
VCT: A Video Compression Transformer

Fabian Mentzer
Google Research

mentzer@google.com

George Toderici
Google Research

gtoderici@google.com

David Minnen
Google Research

dminnen@google.com

Sung Jin Hwang
Google Research

sjhwang@google.com

Sergi Caelles
Google Research

scaelles@google.com

Mario Lucic
Google Research
lucic@google.com

Eirikur Agustsson
Google Research

eirikur@google.com

Abstract

We show how transformers can be used to vastly simplify neural video compression.
Previous methods have been relying on an increasing number of architectural biases
and priors, including motion prediction and warping operations, resulting in com-
plex models. Instead, we independently map input frames to representations and
use a transformer to model their dependencies, letting it predict the distribution of
future representations given the past. The resulting video compression transformer
outperforms previous methods on standard video compression data sets. Exper-
iments on synthetic data show that our model learns to handle complex motion
patterns such as panning, blurring and fading purely from data. Our approach is
easy to implement, and we release code to facilitate future research.

1 Introduction

Neural network based video compression techniques have recently emerged to rival their non-neural
counter parts in rate-distortion performance [e.g., 1, 17, 30, 42]. These novel methods tend to incor-
porate various architectural biases and priors inspired by the classic, non-neural approaches. While
many authors tend to draw a line between “hand-crafted” classical codecs and neural approaches,
the neural approaches themselves are increasingly “hand-crafted”, with authors introducing complex
connections between the many sub-components. The resulting methods are complicated, challenging
to implement, and constrain themselves to work well only on data that matches the architectural
biases. In particular, many methods rely on some form of motion prediction followed by a warping
operation [e.g., 1, 17, 19, 23, 42, 41]. These methods warp previous reconstructions with the predicted
flow, and calculate a residual.

In this paper, we replace flow prediction, warping, and residual compensation, with an elegantly
simple but powerful transformer-based temporal entropy model. The resulting video compression
transformer (VCT) outperforms previous methods on standard video compression data sets, while
being free from their architectural biases and priors. Furthermore, we create synthetic data to explore
the effect of architectural biases, and show that we compare favourably to previous approaches on
the types videos that the architectural components were designed for (panning on static frames,
or blurring), despite our transformer not relying on any of these components. More crucially, we
outperform previous approaches on videos that have no obvious matching architectural component
(sharpening, fading between scenes), showing the benefit of removing hand-crafted elements and
letting a transformer learn everything from data.

We use transformers to compress videos in two steps (see Fig. 1): First, using lossy transform
coding [3], we map frames xi from image space to quantized representations yi, independently for
each frame. From yi we can recover a reconstruction x̂i. Second, we let a transformer leverage

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

yi−2 yi−1
yi

xi−2 xi−1

Q Q Q

Transformer
Masked Block-
Autoregressive
Transformer

yi,<tyi−2
Already transmitted

Bottleneck

To be transmitted
yi−1

P(yi,t|yi,<t ,yi−2, yi−1)

xi−2 xi−1 xi
EEE

D D

Figure 1: We independently and lossily map input frames x into quantized representations y. From y
we can recover a reconstruction x̂. To store yi with few bits, we use transformers to model temporal
dependencies and to predict a distribution for yi given previously transmitted representations. We use
P to losslessly compress the quantized yi using entropy coding. The better the transformer predicts
P , the fewer bits are required to store yi. We note that we have no hard-coded components such as
motion prediction or warping.

temporal redundancies to model the distributions of the representations. We use these predicted
distributions to losslessly compress the quantized yi using entropy coding [43, Sec 2.2.1]. The better
the transformer predicts the distributions, the fewer bits are required to store the representations.

This setup avoids complex state transitions or warping operations by letting the transformer learn to
leverage arbitrary relationships between frames. As a bonus, we get rid of temporal error propagation
by construction since the reconstruction x̂i does not depend on previous reconstructions. Contrast
with warping-based approaches, where x̂i is a function of the warped x̂i−1 meaning that any visual
errors in x̂i will be propagated forward and require additional bits to correct with residuals.

VCT is based on the original language translation transformer [35]: We can view our problem as
“translating” two previous representations yi−2, yi−1 to yi. However, there are various challenges
in the way of directly applying the NLP formulation. Consider a 1080p video frame; using a
typical neural image compression encoder [4] that downscales by a factor 16 and has 192 output
channels, a (1080, 1920, 3)-dimensional input frame is mapped to a (68, 120, 192)-dimensional
feature representation leading to approximately 1.6 million symbols. Naively correlating all of these
symbols to all symbols in a previous representation would yield a 1.6M×1.6M-dimensional attention
matrix. To address this computationally impractical problem, we introduce independence assumptions
to shrink the attention matrix and enable parallel execution on subsets of the symbols.

Our model is easy to implement with contemporary machine learning frameworks, and we provide
an extensive code and model release to allow future work to build on this direction.1

2 Related Work

Transformers were initially proposed for machine translation [35], where an encoder-decoder structure
was used to obtain state-of-the-art results. This led to a wide range of follow-up research, and state-
of-the-art natural language processing (NLP) models are still based on transformers [e.g., 6, 8, 7, 11].
Motivated by these advancements, Dosovitski et al. [10] replaced CNNs with a transformer-based
architecture to achieve state-of-the-art results in image classification, which in turn spurred more
exploration of transformers in the computer vision community including both image tasks [e.g., 22,
37, 45] as well as video analysis [e.g., 2, 5, 12, 28, 32].

Recently, transformers were incorporated into neural image compression models. Qian et al. [29]
replaced the autoregressive hyperprior [26] with a self-attention stack, and Zhu et al. [46] replaced all
convolutions in the standard approach [4, 27] with Swin Transformer [22] blocks.

Neural video compression remains CNN-based. After initial work used frame interpolation [39,
9], Lu et al. [23] followed the more traditional approach of predicting optical flow between the
previous reconstruction and the input, transmitting a compressed representation of the flow, and
also transmitting a residual image to correct visual errors after warping. Many papers extended this

1https://goo.gle/vct-paper

2

https://goo.gle/vct-paper

Tokens

Blocks

Representations

Already Transmitted To be transmitted

Figure 2: From representations to tokens. We essentially use a sliding window to split the current
representation yi into non-overlapping wc × wc blocks, and previous representations yi−2, yi−1 into
overlapping wp × wp blocks with stride wc (wp > wc). We flatten blocks spatially (raster-scan order,
see left arrows) to obtain tokens for the transformer, which remain dC -dimensional since they are just
a different view of yi. We show wc=3, wp=5, dC=5, but we use wc=4, wp=8, dC=192 in practice.

approach, for example Agustsson et al. [1] introduced the notion of a flow predictor that also supports
blurring called “Scale Space Flow” (SSF), which became a building block for other approaches [42,
30]. Rippel et al. [30] achieved state-of-the-art results by using SSF and more context to predict flow.
RNNs and ConvLSTMs were used to build recurrent decoders [13] or entropy models [41].

Some work does not rely on pixel-space flow: Habibian et al. [14] used a 3D autoregressive entropy
model, FVC [17] predicted flow in a 2× downscaled feature space, and Liu et al. [20] used a
ConvLSTM to predict representations which are transmitted using an iterative quantization scheme.
DCVC [19] estimated motion in pixel space but performed residual compensation in a feature space.
Liu et al. [21] also losslessly encoded frame-level representations, but rely on CNNs for temporal
modelling. Finally, recent work employed GAN losses to increase realism [24, 40].

3 Method

3.1 Overview and Background

Frame encoding and decoding A high-level overview of our approach is shown in Fig. 1. We
split video coding into two parts. First, we independently encode each frame xi into a quantized
representation yi=bE(xi)e using a CNN-based image encoder E followed by quantization to an
integer grid. The encoder downscales spatially and increases the channel dimension, resulting in yi
being a (H,W, dC)-dimensional feature map, where H,W are 16× smaller than the input image
resolution. From yi, we can recover a reconstruction x̂i using the decoder D. We train E,D using
standard neural image compression techniques to be lossy transforms reaching nearly any desired
distortion d(xi, x̂i) by varying how large the range of each element in yi is. For now, let us assume
we have a pair E,D reaching a fixed distortion.

Naive approach After having lossily converted the sequence of input frames xi to a sequence of
representations yi=bE(xi)e, one can naively store all yi to disk losslessly. To see why this is sub-
optimal, let each element yi,j of yi be a symbol in S = {−L, . . . , L}. Assuming that all |S| symbols
appear with equal probability, i.e., P (yi,j) = 1/|S|, one can transmit yi using H ·W · dC · log2|S|
bits. Using a realistic L=32, this implies that we would need 9MB, or ≈2Gbps at 30fps, to encode
a single HD frame (where H ·W · dC≈1.6M, see Introduction). While arguably inefficient, this is
a valid compression scheme which will result in the desired distortion. The aim of this work is to
improve this scheme by approximately two orders of magnitude.

An efficient coding scheme Given a probability mass function (PMF) P estimating the true
distribution Q of symbols in yi, we can use entropy coding (EC) to transmit yi with H ·W · dC ·
Ey∼Q(yi)[−log2P (y)] bits.2 By using EC, we can encode more frequently occurring values with
fewer bits, and hence improve the efficiency. Note that the expectation term representing the average
bit count corresponds to the cross-entropy of Q with respect to P . Our main idea is to parameterize P

2Consistent with neural compression literature but in contrast to Information Theory, we use P for the model.

3

bi−2 bi−1 bi

P(t3|...)
P(t2|...)

P(t1|...)

Masked
Transformer Layer

zjoint.........

............

Transformer Layer Transformer Layer

Masked MHSA

MHSA
K

K

V

V

Q

Q

Norm

Norm

Norm

Norm

MLP

MLP

+

+

+

+

MHSA
K V Q

Norm

Norm
MLP

+

+

Masked
Transformer Layer

Transformer Layer Transformer Layer

Project + PosProject + PosProject + Pos

Temporal Pos
Tsep

Tjoint

Tsep
Tcur

t1tS t2 t16...

... zjoint

Already Transmitted To be transmitted

Figure 3: The transformer operates on the pink set of blocks/tokens bi−2, bi−1, bi (obtained as shown
in Fig. 2). We first extract temporal information zjoint from already transmitted blocks. Tcur is shown
predicting P (t3|tS , t1, t2, zjoint), where tS is a learned start token.

as a conditional distribution using very flexible transformer models, and to minimize the cross-entropy
and thus maximize coding efficiency. We emphasize that we use P for lossless EC, we do not sample
from the model to transmit data. Even if the resulting model of P is sub-optimal, yi can still be stored
losslessly, albeit inefficiently.

Why would one hope to do better than the uniform distribution over yi? In principle, the model
should be able to exploit the temporal redundancy across frames, and the spatial consistency within
frames.

3.2 Transformer-based Temporal Entropy Model

To transmit a video of F frames, x1, . . . , xF , we first map E over each frame obtaining quantized
representations y1, . . . , yF . Let’s assume we already transmitted y1, . . . , yi−1. To transmit yi, we
use the transformer to predict P (yi|yi−2, yi−1). Using this distribution, we entropy code yi to create
a compressed, binary representation that can be transmitted. To compress the full video, we simply
apply this procedure iteratively, letting the transformer predict P (yj |yj−2, yj−1) for j ∈ {1, . . . , F},
padding with zeros when predicting distributions for y1, y2. The receiver follows the same procedure
to recover all yj , i.e., it iteratively calculates P (yj |yj−2, yj−1) to entropy decode each yj . After
obtaining each representation, y1, y2, . . . , yF , the receiver generates reconstructions.

Tokens When processing the current representation yi, we split it spatially into non-overlapping
blocks with size wc ×wc as shown in Fig. 2. Previous representations yi−2, yi−1 become correspond-
ing overlapping wp × wp blocks (where wp > wc) to provide both temporal and spatial context for
predicting P (yi|yi−2, yi−1). Intuitively, the larger spatial extent provides useful context to predict the
distribution of the current block. Note that all blocks span a relatively large spatial region in image
space due to the downscaling convolutional encoder E. We flatten each block spatially (see Fig. 2)
to obtain tokens for the transformers. The transformers then run independently on corresponding
blocks/tokens, i.e., tokens of the same color in Fig. 2 get processed together, trading reduced spatial
context for parallel execution.3

This independence assumption allows us to focus on a single set of blocks, e.g., the pink blocks in
Fig. 2. In the following text and in Fig. 3, we thus show how we predict distributions for the w2

c=16
tokens t1, t2, . . . , t16 in block bi, given the 2w2

p=128 tokens from the previous blocks bi−2, bi−1.

Step 1: Temporal Mixer We use two transformers to extract temporal information from bi−2, bi−1.
A first transformer Tsep operates separately on each previous block. Then, we concatenate the outputs
in the token dimension and run the second transformer, Tjoint, on the result to mix information across
time. The output zjoint is 2w2

p features, containing everything the model “knows” about the past.

Step 2: Within-Block-Autoregression The second part of our method is the masked transformer
Tcur, which predicts PMFs for each token using auto-regression within the block. We obtain a

3As a side benefit, the number of tokens for the transformers is not a function of image resolution, unlike
ViT-based approaches [10].

4

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
32

33

34

35

36

37

38

39

40

bpp

PSNR on MCL-JCV

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
32

33

34

35

36

37

38

39

40

bpp

PSNR on UVG

VCT (Ours)
ELF-VC (ICCV'21)
DCVC (NeurIPS'21)
FVC (CVPR'21)
SSF (CVPR'20)
RLVC (J-STSP'21)
Liu et al. (ECCV'20)
DVC (CVPR'19)
HEVC veryslow
HEVC medium
H.264 medium

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.960

0.965

0.970

0.975

0.980

0.985

0.990

bpp
mbps 5.7 11.4 17.0

MS-SSIM on MCL-JCV

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.95

0.96

0.97

0.98

0.99

bpp
mbps 24.9 49.8 74.6

MS-SSIM on UVG

Figure 4: Comparing rate-distortion on MCL-JCV (≈27FPS) and UVG (120FPS). We report bits per
pixel (bpp) and megabits per second (mbps). For MS-SSIM, we only show methods optimized for it
(using –tune ssim for HEVC/H264). App. A.5 shows a large version of these plots.

powerful model by conditioning Tcur on zjoint as well as already transmitted tokens within the block.
For entropy coding, both the sender and the receiver must be able to obtain exactly the same PMFs,
i.e., Tcur must be causal and start from a known initialization point. For the latter, we learn a start
token tS .

To send the tokens, we first obtain zjoint. After that, we feed [tS] to Tcur, obtain P (t1|tS ; zjoint), and
use entropy coding to store the dC symbols in token t1 into a bitstream using P (t1|tS ; zjoint). Then,
we feed [tS , t1], obtain P (t2|t1, tS ; zjoint), store t2 in the bitstream, and so on. The receiver gets the
resulting bitstream and can obtain the same distributions, and thereby the tokens, by first feeding
[tS] to Tcur, obtaining P (t1|tS ; zjoint), entropy decoding t1 from the bitstream, then feeding [tS , t1] to
obtain P (t2|t1, tS ; zjoint), and so on. Fig. 3 visualizes this for P (t3| . . .).

We run this procedure in parallel over all blocks, and thereby send/receive yi by running Tcur w
2
c=16

times. Each run produces dH/wce · dW/wce · dC distributions. To ensure causality of Tcur during
training, we mask the self-attention blocks similar to [35].

Independence Apart from assuming blocks in yi are independent, we emphasize that each token
is a vector and that we assume the symbols within each token are conditionally independent given
previous tokens, i.e., Tcur predicts the dC distributions required for a token at once. One could instead
predict a joint distribution over all possible |S|dC realisations, use channel-autoregression [27], or
use vector quantization on tokens. The latter two are interesting directions for future work. Finally,
we note that we do not rely on additional side information, in contrast to, e.g., autoregressive image
compression entropy models [26, 27].

3.3 Architectures

Transformers As visualized in Fig. 3, all of our transformers are based on standard architec-
tures [35, 10]. We start by projecting the dC -dimensional tokens to a dT -dimensional space (dT=768
in our model) using a single fully connected layer, and adding a learned positional embedding.
While both Tsep and Tjoint are stacks of multi-head self-attention (MHSA) layers, Tcur uses masked
“conditional” transformer layers, similar to Vaswani et al. [35]: These alternate between masked
MHSA layers and MHSA layers that use zjoint as keys (K) and values (V), as shown in Fig. 3. We
use 6 transformer layers for Tsep, 4 for Tjoint, and 5 masked transformer layers for Tcur. We use 16

5

a) Shift b) SharpenOrBlur c) Fade

...

x=0.20

...

x=0.10

...

x=2.0

...

x=-2.0

...

x=30

...

x=10

0 10 20 30
Amount of motion x in videos

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ve

ra
ge

 E
va

lu
at

io
n

Lo
ss

VCT (Ours)
HEVC
SSF

2 1 0 1 2
 sharpen | blur

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.00 0.05 0.10 0.15 0.20
Fade speed x

0.4

0.5

0.6

0.7

Figure 5: To understand what types of temporal patterns our transformer has learned to exploit, we
synthesize videos representing commonly seen patterns. We compare to HEVC, which has built-in
support for motion, and SSF, which has built-in support for motion and blurrying. VCT learns to
handle all patterns purely from data. We refer to the text for a discussion.

attention heads everywhere. We learn a separate temporal positional embedding to add to the input of
Tjoint.

Image encoder E, decoder D The image encoder and decoder E,D are not the focus of this
paper, so we use architectures based on standard image compression approaches [26, 27]. For the
encoder, we use 4 strided convolutional layers, downscaling by a factor 16× in total. For the decoder,
we use transposed convolutions and additionally add residual blocks at the low resolutions. We use
dED=192 filters for all layers. See App. A.1 for details and an exploration of architecture variants.

3.4 Loss and Training Process

The modeling choices introduced in the previous section allow for an efficient training procedure
where we decompose the training into three stages, which enables rapid experimentation (Tab. 1).
In Stage I we train the per-frame encoder E and decoder D by minimizing the rate-distortion
trade-off [43, Sec 3.1.1]. Let U denote a uniform distribution in [−0.5, 0.5]. We minimize

LI = Ex∼pX ,u∼U [−log p(ỹ + u)︸ ︷︷ ︸
bit-rate r

+λMSE(x, x̂)︸ ︷︷ ︸
distortion d

], ỹ=E(x), x̂=D(roundSTE(ỹ)), (1)

using ỹ to refer to the unquantized representation, and x ∼ pX are frames drawn from the training set.
Intuitively, we want to minimize the reconstruction error under the constraint that we can effectively
quantize the encoder output, with λ controlling the tradeoff. For Stage I, we thus employ the mean-
scale hyperprior [26] approach to estimate p, the de facto standard in neural image compression,
which we discard for later stages.4 To enable end-to-end training, we also follow [26], adding i.i.d.

4In short, the hyperprior estimates the PMF of y using a VAE [18], by predicting p(y|z), where z is side
information transmitted first. We refer to the paper for details [26].

Components trained Loss B NF LR Steps steps/s

Stage I E,D r + λd 16 1 1E−4 2M 100
Stage II Tsep, Tjoint, Tcur r 32 3 1E−4 1M 10
Stage III Tsep, Tjoint, Tcur, E,D r + λd 32 3 2.5E−5 250k 5

Table 1: We split training in three stages for training efficiency (note the steps/s column). λ controls
the rate-distortion trade-off, r is bitrate, d is distortion, B is batch size, NF the number of frames.

6

x̂i−2 x̂i−1 Decode: 0 tokens
block 2 tokens

block 13 tokens
block

0kB 0.13kB 0.78kB

Figure 6: Visualizing the sample mean from the block-autoregressive distribution predicted by
the transformer, as we decode more and more tokens (see Sec. 5). We show the kilobytes (kB)
required to transmit the decoded (gray) tokens. On the left, we see the two previous reconstructions
x̂i−2, x̂i−1. In the middle, we see what the transformer expects at the current frame, before decoding
any information (0kB). The next two images shows that as we decode more tokens, the model gets
more certain, and the image obtained from the sample mean sharpens. Note that we never sample
from the model for actual video coding.

uniform noise u to ỹ when calculating r, and using straight-through estimation (STE) [33, 27] for
gradients when rounding ỹ to feed it to D.

For Stage II, we train the transformer to obtain p, and only minimize rate:

LII = E(x1,x2,x3)∼pX1:3
,u∼U [−log p(ỹ3 + u|y1, y2)] ỹi=E(x), yi=round(ỹi), (2)

where (x1, x2, x3) ∼ pX1:3 are triplets of adjacent video frames. We assume each of the dC
unquantized elements in each token follow a Gaussian distribution, p ∼ N , and let the transformer
predict dC means and dC scales per token. Finally, we finetune everything jointly in Stage III, adding
the distortion loss d from Eq. 1 to Eq. 2.

We note that it is also possibe to train the model from scratch and obtain even better performance,
see App. A.2.

To obtain a discrete PMF P for the quantized symbols (for entropy coding), we again follow
standard practice [4], convolving p with a unit-width box and evaluating it at discrete points, P (y) =∫
u∈U p(y+u)du, y ∈ Z [see, e.g., 43, Sec. 3.3.3, for details]. To train, we use random spatio-temporal

crops of (B,NF , 256, 256, 3) pixels, whereB is the batch size, and NF the number of frames (values
are given in Tab. 1). We use the linearly decaying learning rate (LR) schedule with warmup, where
we warmup for 10k steps and then linearly decay from the LR shown in the table to 1E−5. Stage
I is trained using λ=0.01. To navigate the rate-distortion trade-off and obtain results for multiple
rates, we fine-tune 9 models in Stage III, using λ=0.01 · 2i, i∈{−3, . . . , 5}. We train all models on 4
Google Cloud TPUv4 chips.

3.5 Latent Residual Predictor (LRP)

To further leverage the powerful representation that the transformer learns, we adapt the “latent
residual predictor” (LRP) from recent work in image compression [27]: The final features zcur from
Tcur have the same spatial dimensions as yi, and contain everything the transformer knows about the
current and previous representations. Since we have to compute them to compute P , they constitute
“free” extra features that are helpful to reconstruct x̂i. We thus use zcur by feeding y′i = yi+fLRP(zcur)
to D (we enable this in Stage III), where fLRP consists of a 1×1 convolution mapping from dT to
dED followed by a residual block. We note that this implies that x̂i = D(y′i) indirectly depends on
yi−2, yi−1, yi. Since this is a bounded window into the past and y′i does not depend on x̂j<i, we
remain free from temporal error propagation.

7

Context LRP bpp ↓ PSNR ↑
No previous frames (image codec) 0 0.218 36.1

1 previous frame 1 0.0907 (-58%) 36.1
2 previous frames 2 0.0775 (-64%) 36.1
2 previous frames and LRP (VCT (Ours)) 2 X 0.0775 (-64%) 36.8 (+0.7dB)

Table 2: Ablating how many previous frames we feed to the transformer (“Context”), and whether
we use latent-residual prediction (LRP).

4 Experiments

4.1 Data sets

We train on one million Internet video clips, where each clip has nine frames. We obtained high-
resolution videos which we downscale with a random factor (removing previous compression arti-
facts), from which we get a central 256 crop. Training batches are made up of randomly selected
triplets of adjacent frames. We evaluate on two common benchmark data sets: (1) MCL-JCV [36,
MIT Licence] made up of thirty 1080p videos captured at either 25 or 30FPS and averaging 137
frames per video, and (2) UVG [25, CC-BY-NC Licence] containing twelve 1080p 120FPS videos
with either 300 or 600 frames each.

Synthetic videos We explore three parameterized synthetic data sets that we build by generating
videos from still images from the CLIC2020 test set [34, Unsplash licence], (see Fig. 5). Each data
set has a parameter x that we vary, and we create 100 videos for each value of x. Each video is 12
frames of 512×512px. We explore: Shift, where we pan from the center of the image towards the
lower right, shifting by x pixels in each step. SharpenOrBlur, where if x≥0, we apply Gaussian
blurring with sigma x · t at time step t. If x<0, we create videos that get sharper over time by playing
a video blurred with |x| in reverse. Fade, where we linearly transition between two unrelated images
using alpha blending (as in a scene cut). We release the code to synthesize these videos.

4.2 Models

We refer to our video compression transformer as VCT. We run the widely used, non-neural, standard
codec HEVC [31] (a.k.a. H.265) using the ffmpeg x265 codec in the medium and veryslow settings,
as well as H.264 using x264 in the medium setting. For a fair comparison to our method, we follow
previous work [1, 24, 30] in disabling B-Frames, but do not constrain the codecs in any other way. We
run the public DVC [23] code, and additionally obtain numbers from the following papers: SSF [1],
which introduced scale-space-flow, an architectural component to support warping and blurring,
commonly used in follow-up work, ELF-VC [30], to the best of our knowledge the state-of-the-art
neural method in terms of PSNR on MCL-JCV, which extends the motion compensation of SSF
with more motion priors, FVC [17] and DCVC [19], both strong models based on warping plus
residual coding in a representation space, RLVC [41], using ConvLSTMs as a sequence model, and
Liu et al. [21], who study losslessly transmitting representations using CNNs for temporal entropy
modelling. To explore how architectural biases behave on synthetic data, we reproduce SSF, using
exactly the same training data as for VCT.

4.3 Metrics

We evaluate the common PSNR and MS-SSIM [38] in RGB. We train all models using MSE as a
distortion and use 200 · (1−MS-SSIM(x, x̂)) as the training objective in Stage III (Tab. 1) to obtain
MS-SSIM models.

8

5 Results

5.1 Comparison to State of the Art

In Fig. 4, we depict rate distortion graphs for our method and the neural video compression methods
introduced in Sec. 4, on MCL-JCV and UVG. Despite the simplicity of our approach, and the fact that
we use no motion or warping components, we outperform all methods in both PSNR and MS-SSIM.

5.2 Synthetic data

In Fig. 5, we show how the transfomer learns to exploit various types of temporal patterns by applying
it to the synthetic data sets introduced in Sec. 4, and reporting the evaluation R-D loss.5 We compare
to HEVC and SSF, which both have explicit support for shifting motion, while SSF also has explicit
support for blurring. We expect them to perform well on temporal patterns for which they have
corresponding architectural priors. In contrast, VCT has no such priors. For each data set, we explore
different values for the parameter x (see Sec. 4), a point in the plot represents the average evaluation
loss over the 100 videos created with x.

We observe: a) On videos with shifting based motion, VCT obtains ≈45% lower R-D loss compared
to SSF, which saturates at about x = 10, presumably due to the shallow CNN used for flow estimation.
Since HEVC supports motion compensating with arbitrary shifts of previous frames, it excels on
these kinds of videos. For shifts that are a multiple of 16, the representations shifts by exactly 1
symbol in each step, and VCT matches HEVC. The reason for this is that our encoder is a CNN,
so it is only shift-equivariant for shifts which are multiples of the stride (16). Any shift in [1, 15]
pixels causes the representation to change in a complex way (cf. [44]). b) For blurring/sharpening, we
outperform both HEVC and SSF, despite the latter having explicit support for blurring. Note that the
curve for SSF is asymmetric: since it has built-in support for blurring, it gets a ≈20% lower RD loss
on blurring compared to sharpening. c) VCT learns to handle fading, exhibiting a near-constant RD
loss as we increase x, in contrast to the baselines, neither of which has a explicit support for fading.
SSF is ≈20% better than HEVC, possibly due to its blurrying capabilities. For completely static
videos x=0, we observe that VCT is at a slight disadvantage compared to the previous approaches.
Overall, we believe that synthetic data can give better insight into the strengths and weaknesses of
methods, and hope that future work can compare on these data sets.

5.3 Visualizing certainty during decoding

After having seen k tokens in each block, the transformer predicts a PMF P (tk+1|t≤k, zjoint). This
induces a joint distribution P (t>k| . . .) over all unseen (not yet decoded) tokens. Intuitively, if the
transformer is certain about the future, this distribution will be concentrated on the actual future
tokens we will decode. In Fig. 6, we visualize the sample mean of this distribution by feeding it
through D, i.e., we sample N realisations of the unseen tokens in each block, conditioned on the k
already decoded ones, for k ∈ {0, 2, 13}. In the middle image in Fig. 6, we show what the transformer
expects at the current frame, before decoding any information (k = 0, i.e., 0 bits). We observe that
the model is able—to some degree—to learn second order motion implicitly. The next two images
shows that as we decode more tokens, the model gets more certain, and the image sharpens.

5.4 Ablations

In Tab. 2, we explore the importance of temporal context from previous frames and latent residual
prediction (LRP) on MCL-JCV. We start from a baseline that does not use any previous frames, i.e.,
an image model, used to independently code each frame. Conditioning on one previous frame reduces
bitrate by −58%. Using two previous frames yields an additional improvement of −6%. In the final
configuration (our model, VCT), which adds LRP, we observe an increase in PSNR of 0.7dB at the
same bitrate. We did not observe further gains from more context.

5L=r + λd. To calculate L for HEVC, we find the quality factor q matching our λ via q=arg minqr(q) +

λd(q), which yields q=25 for λ=0.01.

9

Tsep and Tjoint Tcur EC D FPS estimate

Ours 1080p 168 ms 326 ms 30.5 ms 168 ms ≈1.4 FPS
720p 37.6 ms 44.8 ms 17.0 ms 49.5 ms ≈6.7 FPS
480p 18.1 ms 23.1 ms 9.02 ms 23.3 ms ≈13.6 FPS
360p 7.3 ms 14.9 ms 4.24 ms 10.1 ms ≈27.3 FPS

Table 3: Runtimes of our components. For ours, we use a Google Cloud TPU v4 to run transformers
and D. Entropy Coding (EC) is run on CPU.

5.5 Runtime

To obtain runtimes of the transformers (Tsep, Tjoint, Tcur) and the decoder (D), we employ a Google
Cloud TPU v4 (single core) using Flax [16], which has an efficient implementation for autoregressive
transformers. We use Tensorflow Compression to measure time spent entropy coding (EC), on
an Intel Skylake CPU core. In Tab. 3, we report numbers for 1280×720px, 852×480px, and
480×360px. Since this benchmark is not fully end-to-end, we only report an FPS estimate by
calculating 1000/(sum of individual runtimes in ms). Note that running Tcur at 720p once only takes
≈2.8ms, but we run it w2

c=16 times to decode a frame. To run Tjoint, we only have to run Tsep once
per representation, since we can re-use the output of running Tsep on the previous representation.

Many neural compression methods do not detail inference time and do not have code available, but
we copy the results from DCVC [19], FVC [17], and ELF-VC [30], in Table 4.

6 Conclusion and Future Work

We presented an elegantly simple transformer-based approach to neural video compression, outper-
forming previous methods without relying on architectural priors such as explicit motion prediction or
warping. Notably, our results are achieved by conditioning the transformer only on a 2-frame window
into the past. For some types of videos, it would be interesting to scale this up, or to introduce a
notion of more long-term memory, possibly leveraging arbitrary reference frames.

As mentioned towards the end of Sec. 3.2, various different ways to factorize the distributions could
be explored, including vector quantization, channel-autoregression, or changing the independence
assumptions around how we split representations into blocks.

Societal Impact We hope our method can serve as the foundation for a new generation of video
codecs. This could have a net-positive impact on society by reducing the bandwidth needed for video
conferencing and video streaming and to better utilize storage space, therefore increasing the capacity
of knowledge preservation.

Acknowledgements We thank Basil Mustafa, Ashok Popat, Huiwen Chang, Phil Chou, Johannes
Ballé, and Nick Johnston for the insightful discussions and feedback.

Resolution FPS estimate

Ours 1080p ≈1.4 FPS
720p ≈6.7 FPS
480p ≈13.6 FPS
360p ≈27.3 FPS

DCVC [19] 1080p ≈1.1 FPS

FVC [17] 1080p ≈1.8 FPS

ELF-VC [30] 1080p ≈18 FPS
720p ≈35 FPS

Table 4: Comparing decoding speed to other methods. We directly copy reported results from the
respective papers, so platforms are not comparable.

10

References
[1] Eirikur Agustsson et al. “Scale-space flow for end-to-end optimized video compression”. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,
pp. 8503–8512.

[2] Anurag Arnab et al. “Vivit: A video vision transformer”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021, pp. 6836–6846.

[3] Johannes Ballé et al. “Nonlinear transform coding”. In: IEEE Journal of Selected Topics in
Signal Processing 15.2 (2020), pp. 339–353.

[4] Johannes Ballé et al. “Variational image compression with a scale hyperprior”. In: International
Conference on Learning Representations (ICLR). 2018.

[5] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. “Is Space-Time Attention All You Need
for Video Understanding?” In: International Conference on Machine Learning. PMLR. 2021,
pp. 813–824.

[6] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural information
processing systems 33 (2020), pp. 1877–1901.

[7] Aakanksha Chowdhery et al. “Palm: Scaling language modeling with pathways”. In: arXiv
preprint arXiv:2204.02311 (2022).

[8] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language under-
standing”. In: arXiv preprint arXiv:1810.04805 (2018).

[9] Abdelaziz Djelouah et al. “Neural inter-frame compression for video coding”. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 6421–6429.

[10] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image recognition
at scale”. In: arXiv preprint arXiv:2010.11929 (2020).

[11] Sergey Edunov et al. “Understanding back-translation at scale”. In: arXiv preprint
arXiv:1808.09381 (2018).

[12] Haoqi Fan et al. “Multiscale vision transformers”. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 2021, pp. 6824–6835.

[13] Adam Golinski et al. “Feedback recurrent autoencoder for video compression”. In: Proceedings
of the Asian Conference on Computer Vision. 2020.

[14] Amirhossein Habibian et al. “Video compression with rate-distortion autoencoders”. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 7033–
7042.

[15] Dailan He et al. “Elic: Efficient learned image compression with unevenly grouped space-
channel contextual adaptive coding”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2022, pp. 5718–5727.

[16] Jonathan Heek et al. Flax: A neural network library and ecosystem for JAX. Version 0.4.2.
2020. URL: http://github.com/google/flax.

[17] Zhihao Hu, Guo Lu, and Dong Xu. “FVC: A new framework towards deep video compression
in feature space”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021, pp. 1502–1511.

[18] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

[19] Jiahao Li, Bin Li, and Yan Lu. “Deep contextual video compression”. In: Advances in Neural
Information Processing Systems 34 (2021).

[20] Bowen Liu et al. “Deep learning in latent space for video prediction and compression”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021,
pp. 701–710.

[21] Jerry Liu et al. “Conditional entropy coding for efficient video compression”. In: European
Conference on Computer Vision. Springer. 2020, pp. 453–468.

[22] Ze Liu et al. “Swin transformer: Hierarchical vision transformer using shifted windows”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 10012–
10022.

[23] Guo Lu et al. “Dvc: An end-to-end deep video compression framework”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 11006–11015.

11

http://github.com/google/flax

[24] Fabian Mentzer et al. “Neural Video Compression using GANs for Detail Synthesis and
Propagation”. In: arXiv preprint arXiv:2107.12038 (2021).

[25] Alexandre Mercat, Marko Viitanen, and Jarno Vanne. “UVG dataset: 50/120fps 4K sequences
for video codec analysis and development”. In: Proceedings of the 11th ACM Multimedia
Systems Conference. 2020, pp. 297–302.

[26] David Minnen, Johannes Ballé, and George D Toderici. “Joint autoregressive and hierarchical
priors for learned image compression”. In: Advances in Neural Information Processing Systems.
2018, pp. 10771–10780.

[27] David Minnen and Saurabh Singh. “Channel-wise autoregressive entropy models for learned
image compression”. In: arXiv preprint arXiv:2007.08739 (2020).

[28] Daniel Neimark et al. “Video transformer network”. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 2021, pp. 3163–3172.

[29] Yichen Qian et al. “Entroformer: A Transformer-based Entropy Model for Learned Image
Compression”. In: arXiv preprint arXiv:2202.05492 (2022).

[30] Oren Rippel et al. “Elf-vc: Efficient learned flexible-rate video coding”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2021, pp. 14479–14488.

[31] Gary J Sullivan et al. “Overview of the high efficiency video coding (HEVC) standard”. In:
IEEE Transactions on circuits and systems for video technology 22.12 (2012), pp. 1649–1668.

[32] Chen Sun et al. “Videobert: A joint model for video and language representation learning”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 7464–
7473.

[33] Lucas Theis et al. “Lossy image compression with compressive autoencoders”. In: Interna-
tional Conference on Learning Representations (ICLR). 2017.

[34] George Toderici et al. CLIC 2020: Challenge on Learned Image Compression. http://
compression.cc. 2020.

[35] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information process-
ing systems 30 (2017).

[36] Haiqiang Wang et al. “MCL-JCV: a JND-based H.264/AVC video quality assessment dataset”.
In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE. 2016, pp. 1509–
1513.

[37] Huiyu Wang et al. “Max-deeplab: End-to-end panoptic segmentation with mask transformers”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 5463–5474.

[38] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. “Multiscale structural similarity for image
quality assessment”. In: The Thrity-Seventh Asilomar Conference on Signals, Systems &
Computers, 2003. Vol. 2. Ieee. 2003, pp. 1398–1402.

[39] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl. “Video compression through image
interpolation”. In: Proceedings of the European Conference on Computer Vision (ECCV).
2018, pp. 416–431.

[40] Ren Yang, Luc Van Gool, and Radu Timofte. “Perceptual Learned Video Compression with
Recurrent Conditional GAN”. In: arXiv preprint arXiv:2109.03082 (2021).

[41] Ren Yang et al. “Learning for Video Compression with Recurrent Auto-Encoder and Recurrent
Probability Model”. In: IEEE Journal of Selected Topics in Signal Processing 15.2 (2021),
pp. 388–401.

[42] Ruihan Yang et al. “Hierarchical autoregressive modeling for neural video compression”. In:
arXiv preprint arXiv:2010.10258 (2020).

[43] Y. Yang, S. Mandt, and L. Theis. “An Introduction to Neural Data Compression”. preprint.
2022. URL: https://arxiv.org/abs/2202.06533.

[44] Richard Zhang. “Making convolutional networks shift-invariant again”. In: International
conference on machine learning. PMLR. 2019, pp. 7324–7334.

[45] Sixiao Zheng et al. “Rethinking semantic segmentation from a sequence-to-sequence perspec-
tive with transformers”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2021, pp. 6881–6890.

[46] Yinhao Zhu, Yang Yang, and Taco Cohen. “Transformer-based Transform Coding”. In: Inter-
national Conference on Learning Representations. 2021.

12

http://compression.cc
http://compression.cc
https://arxiv.org/abs/2202.06533

NeurIPS Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] see Sec 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] see

Societal Impact in Sec 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [No] We cannot
release training data but will release code if the paper is published.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] However, we find in most experiments, multiple runs end
at similar final losses.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We specify training platform and
training times in 3.4, as well as how many models we train.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Sec 4.
(b) Did you mention the license of the assets? [Yes] See Sec 4.
(c) Did you include any new assets either in the supplementary material or as a URL?

[Yes] We will release a Github URL to our code upon publication.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We don’t release new data.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] We don’t release new data.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] No crowdsourcing or human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] No crowdsourcing or human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] No crowdsourcing or human subjects.

13

	Introduction
	Related Work
	Method
	Overview and Background
	Transformer-based Temporal Entropy Model
	Architectures
	Loss and Training Process
	Latent Residual Predictor (LRP)

	Experiments
	Data sets
	Models
	Metrics

	Results
	Comparison to State of the Art
	Synthetic data
	Visualizing certainty during decoding
	Ablations
	Runtime

	Conclusion and Future Work

