
Under review as a conference paper at ICLR 2024

UNCOVERING THE SPECTRUM OF GRAPH GENERA-
TIVE MODELS: FROM ONE-SHOT TO SEQUENTIAL

Anonymous authors
Paper under double-blind review

ABSTRACT

In the field of deep graph generative models, two families coexist: one-shot mod-
els, which fill the graph content in one go given a number of nodes, and sequential
models, where new nodes and edges are inserted sequentially and autoregressively.
Recently, one-shot models are seeing great popularity due to their rising sample
quality and lower sampling time compared to the more costly autoregressive mod-
els. With this paper we unify the two worlds in a single framework, unlocking the
whole spectrum of options where one-shot and sequential models are but the two
extremes. We use the denoising diffusion models’ theory to develop a node re-
moval process, which destroys a given graph through many steps. An insertion
model reverses this process by predicting how many nodes have been removed
from the intermediate subgraphs. Then, generation happens by iteratively adding
new blocks of nodes, with size sampled from the insertion model, and content
generated using any one-shot model. By adjusting the knob on node removal, the
framework allows for any degree of sequentiality, from one-shot to fully sequen-
tial, and any node ordering, e.g., random and BFS. Based on this, we conduct
the first analysis of the sample quality-time trade-off across a range of molecular
and generic graphs datasets. As a case study, we adapt DiGress, a diffusion-based
one-shot model, to the whole spectrum of sequentiality, reaching new state of the
art results, and motivating a renewed interest in developing autoregressive graph
generative models.

1 INTRODUCTION

Graphs are mathematical objects that allow us to represent any kind of structured data, where com-
ponents and their relationships can be identified. They are used in many domains: social networks,
chemical structures, visual scenes, and to represent knowledge. For this reason, there was always
motivation to study how to generate new graphs following domain-specific rules. This was the case
for Erdos Rényi random graphs (Erdős et al., 1960), and now with Deep Graph Generative Models.

In this field, two families of models can be identified: (1) one-shot models, generating the entire
adjacency matrix and node features of a graph in one go; (2) sequential models, generating nodes and
edges one after the other. The literature of one-shot models is very rich, with the graph equivalents
of Variational Autoencoders (Simonovsky & Komodakis, 2018), Normalizing Flows (Zang & Wang,
2020), and Diffusion Models (Ho et al., 2020). In parallel, the same techniques have been applied
in sequential models (Liao et al., 2019; Luo et al., 2021; Kong et al., 2023), just with an additional
assumption: graphs are sequences of nodes to generate, and each one depends on the nodes before.
This autoregressive property may spark the thought that a better sample quality can be achieved.
Looking into the literature, this is not always the case, as one-shot models have entered the state-
of-the-art on challenging datasets like ZINC250k (Irwin et al., 2012), Ego (Sen et al., 2008), and
many more. However, one-shot models need to sample the number of nodes to generate from a
histogram pre-computed from the dataset, which can not be ideal in a conditional setup. In this
sense, autoregressive sequential models are more flexible in that they also learn the size distribution.

To bridge the gap between these two seemingly different modalities of generation, we propose a new
diffusion-based framework called Insert-Fill-Halt (IFH, Figure 1), which reveals the whole spectrum
of sequentiality. At each step, the Insertion Model chooses how many new nodes to generate, the
Filler Model how to fill the new nodes’ labels, features, and connections, and the Halt Model chooses
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Figure 1: Our Insert-Fill-Halt model. During training, a graph is corrupted (left to right) by itera-
tively removing nodes until the empty graph is left. At each step, the insertion (violet), filler (blue),
and halt (cyan) models have to predict how many nodes were removed, what content they had, and
whether the graph is terminal for generation.

if generation needs to terminate. The three components can be trained by applying a node removal
process to a graph data point, which the models try to undo. It can be shown that one-shot models
are 1-step IFH models, and that any degree of sequentiality can be achieved by choosing different
removal processes, down to 1 node at a time. The framework also allows to adapt one-shot models
to act as Filler Models, with the hope of inheriting or even improving their sample quality.

We show empirically that adapting Digress (Vignac et al., 2022), a state-of-the-art graph generative
model, to 1-node sequential, leads to surpassing all autoregressive baselines, and is competitive with
other state-of-the-art one-shot baselines such as CDGS (Huang et al., 2023). Other than providing
a way of unifying the two theories, we also want to spur a new interest in autoregressive graph
generative models, which might actually be the better choice for conditional generation.

2 BACKGROUND AND RELATED WORK

Let G = (V, E) be a graph, where V = {v1, v2, . . . , vn} is the set of vertices, and E =
{(vi, vj)| vi, vj ∈ V, vi, vj are linked} is the set of edges. The number of nodes and edges of
G are respectively denoted n = |V| and m = |E|. An alternative representation for E is the ad-
jacency matrix A ∈ {0, 1}n×n where Ai,j = 1 if (vi, vj) ∈ E , and 0 otherwise. In the case of
undirected graphs, edges are represented not by tuples but by sets {vi, vj}, and A is a symmetric
matrix, i.e., A = A⊤. In labeled graphs, V and E are coupled with node features X ∈ Rn×dx

and edge features E ∈ Rn×n×de , where dx and de are the dimensions of a single node/edge feature
vector respectively. Global features y ∈ Rdy of the graph can also be included.
Definition 1 (Remove operation). Removing a node vi from G is equivalent to removing vi from V ,
its entry in X , all edges (vi, vj) or (vj , vi) from E in which vi participates, and the row and column
in E assigned to its connectivity.
Definition 2 (Induced subgraph). A subgraph GA induced in G by VA ⊆ V is the subgraph obtained
by removing all nodes in VB = V \ VA from G.
Definition 3 (Split operation). A split (GA,GB , EAB , EBA) of G through VA is the tuple composed
by the subgraphs GA,GB induced by VA and VB = V \ VA, the intermediate edges EAB linking
nodes in VA to nodes in VB and vice versa for EBA.
Definition 4 (Merge operation). Given a tuple (GA,GB , EAB , EBA), the merged graph G is defined
with V = VA ∪ VB and E = EA ∪ EB ∪ EAB ∪ EBA. Node and edge features are concatenated as
shown in Figure 2.

Splitting implies a separation also on features: XA and XB for nodes, EAA, EAB , EBA, and EBB

for edges, as shown in Figure 2. When splitting undirected graphs, it immediately follows that
EAB = EBA and EAB = E⊤BA. A merge operation reverses a split operation: in that case, node and
edge features are concatenated as shown in Figure 2. Now we can define the main object for our
mathematical framework, the forward and reversed removal sequences.
Definition 5 (Forward and reversed removal sequence). A graph sequence G→0:T = (Gt)Tt=0 is a
forward removal sequence of G when G0 = G, GT is the empty graph ∅, and Gt is an induced
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Figure 2: Split operation. In blue and red are the induced subgraphs GA and GB . In green are the
intermediate edges EAB , EBA. On the right is the split adjacency matrix, with the same coloring.

subgraph of Gt−1 for all t = 1, . . . , T . G←0:T is a reversed removal sequence of G if it is a sequence
G→0:T of G navigated in reverse, i.e., with index s = T − t. In this case Gs−1 is an induced subgraph
of Gs for all s = 1, . . . , T .
We denote F(G, T ) and R(G, T ) as the sets of all forward and reversed removal sequences of G of
length T . For the halting processes we borrow the notation from Banino et al. (2021).
Definition 6 (Halting process). A halting process Λs is a Markov process where, at each time step,
Λs is a Bernoulli random variable with outcomes 0, 1 (continue, halt), and evolves as follows: it
starts with Λ0 = 0 (continue), and proceeds with Markov transitions p(Λs = 1|Λs−1 = 0) = λ(s)
until at step s = T the process is absorbed in state 1 (halt), i.e., p(Λs = 1|Λs−1 = 1) = 1 ∀s > 0.

2.1 RELATED WORKS

Given a set of observable graph data points with unknown distribution pdata(G), likelihood maxi-
mization methods aim to learn the parameters θ of a model pθ(G) to approximate the true distribu-
tion pdata(G). In the context of deep graph generation (Guo & Zhao, 2022), pθ(G) has been modeled
as: (1) a sequential process, with nodes being added one by one or block by block autoregressively;
(2) a one-shot process, generating the whole matrix structure of the graph in parallel.

Sequential models Sequential models frame graph generation as forming a trajectory G←0:T =
(G0, . . . ,Gs, . . . ,GT ) of increasingly big graphs, where G0 is usually an empty graph, GT is the gen-
eration result, and the transition from Gs−1 to Gs introduces new nodes and edges, without touching
what is already in Gs−1. In the case of node-sequence generation, T is exactly the number of nodes
n in G, and the transition p(Gt|Gt−1) appends exactly one node and the edges from that node to
Gt−1. In motif-sequence generation, blocks of nodes are inserted, together with new rows of the
adjacency matrix. For the remainder of the paper, we will denote as sequential the models based
on a node-sequence generation, block-sequential for motif-based models, and autoregressive models
for addressing both. Given a halting criteria λν(Gs, s) (as defined in 6) based on current graph Gs,
the model distribution for a sequential model is of the form:

pθ,ν(G) =
∑

G←0:n∈R(G,n)

λν(Gn, n)pθ(Gn|Gn−1)
T−1∏
s=1

(1− λν(Gs, s))pθ(Gs|Gs−1) (1)

An important ingredient in training autoregressive models is the node ordering, i.e., assigning a
permutation π to the n nodes in G in order to build the trajectory G←0:T . With random ordering,
the model has to explore each of the n! possible permutations, whereas canonical orderings such
as Breadth First Search (BFS) (You et al., 2018), Depth First Search (DFS), and many others (Liao
et al., 2019; Chen et al., 2021) decrease the size of the search space, empirically increasing sample
quality, although introducing an inductive bias which might not fit every case.

In the sequential model family fall generative RNN models such as GraphRNN (You et al., 2018) and
block-sequential GRAN (Liao et al., 2019), autoregressive normalizing flow models like GraphAF
(Shi et al., 2020) and its discrete variant GraphDF (Luo et al., 2021). Regarding block generation,
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the work by Liao et al. (2019) is a precursor of ours, as the authors investigated the use of different
fixed block sizes in a domain-agnostic setup with grid graphs. Kong et al. (2023) framed the task
of finding the optimal node ordering as learning an absorbing discrete diffusion process that masks
nodes one at a time, coupled with a denoising network generating new nodes in the reverse order.

One-shot models One-shot models employ a decoder network that maps a latent vector z to the
resulting graph G. The latent vector is usually sampled from a tractable distribution (such as a
Normal distribution), and the number of nodes is either fixed, sampled from the frequencies of
nodes in the dataset, or predicted from the latent code z. In general, one-shot models have the form:

pθ,ϕ(G) = pθ(G|n)pϕ(n). (2)

When pθ(G|n) is implemented by a neural network architecture that is equivariant to permutations
in the order of nodes, then no node orderings are needed.

For one-shot generation, the classic generative paradigms are applied: VAE with GraphVAE (Si-
monovsky & Komodakis, 2018), GAN with MolGAN (De Cao & Kipf, 2018), Normalizing Flows
with MoFlow (Zang & Wang, 2020), diffusion with EDP-GNN (Niu et al., 2020), discrete diffu-
sion with DiGress (Vignac et al., 2022), energy-based models with GraphEBM (Liu et al., 2021),
Stochastic Differential Equations (SDE) with GDSS (Jo et al., 2022) and CDGS (Huang et al., 2023).

2.1.1 DIFFUSION MODELS

We briefly introduce the denoising diffusion model (Sohl-Dickstein et al., 2015; Ho et al., 2020), as
its theory will serve as the foundation of our framework. Let x0 be a data point sampled from an
unknown distribution q(x0). Denoising diffusion models are latent variable models with two com-
ponents: (1) a diffusion process gradually corrupts x0 in T steps with Markov transitions q(xt|xt−1)
until xT has some simple, tractable distribution pθ(xT ) (e.g. a Normal distribution); (2) a learned re-
verse Markov process with transition pθ(xt−1|xt) denoises xT back to the original data distribution
q(x0). The trajectories formed by the two processes are:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1),︸ ︷︷ ︸
Forward process

pθ(x0:T ) = pθ(xT )

T∏
t=1

pθ(xt−1|xt)︸ ︷︷ ︸
Reverse process

(3)

For T → +∞, the forward and reverse transitions share the same functional form (Feller, 1949),
and choosing q(xT |x0) = q(xT ) allows in fact to easily sample xT . The distribution pθ(x0) can be
made to fit the data distribution q(x0) by minimizing the variational upper bound:

Lvub = Ex0∼q(x0)

[
DKL

(
q(xT |x0)∥p(xT )

)︸ ︷︷ ︸
LT

+

T∑
t=2

DKL

(
q(xt−1|xt,x0)∥pθ(xt−1|xt)

)︸ ︷︷ ︸
Lt−1

−Ex1∼q(x1|x0) [log pθ(x0|x1)]︸ ︷︷ ︸
L0

]
. (4)

Two necessary properties to make diffusion models feasible are for q(xt|x0) and q(xt−1|xt,x0) to
have a closed form formula, in order to respectively (1) efficiently sample many time steps in parallel
and (2) compute the KL divergences.

The first successful attempt with diffusion models defined the transitions as q(xt|xt−1) =
N (xt;

√
1− βtxt−1, βtI) (Ho et al., 2020) where βt is a variance schedule. Later, diffusion models

were adapted for discrete spaces (Austin et al., 2021), introducing concepts like uniform transitions,
used in DiGress (Vignac et al., 2022) with node and edge labels, and absorbing states diffusion,
adopted in GraphARM (Kong et al., 2023) for masking nodes.

3 REMOVING NODES AS A GRAPH NOISE PROCESS

In this work, we frame the process of removing nodes from a graph G as a diffusion process, which
gradually corrupts G until there is no information left of the original graph. This can be interpreted
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as an absorbing state diffusion process with node masks (Austin et al., 2021; Kong et al., 2023).
Differently from (Kong et al., 2023), we do not limit the process to the choice of one node per step,
but we study the diffusion process both from the node ordering and nodes number perspectives. In
this sense, it can be said that such a process adds noise to G until it reaches the absorbing state of
the empty graph ∅ after T steps.

We define the node removal process as a noise process on graphs that randomly removes nodes at
each step until no more are left. Given a graph data point G, the removal process forms a removal
sequence G→0:T with G0 = G and GT being the empty graph. We define the Markov removal transition
q(Gt|Gt−1) as the probability of sampling a set of nodes Vt ⊆ Vt−1, and computing the induced
subgraph Gt from Gt−1 by Vt. Following from Eq. 3, the forward process is defined as:

q(G→1:T |G0) =
T∏

t=1

q(Gt|Gt−1). (5)

Now we show the key insight that, because nt = |Vt| is a known property of Gt, the removal
transition can be broken down into two components:

q(Gt|Gt−1) = q(Gt, nt|Gt−1) = q(Gt|nt,Gt−1)q(nt|Gt−1) (6)
where q(nt|Gt−1) is the probability that Vt will have exactly nt nodes, and fixed this number,
q(Gt|nt,Gt−1) is the probability of choosing the nodes in Vt from Vt−1. In simpler words,
q(nt|Gt−1) tells how many nodes to keep alive, and once this fact is known, q(Gt|nt,Gt−1) tells
which nodes to keep alive. In some special cases of the removal process, we will show that the
number of nodes nt−1 is actually enough information to sample nt, i.e., q(nt|Gt−1) = q(nt|nt−1).

3.1 PARAMETERIZING THE REVERSE OF THE REMOVAL PROCESS

Again, following the theory of diffusion models (Section 2.1.1), we introduce the insertion process,
which learns to regenerate the graphs corrupted by the removal process. Define pθ,ϕ(Gt−1|Gt) as the
Markov insertion transition, which samples rt = nt−1 − nt new nodes Vt,B given Gt with nodes
Vt,A = Vt, together with edges Et,AB , Et,BA connecting the two graphs. Then, through a merge
operation (4), graph Gt−1 is composed. The reverse process is defined as:

pθ,ϕ(G→0:T ) =
T∏

t=1

pθ,ϕ(Gt−1|Gt) (7)

where we omitted the pθ,ϕ(GT ) term, as all the probability mass is already placed on the empty
graph ∅. Again, we can break the transition into two components:

pθ,ϕ(Gt−1|Gt) = pθ,ϕ(Gt−1, rt|Gt) = pθ(Gt−1|rt,Gt)pϕ(rt|Gt) (8)
where we call pϕ(rt|Gt) the insertion model, with parameters ϕ, and pθ(Gt−1|rt,Gt) the filler model,
with parameters θ. The role of each is respectively to: (1) given the current subgraph Gt decide how
many nodes rt to add, (2) known this number and Gt, generate the content of the new nodes and
respective edges, and how to connect them to Gt. Expanding pθ,ϕ(Gt−1, rt|Gt), we have:

pθ,ϕ(Gt,A,Gt,B , Et,AB , Et,BA, rt|Gt,A) = pθ(Gt,B , Et,AB , Et,BA|rt,Gt,A)pϕ(rt|Gt,A)
= pθ(Wt|rt,Gt)pϕ(rt|Gt) (9)

where we packed the tuple Wt = (Gt,B , Et,AB , Et,BA) for brevity. In Appendix C, we show that
when q(rt|Gt,G0) and q(Wt|rt,Gt,G0) can be expressed in closed form, then they can be estimated
by minimizing the variational upper bound:

Lvub =EG0∼q(G0)

[
T∑

t=2

DKL

(
q(rt|Gt,G0)∥pϕ(rt|Gt)

)
− EG1∼q(G1|G0) [log pϕ(r1|G1)] +

+

T∑
t=2

DKL

(
q(Wt|rt,Gt,G0)∥pθ(Wt|rt,Gt)

)
− EG1∼q(G1|G0) [log pθ(W1|r1,G1)]

]
. (10)

The KL divergence of the lower term can be replaced by the negative log-likelihood, at the price
of increasing the upper bound. On the other hand, this allows to train pθ(Wt|rt,Gt) through any
likelihood maximization method, such as VAE, Normalizing Flow, and Diffusion. Noticing the
resemblance with Eq. 2, the filler model can be any likelihood-based one-shot model, although
adapted to be conditioned on an external graph Gt, and able to generate the interconnections (see
Section 4.2.)
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3.2 CHOOSING THE REMOVAL PROCESS

This new framework is general enough to model q(Gt|Gt−1), and in turn the graph generative model
pθ,ϕ(Gt−1|Gt), in several ways. We start with a naive coin flip approach to removing nodes. Then,
we explore a more effective way of choosing the number of nodes to remove, and how to incorporate
node ordering. All proofs are in Appendix C.
Naive/binomial (Appendix B.1) The simplest way to remove nodes from a graph Gt−1 is to assign
a Bernoulli random variable with probability qt to each node. All nodes with a positive outcome are
removed. Then, given that at step t− 1 the graph has nt−1 nodes, the count of survived nodes nt is
distributed as a Binomial B(nt;nt−1, 1 − qt). Iterating this process for t steps from graph G0, we
still get that nt|n0 is distributed as a Binomial, where the probability of being alive at step t is the
product of being alive at all steps. Finally, the posterior q(Gt|nt,Gt−1), needed for computing the
loss, is again distributed as a Binomial on the removed nodes ∆nt = n0 − nt.
Categorical (Appendix B.2) One drawback of the binomial removal is that, in principle, any block
size can be sampled. This can be a problem when batching multiple examples (see Section 4.3),
and leads to a big variance in the training examples. With the aim of controlling the size of blocks
generated, and limiting the options available to the model, we develop a categorical removal process
where the insertion model can choose from a predefined set of options. We base the formulation
on the change-making problem (Wright, 1975), interpreting the number of nodes as the amount to
be made using a set of coin denominations D, which will be the possible choices of the insertion
model. Then, a removal transition is defined on D as the frequencies in which each coin is used to
make n with the lowest amount of coins.
Node ordering (Appendix B.3) Until now, we assumed the nodes were removed in a uniform order
in all the possible permutations. This doesn’t need to be the case, as the whole removal process can
be conditioned on a particular node ordering π. The transitions will then be of the form:

q(Gt|Gt−1, π) = q(Gt|nt,Gt−1, π)q(nt|Gt−1, π) = q(nt|Gt−1, π). (11)

Halting process Although a generative model could be complete with only the insertion and filler
model, it still requires knowing when to stop. One possibility would be to stop after a fixed number
of steps T , or better when some property of the removal process is met (e.g., the predicted number
of remaining nodes ∆nt is 0 for the binomial removals). To generalize to any case, we include an
halting process (as defined in 6), which is set to 1 for the true data graph G, and 0 for all its induced
subgraphs. The halting signal is learned by a halting model λν(Gs, s) (binary classification task).

4 UNCOVERING THE SPECTRUM OF SEQUENTIALITY

Sequential and one-shot graph generative models (Section 2.1) are seen as two different families of
graph generative models. Here we show that these are actually the two extremes of a spectrum, cap-
tured by our Insert-Fill-Halt (IFH) model (Figure 1). First of all, let’s consider the reversed removal
sequence (Definition 5) G←0:T = (Gs)Ts=0. Then the three modules are: (1) a Node Insertion Mod-
ule pϕ(rs−1|Gs−1) decides how many nodes are going to be inserted to Gs−1; (2) a Filler Module
pθ(Ws−1|rs−1,Gs−1) fills the new rs−1 nodes and edges Ws−1, which are then merged with the
existing graph Gs−1 to get Gs; (3) a Halting Module λν(Gs) decides, through some halting criteria,
whether to stop the generative process at s or to continue. The overall model distribution is:

pθ,ϕ,ν(G) =
∞∑

T=1

∑
G←0:T∈R(G,T )

λν(GT )︸ ︷︷ ︸
halt at last step

pθ(WT−1|rT−1,GT−1)pϕ(rT−1|GT−1) (12)

T−1∏
s=1

(1− λν(Gs))︸ ︷︷ ︸
do not halt

pθ(Ws−1|rs−1,Gs−1)︸ ︷︷ ︸
fill

pϕ(rs−1|Gs−1)︸ ︷︷ ︸
insert

. (13)

4.1 SPECIALIZING TO ONE-SHOT AND SEQUENTIAL MODELS

One-shot One-shot models (Equation 2) are 1-step instances of our IFH model with the insertion
module set to be a sampler of the total number of nodes, i.e., pϕ(r0|∅) = pϕ(n1) = pϕ(n). The
filler model is the actual one-shot model. The halting model always stops in 1 step.
Sequential Sequential models (Equation 1) are n-step instances of our IFH model, with the insertion
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module always choosing 1 as the nodes to insert. The filler model samples a new node and links it
with graph Gs−1 to compose Gs. The halting model is dependent on the architecture: in You et al.
(2018), an End-Of-Sequence (EOS) token is sampled to end generation; in Liao et al. (2019) and
Shi et al. (2020) it is not clear, but we assume they fix the number of nodes at the start; in Luo
et al. (2021) generation stops when a limit on n is reached, or if the model does not link the newly
generated node to the previous subgraph; Han et al. (2023) trains a neural network to predict the
halting signal from the adjacency matrix.

4.2 ADAPTING ONE-SHOT MODELS TO SEQUENTIAL

In Section 4.1, we showed how one-shot models are 1-step IFH models, and our parametrization in
Section 3.1 allows the use of any one-shot model inside a multi-step instance. However, the model
needs also to generate the edges linking new nodes with the previous subgraph, and to condition the
former on the latter. Let Gs−1 be the already generated subgraph, andWs−1 the new subgraph and
inter-connections. We propose the following adaptation to the T -step setup for undirected graphs:
(1) encode the ns−1 nodes of graph Gs−1 through a Graph Neural Network such as GraphConv
(Morris et al., 2019) or RGCN (Schlichtkrull et al., 2018) for labeled data; (2) generate the new
rs−1 nodes using the encoded nodes, and a rectangular adjacency matrix with size rs−1×ns, where
ns = rs−1 + ns−1; (3) merge Gs−1 andWs−1 into Gs by concatenating node and edge features.

4.3 COMPLEXITY CONSIDERATIONS

One-shot models generating adjacency matrices have a quadratic dependence on the number of
nodes for both time and memory. However, through parallelizable computing architectures such as
GPUs, it is possible to compute all components at the same time. It is not the case for autoregressive
models where, due to their iterative nature, they cannot benefit from parallelization (Liao et al.,
2019). Still, these do not need to generate the whole adjacency matrix in one go, and can better
handle the already-generated graph represention, e.g., converting to a sparse representation. Another
factor that affects memory and time is batching, that is, generating or training on many graphs at the
same time, stacking their features in tensors. For dense representations, like adjacency matrices, the
size of the resulting batched tensor always follows the biggest of the batch, and the rest have masked
components. For a one-shot model then, batched adjacency matrices always have shape nmax×nmax,
where nmax is the maximum number of nodes in the batch. On the other hand, sequential models,
especially those that generate one node at each step, do not suffer from this problem, as the graphs
can be efficiently represented using one single adjacency list (this is also implemented in Torch
Geometric Fey & Lenssen (2019)). Still, when parallelizing training of autoregressive models on all
steps, the price is paid by replicating the same example many times, just with masked nodes. We
show empirically in Section 5 that these considerations are confirmed in reality.

5 EXPERIMENTS

We experimentally evaluate how changing the formulation of the removal process changes sample
quality and sampling time/memory consumption. Liao et al. (2019) already performed a sample
quality/time trade-off analysis on a grid graphs dataset, changing the fixed block size, stride, and
node ordering. We extend this analysis to a multitude of molecular and generic graph datasets,
evaluating different degrees of sequentiality, i.e., size of sampled block sizes, on sample qual-
ity/time/memory usage. To showcase our framework, we adapt DiGress (Vignac et al., 2022) follow-
ing the procedure in 4.2. Here we focus on domain-agnostic learning. Our method can be applied
as-is to any graph dataset without needing additional information, apart from one-shot variants that
need the node frequencies (see Section 2.1). Thus, we use the base version of DiGress, without
optimal prior and domain-specific features. We only include nodes in-degrees and the number of
nodes as additional features. Additional details on experiments are provided in Appendix D.

Datasets In the main text, we report results on two of the most popular molecular datasets: QM9
(Ramakrishnan et al., 2014), and ZINC250k (Irwin et al., 2012) with 133K and 250K molecules,
respectively. Results on generic graph datasets are reported in Appendix A.1. As usual, we kekulize
the molecules, i.e., remove the hydrogen atoms and replace aromatic bonds with single and double
bonds, using the chemistry library RDKit (Landrum et al.). To measure sample quality we follow

7
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Table 1: QM9 selection study for binomial vs. categorical removal, uniform vs. BFS ordering.

Method Valid (%)↑ Unique (%)↑ Novel (%)↑ NSPDK↓ FCD↓ Time (m) Memory (GB)

bin unif 93.77 97.56 93.38 6.7e-4 1.132 60.96 2.11
bin BFS 92.73 96.85 91.11 8.2e-4 0.980 63.13 2.15
cat unif 93.71 97.86 92.30 7.7e.4 1.082 25.22 0.83
cat BFS 95.59 96.77 88.02 9.2e-4 0.893 25.54 0.83

the approach in Huang et al. (2023) and compute the Fréchet ChemNet Distance (FCD) and Neigh-
borhood Subgraph Pairwise Distance Kernel (NSPDK) metrics. We also compute the ratio of Valid,
Unique, and Novel molecules. Following Vignac et al. (2022), we report validity of molecules allow-
ing partial charges. For both datasets, we generate 10K molecules, and evaluate FCD and NSPDK
on the respective test sets: 10K molecules for QM9 and the canonical 25K test set for ZINC250k.
For validation, we use another 10K molecules from QM9 and 10% of the ZINC250k training set.

5.1 EXPERIMENTAL RESULTS

Selection study We conducted a preliminary selection study on QM9 (shown in Table 1) to evaluate
the best-performing formulation for the removal process from those we proposed. At the same time,
this can be seen as an ablation study showing the contribution of more naive orderings and removal
processes compared to better-engineered ones. For binomial removals, we used the adaptive linear
scheduling B.1.1, and for categorical removals we used D = {1, 4} as block sizes. As predicted
in Section 4.3, the model trained with binomial removals has a huge memory footprint and worse
sampling time compared to categorical removal. Coupled with the slightly worse sample quality, we
see that the categorical removal process is superior. Regarding the ordering, BFS is able to improve
quality compared to uniformly random order, as also observed in Liao et al. (2019).

Baselines For each dataset we define 4 degrees of sequentiality of our model (Appendix D). On
molecular datasets we compare with most of the baselines from Huang et al. (2023), which are
many state-of-the-art models. In particular: the autoregressive models GraphAF (Shi et al., 2020),
GraphDF (Luo et al., 2021), GraphARM (Kong et al., 2023); the one-shot models MoFlow (Zang &
Wang, 2020), EDP-GNN (Niu et al., 2020), GraphEBM (Liu et al., 2021), GDSS (Jo et al., 2022),
CDGS (Huang et al., 2023). Results can be found in Table 2.

Performance of the spectrum In Table 2 we can see that the fully sequential model achieves com-
petitive results with CDGS, and surpasses all autoregressive baselines on both QM9 and ZINC250k,
where in the latter is even able to reach state-of-the-art validity and FCD. Moving from sequential
down shows a drop in overall performance, although the one-shot variant restores a good validity in
QM9. We also tried to increase (almost double) the number of parameters in the one-shot+ variant
for ZINC250k, greatly surpassing the number of parameters of the autoregressive variants. Even
with this advantage, the one-shot model was still not able to keep up.

Time and memory consumption Increasing the level of sequentiality towards 1-node sequential
always seems to reduce the memory footprint during generation, as smaller and smaller adjacency
matrices are generated, but time goes up, as predicted in Section 4.3. At the same time, we see that
for small graphs datasets such as QM9, memory usage during training is higher in sequential models,
differently from bigger sizes graph datasets like ZINC, where the cost of storing big adjacency
matrices starts to outweigh that of split sparse graphs. Finally, even though the total training time
increases with a higher sequentiality, models converge faster in wall-clock time.

Generic graphs datasets We also discuss the results of our model on generic graph datasets, which
can be found in Table 3 in Appendix A due to the page limit. Here, we observe the same improve-
ment increasing the sequentiality of the model. Concerning memory consumption we highlight the
case with the Enzymes and Ego datasets, which contain very large graphs. On these datasets the
sequential model uses respectively 1/50 and 1/88 of the memory footprint of the one-shot model for
generation, although with an increased computational time. Surprisingly, we found there are minima
in time and memory along the spectrum: for Ego, the block-sequential approach with big blocks is
5.5 and 2.4 times faster than the 1-node sequential and one-shot models, respectively.
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Table 2: Results on the molecule generation task on QM9 (a-c) and ZINC250k (d-f). Tables on the
left report performance results, while the tables on the right show the time/memory cost for different
levels of sequentiality. On the comparison tables, the best results are in bold, and the second best
are underlined. The training time is ”time to reach best validation performance (all epochs time)”.

(a) Performance results on the QM9 dataset

Method Valid (%)↑ NSPDK↓ FCD↓ Unique (%)↑ Novel (%)↑
Train - 1.36e-4 0.057 - -

Autoreg.
GraphAF 74.43 0.021 5.625 88.64 86.59
GraphDF 93.88 0.064 10.928 98.58 98.54

GraphARM 90.25 0.002 1.220 95.62 70.39

One-shot

MoFlow 91.36 0.017 4.467 98.65 94.72
EDP-GNN 47.52 0.005 2.680 99.25 86.58
GraphEBM 8.22 0.030 6.143 97.90 97.01

DiGress 99.00 5e-4 0.360 96.66 33.40
GDSS 95.72 0.003 2.900 98.46 86.27
CDGS 99.54 3.7e-4 0.269 97.20 72.52

Ours

seq-1 99.96 0.001 0.876 96.24 85.00
{1, 2} 96.52 9.0e-4 0.896 96.55 86.94
{1, 4} 95.59 9.2e-4 0.894 96.77 88.02

one-shot 99.36 0.001 0.897 96.22 88.86

(b) Training time/memory

Method Time (h) Memory (GB)

seq-1 2.9 (64) 6.52
{1, 2} 28 (59) 5.40
{1, 4} 40 (56) 6.05

one-shot 4.6 (33) 3.73

(c) Generation time/memory

Method Time (m) Memory (GB)

seq-1 23.30 0.38
{1, 2} 20.55 0.48
{1, 4} 25.54 0.83

one-shot 16.92 1.22

(d) Performance results on the ZINC250K dataset

Method Valid (%)↑ NSPDK↓ FCD↓ Unique (%)↑ Novel (%)↑
Train - 5.91e-5 0.985 - -

Autoreg.
GraphAF 68.47 0.044 16.023 98.64 99.99
GraphDF 90.61 0.177 33.546 99.63 100.00

GraphARM 88.23 0.055 16.260 99.46 100.00

One-shot

MoFlow 63.11 0.046 20.931 99.99 100.00
EDP-GNN 82.97 0.049 16.737 99.79 100.00
GraphEBM 5.29 0.212 35.471 98.79 100.00

DiGress 91.02 0.082 23.06 81.23 100.00
GDSS 97.01 0.019 14.656 99.64 100.00
CDGS 98.13 7.03e-4 2.069 99.99 99.99

Ours

seq-1 98.59 0.056 1.592 99.98 99.92
{1, 3} 85.56 0.057 2.173 99.99 99.93
{1, 4, 8} 80.67 0.051 5.202 100.00 99.97
one-shot 81.41 0.047 8.386 100.00 99.99

one-shot+ 83.82 0.052 7.028 99.96 99.99

(e) Training time/memory

Method Time (h) Memory (GB)

seq-1 27 (127) 30.17
{1, 3} 39 (86) 33.06
{1, 4, 8} 52 (87) 30.73
one-shot 24 (66) 39.12

one-shot+ 46 (80) 39.86

(f) Generation time/memory

Method Time (m) Memory (GB)

seq-1 51.09 0.59
{1, 3} 26.71 1.08
{1, 4, 8} 36.39 3.05
one-shot 44.43 18.03

one-shot+ 58.04 19.22

6 DISCUSSION

In Section 5 we showed that sequentiality is directly linked with improved performances for our cho-
sen filler model. At the same time, one can trade off generation time for memory and performance,
although for bigger graphs there seems to be a sweet spot inside the spectrum. This indicates that the
optimal removal process is dataset and task dependent, and could be considered as a hyperparameter
when investigating new graph generative models. Our conjecture is that for smaller graph datasets,
one-shot models are the fastest and best-performing solution, while as size increases, sequential
models should be the go-to, particularly where memory is highly constrained. There is still room
for improvement on this work’s current limitations: for instance, designing better schemes to learn
the halting model can be beneficial, as bigger graphs mean sparser halting signals to train on.

7 CONCLUSION

In this work, we proposed the IFH framework, which unifies the one-shot and autoregressive
paradigms. We showed a new way of designing autoregressive models with a few examples, adapt-
ing strong one-shot models to act as their core, and reaching competitive results in a domain-agnostic
setup. We want our work to be a stepping stone into building high-performing autoregressive graph
generative models, which are capable of learning every aspect of a graph dataset, from the connec-
tivity to the size of graphs. Doing so would unlock the opportunity for conditioning properties to
fully control how big and how connected a graph might be.
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A GENERIC GRAPHS GENERATION

A.1 DATASETS

On generic graphs we follow Huang et al. (2023) and Vignac et al. (2022), and evaluate on:
Community-small, with 100 graphs (You et al., 2018); Ego-small and Ego with 200 and 757
graphs (Sen et al., 2008); Enzymes with 563 protein graphs (Schomburg et al., 2004). We split
the train/validation/test sets with the 60/20/20 proportion. For Community-small we compute the
ratios of the MMDs with Gaussian EMD kernel for the distributions of Degree (Deg.), Cluster-
ing coefficient (Clus.) and Orbit, whereas for the remainder of datasets we strictly follow Huang
et al. (2023) and compute the MMD with radial basis on the distribution of Degree, Clustering co-
efficient, Laplacian Spectrum coefficient (Spec.) and random GIN embeddings (Thompson et al.,
2022), which are a replacement of FCD for generic graphs. For Ego-small we generate 1024 graphs,
and for Community-small, Ego and Enzymes we generate the same number of graphs as the test set,
which puts us in the same setups of Huang et al. (2023) and Vignac et al. (2022).

On Community-small we compare with GraphRNN (You et al., 2018), GRAN (Liao et al., 2019)
and standard DiGress (Vignac et al., 2022) (Table 3b). On the remainder of generic graph datasets
we compare with the autoregressive models GraphAF (Shi et al., 2020), GraphDF (Luo et al., 2021),
GraphARM (Kong et al., 2023); the one-shot models MoFlow (Zang & Wang, 2020), EDP-GNN
(Niu et al., 2020), GraphEBM (Liu et al., 2021), GDSS (Jo et al., 2022), CDGS (Huang et al., 2023)
(Table 3). Results are discussed in Section 5.1 of the main text.

A.2 INVESTIGATED LEVELS OF SEQUENTIALITY

In Table 3a we show our chosen levels of sequentiality, starting from 1-node sequential, then small
blocks, then big blocks (also with different sizes), and finally one-shot with n sampled from the
dataset empirical distribution on number of nodes. We chose bigger coin denominations for Ego
in the seq-big variant, as it contains much larger graphs. Notice that using the categorical removal
process (Section B.2), having biggest coin 2 will roughly reduce the number of steps by two times
with respect to 1-node sequential, and so on.

A.3 DETAILED DISCUSSION ON RESULTS

In this section, we expand our findings on generic graphs datasets, which are presented in Table 3.
The strong one-shot baseline CDGS surpasses every instance of our model in all but one metric.
However, our seq-1 model still manages to beat all autoregressive baselines, and reaching second
place for many metrics. We argue the performance in these datasets can be improved with a better
halting mechanism: particularly for seq-1, the halting signal for training is very sparse. Think of
a graph with 500 nodes from Ego, it means that the halting model is trained to predict class 0
(continue) for 499 subgraphs, and class 1 (halt) for the original graph. The same reasoning can be
applied to the insertion model, which is trained to use the biggest block size most of the time.

Memory usage in generation is always improved by increasing sequentiality, while for training it
seems to be quite stable. The latter is due to the balancing between the quadratic cost of adjacency
matrices, and splitting across steps with smaller block sizes (also discussed in section 4.3).

Regarding computational time, we observe that there exist dataset-specific minima. For example, in
the Ego dataset with big graphs, seq-big takes the smallest time to run. This might be a sweet spot
between how parallel a block generation can be, and the number of steps to generate. The same is
observed in Enzymes, where the minimum seems to be between seq-small and seq-big.

B REMOVAL PROCESSES

In this section we provide further details on the removal processes introduced in Section 3.2. All
proofs for the equations can be found in Section C.
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Table 3: Generic graphs results. Note that datasets have different numbers of generated test graphs,
so memory and time are not to be compared from one dataset to the other. Training time refers to
the time to train for all epochs.

(a) Sequentiality levels: block sizes used

Method Ego-small Enzymes Ego Comm-small

seq-1 1 1 1 1
seq-small {1, 2} {1, 3} {1, 3} {1, 2}
seq-big {1, 2, 8} {1, 2, 8} {1, 4, 16} {1, 2, 8}
oneshot n n n n

(b) Community-small results

Method Deg.↓ Clus.↓ Orbit ↓ Ratio ↓
GraphRNN 4.0 1.7 4.0 3.2

GRAN 3.0 1.6 1.0 1.9
GG-GAN 4.0 3.1 8.0 5.5
SPECTRE 0.5 2.7 2.0 1.7

DiGress 1.0 0.9 1.0 1.0
seq-1 4.1 0.9 1.8 2.3

seq-small 5.9 1.2 11.4 6.2
seq-big 8.5 1.9 18.1 9.5
oneshot 8.5 12.9 49.1 23.5

(c) Performance results on generic graphs datasets

Ego-small Enzymes Ego
|V |max = 17, |E|max = 66 |V |max = 125, |E|max = 149 |V |max = 399, |E|max = 1071
|V |avg ≈ 6, |E|avg ≈ 9 |V |avg ≈ 33, |E|avg ≈ 63 |V |avg ≈ 145, |E|avg ≈ 335

Method Deg.↓ Clus.↓ Spec.↓ GIN↓ Deg.↓ Clus.↓ Spec.↓ GIN↓ Deg.↓ Clus.↓ Spec.↓ GIN↓
Train 0.025 0.029 0.027 0.016 0.011 0.011 0.011 0.007 0.009 0.009 0.009 0.005

A-R GraphRNN 0.155 0.229 0.167 0.472 0.397 0.302 0.260 1.495 0.140 0.755 0.316 1.283
GRAN 0.096 0.072 0.095 0.106 0.215 0.147 0.034 0.069 0.594 0.425 1.025 0.244

O-S

VGAE 0.146 0.046 0.249 0.089 0.811 0.514 0.153 0.716 0.873 1.210 0.935 0.520
EDP-GNN 0.026 0.032 0.037 0.031 0.120 0.644 0.070 0.119 0.553 0.605 0.374 0.295

GDSS 0.041 0.036 0.041 0.041 0.118 0.071 0.053 0.028 0.314 0.776 0.097 0.156
CDGS 0.025 0.031 0.033 0.025 0.048 0.070 0.033 0.024 0.036 0.075 0.026 0.026

Ours

seq-1 0.048 0.051 0.045 0.043 0.051 0.052 0.041 0.124 0.071 0.234 0.045 0.191
seq-small 0.046 0.050 0.046 0.055 0.057 0.148 0.069 0.21 0.262 0.697 0.225 0.350
seq-big 0.041 0.047 0.044 0.045 0.108 0.226 0.117 0.374 0.168 0.541 0.165 0.260
oneshot 0.050 0.056 0.046 0.035 0.195 0.298 0.054 0.136 0.454 0.687 0.708 0.326

(d) Training time/memory

Ego-small Enzymes Ego Community-small

Method Time (h) Memory (GB) Time (h) Memory (GB) Time (h) Memory (GB) Time (h) Memory (GB)

seq-1 12.15 3.19 55.5 13.68 77.86 22.17 14.39 3.81
seq-small 9.27 3.22 28.81 13.15 77.80 21.97 10.75 3.21
seq-big 14.29 7.54 28.07 14.81 58.28 22.44 12.5 4.62
oneshot 8.17 4.23 28.14 14.90 33.62 22.35 7.13 4.47

(e) Generation time/memory

Ego-small Enzymes Ego Community-small

Method Time (m) Memory (GB) Time (m) Memory (GB) Time (m) Memory (GB) Time (m) Memory (GB)

seq-1 4.98 0.17 31.39 0.15 458.89 0.13 7.30 0.25
seq-small 3.36 0.20 11.36 0.19 268.89 0.17 5.62 0.30
seq-big 9.57 0.89 11.39 0.37 83.19 0.36 13.68 1.16
oneshot 5.18 1.60 23.59 7.51 202.73 11.40 7.42 2.24

B.1 NAIVE (BINOMIAL)

The presented naive method is equivalent to tossing a coin for each node, and removing it for some
outcome. A Bernoulli random variable with probability qt is assigned to each node. All nodes with
a positive outcome are removed. The two components in Eq. 6 are found to be:

q(nt|Gt−1) = q(nt|nt−1) =

(
nt−1

nt

)
q
nt−1−nt

t (1− qt)
nt q(Gt|nt,Gt−1) =

1(
nt−1

nt

) (14)

that is, the conditional nt|nt−1 is a Binomial random variable B(nt;nt−1, 1−qt), and
(
nt−1

nt

)
are all

the ways of choosing nt nodes from a total of nt−1. Furthermore, we can obtain the t-step marginal
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and posterior distributions as:

q(nt|G0) = B(nt;n0, πt) q(Gt|nt,G0) =
1(
n0

nt

) with πt =

t∏
k=1

(1− qk) (15)

q(rt|Gt,G0) = B(rt; ∆nt, 1− q̄t) q(Gt−1|rt,Gt,G0) =
1(

∆nt

rt

) with q̄t = 1− 1− πt−1

1− πt
(16)

where ∆nt = n0 − nt is the number of removed nodes from step 0 to step t, and as such, can be
reinserted to get back Gt−1. The proofs for the equations are found in Section C.2. Loss 10 can’t be
used as it is because there are no reverse distributions for which the KL divergence can be computed
without knowing ∆nt. This is because the support of a Binomial random variable is described by
∆nt, an information which is not available to the model. For this reason we follow the approach in
Austin et al. (2021) and train the insertion model to predict ∆nt from Gt through an MSE loss, and
apply Eq. 16 for sampling.

The hyperparameters qt, πt, q̄t can be defined as a schedule on t (Ho et al., 2020). In particular we
formulate the schedule in terms of πt, which is the average ratio of alive nodes nt to total nodes n0.
We define a linear decay on πt:

πt = 1− t

T
(17)

where T is the number of removal steps as an hyperparameter. At time t = 0, all nodes are alive
(π0 = 1); at time t = T/2, half the nodes are alive on average (πT/2 = 1/2); at time t = T , all
nodes have deterministically been removed (πT = 0). qt and q̄t are derived from Equation 17:

qt = 1− πt

πt−1
=

1

T − t+ 1
(18)

q̄t = 1− 1− πt−1

1− πt
=

1

t
(19)

B.1.1 ADAPTIVE SCHEDULING

With the linear decay schedule, the sizes of blocks depend on the true number of nodes n0, as on
average n0/T nodes are generated. To drop this dependency we make T depend on the number of
nodes n0. A way to do so in linear scheduling is by setting:

T =
n0

v
, πt = 1− v

t

n0
(20)

where v is the velocity hyperparameter. The larger it is, the faster the decay. With this definition, v
is also the average number of nodes removed per step, e.g., if a graph has 12 nodes, and v = 3, then
the graph will become empty in T = 4 steps, removing on average 3 nodes at a time. The name
velocity comes from the physical interpretation of equation 20 as a law of motion.

B.2 CATEGORICAL

The categorical removal process is based on the change-making problem (Wright, 1975): let
D ⊂ Nd denote a set of d coin denominations and, given a total change C, we want to find the
smallest number of coins needed for making up that amount. This problem can be solved in pseudo-
polynomial time using dynamic programming, and knowing the number of coins needed to make up
the number of nodes n0 of a graph G0 allows to build the shortest possible trajectory G→0:T using the
block size options in D. In particular, the number of steps T will always be the number of coins that
make the amount n0. To select the number of removed nodes it is enough to pick any permutation
of the coins that make n0. This process retains the Markov property because the optimal sequence
of coins for nt is a part of the optimal sequence for n0, if nt is obtained by any optimal sequence.
Categorical transitions describe a distribution on the choices of D:

q(rt|nt−1) =
h(nt−1)[rt]

T − t+ 1
(21)

where h(nt−1) is the histogram on the number of coins in D that make up the amount nt−1,
h(nt−1)[rt] is the entry corresponding to denomination rt, and T − t+ 1 is the normalization con-
stant, and also the number of coins making up nt−1. The t-step marginal and posterior distribution
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can be obtained as:

q(nt|n0) =

∏
d∈D

(
h(n0)[d]
h(∆nt)[d]

)(
T
t

) (22)

q(rt|n0, nt) =
h(∆nt)[rt]

t
(23)

where nt|n0 is a multivariate hypergeometric random variable, and rt|n0, nt has the same distri-
bution form of rt|nt−1. The interpretation of the multivariate hypergeometric is that the coins are
now colored balls, and an urn contains exactly each of these balls with histogram h(n0). We need
to shave the amount ∆nt, so we have to pick exactly the number of balls of each color contained in
h(∆nt). We pick t balls from a total of T in the urn.

B.3 NODE ORDERING

Until now we assumed the nodes were removed in a uniformly random order, enforced by the
q(Gt|nt,Gt−1), selecting which nodes to keep alive. One example is given by the naive case in Ap-
pendix B.1, where nodes are selected uniformly. This doesn’t need to be the case, as q(Gt|nt,Gt−1)
can actually be any other distribution. Furthermore, to enforce the Markov property once more, we
can condition the removal sequence G→0:T on a particular node ordering π before starting the removal.
The transitions will then be of the form:

q(Gt|Gt−1, π) = q(Gt|nt,Gt−1, π)q(nt|Gt−1, π) = q(nt|Gt−1, π) (24)

The ordering π can be taken into account in loss 10 in the outer expectation. In that case, we have
to sample both an example G0, and a node ordering π.

C PROOFS

C.1 PROOF OF THE VARIATIONAL LOWER BOUND 10

Proof. Recall the notation in 2. To simplify the notation we consider F(G) as the set of any forward
removal sequence of G. Start from the prior distribution of the model:

pθ,ϕ(G0) =
∑

G→1:T∈F(G0)

pθ,ϕ(G→0:T ) tot. prob. over trajectories F(G0)

=
∑

G→1:T∈F(G0)

pθ,ϕ(G→0:T )
q(G→1:T |G0)
q(G→1:T |G0)

importance sampling

=
∑

G→1:T∈F(G0)

q(G→1:T |G0)pθ(GT )
pθ,ϕ(G0:T−1|GT )

q(G→1:T |G0)

=
∑

G→1:T∈F(G0)

q(G→1:T |G0)pθ(GT )
T∏

t=1

pθ,ϕ(Gt−1|Gt)
q(Gt|Gt−1)

Markov property

=
∑

G→1:T∈F(G0)

q(G→1:T |G0)
pθ(GT )
q(GT |G0)

pθ,ϕ(G0|G1)
T∏

t=2

pθ,ϕ(Gt−1|Gt)
q(Gt−1|Gt,G0)

rewriting as posteriors

15
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=
∑

G→1:T∈F(G0)

q(G→1:T |G0)
pθ(GT )
q(GT |G0)

pϕ(n0|G1)pθ(G0|n0,G1)

T∏
t=2

pϕ(nt−1|Gt)
q(nt−1|Gt,G0)

pθ(Gt−1|nt−1,Gt)
q(Gt−1|nt−1,Gt,G0)

expanding as in 6

=
∑

G→1:T∈F(G0)

q(G→1:T |G0)
pθ(GT )
q(GT |G0)

pϕ(r1|G1)pθ(W1|r1, G1)

T∏
t=2

pϕ(rt|Gt)
q(rt|Gt,G0)

pθ(Wt|rt,Gt)
q(Wt|rt,Gt,G0)

The Variational Upper Bound is found from the negative log likelihood through the Jensen Inequal-
ity:

Eq(G0)[− log pθ,ϕ(G0)] ≤ Eq(G0)

[
T∑

t=2

DKL

(
q(rt|Gt,G0)∥pϕ(rt|Gt)

)
− Eq(G1|G0) [log pϕ(r1|G1)] +

+

T∑
t=2

DKL

(
q(Wt|rt,Gt,G0)∥pθ(Wt|rt,Gt)

)
− Eq(G1|G0) [log pθ(W1|r1,G1)]

]

C.2 BINOMIAL REMOVAL

C.2.1 PROOF OF EQUATION 15

Proof. Let’s prove by induction. Let’s consider the simple case for n1:

q(n1|n0) = B(n1;n0, π1)

with π1 = 1− q1. This is true due to the definition of a transition 14.

Now, assume the property is true for t − 1, that is, nt−1|n0 is a Binomial B(nt−1;n0, πt−1). We
know that nt|nt−1 is also a Binomial, which is the same as nt|nt−1, n0 due to the Markov property.
Let’s recall what their distribution and parameters are:

nt|nt−1, n0 ∼ B(nt−1|nt, 1− qt)

nt−1|n0 ∼ B(n0, πt−1) πt−1 =

t−1∏
k=1

(1− qk)

It can be proven that a Binomial conditioned on a Binomial is still a Binomial with probability the
product of the two probabilities, and number of experiments the same as the conditioning binomial.
From this fact nt|n0 is a Binomial:

nt|n0 ∼ B(n0, πt) πt = (1− qt)πt−1 =

t∏
k=1

(1− qk)
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C.2.2 PROOF OF EQUATION 16

Proof. Let’s compute the posterior:

q(nt−1|nt, n0) = q(nt|nt−1)
q(nt−1|n0)

q(nt|n0)

=
nt−1!

nt!(nt−1 − nt)!
(1− qt)

ntq
nt−1−nt

t

n0!
nt−1!(n0−nt−1)!

π
nt−1

t−1 (1− πt−1)
n0−nt−1

n0!
nt!(n0−nt)!

πnt
t (1− πt)n0−nt

=
(n0 − nt)!

(nt−1 − nt)!(n0 − nt−1)!
π
nt−1−nt

t−1 q
nt−1−nt

t

(1− πt−1)
n0−nt−1

(1− πt)n0−nt

=
(n0 − nt)!

(nt−1 − nt)!(n0 − nt − (nt−1 − nt))!
π
nt−1−nt

t−1 (1− πt−1)
n0−nt−1

q
nt−1−nt

t

(1− πt)n0−nt

=

(
n0 − nt

nt−1 − nt

)(
qt

πt−1

1− πt

)nt−1−nt
(
qt
1− πt−1

1− πt

)n0−nt−1

(another way) =
(

n0 − nt

n0 − nt−1

)(
1− πt−1

1− πt

)n0−nt−1
(
1− 1− πt−1

1− πt

)nt−1−nt

Finally, by substituing the number of failures at step t: rt = nt−1 + nt, or equivalently the number
of nodes that should be inserted:

q(rt|nt, n0) =

(
n0 − nt

rt

)(
qt

πt−1

1− πt

)rt (1− πt−1

1− πt

)n0−nt−rt

D IMPLEMENTATION DETAILS

We implemented our framework using PyTorch (Paszke et al., 2019), PyTorch Lightning (Falcon &
The PyTorch Lightning team, 2019) and PyTorch Geometric (Fey & Lenssen, 2019). Our founda-
tion was the DiGress implementation (Vignac et al., 2022) , which we heavily modified and partly
reimplemented to generalize on many cases. We will make our code publicly available after the
reviewing process, and for now it is available as supplementary material.

All our experiments and hyperparameters are available in our code as simple Hydra (Yadan, 2019)
configuration files, and each was run for 3 different seeds. For each experiment we also report
the time to sample the set of test generated graphs and the memory footprint. We ran ZINC250k
experiments on an A100-40GB GPU, Ego experiments on an L4 GPU, and all other experiments on
a T4 GPU.

We implemented the insertion model and halting model (when needed) as RGCN (Schlichtkrull
et al., 2018) to tackle labelled datasets, and GraphConvs (Morris et al., 2019) for unlabelled datasets.
We implemented the halting model in the same way.

D.1 TRAINING AND GENERATION

Algorithm 1 shows how to train the IFH model: sequential operations in the inner while loop can be
performed in parallel by first sampling the whole sequence, and then computing the gradients on the
collected batch in one computation. Whenever one of the models has no parameters (e.g., insertion
model for the 1-node sequential case), its gradient accumulation step can be skipped. Algorithm 2
expresses the generation procedure to return a sampled graph GT . It can be seen that it is a reflection
of definition 13, and makes explicit the Insert, Fill, Halt operations. Notice the usage of the split
operation during training and merge operation during generation.

Finally, graphs dubbed by G are kept in sparse representation, as explained in Section 4.3, while
splitsW are the only part in dense representation, when required by the filler model.
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Algorithm 1 Training
1: repeat
2: G0 ∼ q(G)
3: while Gt−1 ̸= ∅ do
4: Gt ∼ q(Gt−1|Gt)
5: rt ← nt−1 − nt

6: Wt ← split(Gt−1,Gt)
7: ht ← δ(t− 1)
8: Accumulate gradients:

∇ϕDKL

(
q(rt|Gt,G0)∥pϕ(rt|Gt)

)
∇θDKL

(
q(Wt|rt,Gt,G0)∥pθ(Wt|rt,Gt)

)
∇νLhalt(ht, λν(Gt−1))

9: end while
10: Perform gradient descent step
11: until converged

Algorithm 2 Generation

1: G0 ← ∅
2: repeat
3: rs ∼ pϕ(rs|Gs)
4: Ws ∼ pθ(Ws|rs,Gs)
5: Gs+1 ← merge(Gs,Ws)
6: hs ∼ λν(Gs+1)
7: until hs = 1
8: return GT

D.2 ADAPTING DIGRESS

We briefly discuss how we adapted the DiGress model and architecture to act as a filler model. The
nodes of the already generated graph are encoded through an RGCN or GraphConv, and are used as
input in the graph transformer architecture (Dwivedi & Bresson, 2020), together with the vectors of
noisy labels of the new nodes. Noisy edges are sampled both between new nodes, and also from new
nodes to existing nodes. In a graph transformer layer, new nodes can attend both to themselves and
old nodes, and mix with the information on edges, as is done in DiGress. Finally, the vectors of new
nodes and edges are updated through the Feed Forward Networks of the transformer layer, while the
encoded old nodes remain untouched. With this last consideration, one can encode the nodes of the
already generated graph only once in a filler model call, and use them in all the DiGress denoising
steps.
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