
Dissecting Efficient Architectures for Wake-Word Detection

Cody Berger * 1 Juncheng B Li * 1 Yiyuan Li 2 Aaron Berger 3 Dmitri Berger 3 Karthik Ganesan 1

Emma Strubell 1 Florian Metze 1

Abstract
Wake-word detection models on edge devices
have stringent efficiency requirements (Sigtia
et al., 2021). We observe that over-the-air test
accuracy of models trained on parallel devices
(GPU/TPU) usually degrades when deployed on
edge devices using a CPU for over-the-air, real-
time evaluation (Rybakov et al., 2020). Fur-
ther, differing inference time when migrating be-
tween GPU and CPU varies across models. This
drop is due to hardware latency and acoustic im-
pulse response, while non-uniform growth of in-
ference time results from models’ varying ex-
ploitation of hardware acceleration. Although
many neural architectures have been applied to
wake-word detection tasks, such latency or ac-
curacy drops have not been studied at granular,
layer matrix multiplication levels. We compare
five Convolutional Neural Network (CNN) ar-
chitectures and one pure Transformer architec-
ture, train them for wake-word detection on the
Speech Commands dataset (Warden, 2018), and
quantize two representative models. We seek to
quantify their accuracy-efficiency tradeoffs to in-
form researchers and practitioners about the key
components in models influencing this tradeoff.

1. Introduction
Many neural architectures have been successfully applied
to wake-word detection (Rybakov et al., 2020; Zhang et al.,
2017; Wu et al., 2018; Coucke et al., 2019; Berg et al.,
2021), with existing works noting the tradeoff between ac-
curacy, efficiency, and over-the-air robustness (Rybakov
et al., 2020; Guo et al., 2018; Choi et al., 2019). While there
is plenty of theory surrounding how architectures likely
perform on sequential versus parallel devices, prior works
have never analyzed how this bears out in practice. Fur-

*Equal contribution 1Carnegie Mellon University, Pitts-
burgh, USA 2University of North Carolina, Chapel Hill, USA
3Independent Researcher. Correspondence to: Cody Berger,
Juncheng B Li <codyberger@cmu.edu, junchenl@cs.cmu.edu>.

Work presented at the ES-FoMo Workshop at ICML 2023

ther, many papers provide experimental performance find-
ings only on either GPU or CPU (Rybakov et al., 2020).
Yet we find in this paper that efficiency and accuracy of-
ten do not linearly translate between GPU and CPU. In
lieu of experimental validation for layer and model per-
formance on both GPU and CPU, researchers and devel-
opers risk their work being affected by incorrect assump-
tions about how performance transfers between devices.
Prior works such as (Rybakov et al., 2020; Berg et al.,
2021) point out the efficiency advantage of CNN-based ar-
chitectures over other architectures such as Deep Neural
Networks (DNNs), Recurrent Neural Networks (RNNs), or
Transformers. But within the CNN family itself, differ-
ences in efficiency, accuracy, and over-the-air robustness
are not clearly addressed. To shed light on this problem,
we compare five different efficient CNN architectures and
their performances on the wake-word task between GPU
and CPU devices, as well as one Transformer architecture
(ViT style, (Berg et al., 2021)) for completeness. We ana-
lyze how models’ structural differences affect performance
on GPU vs CPU without pretraining or fine-tuning. We
apply static Post Training Quantization (PTQ) to two fam-
ilies of models, and interpret how those families’ structural
differences impact resulting speedup. With practical rel-
evance in mind, we completed over-the-air accuracy and
efficiency testing for all models to pinpoint where perfor-
mance diverged across platforms. Lastly, we broke models
down to identify specific factors which hinder model effi-
ciency on CPU compared to GPU. 1

2. Related Works
Wake-Word Detection: Rybakov et al. (2020) improved
upon the baseline for wake-word detection set by Zhang
et al. (2017), which empirically demonstrated the efficiency
advantages of CNN-family models with depth-wise con-
nection: DSCNN (MobileNet (Howard et al., 2017) equiv-
alent). Concurrent works such as Wu et al. (2018); Coucke
et al. (2019) explored other types of CNNs that involve di-
lation, and also acknowledged CNNs’ inherent efficiency.
Berg et al. (2021) reported that Transformers achieve 1 per-

1Our code and appendix (includes more details, results,
and demos) can be found at: https://github.com/
Wakeword2023/EsFoMo2023

1

https://github.com/Wakeword2023/EsFoMo2023
https://github.com/Wakeword2023/EsFoMo2023

cent better accuracy than DSCNN on the OnePlus 6 at the
cost of a 4x increase in latency. Peter et al. (2022) used
Quantization Aware Training (QAT), which requires re-
training. Mittermaier et al. (2020) performed PTQ but used
raw audio input, which is not in this work’s scope.2

Efficient Architectures: Following MobileNet (Howard
et al., 2017) this line of research saw huge developments
benefiting from Neural Architecture Search (NAS), which
injects efficiency metrics into the training objective. Mo-
bileNetV2 (Sandler et al., 2018), EfficientNet (Tan and Le,
2019) and EfficientNetV2 (Tan and Le, 2021) demonstrated
an ever-improving efficiency-accuracy tradeoff. While ex-
isting wake-word literature has followed up on NAS search
by layers (Peter et al., 2022; Mo et al., 2020), it has not yet
followed up on the newer NAS search by blocks used by
more recent architectures like EfficientNetV2.

3. Experiments
Dataset and Setup: We trained eight wake-word
detection models using six different architectures on
wake-word audio samples from the Google Speech
Commands dataset (Warden, 2018) with PyTorch:
VGG19 bn, DSCNN, EfficientNet b1, EfficientNet b7,
EfficientNetV2 m, EfficientNetV2 xl, ResNet50, and
Transformer (Berg et al., 2021). All architectures were
non-streaming3. We also used PyTorch Eager Quanti-
zation (Contributors, 2022) to perform static PTQ on
VGG19 bn and DSCNN. Here, we compared quantization
in families of models - VGG based models, represented by
VGG19 bn (VGG19 bn, ResNet), and MobileNet based
models, represented by DSCNN (DSCNN, EfficientNetV1,
EfficientNetV2). Digital testing analyzed models’ per-
formance on 807 audio files from the Speech Commands
dataset, of which 187 contained the wake-word.

Over-the-air Test: We performed over-the-air testing to
analyze overall model performance and layer-wise laten-
cies. Three subjects conducted testing, two with lower
voices, and one with a higher voice. All trials took place at
the same location in the same room, ensuring a consistent
room impulse response across trials. During over-the-air
testing, subjects completed five trials for each model on a
GPU platform and then a CPU platform. Table 1 details
the results from analyzing digital versus over-the-air per-
formance for all trained models on GPU and CPU devices.
Digital Test F1 reflects the F1 score calculated by checking
the correctness of models’ predictions for whether or not
an input contained the wake-word. Over-the-Air Test F1

2We use logMel features, Mittermaier et al. (2020)
also acknowledged systems using logMel features still prevail
performance-wise.

3We used the same definition of streaming and non-streaming
in (Rybakov et al., 2020).

Table 1. Model performance on Speech Commands Dataset. F1
scaled to 100 and latencies in ms. Top 3 results are highlighted.

GPU (Mac-M1) Digital F1 Over-the-Air F1 Latency

VGG19 bn (Rybakov et al., 2020) 93.37 96.69 ± 2.99 17.3
DSCNN (Rybakov et al., 2020) 92.15 93.78 ± 5.61 37.6
EfficientNet b1 (Tan and Le, 2019) 92.75 93.16 ± 4.90 85.5
EfficientNet b7 (Tan and Le, 2019) 93.87 96.55 ± 2.59 146.0
EfficientNetV2 m (Tan and Le, 2021) 92.88 92.14 ± 5.60 94.0
EfficientNetV2 xl (Tan and Le, 2021) 92.64 94.06 ± 2.08 146.3
ResNet50 (He et al., 2016) 91.86 90.52 ± 7.48 56.5
Transformer (Berg et al., 2021) 93.87 91.47 ± 4.56 65.8

CPU (Raspberry Pi 4B) Digital F1 Over-Air F1 Latency

VGG19 bn (Rybakov et al., 2020) 93.37 90.80 ± 6.54 372.0
DSCNN (Rybakov et al., 2020) 92.15 90.28 ± 4.02 151.0
EfficientNet b1 (Tan and Le, 2019) 92.75 89.83 ± 4.31 283.0
EfficientNet b7 (Tan and Le, 2019) 93.87 89.20 ± 5.20 1044.0
EfficientNetV2 m (Tan and Le, 2021) 92.88 93.45 ± 6.61 808.0
EfficientNetV2 xl (Tan and Le, 2021) 92.64 71.85 ± 5.54 1673.0
ResNet50 (He et al., 2016) 91.86 90.18 ± 10.37 324.1
Transformer (Berg et al., 2021) 93.87 88.96 ± 11.30 182.6

reflects the F1 scores calculated from individual subjects’
analysis of model prediction correctness for each trial. Ta-
ble 3 (Appendix) breaks model leaf node layers into nine
operational categories across the eight examined models:
Conv, BN, ReLu, MaxPool, Linear, Dropout, AvgPool,
LayerNorm, and GELU. We used PyTorch hooks to cal-
culate the average latency for each layer category, and the
THOP library (Zhu, 2022) to calculate the average FLOPS
for each layer category.

4. Preliminary Observations
VGG19 bn and EfficientNet b7 achieved the highest F1
scores during over-the-air GPU testing, surpassing the
larger EfficientNetV2 xl model by about two points (Ta-
ble 1). VGG19 bn also achieved the lowest latency.
VGG19 bn’s success is likely linked to the efficiency of
its convolution method on GPU. Moving from GPU to
CPU, over-the-air performance dropped for many architec-
tures. All models except for EfficientNetV2 m saw their
F1 scores slip below the digital baseline, consistent with
previous research (Rybakov et al., 2020). The Efficient-
NetV2 xl model in particular showed a steep decline in
performance, accompanied by a large increase in latency
(Table 1). EfficientNetV2 xl’s drop in performance is likely
a result of its increased latency, in turn caused by its con-
volution method’s inefficiency on CPU. DSCNN achieved
the lowest latency, enduring only a small performance drop.
The Transformer maintained a relatively low latency across
both GPU and CPU, though its accuracy dropped moving to
CPU. In the discussion below we drill into the fine-grained
components of each architecture to elaborate on these ital-
icized sections.

5. Further Analysis and Discussion
Table 3 breaks down individual network components, ana-
lyzing their Percentages of Aggregate Runtime (PAR), the
relative time models spent computing each type of layer.

2

We recommend readers juxtapose Table 3 in the appendix
with the subsequent paragraph for better reading.

Matrix Multiplication in Convolution: Convolution lay-
ers in particular often take longer to compute on CPU as
opposed to GPU. This divergence stems from hardware
optimization differences for matrix multiplication. Hard-
ware optimization strongly affects the efficiency of convo-
lution layers because most of convolution’s computation
comes from matrix multiplication. Convolution is com-
puted as follows: Let x be the input matrix of dimensions
h × w × cin, where h is image height, w is image width,
and cin is the number of input channels. Let W be a ma-
trix of weights with dimensions cin × cout × k × k where
cout is the number of output channels and k is the ker-
nel size. For each input channel, these matrices x and W
are multiplied together. The sum of these multiplications
yields an output matrix z of dimensions h×w× cout. The
exact formula is shown below, resulting in a total cost of
O(h ·w · cin · cout · k2), where r is a specific input channel
and s is a specific output channel:
z[:, :, s] =

∑cin
r=1 x[:, :, r]×W [r, s, :, :]

Note that only the forward pass is involved in wake-word
detection; there is no back-propagation.

Matrix Multiplication Optimization: The parallelization
abilities of CPUs are limited by their low numbers of cores
and caches. GPUs, however, are equipped with larger array
of cores and caches to support acceleration of parallelliz-
able computations, including matrix multiplication. Ma-
trix multiplication can be broken down via tiling (Nvidia,
2022), enabling one large matrix multiplication to be calcu-
lated as the multiplication of a series of much smaller, par-
allelizable chunks. This strategy helps avoid costly mem-
ory accesses. GPUs can take advantage of this parallel
character to significantly speed up matrix multiplication.
For most of the models we tested, convolution took a larger
share of time to execute on CPU versus on GPU (See Ta-
ble 3 Conv rows and PAR columns). Parallelization and
tiling offer a good explanation for this pattern.

MBConv Blocks (Sandler et al., 2018) versus Vanilla
CNNs: The cost of convolution on GPU versus CPU can
also be affected by model architecture. Models with MB-
Conv blocks (like DSCNN, EfficientNet, and Efficient-
NetV2) use pointwise convolutions, forcing depthwise con-
volutions to be done in sequential order. This method re-
duces the cost of convolution to O(h ·w · cin · (cout + k2))
(Sandler et al., 2018). Notably, the sequential computa-
tion design of MBConv blocks reduces their parallelizabil-
ity, and consequently MBConvs can only receive a minor
latency boost on GPU. Yet moving to CPU, they show less
slowdown and reap the benefits from requiring fewer op-
erations (Table 3 shows about 10x slow down GPU versus
CPU in Conv latency). Meanwhile, models using vanilla

CNN blocks (like VGG19 bn) enable greater paralleliza-
tion and therefore high GPU performance, but suffer a more
severe slowdown transitioning to CPU. Table 3’s latency
columns show that the VGG19 bn model’s vanilla convo-
lution layers saw an exponentially larger latency increase
(100x GPU versus CPU) compared to models using MB-
Conv blocks (DSCNN, EfficientNet, EfficientNetV2). This
difference clarifies that theoretical algorithm complexity
alone is not sufficient to determine an algorithm’s practi-
cal efficiency on GPU; parallel algorithm complexity must
also be accounted for.

Accelerating Convolution: Convolution receives signifi-
cant acceleration on GPU devices. As CPUs cannot take
advantage of parallelism to accelerate matrix multiplica-
tion, convolution is often much slower on CPU devices,
even with architecture optimization like MBConv blocks.
This is corroborated by our findings in Table 3, which
shows a greater latency increase moving from GPU to CPU
in models which were more reliant on convolution blocks,
like EfficientNet b1 and EfficientNet b7. Yet the value of
architecture optimization cannot be ignored. Without a
deeper understanding of how GPUs accelerate convolution
and how different models optimize for GPU or CPU, it is
hard to fully comprehend the performance tradeoff between
parallel and sequential devices.

Fused-MBConv Blocks in EfficientNetV2: Efficient-
NetV2 was NAS trained on GPU to find the optimal combi-
nation of MBConv and Fused-MBConv blocks. In order to
take better advantage of GPU acceleration, Fused-MBConv
blocks remove the pointwise convolution, forcing depth-
wise convolutions to be sequentially applied for each in-
dividual channel (Tan and Le, 2021). This change echoes
the structure of vanilla convolution blocks. In Table 3, Ef-
ficientNetV2 shows similar patterns to VGG19 bn, which
used vanilla convolution. Specifically, convolution has a
much lower PAR on GPU than on CPU for EfficientNetV2
(Table 3), a marked difference from EfficientNet where
PAR for convolution was similar across CPU and GPU.
This is consistent with its use of Fused-MBConv blocks.
Also, EfficientNetV2 was designed using NAS to find the
optimal block combination on GPU, without guaranteeing
that the combination is optimal on CPU.

Batch Normalization (BN) VS Layer Normalization:
Data from Table 3’s latency columns shows that for most
models, batch normalization slows down from GPU to
CPU, but less than convolution. BN layers normalize over
mini-batches of an activation matrix and require cell-by-
cell operations, so the work of normalizing one column is
O(m) where m is batch size. Normalization occurs for all
d dimensions in the activation matrix, giving batch normal-
ization work of O(md). Batch normalization can be done
in parallel on GPU, but we need the entire batch loaded for

3

these calculations, and when m is small, there would be not
much parallelism. In contrast, in Layer Normalization, de-
spite having to do the same total work O(md) theoretically,
the mean and variance are computed over the d features of
each individual instance (row) without batch dependency,
so the computations for different instances are independent.
This makes it easier to split the computations across GPU
processing units, and would enjoy more speedup when in-
puts are contiguous. Both BN and LayerNorm would lose
parallelization moving to CPU causing a large increase in
latency as observed in Table 3.

Multi-Head Attention Parallelizability: The Multi-
Head Attention layer computes the self-attention equation
Softmax(KQT

√
d
) · V where K,Q, V ∈ Rn×d. Ultimately,

Multi-Head Attention takes O(n2d) work, all resulting
from matrix multiplication. While matrix multiplication
receives acceleration boosts both from PyTorch and GPU,
Multi-Head Attention takes more work than convolution by
a factor of n, limiting the speedup potential. Though the
latency of Multi-Head Attention decreases moving from
CPU to GPU, it does not show a major decrease akin to
convolution (Table 4). This is likely attributable in part to
the limited optimization potential for attention layers.

6. Quantization
We investigated the effectiveness of quantization for the
VGG and MobileNet families by quantizing VGG19 bn
and DSCNN respectively. There are two main strategies for
quantizing neural architectures: Quantization Aware Train-
ing (QAT) and Post Training Quantization (PTQ) (Krish-
namoorthi et al., 2020). QAT requires retraining, which is
sometimes impractical without the model’s original train-
ing data and can be computationally expensive. Since PTQ
is post-hoc quantization, it would be the most accessible
option for developers lacking resources for NAS or other
efficiency improvements. For these reasons, we chose to
study PTQ as a complement to the previous QAT study in
wake-word detection (Peter et al., 2022). We implemented
quantization using PyTorch’s open-source quantization li-
brary. However, it only has full support for CPU (Contrib-
utors, 2022). The results of using PyTorch Eager Quanti-
zation for static PTQ to quantize VGG19 bn and DSCNN
from float32 to int8 are show in Table 2.

For both models, we found that quantization improved la-
tency without harming F1 scores relative to unquantized
models (Table 2). This suggests that PTQ is indeed a valu-
able strategy for developers seeking to increase model effi-
ciency or to deploy architectures on edge devices.
However, we also noticed that the latency speedup for both
models (2.3 times and 1.31 times, from Table 2) was lower
than the maximum speedup that could be achieved theoret-
ically from float32 to int8 (4 times). Convolution’s inter-

Table 2. Quantized Model Performance, VGG19 bn, DSCNN are
identical to Rybakov et al. (2020)

Quantized int8 models on CPU (Raspberry Pi 4B)

CPU Digital F1 (%) Over-Air F1 (%) Latency (ms) (× Speedup)

VGG19 bn 92.63 97.57 ± 4.07 162.0 (× 2.30)
DSCNN 91.86 95.13 ± 4.28 115.0 (× 1.31)

Unquantized float32 models on CPU (Raspberry Pi 4B) from Table 1

CPU Digital F1 (%) Over-Air F1 (%) Latency (ms)

VGG19 bn 93.37 90.80 ± 10.19 372.0
DSCNN 92.15 90.28 ± 7.25 151.0

action with caches provides one possible explanation. As
shown in Section 5, convolution is a component with heavy
computation and may lead to frequent reloading of model
weights into caches. After quantization, model weights
would not need to be loaded into the cache as frequently
since some weights which were different with 32-bit preci-
sion would be the same when quantized to 8-bit precision.
In contrast, components with lighter computation complex-
ity like DSCNN and MBConv blocks sequentially apply
convolution one channel at a time, which decreases how
often data would need to be reloaded into the cache. Since
there is less reloading to begin with, they would benefit less
from quantization than VGG19 bn. However, DSCNN is
better for the overall latency despite receiving less speedup
from quantization when compared to VGG19 bn.

7. Conclusion
In this work, we compared the performance of six ef-
ficient neural architectures for the wake-word detection
task. We observed that the best-performing architectures
on GPU and CPU did not perfectly align: VGG19 bn was
the highest-performing model on GPU and DSCNN the
highest on CPU. We found that this corresponded to the
categories of convolution layers they used. Our obser-
vations showed that MobileNet-related architectures were
more efficient architecture choices for CPU deployment,
as their use of MBConv blocks reduced the computational
cost on CPU. However, the more parallelizable character of
VGG19 bn allows it to outperform MobileNet-like archi-
tectures on GPU. Descendants of DSCNN which were op-
timized for ImageNet using NAS (EfficientNet, Efficient-
NetV2) tended to demonstrate worse efficiency on both
CPU and GPU than other models examined, despite be-
ing more recent. This suggests that NAS optimization for
image data does not directly benefit optimization for audio,
and could make such architectures sub-optimal for wake-
word detection on edge devices. We expect our results
to benefit practitioners trying to choose the “right” effi-
cient architecture for a platform. Our analysis of over-the-
air performance and post-training quantization provides
insight into the balance between accuracy and efficiency
across various architectures.

4

References
Axel Berg, Mark O’Connor, and Miguel Tairum Cruz. Key-

word transformer: A self-attention model for keyword
spotting. In Interspeech 2021, pages 4249–4253. ISCA,
2021.

Seungwoo Choi, Seokjun Seo, Beomjun Shin, Hyeongmin
Byun, Martin Kersner, Beomsu Kim, Dongyoung Kim,
and Sungjoo Ha. Temporal convolution for real-time
keyword spotting on mobile devices. Proc. Interspeech
2019, pages 3372–3376, 2019.

PyTorch Contributors. Quantization. https://
pytorch.org/docs/stable/quantization.
html, 2022.

Alice Coucke, Mohammed Chlieh, Thibault Gisselbrecht,
David Leroy, Mathieu Poumeyrol, and Thibaut Lavril.
Efficient keyword spotting using dilated convolutions
and gating. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6351–6355. IEEE, 2019.

CPU-monkey. Apple m1 vs raspberry pi 4 b (broadcom
bcm2711). https://www.cpu-monkey.com/
en/compare_cpu-apple_m1-vs-raspberry_
pi_4_b_broadcom_bcm2711, 2023.

Jinxi Guo, Kenichi Kumatani, Ming Sun, Minhua Wu,
Anirudh Raju, Nikko Ström, and Arindam Mandal.
Time-delayed bottleneck highway networks using a dft
feature for keyword spotting. In 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 5489–5493. IEEE, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770–778, 2016. doi:
10.1109/CVPR.2016.90.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708, 2017.

Aleksandar Kostovic. Apple m1’s ‘small’ icestorm cores
benchmarked against ’big’ firestorm cores. 2021.

Raghuraman Krishnamoorthi, James Reed, Min Ni, Chris
Gottbrath, and Seth Weidman. Introduction to quantiza-
tion on pytorch. https://pytorch.org/blog/
introduction-to-quantization-on-pytorch/,
2020.

Simon Mittermaier, Ludwig Kürzinger, Bernd Waschneck,
and Gerhard Rigoll. Small-footprint keyword spotting
on raw audio data with sinc-convolutions. In ICASSP
2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 7454–
7458. IEEE, 2020.

Tong Mo, Yakun Yu, Mohammad Salameh, Di Niu, and
Shangling Jui. Neural architecture search for keyword
spotting. arXiv preprint arXiv:2009.00165, 2020.

Nvidia. Nvida cuda programming guide.
https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html,
2022.

David Peter, Wolfgang Roth, and Franz Pernkopf. End-
to-end keyword spotting using neural architecture search
and quantization. In ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 3423–3427. IEEE, 2022.

Oleg Rybakov, Natasha Kononenko, Niranjan Subrah-
manya, Mirkó Visontai, and Stella Laurenzo. Streaming
keyword spotting on mobile devices. Proc. Interspeech
2020, pages 2277–2281, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 4510–4520, 2018.

Siddharth Sigtia, John Bridle, Hywel Richards, Pascal
Clark, Erik Marchi, and Vineet Garg. Progressive voice
trigger detection: Accuracy vs latency. In ICASSP 2021
- 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6843–
6847, 2021. doi: 10.1109/ICASSP39728.2021.9414218.

Shyam A Tailor, Milad Alizadeh, and Nicholas D Lane.
Torchquant: A hackable quantization library for re-
searchers, by reseachers, 2021.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In
International conference on machine learning, pages
6105–6114. PMLR, 2019.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller mod-
els and faster training. In International Conference on
Machine Learning, pages 10096–10106. PMLR, 2021.

5

https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://www.cpu-monkey.com/en/compare_cpu-apple_m1-vs-raspberry_pi_4_b_broadcom_bcm2711
https://www.cpu-monkey.com/en/compare_cpu-apple_m1-vs-raspberry_pi_4_b_broadcom_bcm2711
https://www.cpu-monkey.com/en/compare_cpu-apple_m1-vs-raspberry_pi_4_b_broadcom_bcm2711
https://pytorch.org/blog/introduction-to-quantization-on-pytorch/
https://pytorch.org/blog/introduction-to-quantization-on-pytorch/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V. Le. Mnas-
net: Platform-aware neural architecture search for mo-
bile, 2019.

Luyu Wang, Pauline Luc, Yan Wu, Adria Recasens, Lucas
Smaira, Andrew Brock, Andrew Jaegle, Jean-Baptiste
Alayrac, Sander Dieleman, Joao Carreira, and Aaron
van den Oord. Towards learning universal audio repre-
sentations, 2021. URL https://arxiv.org/abs/
2111.12124.

Pete Warden. Speech commands: A dataset for
limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018.

Minhua Wu, Sankaran Panchapagesan, Ming Sun, Jiacheng
Gu, Ryan Thomas, Shiv Naga Prasad Vitaladevuni,
Bjorn Hoffmeister, and Arindam Mandal. Monophone-
based background modeling for two-stage on-device
wake word detection. In 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5494–5498. IEEE, 2018.

Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas
Chandra. Hello edge: Keyword spotting on microcon-
trollers. arXiv preprint arXiv:1711.07128, 2017.

Ligeng Zhu. Thop. https://github.com/
Lyken17/pytorch-OpCounter, 2022.

6

https://arxiv.org/abs/2111.12124
https://arxiv.org/abs/2111.12124
https://github.com/Lyken17/pytorch-OpCounter
https://github.com/Lyken17/pytorch-OpCounter

A. Appendix

Table 3. Analysis of Specific Layer Classes
Average Latency: Latencies of individual layers were averaged within their layer category for each trial
PAR (Percentage of Aggregate Runtime): Measures percentage of a model’s total runtime spent computing layers in a
specific category across trials. Percentages for categories taking up the most relative computation time are bolded
Average FLOPS: Measures the average floating point operations per second across all trials for a layer class
Conv: Convolution layers; BN: Batch normalization layers
Note: If a model does not have the layer in a row, it is filled with “-”. 0 FLOPS indicates an existing layer has no FLOPS.

Model (#Param) VGG19 bn (38.9M) (Rybakov et al., 2020) DSCNN (2.23M) (Rybakov et al., 2020) EfficientNet b1 (0.06M) (Tan and Le, 2019)

Avg Latency (ms) Avg FLOPS PAR (%) Avg Latency (ms) Avg FLOPS PAR (%) Avg Latency (ms) Avg FLOPS PAR (%)
GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU

Conv 0.369 12.938 3.90E+07 37.56 56.57 0.235 1.411 2.40E+05 39.51 53.09 0.340 1.348 5.63E+08 67.38 60.09
BN 0.334 3.656 1.39E+05 34.07 15.94 0.252 1.149 1.19E+04 42.25 43.22 0.220 1.438 1.15E+04 26.25 38.49
ReLU 0.136 0.542 0 15.53 2.67 0.151 0.134 0 17.04 3.41 - - - - -
SiLU - - - - - - - - - - - - - - -
MaxPool 0.235 3.346 0 7.49 4.55 - - - - - - - - - -
Linear 0.274 24.691 1.26E+07 5.14 20.22 0.347 0.249 5.12E+03 1.12 0.18 0.300 0.139 5.12E+03 0.52 0.05
Dropout 0.017 0.084 0 0.22 0.05 0.029 0.137 0 0.10 0.10 0.020 0.072 0 0.03 0.03
AvgPool - - - - - - - - - - 0.141 0.155 2.13E+02 5.82 1.44

Model (#Param) EfficientNet b7 (0.32M) (Tan and Le, 2019) EfficientNetV2 m (53.5M) (Tan and Le, 2021) EfficientNetV2 xl (207M) (Tan and Le, 2021)

Avg Latency (ms) Avg FLOPS PAR (%) Avg Latency (ms) Avg FLOPS PAR (%) Avg Latency (ms) Avg FLOPS PAR (%)
GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU

Conv 0.240 2.501 7.13E+10 65.21 69.84 0.189 2.865 1.37E+06 32.91 59.10 0.149 3.921 2.58E+06 31.02 68.11
BN 0.177 1.748 4.26E+03 28.69 29.14 0.201 1.570 1.38E+04 35.09 32.52 0.175 1.277 1.79E+04 36.26 21.18
ReLU - - - - - - - - - - - - - - -
SiLU - - - - - 0.090 0.123 0 14.45 2.34 0.075 0.146 0 14.52 2.46
MaxPool - - - - - - - - - - - - - - -
Linear 0.347 0.147 4.94E+05 0.345 0.02 0.121 0.434 8.76E+03 11.77 4.88 0.104 0.687 4.93E+05 12.37 7.14
Dropout 0.022 0.073 0 0.02 0.01 - - - - - - - - - -
AvgPool 0.103 0.174 9.14E+01 5.73 1.00 0.118 0.201 1.22E+04 5.79 1.15 0.098 0.216 1.53E+04 5.84 1.12

Model (#Param) ResNet (23.5M) (He et al., 2016)

Avg Latency (ms) Avg FLOPS PAR (%)
GPU CPU GPU CPU

Conv 0.383 3.286 3.09E+6 44.79 57.08
BN 0.299 2.248 1.57E+04 34.98 39.03
ReLU 0.156 0.087 0 16.90 1.40
SiLU - - - - -
MaxPool 0.476 5.350 0 1.05 1.75
Linear 0.684 0.153 8.19E+03 1.51 0.05
Dropout - - - - -
AvgPool 0.344 2.125 4.10E+03 0.76 0.70
LayerNorm - - - - -
GELU - - - - -

7

Table 4. Transformer Layers and Operations
Model (#Param) Transformer (0.60M) (Berg et al., 2021)

Avg Latency (ms) Avg FLOPS PAR (%)
GPU CPU GPU CPU

Multi-Head Attention 2.631 3.082 * 54.19 22.71
Linear 0.432 1.096 4.89E+2 19.26 17.43
LayerNorm 0.566 2.570 1.69E+4 23.29 37.96
GELU 0.134 2.804 0 2.75 20.70
Dropout 0.012 0.081 0 0.51 1.20

*The THOP library could not measure FLOPS for the
Multi-Head Attention layer since it is implemented using
the einops library. We are current finding another way to
measure FLOPS for this layer.

B. Training Details
All models were trained using our open-
source code, which can be found at
https://github.com/Wakeword2023/EsFoMo2023. The
models were trained on the Google Speech Commands
train dataset (Warden, 2018) for the keyword ‘Sheila.’ The
Speech Commands dataset contains 1372 utterances of
the keyword. Before training, we augmented the dataset
by applying transformations to the keyword utterances.
Five copies of each transformed keyword utterance were
put into the training dataset. In total, this gave us 6,860
keyword utterances. We added 16,558 non-keyword
audio files to the training dataset, 712 of which were
silence and 15,846 of which contained randomly chosen
non-keyword utterances from the Speech Commands
dataset, which underwent the same transformations as
the keyword utterances. The valid dataset was computed
by applying transformations to audio files in the Speech
Commands valid dataset for the keyword ‘Sheila’. Only
one copy of each transformed keyword utterance was
added to the valid dataset, for a total of 188 valid keyword
utterances. We added 620 non-keyword audio files to
the valid dataset, 18 of which were silence and 602 of
which contained randomly chosen non-keyword utterances
from the Speech Commands dataset, which underwent
the same transformations as the keyword utterances. We

Table 5. Training Hyperparameters
Non-Transformer Transformer (Berg et al., 2021)

Batch Size 64 512
Epochs 75 75
Warmup Epochs 0 10
Weight Decay 0.01 0.1
Optimization SGD AdamW
Learning Rate 0.0001 0.001
Learning Rate Scheduler Plateau Cosine Annealing

used the same training hyperparameters for all models
except the Transformer, for which we referenced the
training parameters described in Berg et al. (2021). Table
5 provides a breakdown of the training hyperparameters.

B.1. Digital Test

Digital testing was conducted by inputting audio samples
into the model, and comparing the model’s predictions with
samples’ labels. The test dataset was computed by apply-
ing transformations to audio files in the Speech Commands
test dataset for the keyword ‘Sheila’. Only one copy of
each transformed keyword utterance was added to the test
dataset, for a total of 188 test keyword utterances. We
added 465 non-keyword audio files to the test dataset, 18
of which were silence and 447 of which contained ran-
domly chosen non-keyword utterances from the Speech
Commands dataset, which underwent the same transforma-
tions as the keyword utterances. The F1 score resulting
from digital testing on the test dataset is the ‘Digital F1’
score that appears in Table 3.

B.2. Over-the-air Test

As described in Table 3, for each model five over-the-air tri-
als were conducted both on GPU and on CPU. Audio was
recorded and processed in 1-second chunks during each
over-the-air trial. Each trial lasted 20 seconds, yielding
20 audio chunks. Immediately after being recorded, the
1 second chunk was downsampled to 16kHz and converted
into a logMel spectrogram before being sent as input to the
classifier. While there are several available approaches to
wake-word detection (Mittermaier et al., 2020; Wang et al.,
2021; Rybakov et al., 2020; Coucke et al., 2019), it has
been shown that audio preprocessing using logMel spec-
trograms yields the best performance (Peter et al., 2022),
and so this is the approach that we followed. After classi-
fication, the model’s prediction for whether the wake-word
was present in that chunk printed to the console. Sub-
jects uttered a phrase including the wake-word ten times
per trial, and manually determined each model’s predic-
tion accuracy. This data was used to compute an aver-
age over-the-air F1 score for each model by Average =
1
|S|

∑
s

1
|T |

∑
t

TPt

TPt+
1
2 (FPt+FNt)

where s ∈ S is a unique
subject and t ∈ T is a unique trial. For each trial, latency
was calculated as the time between a model receiving input
and returning its corresponding prediction.

C. FLOPS Count & Hooks:
We measured the total floating point operations per sec-
ond (FLOPS) and parameter count for each model using
the THOP library (Zhu, 2022)’s profiler. Since THOP
measures MACS, we used the widely accepted estimation
FLOPS = MACS × 2. In addition, timing functional-
ity was added to each model in order to find the runtime
for individual layers. PyTorch forward hooks collected
and logged the timing results for all layers. We timed
the following layers: Conv2d, Batchnorm2d, ReLU, Max-

8

pool2d, Avgpool2d/AdaptiveAvgpool2d, Dropout, Linear,
LayerNorm, and GELU. Avgpool2d and AdaptiveAvg-
pool2d were treated as the same layer for conciseness of
presentation in Table 3. We did not time Sigmoid, Soft-
max, or Swish/MemoryEfficientSwish layers. Finally, we
modified the THOP library’s profiler to log MACS for
individual layers by having its dfs count function keep
track of MACS for individual leaf-node layers in the
model graph. THOP automatically zeroes the MACS for
Dropout, ReLU, GELU, LayerNorm, Sigmoid, Softmax,
and Swish/MemoryEfficientSwish layers.

C.1. Batch Normalization Additional Analysis:

The effects of Batch Normalization’s limited parallelizabil-
ity are visible in Table 3, where BN layers accounted for
the most computation on GPU but not on CPU for three
out of the six models. Since BN layers receive less rela-
tive GPU acceleration than convolution, it follows that its
GPU and CPU latencies will be less disparate. The only
model to see PAR for convolution layers decrease moving
from GPU to CPU was EfficientNet b1, the smallest model
among those tested (Table 3). This occurred in conjunction
with an increase of time spent in BN layers, suggesting that
EfficientNet b1 has few enough parameters for convolution
to be relatively low cost. This indicates that while most of
the computation cost in these models comes from convolu-
tion, the cost of batch normalization is non-negligible and
should be considered in model selection.

C.2. Images versus Audio Non-Transferability:

The results of Table 1 show that EfficientNet b1 (Tan and
Le, 2019) and EfficientNet b7 (Tan and Le, 2019), op-
timized on both accuracy and FLOPS for computer vi-
sion tasks, do not transfer the same accuracy versus la-
tency tradeoff to the audio wake-word task. Compared to
DSCNN (MobileNet based architecture) (Rybakov et al.,
2020), EfficientNetV1 architectures have better accuracy
but inferior latency. DSCNN precedes EfficientNetV1 and
EfficientNetV2, which were trained using NAS (Neural Ar-
chitecture Search) on CIFAR or other vision datasets. That
DSCNN outperforms its successors in the wake-word de-
tection task should motivate future works to train CNN-
based audio models jointly optimized for FLOPS and ac-
curacy.

C.3. Calculations:

For all models except Transformer, we broke model lay-
ers into seven categories: Conv2d, BatchNorm2d, ReLU,
MaxPool2d, Linear, Dropout, and AveragePool2d. The Av-
eragePool2d category represented both AveragePool2d and
AdaptiveAveragePool2d layers. For Transformer, we broke
model layers into x categories: Multi-Head Attention, Lin-

ear, LayerNorm, and GELU. For each trial, a model’s lay-
ers were first sorted into these categories regardless of pa-
rameters. The aggregate runtime and run count were calcu-
lated for each category by summing the individual runtimes
of layers in the same category, and by counting every time
a layer of a specific category was run. Finally, aggregate
FLOPS per category were calculated using the results from
the THOP library, summing the FLOPS per layer for layers
in the same category. After finding aggregate runtime, run
count, and FLOPS per category for each trial, these values
were averaged across all trials, as summarized by the fol-
lowing equations, where t is trials, nt is the nth (and last)
layer to run in trial t, c is a layer category, rc is average
runtime for category c, kc is average run count for category
c, and mc is average FLOPS for category c:

rc =
1

5

5∑
t=1

nt∑
l=1

runtime(l){l ∈ C}

kc =
1

5

5∑
t=1

nt∑
l=1

{l ∈ C}

mc =
1

5

5∑
t=1

nt∑
l=1

FLOPS(l){l ∈ C}

D. Quantization Details:
We quantized both VGG19 bn and DSCNN using PyTorch
Eager Mode quantization (Contributors, 2022). For
DSCNN, we adapted our existing code for quantization
following the ‘Model Architecture’ and ‘Post-training
Static Quantization’ steps in the available tutorial at
https://pytorch.org/tutorials/advanced/
static_quantization_tutorial.html. For
VGG19 bn, we used similar code following the ‘Post-
training Static Quantization’ step in this tutorial. Both
models were quantized from float32 to int8. Our quanti-
zation implementation is available in our repository. Both
of these models were neither difficult nor time-consuming
to quantize with the publicly available PyTorch tutorial,
and the effects of quantization on latency (Table 2) were
readily apparent during testing.

The Post-Training Quantization Landscape: After
quantizing VGG19 bn and DSCNN as representatives of
the CNN family (VGG19 bn, ResNet50) and the DSCNN
family (DSCNN, EfficientNet, EfficientNetV2), we sought
to quantize the other models we examined in order to pro-
vide more detailed, granular analyses of quantization for
these models. However, it soon became apparent that this
is not as simple using the widely available tools for PTQ.

Pytorch Eager Mode Quantization (Contributors,
2022): Pytorch Eager Mode quantization is still in beta. We

9

https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html
https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html

successfully used it to quantize VGG19 bn and DSCNN,
following PyTorch tutorials. It is not always very simple
to use: bugs can be particularly confusing, and documenta-
tion is somewhat sparse. Nonetheless, it was far and away
the best PTQ library that we experimented with, and it is
the library that we plan on using in the future as we work
on quantizing the rest of the models examined in this paper.

PyTorch FX Graph Mode Quantization (Contributors,
2022): PyTorch introduced this mode of quantization,
which is currently a prototype, as a simpler and more au-
tomatic alternative to PyTorch Eager Mode quantization.
We found that it was more difficult to use than PyTorch Ea-
ger Mode quantization for VGG19 bn and DSCNN, both of
which were already symbolically traceable. We could not
get either of them to work within a reasonable amount of
time following the official PyTorch FX quantization tutori-
als. Likewise, some of our other models like Transformer
rely heavily on libraries and operations which PyTorch FX
Graph Mode cannot quantize. To quantize our Transformer
implementation using PyTorch FX Graph Mode, we would
have to rewrite it entirely, which goes against the goal of
the PyTorch FX library.

TorchQuant Library and the PTQ landscape: We also
investigated third-party quantization libraries that adver-
tised PTQ capabilities. In particular, we focused on the
TorchQuant library (Tailor et al., 2021) which is geared
towards quantization researchers, and has both QAT and
PTQ modes. It also has fused implementations of Effi-
cientNet, MobileNet, and ResNet designed to work with
its own model of quantization. Without too much trouble,
we were able to successfully integrate our own model im-
plementations and input with the TorchQuant fused models
and quantization. However we discovered that TorchQuant
cannot actually do PTQ since it is not integrated with the
PyTorch native ATen library. Given the instruction to quan-
tize weights to eight bits, TorchQuant’s quantization takes
the float32 weights and zeroes out all information beyond
eight bits. However, the weights remain in float32 format.
This kind of ‘simulated quantization’ works well for QAT,
and allows researchers to investigate how quantization im-
pacts model accuracy without worrying about how it inter-
acts with the PyTorch backend. But the goal of PTQ is to
actually quantize the weights sent to the device to a smaller
data representation in order to study the efficiency as well
as the accuracy of quantized models, and the TorchQuant
library cannot achieve this.

Takeaways: Because PTQ requires interaction with lower-
level PyTorch, it is extremely challenging to do PTQ using
PyTorch without using PyTorch’s own quantization library.
For this reason, current open-source options for PTQ are
very limited, which creates challenges for developers. Part
of the reason we chose to investigate PTQ rather than QAT

was because we percieved it to be more practical: both be-
cause it doesn’t require the computing power and techni-
cal background necessary to train a model as QAT does,
and because it has a direct impact on a model’s efficiency
in addition to its theoretical accuracy. For researchers and
developers looking to run neural networks on edge, PTQ
could be a way to improve efficiency of ‘off-the-shelf’ pre-
trained models. Yet as we discovered, PTQ is more difficult
that QAT, and although PyTorch’s quantization libraries are
not fully developed, there are few alternatives. The open-
source tools available for implementing PTQ do not live up
to its potential.

Future Work: We are still working on quantization for the
other models we examined. In particular, there are several
promising open-source fused transformer implementations
which are designed to work with PyTorch eager quantiza-
tion. We will update our repository as we quantize more
models.

E. Hardware and Software:
In all of our experiments, our GPU was a 2020 13-inch
MacBook Pro with an Apple M1 chip running macOS Ven-
tura 13.1. We chose to use an M1 Mac since it has support
through Pytorch MPS, and because it is a good example
of a common, fairly portable GPU. Our CPU in all experi-
ments was a Raspberry Pi 4B running 64-bit Raspberry Pi
OS with Desktop, Debian version 11 (bullseye). We chose
Raspberry Pi 4B as our CPU in this work because it is a
common, open-source, portable CPU, and it is cheaper than
many other CPU examples and thus more financially feasi-
ble for researchers and developers. The Raspberry Pi does
not come with a built-in microphone, so we equipped it
with the Seeed ReSpeaker 4-Mic Array for Raspberry Pi
for all of our experiments. While the PyTorch device can
be set to CPU on M1 Mac, we chose not to use it because
it is not a good representative for a typical CPU. A 13-
inch M1 MacBook Pro has eight cores and eight threads
(CPU-monkey, 2023), some of which are optimized for
performance and others which are optimized for efficiency
(Kostovic, 2021). This means that the M1 Mac CPU has
greater potential for parallelization and can sometimes be-
have more like a GPU, as shown in Table 6. We ran tests to
obtain over-the-air latencies for all of our models, finding
that parallelizable models (CNN family, Transformer) had
relatively low latencies but models optimized for highly se-
quential devices (DSCNN family) had poorer latencies.

Based on our understanding of M1 architecture, the Mac
M1 CPU does not seem like a good representation of a
portable, edge CPU. Thus, we chose not to use it in our
experiments.

Audio Acquisition Time: For both GPU and CPU, audio

10

Table 6. Model Latency on Speech Commands Dataset
CPU (Mac-M1) Latency

VGG19 bn (Rybakov et al., 2020) 69.5
DSCNN (Rybakov et al., 2020) 350.6
EfficientNet b1 (Tan and Le, 2019) 566.1
EfficientNet b7 (Tan and Le, 2019) 2562.6
EfficientNetV2 m (Tan and Le, 2021) 1711.3
EfficientNetV2 xl (Tan and Le, 2021) 4401.1
ResNet50 (He et al., 2016) 54.5
Transformer (Berg et al., 2021) 23.8

acquisition time is minimal. We measured that it was 1.5ms
on M1 Mac and 1.0ms on Raspberry Pi. We calculated
audio acquisition time as the difference between the time
of an utterance of audio and the time when it is received
by the device memory. This was done by simultaneously
starting a stopwatch and a recording, observing the time
of an utterance on the stopwatch, and then comparing this
time to the time when the utterance was recorded.

F. Other Models
We also trained and tested MnasNet and DenseNet models.
Since DenseNet is not an efficient architecture and Mnas-
Net was optimized for object detection, they are not the
focus of our main investigation, but we include their exper-
imental results here.

Table 7. Additional Model performance on Speech Commands
Dataset. F1 scores are scaled to 100 and latencies are in ms.

GPU (Mac-M1) Digital F1 Over-the-Air F1 Latency

MnasNet (Tan et al., 2019) 91.58 82.59 ± 12.54 35.3
DenseNet (Huang et al., 2017) 93.37 94.85 ± 4.49 344.2

CPU (Raspberry Pi 4B) Digital F1 Over-Air F1 Latency

MnasNet (Tan et al., 2019) 91.58 82.37 ± 14.16 131.1
DenseNet (Huang et al., 2017) 93.37 42.22 ± 6.81 3674.0

Table 8. Other Models: Analysis of Specific Layer Classes
Model (#Param) MnasNet (3.10M) (Tan et al., 2019)

Avg Latency (ms) Avg FLOPS PAR (%)
GPU CPU GPU CPU

Conv 0.197 1.160 2.41E+5 39.41 53.18
BN 0.228 0.943 1.20E+4 45.68 43.14
ReLU 0.096 0.094 6.54E+2 12.90 2.95
MaxPool - - - - -
Linear 0.294 0.322 5.12E+3 1.19 0.30
Dropout 0.202 0.473 0 0.81 0.44
AvgPool - - - - -

Model (#Param) DenseNet (25.6M) (Huang et al., 2017)

Avg Latency (ms) Avg FLOPS PAR (%)
GPU CPU GPU CPU

Conv 0.130 10.583 7.66E+7 33.68 80.58
BN 0.190 1.731 1.58E+6 47.89 12.82
ReLU 0.074 0.816 - 18.48 6.07
MaxPool - - - - -
Linear 0.267 0.254 8.76E+3 0.37 0.04
Dropout - - - - -
AvgPool 0.143 3.283 1.51E+3 0.58 0.49

11

G. Additional Model Descriptions
Very Deep Convolutional Network (VGG19 bn) (Zhang
et al., 2017) We utilize a repeating sequence of stride
1 convolution, batch normalization, and ReLU layers
followed by three linear layers. We initialized VGG19 bn
with 2 classes and 1 input channel.

Conv2d 3x3, BN, ReLU - 64

MaxPool 2x2

Conv2d 3x3, BN, ReLU - 128

MaxPool 2x2

Conv2d 3x3, BN, ReLU - 256

MaxPool 2x2

x2

x2

x4

MaxPool 2x2

Conv2d 3x3, BN, ReLU - 512 x4

Conv2d 3x3, BN, ReLU - 512 x4

MaxPool 2x2

Linear, ReLU, Dropout - 4096

Linear - out_channels

x2

ConvBNReLU 3x3 - 32

Inverted Residual - 16

Inverted Residual - 24 x2

Inverted Residual - 32 x3

Inverted Residual - 64 x4

Inverted Residual - 96 x3

Inverted Residual - 160 x3

Inverted Residual - 160

ConvBNReLU 1x1 - 1280

Dropout

Linear - out_channels

ConvBNReLU 3x3

Conv2d 3x3, BN

ConvBNReLU 3x3

Conv2d 3x3, BN

ConvBNReLU 1x1

VGG19_bnVGG19_bn MobileNet_V2

Inverted Residual
(expand ratio = 1)

Inverted Residual
(expand ratio != 1)

Depthwise Seperable Convolutional Neural Net-
work (DSCNN) (Sandler et al., 2018) DSCNN consists
of MBConvReLU blocks where each MBConvReLU
block contains one pointwise MBConvReLU block, one
depthwise MBConvReLU block, and one pointwise linear
convolution layer. The DSCNN structure as a whole begins
with a stride-2 convolution layer, goes into a sequence of
inverted residual bottleneck layers, and exits into a stride-1
convolution layer and final linear layer. Our DSCNN
was MobileNetV2, which leverages inverted residual
layers connecting depthwise seperable convolutions and
bottleneck convolutions. Inverted residual blocks are made
up of MBConvReLU blocks similar to the implementation
in MobileNetV1. We initialized DSCNN with 2 classes
and 1 input channel.

Conv2d 3x3, BN, ReLU - 64

MaxPool 2x2

Conv2d 3x3, BN, ReLU - 128

MaxPool 2x2

Conv2d 3x3, BN, ReLU - 256

MaxPool 2x2

x2

x2

x4

MaxPool 2x2

Conv2d 3x3, BN, ReLU - 512 x4

Conv2d 3x3, BN, ReLU - 512 x4

MaxPool 2x2

Linear, ReLU, Dropout - 4096

Linear - out_channels

x2

ConvBNReLU 3x3 - 32

Inverted Residual - 16

Inverted Residual - 24 x2

Inverted Residual - 32 x3

Inverted Residual - 64 x4

Inverted Residual - 96 x3

Inverted Residual - 160 x3

Inverted Residual - 160

ConvBNReLU 1x1 - 1280

Dropout

Linear - out_channels

ConvBNReLU 3x3

Conv2d 3x3, BN

ConvBNReLU 3x3

Conv2d 3x3, BN

ConvBNReLU 1x1

VGG19_bnVGG19_bn MobileNet_V2

Inverted Residual
(expand ratio = 1)

Inverted Residual
(expand ratio != 1)

12

EfficientNet (Tan and Le, 2019) EfficientNet merges
sequences of ‘MBConv’ blocks consisting of convolution
and batch normalization layers. MBConv block sequences
are searched using NAS, optimizing for FLOPS. We
examined EfficientNet models with scalings 1 and 7. We
initialized both EfficientNet models with 2 classes and 1
input channel.

Conv2d 3x3 - 32

MBConvBlock 3x3 - 16 x2

MBConvBlock 3x3 - 24 x3

MBConvBlock 5x5 - 40 x3

MBConvBlock 3x3 - 80 x4

MBConvBlock 5x5 - 112 x4

MBConvBlock 5x5 - 192 x5

MBConvBlock 3x3 - 320 x2

Conv2d 1x1 - 1280

BN

Swish

Dropout

Linear - out_channels

Conv2d 1x1

BN

BN

Conv2d _x_

Conv2d 1x1

Conv2d 1x1

Conv2d 1x1

BN

Swish

EfficientNet

MBConvBlock

EfficientNet-V2 (Tan and Le, 2021) These models were
searched from a search space enriched with new operations,
such as Fused-MBConv. A combination of training-aware
neural architecture search (NAS) and scaling was used to
improve both training speed and parameter efficiency. We
trained and tested models with scalings ‘m’ and ‘xl’. We
initialized both EfficientNetV2 models with 2 classes and
1 input channel.

EfficientNetV2

Conv2d 3x3, BN, SiLU - 24

MBConv - 24 x3

MBConv - 48 x5

MBConv - 80 x5

MBConv - 160 x7

MBConv - 176 x14

MBConv - 304 x18

MBConv - 512 x5

Conv2d 1x1, BN, SiLU - 1792

AdaptiveAvgPool

Linear - out_channels

Conv2d 3x3, BN, SiLU

Conv2d 1x1

BN

Conv2d 3x3, BN, SiLU

Conv2d 1x1, BN, SiLU

AdaptiveAvgPool

Linear

SiLU

Linear

Sigmoid

Conv2d 1x1

BN

Note values here are specifically for effnetv2_m, for different sizes
output channels are different as are number of convs for each size -

there may be more conv sections too

SE Layer

MBConv

MBConv w/ SE Layer

ResNet (He et al., 2016)
ResNet develops on CNN-type architecture by adding
shortcut connections to combat vanishing gradients. We
chose ResNet50 as our representative of ResNet. We ini-
tialized it with 2 classes and 1 input channel.

ResNet

Conv2d 3x3, BN, ReLU - 64

MaxPool 2x2

Bottleneck w/ Downsample - 256

Bottleneck - 256 x2

Bottleneck w/ Downsample - 512

Bottleneck - 512 x3

Bottleneck w/ Downsample - 1024

Bottleneck - 1024 x5

Bottleneck w/ Downsample - 2048

Bottleneck - 2048 x2

AvgPool

MaxPool 2x2

Bottleneck

Conv2d 1x1, BN, ReLU

Conv2d 3x3, BN

Conv2d 1x1, BN

Bottleneck w/ Downsample

Conv2d 1x1, BN, ReLU

Conv2d 3x3, BN

Conv2d 1x1, BN

Conv2d 1x1, BN

Transformer (Berg et al., 2021) We used the same
Transformer model as in (Berg et al., 2021), specifi-
cally the implementation found at https://github.
com/wdjose/keyword-transformer/blob/
master/models/kwt.py. We integrated the Trans-
former model witho our codebase, and initialized it with
img x=32, img y=32, patch x=1, patch y=32 to mirror
the patch shape used in (Berg et al., 2021). We also
initialized it with 2 classes, dim=64, depth=12 (since we
used Speech Commands V1), heads=1, mlp dim=256,
pool=“cls”, channels=1, dim head=64, dropout=0., and
emb dropout=0.. At the time of writing, there are reports of
a bug with PyTorch GELU on mps https://github.
com/pytorch/pytorch/issues/98212. We do
not think that we were affected by this bug since Trans-
former performance in both digital and over-the-air testing
was reasonable (albeit below the performance described by
(Berg et al., 2021), but we will make note of it anyways for
a potential followup in the future once the bug is resolved.

13

https://github.com/wdjose/keyword-transformer/blob/master/models/kwt.py
https://github.com/wdjose/keyword-transformer/blob/master/models/kwt.py
https://github.com/wdjose/keyword-transformer/blob/master/models/kwt.py
https://github.com/pytorch/pytorch/issues/98212
https://github.com/pytorch/pytorch/issues/98212

DenseNet (Huang et al., 2017) Densenet consists of
alternating bottleneck and transition layers. We trained
DenseNet with gradient accumulation where the accumu-
lator was 8 and batch size was 8 to mirror the batch size
64 we used for all other models except the Transformer.
We initialized DenseNet with depth=190, growthRate=40,
compressionRate=2, 2 classes, and 1 input channel.

DenseNet

Conv2d 1x1 - 80

Bottleneck - 40 x31

Transition - 660

x31Bottleneck - 40

Transition - 950

BN

ReLU

AvgPool2d

Linear - output

BN

Conv2d 1x1

Conv2d 3x3

BN

ReLU

Bottleneck

BN

Conv2d 1x1

ReLU

Transition

MnasNet (Tan et al., 2019) We used MnasNet1 0 as our
MnasNet representative. MnasNet is designed for both
image classification and object detection. We initialized
it with 2 classes and 1 input channel. MnasNet uses
(NAS), convolutions, depthwise separable convolutions,
sequences of inverted residuals (pointwise, depthwise,
linear pointwise), and finally a linear layer.

Conv2d 3x3, BN, ReLU - 64 x2

MnasNet

Conv2d 1x1, BN

Inverted Residual 3x3 - 24 x3

Inverted Residual 5x5 - 40 x3

Inverted Residual 5x5 - 80 x3

Inverted Residual 3x3 - 96 x2

Inverted Residual 5x5 - 192 x4

Inverted Residual 3x3 - 320

Conv2d 1x1, BN, ReLU - 64

Dropout

Linear - out_channels

Conv2d _x_, BN, ReLU - 64

Conv2d 1x1, BN, ReLU - 64

Conv2d 1x1, BN

Inverted Residual

14

