
Definition 3.2 (Sample-Efficient). An agent requires fewer samples to solve for Mk than for M.
Definition 3.3 (Generalizable). A learned policy π(·|·;G) can solve similar but different tasks.
Definition 3.4 (Compositional). Assume that other agents have solved for m KGMDPs,
M1

k, . . . ,Mm
k , with external knowledge sets, G1, . . . ,Gm, and inner policies, π1

in, . . . , π
m
in. An

agent is compositional if it can learn to solve a KGMDP M∗
k with the external knowledge set

G∗ ⊆
⋃m

i=1 Gi ∪ {π1
in, . . . , π

m
in}.

Definition 3.5 (Incremental). An agent is incremental if it has the following two abilities: (1) Given
a KGMDP Mk for the agent to solve within T timesteps. The agent can learn to solve Mk with
the external knowledge sets, G1, . . . ,GT , where Gt, t ∈ {1, . . . , T}, is the knowledge set at time step
t, and Gt can be different from one another. (2) Given a sequence of KGMDPs M1

k, . . . ,Mm
k , the

agent can solve them with external knowledge sets, G1, . . . ,Gm, where Gi, i ∈ {1, . . . ,m}, is the
knowledge set for task i, and Gi can be different from one another.

4 Knowledge-Inclusive Attention Network
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Figure 2: The model architecture of KIAN.

We propose Knowledge-Inclusive Attention Net-
work (KIAN) as an actor for KGRL. KIAN
can be end-to-end trained with various RL algo-
rithms. Illustrated in Figure 2, KIAN comprises
three components: an inner actor, knowledge
keys, and a query. In this section, we first de-
scribe the architecture of KIAN and its action-
prediction operation. Then we introduce entropy
imbalance, a problem that emerges in maximum
entropy KGRL, and propose modified policy
distributions for KIAN to alleviate this issue.

4.1 Model Architecture

Inner Actor. The inner actor serves the same
purpose as an actor in regular RL, represent-
ing the inner knowledge learned by the agent
through interactions with the environment. In
KIAN, the inner actor, denoted as πin(·|·;θ) : S → A, is a learnable function approximator with
parameter θ. The presence of the inner actor in KIAN is crucial for the agent to be capable of
acquiring knowledge, as it allows the agent to develop its own strategies. Therefore, even if the
external knowledge policies in G are unable to solve a particular task, the agent can still discover an
optimal solution.

Knowledge Keys. In KIAN, we introduce a learnable embedding vector for each knowledge
policy, including πin and πg1 , . . . , πgn , in order to create a unified representation space for all
knowledge policies. Specifically, for each knowledge mapping πin or πgj ∈ G, we assign a learnable
dk-dimensional vector as its key (embedding): kin ∈ Rdk or kgj ∈ Rdk ∀j ∈ {1, . . . , n}. It is
important to note that these knowledge keys, ke, represents the entire knowledge mapping πe,∀e ∈
{in, g1, . . . , gn}. Thus, ke is independent of specific states or actions. These knowledge keys and
the query will perform an attention operation to determine how an agent integrates all policies.

Our knowledge-key design is essential for an agent to be compositional and incremental. By unifying
the representation of policies through knowledge keys, we remove restrictions on the form of a

4



knowledge mapping. It can be any form, such as a lookup table of state-action pairs (demonstra-
tions) [21], if-else-based programs, fuzzy logics [36], or neural networks [25, 27]. In addition, the
knowledge keys are not ordered, so πg1 , . . . , πgn in G and their corresponding kg1 , . . . ,kgn can
be freely rearranged. Finally, since a knowledge policy is encoded as a key independent of other
knowledge keys in a joint embedding space, replacing a policy in G means replacing a knowledge
key in the embedding space. This replacement requires no changes in the other part of KIAN’s
architecture. Therefore, an agent can update G anytime without relearning a significant part of KIAN.

Query. The last component in KIAN, the query, is a function approximator that generates dk-
dimensional vectors for knowledge-policy fusion. The query is learnable with parameter ϕ and is
state-dependent, so we denote it as Φ(·;ϕ) : S → Rdk . Given a state st ∈ S, the query outputs a
dk-dimensional vector ut = Φ(st;ϕ) ∈ Rdk , which will be used to perform an attention operation
with all knowledge keys. This operation determines the weights of policies when fusing them.

4.2 Embedding-Based Attentive Action Prediction

The way to predict an action with KIAN and a set of external knowledge policies, G, is by three steps:
(1) calculating a weight for each knowledge policy using an embedding-based attention operation, (2)
fusing knowledge policies with these weights, and (3) sampling an action from the fused policy.

Embedding-Based Attention Operation. Given a state st ∈ S, KIAN predicts a weight for each
knowledge policy as how likely this policy will suggest a good action. These weights can be computed
by the dot product between the query and knowledge keys as:

wt,in = Φ(st;ϕ) · kin/ct,in ∈ R,
wt,gj = Φ(st;ϕ) · kgj/ct,gj ∈ R, ∀j ∈ {1, . . . , n}. (1)

[ŵt,in, ŵt,g1 , . . . , ŵt,gn ]
⊤ = softmax([wt,in, wt,g1 , . . . , wt,gn ]

⊤). (2)

where ct,in ∈ R and ct,gj ∈ R are normalization factors, for example, if ct,gj = ∥Φ(st;ϕ)∥2∥kgj∥2,
then wt,gj turns out to be the cosine similarity between Φ(st;ϕ) and kgj . We refer to this operation as
an embedding-based attention operation since the query evaluates each knowledge key (embedding)
by equation (1) to determine how much attention an agent should pay to the corresponding knowledge
policy. If wt,in is larger than wt,gj , the agent relies more on its self-learned knowledge policy πin;
otherwise, the agent depends more on the action suggested by the knowledge policy πgj . Note that
the computation of one weight is independent of other knowledge keys, so changing the number of
knowledge policies will not affect the relation among all remaining knowledge keys.

Action Prediction for A Discrete Action Space. An MDP (or KGMDP) with a discrete action
space usually involves choosing from da ∈ N different actions, so each knowledge policy maps from
a state to a da-dimensional probability simplex, πin : S → ∆da , πgj : S → ∆da ∀j = 1, . . . , n.
When choosing an action given a state st ∈ S, KIAN first predicts π(·|st) ∈ ∆da ⊆ Rda with the
weights, ŵin, ŵg1 , . . . , ŵgn :

π(·|st) = ŵinπin(·|st) + Σn
j=1ŵgjπgj (·|st), (3)

The final action is sampled as at ∼ π(·|st), where the i-th element of π(·|st) represents the probability
of sampling the i-th action.

Action Prediction for A Continuous Action Space. Each knowledge policy for a continuous
action space is a probability distribution that suggests a da-dimensional action for an agent to apply to
the task. As prior work [25], we model each knowledge policy as a multivariate normal distribution,
πin(·|st) = N (µt,in,σ

2
t,in), πgj (·|st) = N (µt,gj ,σ

2
t,gj ) ∀j ∈ {1, . . . , n}, where µt,in ∈ Rda and

µt,gj ∈ Rda are the means, and σ2
t,in ∈ Rda

≥0 and σ2
t,gj ∈ Rda

≥0 are the diagonals of the covariance
matrices. Note that we assume each random variable in an action is independent of one another.

A continuous policy fused as equation (3) becomes a mixture of normal distributions. To
sample an action from this mixture of distributions without losing the important informa-
tion provided by each distribution, we choose only one knowledge policy according to
the weights and sample an action from it. We first sample an element from the set
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{in, g1, . . . , gn} according to the weights, {ŵt,in, ŵt,g1 , . . . , ŵt,gn}, using Gumbel softmax [12]:
e ∼ gumbel_softmax([ŵt,in, ŵt,g1 , . . . , ŵt,gn ]

⊤), in order to make KIAN differentiable every-
where. Then given a state st ∈ S, an action is sampled from the knowledge policy, at ∼ πe(·|st),
using the reparameterization trick.

However, fusing multiple policies as equation (3) will make an agent biased toward a small set of
knowledge policies when exploring the environment in the context of maximum entropy KGRL.

4.3 Exploration in KGRL

Maximizing entropy is a commonly used approach to encourage exploration in RL [9, 10, 37].
However, in maximum entropy KGRL, when the entropy of policy distributions are different from one
another, it leads to the problem of entropy imbalance. Entropy imbalance is a phenomenon in which an
agent consistently selects only a single or a small set of knowledge policies. We show this in math by
first revisiting the formulation of maximum entropy RL. In maximum entropy RL, an entropy term is
added to the standard RL objective as π∗ = argmax

π

∑
t E(st,at∼π) [R(st,at) + αH(π(·|st))] [9, 10],

where α ∈ R is a hyperparameter, and H(·) represents the entropy of a distribution. By maximizing
αH(π(·|st)), the policy becomes more uniform since the entropy of a probability distribution is
maximized when it is a uniform distribution [19]. With this in mind, we show that in maximum
entropy KGRL, some of the weights in {ŵt,in, ŵt,g1 , . . . , ŵt,gn} might always be larger than others.
We provide the proofs of all propositions in Appendix A.

Proposition 4.1 (Entropy imbalance in discrete decision-making). Assume that a da-dimensional
probability simplex π ∈ ∆da is fused by {π1, . . . , πm} and {ŵ1, . . . , ŵm} following equation (3),
where πj ∈ ∆da , ŵj ≥ 0 ∀j ∈ {1, . . . ,m} and

∑m
j=1 ŵj = 1. If the entropy of π is maximized and

∥π1∥∞ ≪ ∥π2∥∞, ∥π1∥∞ ≪ ∥π3∥∞, . . . , ∥π1∥∞ ≪ ∥πm∥∞, then ŵ1 → 1.

We show in Proposition A.1 that if π1 is more uniform than πj , then ∥π1∥∞ < ∥πj∥∞.

Proposition 4.2 (Entropy imbalance in continuous control). Assume a one-dimensional policy
distribution π is fused by

π = ŵ1π1 + ŵ2π2, where πj = N (µj , σ
2
j ), ŵj ≥ 0 ∀j ∈ {1, 2}, and ŵ1 + ŵ2 = 1. (4)

If the variance of π is maximized, and σ2
1 ≫ σ2

2 and σ2
1 ≫ (µ1 − µ2)

2, then ŵ1 → 1.

We can also infer from Proposition 4.2 that the variance of π defined in equation (4) depends on the
distance between µ1 and µ2, which leads to Proposition 4.3.

Proposition 4.3 (Distribution separation in continuous control). Assume a one-dimensional policy
distribution π is fused by equation (4). If ŵ1, ŵ2, σ

2
1 , and σ2

2 are fixed, then maximizing the variance
of π will increase the distance between µ1 and µ2.

Proposition 4.1, 4.2, and 4.3 indicate that in maximum entropy KGRL, (1) the agent will pay more
attention to the policy with large entropy, and (2) in continuous control, an agent with a learnable
internal policy will rely on this policy and separate it as far away as possible from other policies.
The consistently imbalanced attention prevents the agent from exploring the environment with other
policies that might provide helpful suggestions to solve the task. Furthermore, in continuous control,
the distribution separation can make π perform even worse than learning without any external
knowledge. The reason is that external policies, although possibly being sub-optimal for the task,
might be more efficient in approaching the goal, and moving away from those policies means being
less efficient when exploring the environment.

4.4 Modified Policy Distributions

Proposition 4.1 and 4.2 show that fusing multiple policies with equation (3) can make a KGRL agent
rely on a learnable internal policy for exploration. However, the uniformity of the internal policy is
often desired since it encourages exploration in the state-action space that is not covered by external
policies. Therefore, we keep the internal policy unchanged and propose methods to modify external
policy distributions in KIAN to resolve the entropy imbalance issue. We provide the detailed learning
algorithm of KGRL with KIAN in Appendix A.6.
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Discrete Policy Distribution. We modify a fusion of discrete policy distributions in equation (3) as
π(·|st) = ŵt,inπin(·|st) + Σn

j=1ŵt,gjsoftmax(βt,gjπgj (·|st)), (5)

wt,in =
Φ(st) · kin

∥Φ(st)∥2∥kin∥2
, wt,gj =

Φ(st) · kgj

∥Φ(st)∥2∥kgj∥2
, (6)

βt,gj = ∥Φ(st)∥2∥kgj∥2 ∀j ∈ {1, . . . , n}, (7)

where βt,gj ∈ R is a state-and-knowledge dependent variable that scales πgj (·|st) to change its
uniformity after passing through softmax. If the value of βt,gj decreases, the uniformity, i.e., the
entropy, of softmax(βt,gjπgj (·|st)) increases. By introducing βt,gj , the entropy of knowledge
policies becomes adjustable, resulting in reduced bias towards the internal policy during exploration.

Continuous Action Probability. We modify the probability of sampling at ∈ Rda from a continu-
ous π(·|st) in equation (3) as

π(at|st) = ŵinπin(at,in|st) + Σn
j=1ŵgjπgj (µt,gj |st), (8)

where at,in ∼ πin(·|st) and µt,gj ∈ Rda is the mean of πgj (·|st). We show in the next proposition
that equation (8) is an approximation of

π(at|st) = ŵinπin(at|st) + Σn
j=1ŵgjπgj (at|st), (9)

which is the exact probability of sampling at ∈ Rda from a continuous π(·|st) in equation (3).
Proposition 4.4 (Approximation of a mixture of normal distributions). If the following three
inequalities hold for µt,in, µt,g1 , . . . , µt,gn , and at,in: ∥µt,in − µt,gj∥2 < min{γt,in, γt,gj},
∥at,in − µt,in∥2 < min{γt,in, γt,gj}, and ∥at,in − µt,gj∥2 < γt,gj , ∀j ∈ {1, . . . , n}, where
γt,in = 1/(2πin(µt,in|st)) and γt,gj = 1/(2πgj (µt,gj |st)), then equation (9) for a real-valued
action at sampled from KIAN can be approximated by

ŵt,inU(at;µt,in − γt,in, µt,in + γt,in) +

n∑
j=1

ŵt,gjU(at;µt,in − γt,gj , µt,in + γt,gj ), (10)

where U(·; a, b) = 1/(b− a). (11)
In addition, equation (8) is a lower bound of equation (10).

With equation (8), we can show that maximizing the variance of π(·|st) will not separate the policy
distributions. Hence, an agent can refer to external policies for efficient exploration and learn its own
refined strategy based on them.
Proposition 4.5 (Maximized variance’s independence of the distance between means). Assume a
one-dimensional policy π is fused by equation (4). If π(a|s) is approximated as equation (8), and
the three inequalities in Proposition 4.4 are satisfied, then maximizing the variance of π(·|s) will not
affect the distance between µ1 and µ2.

5 Experiments

We evaluate KIAN on two sets of environments with discrete and continuous action spaces: Mini-
Grid [5] and OpenAI-Robotics [24]. Through experiments, we answer the following four questions:
[Sample Efficiency] Does KIAN require fewer training samples to solve a task than other external-
policy-inclusive methods? [Generalizability] Can KIAN trained on one task be directly used to solve
another task? [Compositional and Incremental Learning] Can KIAN combine previously learned
knowledge keys and inner policies to learn a new task? After adding more external policies to G, can
most of the components from a trained KIAN be reused for learning?

For comparison, we implement the following five methods as our baselines: behavior cloning
(BC) [3], RL [10, 29], RL+BC [21], KoGuN [36], and A2T [27]. KoGuN and A2T are modified to be
compositional and applicable in both discrete and continuous action spaces. Moreover, all methods
(BC, RL+BC, KoGuN, A2T, and KIAN) are equipped with the same initial external knowledge set,
Ginit, for each task. This knowledge set comprises sub-optimal if-else-based programs that cannot
complete a task themselves, e.g., pickup_a_key or move_forward_to_the_goal. Ginit will be
expanded with learned policies in compositional- and incremental-learning experiments. We provide
the experimental details in Appendix B.
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Figure 3: The learning curves of sample efficiency experiments in MiniGrid (top 2 rows) and OpenAI-
Robotics (last row) environments. Given a knowledge set that cannot complete a task (as shown by
BC), KIAN exhibits better sample efficiency across all tasks. These results underline the effectiveness
of KIAN in leveraging external policies to mitigate the need for extensive training samples.

Train in Empty-Random-5x5 DoorKey-5x5 Push Slide Pick-and-Place
Test in 6x6 8x8 16x16 8x8 16x16 5x 10x 5x 10x 5x 10x

RL [10, 29] 0.88 0.71 0.45 0.29 0.08 0.87 0.52 0.45 0.17 0.34 0.27
RL+BC [21] 0.87 0.60 0.24 0.40 0.09 0.89 0.60 0.44 0.16 0.34 0.30
KoGuN [36] 0.94 0.83 0.53 0.77 0.35 0.63 0.43 0.55 0.18 0.32 0.24
A2T [27] 0.92 0.78 0.51 0.53 0.11 0.03 0.05 0.00 0.01 0.01 0.06
KIAN (ours) 0.96 0.91 0.93 0.76 0.42 0.93 0.70 0.42 0.15 0.92 0.72

Table 1: (Zero-Shot S2C Experiments) The left five columns show the generalizability results of
an agent trained in a 5x5 environment and tested in environments of varying sizes. The right six
columns show the results of an agent trained with a 1x goal range and tested with different goal
ranges. Transferring policies from a simple task to a more complex one is a challenging setup in
generalizability experiments. The results highlight the superior performance of KIAN in such setup.

5.1 Sample Efficiency and Generalizability

We study the sample efficiency of baselines and KIAN under the intra-task setup, where an agent
learns a single task with the external knowledge set Ginit fixed. Figure 3 plots the learning curves in
different environments. All experiments in these figures are run with ten random seeds, and each error
band is a 95% confidence interval. The results of BC show that the external knowledge policies are
sub-optimal for all environments. Given sub-optimal external knowledge, only KIAN shows success
in all environments. In general, improvement of KIAN over baselines is more apparent when the task
is more complex, e.g., Empty < Unlock < DoorKey and Push < Pick-and-Place. Moreover, KIAN is
more stable than baselines in most environments. Note that in continuous-control tasks (Push, Slide,
and Pick-and-Place), A2T barely succeeds since it does not consider the entropy imbalance issue
introduced in Proposition 4.2 and 4.3. These results suggest that KIAN can more efficiently explore
the environment with external knowledge policies and fuse multiple policies to solve a task.

Next, we evaluate the generalizability of all methods under simple-to-complex (S2C) and complex-to-
simple (C2S) setups, where the former trains a policy in a simple task and test it in a complex one,
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Train in DoorKey-5x5 DoorKey-8x8 Pick-and-Place Push Slide
Test in Empty-Random Unlock DoorKey5x5 Reach Push Reach Push

RL [10, 29] 0.83 0.92 0.93 0.80 0.31 0.16 0.09
RL+BC [21] 0.85 0.87 0.93 0.80 0.31 0.16 0.09
KoGuN [36] 0.90 0.91 0.93 0.45 0.05 0.20 0.07
A2T [27] 0.84 0.92 0.93 0.01 0.05 0.20 0.05
KIAN (ours) 0.91 0.94 0.95 1.00 0.30 0.24 0.13

Table 2: (Zero-Shot C2S Experiments) In general, KIAN outperforms other methods when transfer-
ring policies across different tasks. Note that although distinguishing the levels of difficulty between
Push, Slide, and Pick-and-Place is not straightforward, KIAN still achieves better performance.
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Figure 4: The learning curves of composition and incremental experiments in MiniGrid (left 3
columns) and OpenAI-Robotics (right column) environments. KIAN requires fewer samples to learn
two tasks sequentially than separately and outperforms other approaches in incremental learning.

and the latter goes the opposite way. All generalizability experiments are run with the same policies
as in Section 5.1. Table 1 and 2 show that KIAN outperforms other baselines in most experiments,
and its results have a smaller variance (see Table 3 to 5 in Appendix E). These results demonstrate
that KIAN’s flexibility in incorporating external policies improves generalizability.

5.2 Compositional and Incremental Learning

In the final experiments, we test different methods in the compositional and incremental learning
setting. We modify RL, KoGuN, and A2T to fit into this setting; details can be found in Appendix C.
The experiments follow the inter-task setup: (1) We randomly select a pair of tasks (M1

k,M2
k).

(2) An agent learns a policy to solve M1
k with Ginit fixed, as done in Section 5.1. (3) The learned

(internal) policy, π1
in, is added to the external knowledge set, G = Ginit ∪ {π1

in}. (4) The same agent
learns a policy to solve M2

k with G. Each experiment is run with ten random seeds.

The learning curves in Figure 4 demonstrate that given the same updated G, KIAN requires fewer
samples to solve M2

k than RL, KoGuN, and A2T in all experiments. Our knowledge-key and query
design disentangles policy representations from the action-prediction operation, so the agent is more
optimized in incremental learning. Unlike our disentangled design, prior methods use a single
function approximator to directly predict an action (KoGuN) or the weight of each policy (A2T) given
a state. These methods make the action-prediction operation depend on the number of knowledge
policies, so changing the size of G requires significant retraining of the entire function approximator.

Figure 4 also shows that KIAN solves M2
k more efficiently with G than Ginit in most experiments.

This improvement can be attributed to KIAN reusing the knowledge keys and query, which allows an
agent to know which policies to fuse under different scenarios. Note that G can be further expanded
with the internal policy learned in M2

k and be used to solve another task M3
k.
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Figure 5: The learning curves of KIAN with and without addressing entropy imbalance as described
in Section 4.4. The results indicate the adverse impact of entropy imbalance on KIAN’s performance
within the context of maximum entropy KGRL. In addition, our proposed modifications to external
policy distributions are shown to be highly effective in alleviating this issue.

5.3 Analysis of Entropy Imbalance in Maximum Entropy KGRL

In our ablation study, we investigate (1) the impact of entropy imbalance on the performance of
maximum entropy KGRL and (2) whether the proposed modifications to external policy distributions
in Section 4.4 can alleviate the issue.

Figure 5 shows the learning curves comparing KIAN’s performance with and without addressing
the entropy-imbalance issue. The results demonstrate that when not addressing the issue using
equation (5) or (8), KIAN fails to fully capitalize on the guidance offered by external policies. We
also draw two noteworthy conclusions from the figure: (1) For discrete decision-making tasks, the
detrimental impact of entropy imbalance becomes more evident as task complexity increases. (2) For
continuous-control tasks, entropy imbalance can degrade KIAN’s performance and make it perform
worse than pure RL without external policies, as shown by the results of FetchPickAndPlace and
FetchPush. This phenomenon can be attributed to Proposition 4.3. In contrast, by adjusting KIAN’s
external policy distributions using equation (5) or (8), a KGRL agent can efficiently harness external
policies to solve a given task.

6 Conclusion and Discussion
This work introduces KGRL, an RL paradigm aiming to enhance efficient and flexible learning by
harnessing external policies. We propose KIAN as an actor model for KGRL, which predicts an
action by fusing multiple policies with an embedding-based attention operation. Furthermore, we
propose modifications to KIAN’s policy distributions to address entropy imbalance, which hinders
efficient exploration with external policies in maximum entropy KGRL. Our experimental findings
demonstrate that KIAN outperforms alternative methods incorporating external policies regarding
sample efficiency, generalizability, and compositional and incremental learning.

However, it is essential to acknowledge a limitation not addressed in this work. The efficiency of
KIAN, as well as other existing KGRL methods, may decrease when dealing with a large external
knowledge set containing irrelevant policies. This issue is examined and discussed in Appendix F.
Efficiently handling extensive sets of external policies is left for future research.

Our research represents an initial step towards the overarching goal of KGRL: learning a knowledge
set with a diverse range of policies. These knowledge policies can be shared across various environ-
ments and continuously expanded, allowing artificial agents to flexibly query and learn from them.
We provide detailed discussions on the broader impact of this work and outline potential directions of
future research in Appendix D.
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A Proofs and Learning Algorithms of KIAN

A.1 Proof of Proposition 4.1

Proposition 4.1 (Entropy imbalance in discrete decision-making). Assume that a da-dimensional probability
simplex π ∈ ∆da is fused by {π1, . . . , πm} and {ŵ1, . . . , ŵm} following equation (3), where πj ∈ ∆da , ŵj ≥
0 ∀j ∈ {1, . . . ,m} and

∑m
j=1 ŵj = 1. If the entropy of π is maximized and ∥π1∥∞ ≪ ∥π2∥∞, ∥π1∥∞ ≪

∥π3∥∞, . . . , ∥π1∥∞ ≪ ∥πm∥∞, then ŵ1 → 1.

Proof. Since π ∈ ∆da is defined as equation (3), and its entropy is maximized,

π =

m∑
j=1

ŵjπj =

[
1

da
, . . . ,

1

da

]⊤
. (12)

Equation (12) holds since π becomes a uniform distribution if its entropy is maximized.

Since each πj in equation (12) is a probability simplex, it can be written as

πj =

[
1

da
+ εj,1,

1

da
+ εj,2, . . . ,

1

da
+ εj,da

]⊤
, where (13)

da∑
i=1

εj,i = 0 ∀j ∈ {1, . . . ,m}. (14)

Substituting equation (13) into equation (12) and, after some rearrangement, we get

ŵ1

[
1

da
+ ε1,1, . . . ,

1

da
+ ε1,da

]⊤
=

[
1

da
, . . . ,

1

da

]⊤
−

m∑
j=2

ŵj

[
1

da
+ εj,1, . . . ,

1

da
+ εj,da

]⊤
. (15)

Without loss of generality, we can assume that

max
i∈{1,...,da}

ε1,i = ε1,1 (16)

min
i∈{1,...,da}

εj,i = εj,1 and εj,1 ≤ 0 ∀j ∈ {2, . . . ,m}. (17)

Then take the infinity norm for both sides of equation (15), we get∥∥∥∥∥ŵ1

[
1

da
+ ε1,1, . . . ,

1

da
+ ε1,da

]⊤∥∥∥∥∥
∞

=

∥∥∥∥∥
[
1

da
, . . . ,

1

da

]⊤
−

m∑
j=2

ŵj

[
1

da
+ εj,1, . . . ,

1

da
+ εj,da

]⊤∥∥∥∥∥
∞

(18)

ŵ1

(
1

da
+ ε1,1

)
=

1

da
−

m∑
j=2

ŵj

(
1

da
+ εj,1

)
. (19)

After some rearrangement, equation (19) becomes

1

da

(
m∑

j=1

ŵj

)
+ ŵ1ε1,1 =

1

da
−

m∑
j=2

ŵjεj,1 (20)

ŵ1ε1,1 = −
m∑

j=2

ŵjεj,1. (21)

Equation (21) holds since
∑m

j=1 ŵj = 1.

Given equation (14), (17), and the assumption that ∥π1∥∞ ≪ ∥π2∥∞, ∥π1∥∞ ≪ ∥π3∥∞, . . . , ∥π1∥∞ ≪
∥πm∥∞, we have the following inequalities

ε1,1 ≪ −εj,1 ∀j ∈ {1, . . . ,m}. (22)

Hence, for equation (21) to hold, ŵ1 → 1.

Proposition 4.1 states that if ∥π1∥∞ is much smaller than ∥πj∥∞, then maximizing the entropy of π results in
ŵ1 → 1 and ŵj → 0, ∀j ∈ {2, . . . ,m}. Next, we provide another proposition showing that if π1 is a uniform
distribution and πj is not, then ∥π1∥∞ < ∥πj∥∞, ∀j ∈ {2, . . . ,m}.

Proposition A.1 (Infinity norm of a probability simplex). Given two da-dimensional probability simplices,
π1 ∈ ∆da and π2 ∈ ∆da , if π1 is a uniform distribution and π2 is not, then ∥π1∥∞ = 1

da
< ∥π2∥∞.
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Proof. Since π1 ∈ ∆da is a uniform distribution, π1 = [ 1
da

, 1
da

, . . . , 1
da

]⊤. The infinity norm of π1 becomes

∥π1∥∞ = max
i∈{1,...,da}

|π1,i| =
1

da
, (23)

where π1,i is the i-th element of π1. On the other hand, since π2 ∈ ∆da is not a uniform distribution, it can be
represented as

π2 =

[
1

da
+ ε2,1,

1

da
+ ε2,2, . . . ,

1

da
+ ε2,da

]⊤
, where (24)

da∑
i=1

ε2,i = 0 and {ε2,1, . . . , ε2,da |ε2,i ̸= 0} ̸= ∅. (25)

Equation (25) indicates that at least one element in {ε2,1, . . . , ε2,da} should be larger than 0. Hence,

∥π2∥∞ = max
i∈{1,...,da}

|π2,i| = max
i∈{1,...,da}

∣∣∣∣ 1da + ε2,i

∣∣∣∣ > 1

da
. (26)

A.2 Proof of Proposition 4.2

In continuous action space, the final policy fused by equation (3) is a mixture of normal distributions, also known
as a Gaussian mixture. However, in general, the entropy of a Gaussian mixture does not have a closed form [45].
Instead of analyzing the entropy of π, we analyze the variance of π for da = 1 in maximum entropy KGRL
since for any probability density function of a real-valued random variable, Shannon’s inequality for entropy and
variance [44, 47] specifies

H(π) ≤ 1

2
ln
(
2pσ2)+ 1

2
, (27)

where σ2 ∈ R≥0 is the variance of π and p ≈ 3.14159.
Proposition 4.2 (Entropy imbalance in continuous control). Assume a one-dimensional policy distribution π is
fused by

π = ŵ1π1 + ŵ2π2, where πj = N (µj , σ
2
j ), ŵj ≥ 0 ∀j ∈ {1, 2}, and ŵ1 + ŵ2 = 1. (28)

If the variance of π is maximized, and σ2
1 ≫ σ2

2 and σ2
1 ≫ (µ1 − µ2)

2, then ŵ1 → 1.

Proof. Let a be a continuous random variable with the probability density function being π(·|s). Then its first
and second moments are

Ea∼π [a] =

∫
aπ(·|s) da (29)

=

∫
a (ŵ1π1(a|s) + ŵ2π2(a|s)) da (30)

= ŵ1

∫
aπ1(a|s) da+ ŵ2

∫
aπ2(a|s) da (31)

= ŵ1µ1 + ŵ2µ2 (32)

Ea∼π

[
a2] = ∫ a2π(·|s) da (33)

=

∫
a2 (ŵ1π1(a|s) + ŵ2π2(a|s)) da (34)

= ŵ1

∫
a2π1(a|s) da+ ŵ2

∫
a2π2(a|s) da (35)

= ŵ1(µ
2
1 + σ2

1) + ŵ2(µ
2
2 + σ2

2). (36)

Equation (36) holds since σ2
j = Eaj∼πj [a

2
j ]−

(
Eaj∼πj [aj ]

)2
, ∀j ∈ {1, 2}. The variance of a thus becomes

Va∼π [a] = Ea∼π

[
a2]− (Ea∼π [a])2 (37)

= ŵ1(µ
2
1 + σ2

1) + ŵ2(µ
2
2 + σ2

2)− (ŵ1µ1 + ŵ2µ2)
2 (38)

= ŵ1σ
2
1 + ŵ2σ

2
2 + ŵ1(1− ŵ1)µ

2
1 + ŵ2(1− ŵ2)µ

2
2 − 2ŵ1ŵ2µ1µ2 (39)

= ŵ1σ
2
1 + ŵ2σ

2
2 + ŵ1ŵ2(µ

2
1 + µ2

2 − 2µ1µ2) (40)

= ŵ1σ
2
1 + ŵ2σ

2
2 + ŵ1ŵ2(µ1 − µ2)

2. (41)

According to equation (41), if σ2
1 ≫ σ2

2 and σ2
1 ≫ (µ1 − µ2)

2, maximizing Va∼π[a] leads to ŵ1 → 1.
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A.3 Proof of Proposition 4.3

Proposition 4.3 (Distribution separation in continuous control). Assume a one-dimensional policy distribution
π is fused by equation (4). If ŵ1, ŵ2, σ

2
1 , and σ2

2 are fixed, then maximizing the variance of π will increase the
distance between µ1 and µ2.

Proof. According to equation (41), if ŵ1, ŵ2, σ
2
1 , and σ2

2 are fixed, maximizing Va∼π[a] results in maximizing
(µ1 − µ2)

2, hence increasing the distance between µ1 and µ2.

A.4 Proof of Proposition 4.4

Before proving Proposition 4.4, we first show that KL divergence between a mixture of uniform distributions
and a mixture of normal distributions is upper-bounded by a constant.

Proposition A.2 (KL divergence between a mixture of uniform distributions and a Gaussian mixture). Given a
Gaussian mixture

π(·) =
m∑

j=1

ŵj N (·;µj , σ
2
j ), (42)

where N (x;µj , σ
2
j ) =

1√
2pσ2

j

exp
−(x− µj)

2

2σ2
j

(43)

and a mixture of m uniform distributions

π̂(·) =
m∑

j=1

ŵj U(·;µj − γj , µj + γj), (44)

where U(·; a, b) = 1

b− a
and γj =

1

2N (µj ;µj , σ2
j )

(45)

for a real-valued random variable, the KL divergence between π̂(·) and π(·) has an upper bound of p
12

.

Proof. Since KL divergence DKL(P∥Q) is convex in the pair (P,Q), DKL(π̂∥π) has the following upper
bound [43]

DKL(π̂∥π) = DKL

(
m∑

j=1

ŵj U(·;µj − γj , µj + γj)
∥∥∥ m∑

j=1

ŵj N (·;µj , σ
2
j )

)
(46)

≤
m∑

j=1

ŵjDKL

(
U(·;µj − γj , µj + γj)

∥∥N (·;µj , σ
2
j )
)
. (47)

For each j ∈ {1, . . . ,m},

DKL

(
U(·;µj − γj , µj + γj)

∥∥N (·;µj , σ
2
j )
)

(48)

=

∫ µj+γj

µj−γj

1

2γj
ln

1
2γj

1√
2pσ2

j

exp

(
− (x−µj)2

2σ2
j

) dx (49)

=

∫ µj+γj

µj−γj

1

2γj
ln

1

2γj
dx−

∫ µj+γj

µj−γj

1

2γj

ln
1√
2pσ2

j

− (x− µj)
2

2σ2
j

 dx (50)

= ln
1

2γj
− ln

1√
2pσ2

j

+

∫ µj+γj

µj−γj

(x− µj)
2

4γjσ2
j

dx (51)

= ln
1

2γj
− ln

1√
2pσ2

j

+
γ2
j

6σ2
j

(52)

=
p

12
. (53)

Equation (53) comes from substituting γj into equation (52).
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Finally, the upper bound of DKL(π̂∥π) becomes

DKL(π̂∥π) ≤
m∑

j=1

ŵjDKL

(
U(·;µj − γj , µj + γj)

∥∥N (·;µj , σ
2
j )
)

(54)

=

m∑
j=1

ŵj
p

12
=

p

12
. (55)

Proposition 4.4 (Approximation of a mixture of normal distributions). If the following three inequalities
hold for µt,in, µt,g1 , . . . , µt,gn , and at,in: ∥µt,in − µt,gj∥2 < min{γt,in, γt,gj}, ∥at,in − µt,in∥2 <
min{γt,in, γt,gj}, and ∥at,in − µt,gj∥2 < γt,gj , ∀j ∈ {1, . . . , n}, where γt,in = 1/(2πin(µt,in|st)) and
γt,gj = 1/(2πgj (µt,gj |st)), then equation (9) for a real-valued action at sampled from KIAN can be approxi-
mated by

ŵt,inU(at;µt,in − γt,in, µt,in + γt,in) +

n∑
j=1

ŵt,gjU(at;µt,in − γt,gj , µt,in + γt,gj ), (56)

where U(·; a, b) = 1/(b− a). (57)

In addition, equation (8) is a lower bound of equation (10).

Proof. Proposition A.2 shows that π(·|st) fused as equation (3) can be approximated by

π̂(·|st) = ŵt,inU(·;µt,in − γt,in, µt,in + γt,in) +

n∑
j=1

ŵt,gjU(·;µt,gj − γt,gj , µt,gj + γt,gj ) (58)

with KL divergence being at most p
12

, which is a constant.

Since any continuous action at outputted by KIAN belongs to {at,in, µt,g1 , . . . , µt,gn} (Line 11 to 16 in
Algorithm 1), if the three inequalities in the proposition statement hold, then for all at

U(at; µt,in − γt,in, µt,in + γt,in) =
1

2γt,in
, (59)

U(at; µt,gj − γt,gj , µt,gj + γt,gj ) =
1

2γt,gj
∀j ∈ {1, . . . , n}, and (60)

U(at; µt,in − γt,gj , µt,in + γt,gj ) =
1

2γt,gj
∀j ∈ {1, . . . , n}. (61)

Therefore, π̂(·|st) can be rewritten as

π̂(·|st) = ŵt,inU(·;µt,in − γt,in, µt,in + γt,in) +

n∑
j=1

ŵt,gjU(·;µt,in − γt,gj , µt,in + γt,gj ). (62)

For any at ∈ {at,in, µt,g1 , . . . , µt,gn},

π̂(at|st) = ŵt,inU(at;µt,in − γt,in, µt,in + γt,in) +

n∑
j=1

ŵt,gjU(at;µt,in − γt,gj , µt,in + γt,gj ) (63)

= ŵt,in
1

2γt,in
+

n∑
j=1

ŵt,gj

1

2γt,gj
(64)

= ŵt,inπin(µt,in|st) +
n∑

j=1

ŵt,gjπgj (µt,gj |st) (65)

≥ ŵt,inπin(at,in|st) +
n∑

j=1

ŵt,gjπgj (µt,gj |st). (66)

Inequality (66) holds since πin(at|st) has a maximum value when at = µt,in, and it shows that equation (8) is
a lower bound of equation (10).

We use equation (8) instead of (10) to approximated equation (9) since it includes more information about the
distribution πin(·|st) and helps adjust the learnable variance σ2

t,in.
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A.5 Proof of Proposition 4.5

Proposition 4.5 (Maximized variance’s independence of the distance between means). Assume a one-
dimensional policy π is fused by equation (4). If π(a|s) is approximated as equation (8), and the three
inequalities in Proposition 4.4 are satisfied, then maximizing the variance of π(·|s) will not affect the distance
between µ1 and µ2.

Proof. Proposition 4.4 shows that approximating π(a|s) as equation (8) comes from approximating π(·|s) with

π̂(·|s) = ŵ1U(·;µ1 − γ1, µ1 + γ1) + ŵ2U(·;µ1 − γ2, µ1 + γ2). (67)

Let a be a continuous random variable with the probability density function being π̂(·|s). Following the proof of
Proposition 4.2, its first and second moments are

Ea∼π̂[a] = µ1 (68)

Ea∼π̂[a
2] = µ2

1 + ŵ1
γ2
1

3
+ ŵ2

γ2
2

3
. (69)

Equation (69) holds since the variance of U(·; a, b) is (b−a)2

12
. Then the variance of a becomes

Va∼π̂[a] = ŵ1
γ2
1

3
+ ŵ2

γ2
2

3
(70)

=
p

6
(ŵ1σ

2
1 + ŵ2σ

2
2), (71)

which is not related to the distance between µ1 and µ2.

A.6 Learning Algorithms for KIAN

Algorithm 1: Knowledge-Grounded RL with KIAN
Input: environment E with a KGMDP (S,A, T ,G,R, ρ, γ), where G = {πg1 , πg2 , . . . , πgn}

1 Initialize θ,ϕ, and ke,∀e ∈ {in, g1, . . . , gn}
2 Observe a state s0 ∈ S from E
3 for each time step t do

// Compute weights for all knowledge policies
4 if A is a discrete action space then
5 Compute win, wg1 , . . . , wgn according to equation (6)
6 else if A is a continuous action space then
7 Compute win, wg1 , . . . , wgn according to equation (1) with

ct,e = 1,∀e ∈ {in, g1, . . . , gn}
8 Compute ŵin, ŵg1 , . . . , ŵgn according to (2)

// Sample an action
9 if A is a discrete action space then

10 Sample an action at ∼ π(·|st), with π following equation (5)
11 else if A is a continuous action space then
12 Sample a knowledge policy e ∼ gumbel_softmax([ŵt,in, ŵt,g1 , . . . , ŵt,gn ]

⊤)
13 if e = in then
14 Sample an action at ∼ πin(·|st)
15 else
16 at = µe,t

// Apply the action to the environment
17 Apply at ∈ A to E and observe a reward Rt and the next state st+1 ∈ S

// Update KIAN
18 if A is a discrete action space then
19 Compute entropy-related term with π(·|st) following equation (5)
20 else if A is a continuous action space then
21 Compute entropy-related term with π(at|st) following equation (8)
22 Update θ,ϕ, and kin,kg1 , . . . ,kgn with any (maximum entropy) RL algorithm

Output: θ,ϕ, and kin,kg1 , . . . ,kgn
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B Experimental Details

All experiments are conducted using Pytorch [22].

B.1 Baseline Algorithms

We compare KIAN with the following baselines that incorporate external knowledge policies differently.

• Behavior cloning (BC) [3]: An agent follows only the policies in G to solve a task. This method is
the optimal solution for supervised learning from demonstrations, where external knowledge policies
generate the demonstrations.

• RL [10, 29]: An agent learns a policy by RL without any external guidance.

• RL+BC [21]: An agent learns a policy by RL with BC signals integrated. These signals come from
demonstrations generated by external knowledge policies.

• KoGuN [36]: An agent learns a policy with the input being a concatenation of a state and n actions
suggested by all policies in G.

• A2T [27]: An agent fuses a learnable inner policy with n external policies in G by learning a function
approximator that predicts n+ 1 weights for all policies.

B.2 MiniGrid Environments

B.2.1 Environmental Details

We evaluate all methods on the following tasks in MiniGrid environments (https://github.com/maximecb/
gym-minigrid): Empty-Random-5x5, Unlock, DoorKey-5x5, DoorKey-8x8, Dynamic-Obstacles-16x16,
LavaCrossingS9N2, MultiRoom-N4-S5, and KeyCorridorS3R2. A state st in each task is a directed first-
person view represented as a 5x5 grid. An action at in each task is one of the six discrete actions: left, right,
forward, pickup, drop, and toggle.

B.2.2 Initial External Knowledge Set

The initial external knowledge set, Ginit, for MiniGrid tasks comprises eight sub-optimal if-else-based programs,
such as:

• pick_up_the_key: If there exists a key in st, move to the key; if the key is in front of the agent,
πgj (pickup|st) = 1.

• pick_up_the_ball: If there exists a ball in st, move to the key; if the key is in front of the agent,
πgj (pickup|st) = 1.

• open_the_door: If there exists a door in st, move to the door; if the door is in front of the agent,
πgj (toggle|st) = 1.

• open_the_locked_door: If there exists a locked door in st, move to the door; if the door is in front
of the agent, πgj (toggle|st) = 1.

• open_the_unlocked_door: If there exists a unlocked door in st, move to the door; if the door is in
front of the agent, πgj (toggle|st) = 1.

• go_to_the_goal: If there exists a goal in st, move to the goal.

• do_not_hit: If there exists walls or lava around the agent, do not choose the direction.

• do_not_hit_balls: If there exists balls around the agent, do not choose the direction.

In the above policies, the ‘move to‘ is decided by pobj − pself , where pself ∈ R3 is the position of the agent
and pobj ∈ R3 is the position of the object. The πgj of the actions right, left, and forward, can be written as:

πgj (right|st) = 1, if pobj,x − pself,x > 0

πgj (left|st) = 1, if pobj,x − pself,x < 0

πgj (forward|st) = 1, if pobj,y − pself,y > 0

(72)

B.2.3 Model Architecture

The eight environments in Minigrid share the same model architecture. Each method involves learning an image
encoding, an actor and a critic networks. The architecture of the image encoding network and critic network are
the same for all methods, but their actor networks have different architectures.
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Image Encoding Network. The image encoding network is a three-layer convolutional neural network that
maps an input image to an image embedding, which is used as the state by actor and critic networks.

Critic Network. A critic network is a multi-layer perceptron (MLP) that predicts a state value [29]. The
architecture of a critic network has one hidden layer that contains 64 units. Each hidden layer is followed by
Tanh activation.

Actor Network of PPO, PPO+BC, and KoGuN. An actor network of PPO, PPO+BC and KoGuN is an
MLP with one hidden layers and a hidden size of 64 units.

Actor Network of A2T. An actor network of A2T contains an internal actor network and an attention
network. The internal actor network has the same architecture as an actor of PPO, PPO+BC, and KoGuN. The
attention network is an MLP with one hidden layer and a hidden size of 64 units base.

KIAN. The internal actor network of KIAN has the same architecture as an actor of PPO, PPO+BC, and
KoGuN. Each knowledge key is a learnable vector with dk = 8 and modeled by the PyTorch module,
nn.Embedding. The query network is an additional output layer projecting 64-dim to dk-dim that based
on the inner actor’s first layer outputs.

B.2.4 Hyperparameters

We implement all methods based on the implementation of PPO in https://github.com/lcswillems/
rl-starter-files. The training timesteps are 75K, 300K, 75K, 3M, 300K, 5M, 500K, 1M for
Empty-Random-5x5, Unlock, DoorKey-5x5, DoorKey-8x8, Dynamic-Obstacles-16x16, LavaCrossingS9N2,
MultiRoom-N4-S5, and KeyCorridorS3R2 respectively. The learning rates are 1× 10−3 for all tasks. The batch
sizes are 256 for all tasks. The discount factors γ = 0.99 for all tasks. The coefficient of the entropy term α is
searched to be 0 or 0.01, the default value.

B.3 OpenAI-Robotic Environments

B.3.1 Environmental Details

We evaluate all methods on the following tasks in OpenAI-Robotic environments: FetchPush, FetchSlide, and
FetchPickAndPlace. A state st ∈ R25 in each task contains (1) the position and velocity of the end-effector, (2)
the position, rotation, and velocity of the object, (3) the relative position between the object and the end-effector,
and (4) the distance between the two grippers and their velocity. An action at ∈ R4 in each task contains the
position variation of the end-effector and the distance between the two grippers.

B.3.2 Initial External Knowledge Set

The initial external knowledge set, Ginit, for all OpenAI-Robotic tasks comprises two sub-optimal if-else-based
programs, move_forward_to_the_object and move_forward_to_the_goal.

• move_forward_to_the_object: If ∥pee − pobj∥2 ≥ ε, move straightly to the object with the
gripper opened; otherwise, stay unmoved.

• move_forward_to_the_goal: If ∥pee − pobj∥2 < ε, move straightly to the goal with the gripper
closed; otherwise, stay unmoved.

In the above two policies, pee ∈ R3 is the position of the end-effector, and pobj ∈ R3 is the position of the
object. For all tasks, ε = 0.03.

B.3.3 Model Architecture

FetchPush, FetchSlide, and FetchPickAndPlace share the same model architecture. Each method involves
learning an actor and a critic network. The architecture of the critic network is the same for all methods, but
their actor networks have different architectures.

Critic Network. A critic network is a multi-layer perceptron (MLP) that predicts a state-action value [? ].
The architecture of a critic network has three hidden layers, and each layer contains 512 units. Each hidden layer
is followed by ReLU activation.

Actor Network of SAC, SAC+BC, and KoGuN. An actor network of SAC, SAC+BC and KoGuN is an
MLP with three hidden layers and a hidden size of 512 units.
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Actor Network of A2T. An actor network of A2T contains an internal actor network and an attention
network. The internal actor network has the same architecture as an actor of SAC, SAC+BC, and KoGuN. The
attention network is an MLP with two hidden layers and a hidden size of 64 units.

KIAN. The internal actor network of KIAN has the same architecture as an actor of SAC, SAC+BC,
and KoGuN. Each knowledge key is a learnable vector with dk = 4 and modeled by the PyTorch module,
nn.Embedding. The query network is an MLP with two hidden layers and a hidden size of 64 units.

B.3.4 Hyperparameters

We implement all methods based on the implementation of SAC in Stable-Baselines3 (SB3) [26]. The training
timesteps are 1M for FetchPush and FetchPickAndPlace and 1.2M for FetchSlide. The learning rates are
5× 10−4 for FetchPush and FetchPickAndPlace and 4× 10−4 for FetchSlide. The batch sizes are 2048 for all
tasks. The replay-buffer sizes are 1M for all tasks. The discount factors γ = 0.95 for all tasks. The coefficient
of the entropy term α is adjusted automatically for all tasks as described in [10].

C Details of Compositional and Incremental Experiments

C.1 MiniGrid Environments

After learning an actor in M1
k with the experimental setup described in Section B, we train KIAN for M2

k by
initializing its external knowledge keys with the knowledge keys learned in M1

k. These external knowledge
keys remain fixed when learning M2

k, and all other components of KIAN are learned from scratch. This setup
allows us to test the efficacy of reusing learned knowledge keys across different tasks. All actor components of
RL, KoGuN, and A2T are learned from scratch in M2

k. This is because RL does not incorporate any external
knowledge, and the model architectures of KoGuN and A2T do not allow changing the number and order of
knowledge policies. The hyperparameters of learning M1

k and M2
k are the same as those listed in Section B.2.4.

The external knowledge policies used for each experiment are detailed as follows:

• Dynamic-Obstacles-16x16 → LavaCrossingS9N2. Reuse the knowledge embedding of “go to the
goal”; reuse the knowledge embedding of “do not hit balls” as the fixed knowledge embedding of “do
not hit”.

• Unlock → DoorKey-8x8. Reuse the knowledge embeddings of “get the key” and “open the door”.

• Dynamic-Obstacles-16x16 → MultiRoom-N4-S5. Reuse the knowledge embedding of “go to the
goal”.

• DoorKey-8x8 → MultiRoom-N4-S5. Reuse the knowledge embedding of “go to the goal”; reuse the
knowledge embedding of “open the door” as the fixed knowledge embedding of “open the unlocked
door”.

• Dynamic-Obstacles-16x16 → KeyCorridorS3R2. Reuse the knowledge embedding of “go to the
goal” as the fixed knowledge embedding of “pick up the ball”.

• DoorKey-8x8 → KeyCorridorS3R2. Reuse the knowledge embedding of “get the key”; reuse the
knowledge embedding of “open the door”; reuse the knowledge embedding of “go to the goal” as the
fixed knowledge embedding of “pick up the ball”.

C.2 OpenAI-Robotic Environments

After learning an actor and a critic in M1
k with the experimental setup described in Section B, we initialize the

networks for M2
k as follows:

• RL: The actor and critic of M2
k are initialized with that of M1

k. These networks will be updated when
learning in M2

k.

• KoGuN: Only the critic of M2
k is initialized with that of M1

k. The actor is learned from scratch in
M2

k. The actor and critic will be updated when learning in M2
k.

• A2T: The critic of M2
k is initialized with that of M1

k. The inner policy and attention network are
learned from scratch in M2

k. All networks will be updated when learning in M2
k.

• KIAN: The external knowledge keys, query, and critic of M2
k are initialized with that of M1

k. Note
that the external knowledge keys of M2

k include the internal and external knowledge keys from M1
k.

The inner policy and inner knowledge key are learned from scratch in M2
k. The external knowledge

keys remain fixed, while other networks will be updated when learning in M2
k.
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The hyperparameters of learning M1
k are the same as those listed in Section B.3.4. When learning M2

k,
the hyperparameters changed are listed as follows: The training timesteps are 0.4M. The learning rates are
7.5× 10−4 and 10−3 for FetchPush and FetchPickAndPlace respectively.

D Broader Impact and Future Research Directions

The KGRL framework presented in this work aims to enhance an agent’s ability to learn from external policies.
These policies encompass not only sub-optimal strategies to task completion but also regulative policies that
emphasize safety constraints and ethical behaviors. Being able to incorporate safety- and ethics-oriented policies
gives KGRL the potential to significantly influence an artificial agent’s behavior, promoting enhanced safety
and social acceptability. These aspects have gained substantial attention in the field of RL [38–42, 46, 48],
underscoring their importance in contemporary research.

Moving forward, there are several research directions in KGRL that are worth exploring. First, fusing knowledge
policies with different state and action spaces enables efficient learning across a broader range of applications.
Second, integrating regulative policies that enforce strict constraints during learning and inference stages can
ensure adherence to safety and ethical considerations. Lastly, addressing complex relationships among different
policies, such as conditional dependence and conflicts, allows an agent to efficiently navigate through a large and
diverse set of knowledge policies. We hope these directions have the potential to inspire future studies in KGRL.

E Other Experimental Results

We provide the standard deviation for the experiments of generalizability in Table 3-5.

Train in Empty-Random-5x5 DoorKey-5x5
Test in 6x6 8x8 16x16 8x8 16x16

RL [10, 29] .88±.06 .71±.20 .45±.35 .29±.16 .08±.10

RL+BC [21] .87±.03 .60±.14 .24±.17 .40±.01 .09±.08

KoGuN [36] .94±.01 .83±.03 .53±.11 .77±.09 .35±.08

A2T [27] .92±.01 .78±.11 .51±.30 .53±.09 .11±.03

KIAN (ours) .96±.02 .91±.01 .93±.02 .76±.01 .42±.08

Table 3: MiniGrid Zero-Shot S2C Experiments.

Train in Push Slide Pick-and-Place
Test in 5x 10x 5x 10x 5x 10x

RL [10, 29] .87±.05 .52±.11 .45±.07 .17±.05 .34±.54 .27±.44

RL+BC [21] .89±.02 .60±.09 .44±.10 .16±.02 .34±.55 .30±.50

KoGuN [36] .63±.49 .43±.32 .55±.07 .18±.04 .32±.52 .24±.38

A2T [27] .03±.00 .05±.00 .00±.00 .01±.00 .01±.00 .06±.00

KIAN (ours) .93±.05 .70±.02 .42±.10 .15±.04 .92±.00 .72±.03

Table 4: OpenAI-Robotics Zero-Shot S2C Experiments.

Train in DoorKey-5x5 DoorKey-8x8 Pick-and-Place Push Slide
Test in Empty-Random Unlock DoorKey5x5 Reach Push Reach Push

RL [10, 29] .83±.07 .92±.01 .93±.01 .80±.45 .31±.19 .16±.10 .09±.04

RL+BC [21] .85±.05 .87±.03 .93±.01 .80±.45 .31±.19 .16±.10 .09±.04

KoGuN [36] .90±.02 .91±.01 .93±.01 .45±.37 .05±.02 .20±.07 .07±.02

A2T [27] .84±.04 .92±.01 .93±.00 .01±.00 .05±.00 .20±.45 .05±.00

KIAN (ours) .91±.01 .94±.01 .95±.00 1.0±.00 .30±.04 .24±.06 .13±.02

Table 5: Zero-Shot C2S Experiments.

F Effects of Extensive External Knowledge Set with Irrelevant Policies

In order for KGRL agents to effectively leverage an external knowledge set, it is imperative that they can (1)
distinguish which external policies are less related to the given task and (2) efficiently navigate through an
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extensive collection of external policies. Failure to accomplish these objectives in a timely manner could result in
suboptimal performance, potentially even inferior to that of an RL agent. Under such circumstances, integrating
external policies into the learning process becomes impractical.
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0.5
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PPO+KIAN+Redundant2x
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Figure 6: Learning curves of PPO and PPO+KIAN
for the MiniGrid Unlock task, with external knowl-
edge sets that include irrelevant policies.

In this section, we examine the following two aspects
of KIAN: (1) the ability of KIAN to rapidly acquire
valuable strategies, even in the presence of random
or irrelevant policies within the external knowledge
set, and (2) the impact of KIAN’s performance as the
size of the external knowledge set increases.

Figure 6 shows the learning curves of PPO and
PPO+KIAN, considering various numbers of external
policies: 2 relevant, 4 (2 relevant + 2 irrelevant), and
6 (2 relevant + 4 irrelevant) for the MiniGrid Unlock
task. The results indicate that including more irrele-
vant knowledge policies leads to a marginal decline in
performance, but the agents consistently achieve high
rewards with minimal variances. This minor decline
in performance aligns with our expectations since the
agents need to (1) navigate through a more extensive
set of external policies and (2) distinguish and dis-
regard policies that do not contribute to solving the
task. Therefore, when the external knowledge set is
very large, KGRL methods, such as KoGuN, A2T,
and KIAN, do not guarantee superior efficiency over
RL methods. Efficiently harnessing a large external
policy set remains an avenue of future research and
exploration.
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