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ABSTRACT

LLM web agents now browse and take actions on the open web, yet current agent
evaluations are constrained to sandboxed environments or artificial tasks. We
introduce BrowserArena, a live open-web agent evaluation platform that collects
user-submitted tasks, runs Arena-style head-to-head comparisons, and uses step-
level human feedback to surface failure modes. Collecting and analyzing step-level
annotations on the agent traces, we identify three consistent failure modes: captcha
resolution, pop-up banner removal, and direct navigation to URLs. By constructing
targeted datasets to further study these tasks, we discover variations in how different
language models navigate these failure modes. We find, for example, that o4-mini
deploys a wider variety of strategies to circumvent captcha resolution than other
models and DeepSeek-R1 consistently misleads users about captcha resolution.
Our findings surface both the diversity and brittleness of current web agents. More
broadly, our benchmarking methodology provides an approach to evaluating and
understanding web agent failure modes at scale.

1 INTRODUCTION

Recently, with the advent of web agents such as Manus and OpenAI’s Operator (OpenAI, 2025), there
has been significant interest in the ability of large language models (LLMs) to interact and complete
tasks on diverse websites. As a result, several benchmarks have been developed to evaluate the
performance of various LLMs and agent frameworks on web browsing tasks (Yehudai et al., 2025).
Some of these benchmarks focus on agent interaction with self-hosted websites, with success on tasks
being measured using custom execution-based evaluation procedures (Koh et al., 2024). However,
“closed” benchmarks have limited task diversity (Yoran et al., 2024) because they are restricted to
only a few websites, so current benchmarks cannot serve as good tests of real-world web agents.

Limitations of current open-web evaluations: Recently, researchers have built systems that allow
agents to browse the open web (Chezelles et al., 2024; Wang et al., 2024), given the significant success
of open-ended environments for agent evaluation in other domains such as software engineering
(Wang et al., 2024) and general computer use (Bonatti et al., 2024; Xie et al., 2024). However, such
approaches still suffer from four major drawbacks. First, in such benchmarks, tasks are described
using highly specific instructions to the agent, which is unlikely to mirror how real-world users
describe and perform tasks on the open web. Second, significant engineering effort is often required
to incorporate new tasks into these systems because they often require ground-truth success criterion
for measuring task performance (Chezelles et al., 2024). This need for ground-truth success criteria
limits the types of tasks that can be evaluated within these approaches. Third, since these success
criteria are often evaluated using programs, they also serve as an entry barrier preventing non-technical
users from contributing new tasks to these benchmarks. Due to this entry barrier, most benchmarks
developed on top of such open-web environments are static, ground-truth-based benchmarks with
detailed task descriptions. Finally, existing ground-truth based benchmarks can be accessed by a
diverse range of LLMs with different levels of tool access and reasoning frameworks as long as the
final system produces the correct ground truth result. While this flexibility is helpful for comparing
across a wide range of systems, it obscures the differences in performance due to the usage of different
language models.

Our approach: A live evaluation platform using user-submitted tasks and pairwise comparison
between agents. We introduce BrowserArena, a live evaluation platform for evaluating LLM
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performance on user-submitted open-ended web agent tasks which builds off the Chatbot Arena
(Chiang et al., 2024) framework. In BrowserArena, users are requested to enter a task description,
which is then submitted to two randomly-selected LLMs that utilize the BrowserUse library (Müller
and Žunič, 2024) to interact with and navigate different websites. BrowserArena uses a similar
evaluation approach to other platforms for open-ended tasks, such as Chatbot Arena (Chi et al., 2025)
and Copilot Arena (Chiang et al., 2024): pairwise comparisons between different agents to develop
models for human preferences. This approach allows for the evaluation of tasks with ambiguous
specifications and allows users to rank agent outputs according to criteria that may be difficult to
evaluate in a ground-truth-based benchmark (such as whether the intermediate steps taken by the
agent were reasonable).

Can VLMs model human preferences on agent performance? After collecting the user-submitted
votes, we ask a new set of users to evaluate a subset of the original user-submitted tasks to measure the
variance in user preference while evaluating the same agents on the same task. We observe that there is
broad agreement with the original user-submitted preferences while taking a majority vote among the
new users’ submissions. However, despite previous work demonstrating multimodal-LLM-as-a-judge
capabilities on evaluating pair comparisons on other image-based datasets (Chen et al., 2024), our
experiments show that there is still a significant gap between human preferences and the preferences
exhibited by vision-language models (VLMs).

Identification of agent failure modes through user-submitted step-level feedback: To overcome
VLMs’ limited capabilities for evaluating agents, we present an alternative methodology using human
step-level feedback for identifying "failure modes" Brown et al. (2025); Meng et al. (2025), which
are recurring situations across different tasks where users report that LLM agent behavior did not
meet their expectations. Our approach is as follows: in our study, after a user submits a task on our
evaluation platform, we ask the same user to annotate the steps produced in both agents’ output traces
to understand where the agent may have fallen short of user expectations. Intermediate steps in agent
traces contain LLM-generated stepwise goals as well as descriptions of the actions taken during that
step. We ask users to either mark the step’s actions as correct with respect to its goal or mark it as
incorrect and explain why it is contrary to their expectations of a successful step. This approach
helps us collect more granular insights into agent behavior when compared to the simple voting
mechanism present in prior work (Chiang et al., 2024). By analyzing user-submitted annotations, we
identify three failure modes occurring within our system (captcha resolution, pop-up banner removal,
and direct navigation to URLs). We then construct targeted datasets of tasks which reproduce these
failure modes with a high frequency, and present our conclusions on the differences in language
model behavior on these failure modes. We currently plan to open-source the BrowserArena platform
codebase for collecting preference data to help identify new agent failure modes.

Our key contributions are as follows:

1. We present an evaluation platform, BrowserArena, for pairwise comparison between models
for user-submitted web-browsing tasks (Section 3).

2. We collect user preference data on 109 user-submitted tasks, using which we construct a
language model leaderboard and demonstrate a gap in existing VLMs’ ability to model
human preferences (Section 4).

3. Given VLM preference labeling unreliability, we describe a new methodology for evaluating
language model performance in web browsing by collecting step-level user annotations on
agent traces and analyzing them to identify common failure modes, which are then studied
separately (Section 5). We find, for example, that DeepSeek-R1 consistently misrepresents
its ability to close pop-up banners, despite being unable to even identify such banners (due
to its lack of multimodal capabilities).

2 RELATED WORK

Question Answering Benchmarks: Several popular web agent benchmarks formulate their tasks as
text or multimodal inputs to question-answering systems since they can be evaluated using reference
ground truth strings. AssistantBench (Yoran et al., 2024) presents a dataset of user-submitted domain-
specific text-only QA tasks which only accept strings, numbers, and dictionaries as ground truth.
WebQA (Chang et al., 2022) comprises of multi-image and complex single-image questions presented
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to the model alongside a set of positive sources and distractor sources. GAIA (Mialon et al., 2023)
presents a QA benchmark with more difficult tasks, several of which either require web browsing,
code execution, and diverse filetype reading capabilities. BrowseComp (Wei et al., 2025) comprises of
even harder QA tasks which take humans several hours of browsing to solve since the correct answers
to the questions satisfy several constraints that are difficult to evaluate. While these benchmarks
can evaluate agents’ ability to search the web for information that may be very difficult to find or
reason about data discovered via web search, they do not accurately represent how most human
users would use these models for web navigation tasks on an everyday basis and does not measure
several abilities valued by humans while navigating the web, such as navigating and taking actions
on dynamic websites.

Self-Hosted and Simulated Benchmarks: Mind2Web (Deng et al., 2023) uses real-world webpage
snapshots that include raw HTML code, DOM snapshots, and the network traffic for replaying
an interaction, but formulates the web navigation task as an action selection or element selection
task, restricting their measure of success to successfully replicating human-generated trajectories.
Other approaches have formulated the web navigation problem as Partially-Observable Markov
Decision Processes (POMDPs) with various reward mechanisms. For example, WebShop (Yao et al.,
2022) introduced a simulated environment for executing search tasks defined in natural language
on a shopping website containing products listed on Amazon, with agents only allowed to take
click and search actions with ground truth rewards based on product attributes. WebArena (Zhou
et al., 2023) introduced a benchmark for executing natural language tasks on four self-hosted clones
of popular websites with a larger action set, using both ground-truth answers and LLM-guided
fuzzy matching for evaluating agent success. WebArena has been extended for evaluating agents
on visually-grounded tasks in VisualWebArena (Koh et al., 2024), on tasks involving learning from
long-context video understanding in VideoWebArena (Jang et al., 2024), and on complex tasks
requiring mathematical reasoning and memory in WebChoreArena (Miyai et al., 2025) using similar
evaluation procedures. However, these benchmarks assign rewards based on the final output produced
by the trajectory, making it difficult to assess if the intermediate steps taken by the agent would
be considered reasonable by humans (as they assign equal rewards to two agents even if they take
different approaches to reaching the same terminal state). They also do not provide methods for
evaluating partial progress on tasks that are grounded in human preferences, instead relying on fuzzy
matching to reward models whose outputs resemble the ground truth at the end of their trajectory.

Open Web Benchmarks: Certain popular benchmarks have adapted their evaluation methodology
for evaluating web agents that can browse on the open web. WebVoyager (He et al., 2024) introduces
a benchmark comprising tasks from 15 websites, omitting websites requiring CAPTCHA or login,
developing tasks by sampling and rewriting tasks from Mind2Web (Deng et al., 2023) and prompting
LLMs to generate new tasks. However, they then have to annotate tasks with sets of possible answers,
with only 22.3% of tasks having “golden” answers that they expect not to change in the short term.
MMInA (Zhang et al., 2024) converts tasks from the WebQA dataset (Chang et al., 2022) into
multimodal multi-hop problems, annotating them with instructions, examples of other QA tasks, and
a “universe” of websites the model is allowed to visit while solving the tasks. While single-hop
tasks are evaluated using ground-truth and fuzzy-matching based evaluations, multi-hop tasks are
evaluated by marking tasks as completed only if each hop was completed correctly (by either visiting
the correct link or by collecting the desired information). Thus, despite evaluating on dynamic,
changing websites, the benchmark is restricted to evaluating tasks with respect to either ground-truth
information or human-defined trajectories, making it difficult to scale the benchmark construction
methodology to new tasks and websites (especially given the benchmark’s dependence on dynamic
web content not breaking the ground-truth human trajectories). SearchArena (Miroyan et al., 2025)
is an extension of ChatbotArena’s user-preference guided leaderboard system that allows for users
to evaluate tasks on two randomly selected LLMs augmented with search capabilities. However,
their framework is restricted to web search tasks for retrieving and summarizing information, and is
unable to evaluate web agent behavior on browser-based tasks involving taking actions on websites.
Additionally, SearchArena does not provide agent traces describing the sequence of websites visited
and actions taken on each website, making it difficult to compare partial progress on each task and
analyze step-level feedback.
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Model A Model B Tie
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Model B Agent Output

Agent Trace: <Step 1, . . .>

Rendered GIF:

Model A Agent Output

Agent Trace: <Step 1, . . .>

Rendered GIF:

Figure 1: An overview of the study procedure showing how users interact with BrowserArena.

3 BROWSERARENA EVALUATION PLATFORM

We develop the BrowserArena website by equipping ChatBot Arena’s open-source codebase (Chiang
et al., 2024) with the capabilty of submitting a task to BrowserUse (Müller and Žunič, 2024) and
visualizing the results. On visiting the website, users are presented with a text box in which to enter
a description of the task. Once the user submits their task, two LLMs are chosen at random with
uniform probability for creating the BrowserUse agents. These models are then used to construct
BrowserUse agents, which utilize independent Playwright (Microsoft, 2025) instances for automating
a Chromium browser. The LLM is permitted to choose an action from the set of actions pre-defined
by the BrowserUse controller (for a full list, see Table 1 in Appendix C). The BrowserUse agents
accept the task, previous steps, current URL, open tabs, and a list of HTML elements with associated
numeric indices, where the indices of interactive elements are distinguished from the other elements.
If the model has multimodal capabilities (all our tested models except DeepSeek-R1), it also receives
a screenshot of the current browser with an overlay labelling the rendered HTML elements with their
indices. The LLMs then output a JSON object describing the current state of the task, containing
four properties: a self-evaluation of whether the previous goal was completed, a memory property
describing what has been done so far, a goal property describing the next immediate objective, and a
sequence of actions to take.

The user-submitted task prompt is then submitted to the two BrowserUse agents, each using one
of the sampled LLMs as the model backend. Once both models finish, we present the user with
the agent outputs of the models, as well as a GIF rendering each step that the agent took on the
Playwright Chromium browser instance. Once these agent outputs are rendered on the website, users
are provided with an option to vote on which response is better.

4 EXPERIMENTAL EVALUATION

For collecting tasks on BrowserArena, we first design a user study (details described in Section
4.1) asking users to submit tasks, vote for the agent that best completed the task, and annotate the
generated agent traces. Then, using user votes, we construct a leaderboard of models . We present
our results in Section 4.2. Then, we run a study to measure human evaluator agreement on a subset of
the user-submitted tasks (detailed in Section 4.3), and demonstrate a significant gap between VLM
preferences and human preferences based on agent outputs in Section 4.4.

4.1 USER STUDY DESIGN

For our experimental study, we solicit tasks and feedback on agent performance via a survey on
Prolific. We recruit users on Prolific from United Kingdom, United States, Australia, Canada, and
New Zealand with response approval rates between 90–100%. We approved a total of 213 valid
responses, ultimately keeping 109 responses from 98 users due to system outages, logging issues,
and invalid responses. We collected responses in 3 batches, with the average of the batch median
completion times being 35:10 minutes, and payments being made at an average hourly rate of $8.01/hr.
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We provide further details about the each batch’s compensation and median completion times in
Appendix H.

We ask Prolific users to submit tasks that involve clicking and interacting with different websites
(which we call “interactive tasks”) and to explicitly avoid submitting tasks which either can be
answered by analyzing Google search result links and descriptions or can be answered by a language-
model chatbot without searching for an answer. We also caution users not to enter tasks where
the answer is easily provided within the Google search results without clicking on a website or is
an open-ended question that a chatbot can answer without clicking on any website (which we call
“search tasks”). We provide some examples to help users differentiate between the two, which we
have listed in Appendix A.

Since the goal of each step is LLM-defined, we ask users to use the agent traces and the generated
GIFs to identify steps that were executed correctly with respect to their goals, and describe where
“incorrect” steps fell short. With the help of user feedback, we analyze the agent traces and construct
a mapping between each step generated by the agent and whether it was perceived to be successfully
executed. This information is then used to identify the failure modes explored in our case study in
Section 5. Finally, users are asked to vote between the two LLM models. Unlike the original ChatBot
Arena website, we only accept “Left”, “Right”, and “Tie” votes and ignore “Both models are bad”
votes, since we are interested in measuring partial progress if both agents fail.

We then utilize the user votes to construct a model leaderboard of voter preferences. We evaluate
the performance of five models on the BrowserArena platform: DeepSeek R1, Anthropic Claude
3.7 Sonnet:Thinking, Meta Llama-4-Maverick, OpenAI o4-mini, and Google Gemini 2.5-Pro-
Preview-03-25 using the OpenRouter API platform. In our subsequent discussions, we will refer
to each of these models by the bolded portion of their names. We note that while the BrowserUse
platform supports submitting image screenshots of the webpage alongside search results and web
page structure in API calls to the model, R1, being a language model without multimodal capabilities
does not utilize the image screenshot provided.

4.2 RANKING RESULTS

By estimating the Bradley-Terry coefficients of each model (Bradley and Terry, 1952) based on the
user votes, we compute the ranks of different models using the ranking methodology described in
Chatbot Arena (Chiang et al., 2024). We provide a more detailed summary of leaderboard construction
in Appendix B. We present our leaderboard from 109 valid battles alongside our win fraction heatmap,
average win rate bar, confidence interval calculations, and a heatmap of the battlecounts in Figure 2.
Based on the user-submitted tasks, the LLM agent with the highest ELO rating is based on R1, which
surprisingly is the only model evaluated that does not have multimodal capabilities.

4.3 HUMAN EVALUATOR AGREEMENT

We evaluate how consistently humans judge head-to-head browser-agent runs on 25 randomly selected
task submissions, and find modest-to-strong agreement. For each task, annotators are shown the
same agent trace and GIF comparison used for the original task submissions, and are asked to select
between Agent 1, Agent 2, and Tie. 165 new human annotations are collected from Prolific; we
use two screening questions and participants take on-average 57 seconds to provide a selection on
a task. We compare these human aggregates to the label from the original task submission with
inter-annotator agreement, which measures how often different human evaluators make the same
choice when comparing two agent trajectories, with higher agreement indicating clearer differences
in performance between the agents. We find that the majority vote of the new human annotators has
modest agreement with the baseline labels (63.2% of questions) and modest inter-annotator agreement
(57.6%). Lower agreement is largely explained by the lack of consistency between labelers when
voting ‘tie’; the majority vote agreement goes up to 100% agreement when ‘tie’ votes are removed
and we force a majority selection between Agent 1 and 2. Similarly, the inter-annotator agreement
goes up to 83% when ties are filtered. These results suggest that differences between human agent
judgements reflect differing decision thresholds more than differing rank orderings of agents.
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Figure 2: We compute the average win rate, battle counts, bootstrapped ELO ratings, and pairwise win
fractions from 109 user-submitted tasks and evaluations on Prolific. For the ELO-based leaderboard,
we simply sort the models from highest to lowest bootstrapped ELO rating in Figure 2(c).

4.4 VLM-AS-A-JUDGE

For VLM evaluation, we use the same 25 randomly selected task submissions we use for measuring
human evaluator agreement. The original human task labels are compared to two vision-language
model judges (GPT-4o, o4-mini) that are prompted with the same input (the agent trace and GIFs)
and asked to choose between select between Agent 1, Agent 2, and Tie. As shown in Figure 3,
GPT-4o has relatively high agreement with the human annotation baseline (68%), o4-mini only
58%. Interestingly, we find that the GIFs showing the agent computer seem to be hurt GPT-4o
agreement: in input ablations, trace-only evaluation improves GPT-4o’s agreement with the baseline
annotations by 10 percentage points (79% vs. 68% with GIFs and traces), while GIF-only input
collapses performance to 48% agreement despite an increased self-reported confidence. These results
indicate that multimodality can hurt judge reliability in this setting. In summary, we find a sizable
gap in labeler agreement between VLMs and humans.
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Figure 3: Pairwise agreements between the baseline labels, the new annotators, and two vision-
languages models (GPT-4o and o4-mini; we take the majority @5).

5 PROMINENT AGENT FAILURE MODES

We use the agent traces and human feedback collected in our benchmark to surface and study three
prominent failure modes in current agents. After collecting the step-level feedback as a part of our
initial Prolific user study, we cluster and summarize the step-level annotations as described in Section
5.1. Using these clusters, we identify three failure modes where agents fail to complete tasks which
we investigate in greater detail: Captcha Solving (Section 5.2), Pop-Up Banner Closure (Section 5.3),
and Direct Navigation (Section 5.4).

To study variations in model behavior on occurrence of each of these failure modes, we use the
following general pipeline. We first construct a new larger dataset of tasks which reproduce the
failure mode scenario with a high probability when an agent attempts to complete the task. Then,
once we execute these tasks for each language model, we use o4-mini as a judge to evaluate the
traces generated by the agent and determine if the specific failure mode occurred while the agent was
executing the task. We then report aggregate statistics on how often each language model ran into
specific scenarios while executing the tasks.

5.1 DISCOVERING COMMON FAILURE MODES

We use our step-level human labels on the BrowserArena agent tasks to automatically find ‘failure
modes’ Meng et al. (2025); Brown et al. (2025), consistent mistakes an agent makes while performing
the user-submitted tasks. Three of our discovered failure modes are explored in detail in Sections
5.2-5.4. To automatically find these common failure modes, we use two methods (dataset featuriza-
tionBravansky et al. (2025) and an API-only method, Docent Meng et al. (2025)) that first cluster
the step-level labels in an embedding feature space, and then use auxiliary LLMs to summarize
these clusters; these cluster summaries, which pick out consistent agent behavior across tasks, are
the failure modes. The methods find very similar failure modes; we give the full set of discovered
failure modes found via dataset featurization in Table 2 and Docent in Figure 4(a). Our cluster and
summarization hyperparameters are described in Appendix I.

We then select the following three failure modes for a more detailed investigation from the list of
failure modes we have constructed:

1. Captcha Solving: On encountering a captcha puzzle, agents can get stuck while attempting
to solve the puzzle since the individual components of the puzzle may not be clickable
elements in the webpage’s DOM. We thus seek to study the different strategies used by
different language models to evaluate if specific models prefer different captcha-avoidance
methods to others.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2. Pop-Up Banner Closure: On encountering a pop-up banner obscuring a part of the website,
agents can be preventing from making progress on the remainder of the task due to being
unable to close the pop-up-banner. We thus study how often a language model identifies
that a pop-up banner is blocking its access to the website and successfully closes the banner
and moves ahead with its task.

3. Direct Navigation: Sometimes, agents choose to directly navigate to a website URL (hereby
referred to as the starting website) that they believe is integral for solving the task as
opposed to conducting a Google Search to collect relevant links first. This can lead to delays
in completing the task if navigating the starting website is more complex for the agent
compared to the websites which may have been selected had the model conducted a Google
search first.

5.2 CAPTCHA SOLVING

Dataset Construction: We first identify www.expedia.com as a website that is reliably blocked
by a captcha on our system when an agent attempts to visit it while solving a user-submitted task. We
then construct a dataset of 220 tasks which require interacting with or visiting the Expedia website.
20 of these tasks are constructed from human written task templates, and 200 of them are generated
by GPT 4.1 using a task generation prompt (for template and prompt details, see Appendix D).

Scenarios: We first construct a set of captcha circumvention strategies by manually examining LLM
agent traces produced by different models on some of the 20 template-based tasks. We additionally
have an LLM (o4-mini) also analyze all of these traces and identify if any other strategies have
been used for captcha navigation in these traces. We add the new strategies detected by LLM to our
existing set of strategies. Finally, we use o4-mini to identify if any strategy from our strategy set was
used in the agent traces of each of the 220 tasks that each LLM attempted to solve. For the detailed
prompt used for o4-mini to judge all the agent traces and the description of each strategy provided in
the prompt, see Appendix F.

Results: We present our results measuring the percentage of times each particular strategy was
deployed by a model in Table 3 in Appendix J. We observe that most language models show a clear
preference for the “Direct Link”, “Google Search”, and “New Tab” strategies. However, Claude 3.7
prefers the Switch Websites method much more than other LLMs, while both it and Gemini-2.5-Pro
use the “New Tab” tactic less than other LLMs (and in fact prefer the “Switch Websites” method to
it). On the other hand, o4-mini uses all the listed strategies at least once, and uses some strategies
not used at all by other language models, such as the “Text-only Rendering”, “Public Proxy”, and
“Internet Archive”. It also uses tactics such as “Cache”, “Mobile”, and “Internal Navigation” and
“Country Domain” at much higher rates than other LLMs, suggesting that it is better at getting around
captcha challenges in the event of their presence disrupting the search than other language models as
it is able to try a wider range of strategies.

5.3 POP-UP BANNER CLOSURE

Dataset Construction: We first identify www.bbc.com as a website that reliably generates a
privacy policy banner when an agent attempts to visit it while solving a user-submitted task. We
construct a dataset of 80 tasks which require interacting with or visiting the BBC website by prompting
GPT 4.1 using a task generation prompt (for template and prompt details, see Appendix E).

Scenarios: We consider three scenarios that the LLM agent may find itself in: either it did not detect
a pop-up banner while evaluating the task, it did discover a pop-up banner and successfully closed it,
and it marked the task as being completed (independent of whether it managed to progress past the
pop-up banner). We then use o4-mini to identify if any of these scenarios occurred in the agent traces
of each of the 80 tasks that each LLM attempted to solve. For the detailed prompt used for o4-mini to
judge all the agent traces and the description of each strategy provided in the prompt, see Appendix
G. For complete results of how frequently each scenario occurs for specific LLMs, please refer to
Table 4 in Appendix K.

Results: Notably, R1 seems to have never realized that a part of the website is blocked by a privacy
policy pop-up in all the times it attempts to complete the BBC agent tasks, indicating that multi-modal
reasoning ability is required for detecting the privacy policy pop-up. However, R1 marks the task as

8
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completed at the highest rate of all the LLMs, suggesting that without multimodal capabilities, it is
unable to reason that its task remains incomplete without closing the cookie banner. On the other hand,
o4-mini and Llama-4 manage to close pop-up banners at a higher rate than the remaining multimodal
LLMs, although only o4-mini marks a similar percentage of tasks as completed as compared to the
percentage of tasks for which the LLM judge determines that it closed the pop-up banner.

5.4 DIRECT NAVIGATION

Dataset Construction: We focus on a knowledge-intensive question answering task to investigate
whether agents opt to directly answer, directly navigate to relevant websites, such as Wikipedia, or
instead invoke the Google Search API. To this end, we sample 100 questions from the TriviaQA
dataset (Joshi et al., 2017), which comprises naturally occurring questions posed by trivia enthusiasts.

Scenarios: We consider two distinct scenarios that the language model (LLM) agents may encounter:
(1) the agent recognizes the question and directly answers or navigates to the corresponding Wikipedia
page; or (2) the agent lacks sufficient knowledge and first queries the web using Google Search.
For each question, we collect the agent’s execution trajectory and manually annotate the scenario
it conforms to. A summary of the distribution of scenarios across models is provided in Table 5 in
Appendix L.

Results: We observe that the most frequent behavior involves invoking the Google Search API
to retrieve relevant information using extracted keywords. In some instances—more commonly
observed with Llama-4—the agent navigates to Google.com and inputs search queries manually,
rather than using the API. In contrast, direct answering or navigation to Wikipedia pages is relatively
rare. These findings suggest that, in general, agents tend to follow the instruction and leverage Google
as the primary information source when responding to knowledge-intensive queries.

6 CONCLUSIONS

In this paper, we have presented a web agent evaluation platform, BrowserArena, for pairwise
comparison between various language models on user-submitted web browsing tasks. After collecting
user preference data on 109 user-submitted tasks, we first construct a language model leaderboard to
demonstrate user preferences between various models. Then, we demonstrate a gap between VLM
agreement and human evaluator agreement on user preferences.

This gap motivates our development of a new methodology for evaluating language model per-
formance by collecting step-level user annotations on agent traces and analyzing them to identify
common failure modes. We then provide methods to construct three targeted datasets to further study
these failure modes, and report our results on differences in model behavior when encountering these
failure modes.

7 LIMITATIONS

Our approach for standardizing language model agents involves equipping models with BrowserUse
(Müller and Žunič, 2024), which provides all models with a standard format in which to output their
goals and the action to be taken in each step. However, equipping models with different or more
powerful capabilities may help improve agent capabilities in solving tasks, which makes our results
and evaluation method dependent on the browser agent system connected to the LLM.

Additionally, another drawback is that the failure modes we discover may be system specific. We
believe that it is still useful to identify failure modes and construct targeted datasets to analyze model
behavior under similar circumstances. However, the specific tasks that trigger the failure mode may
be different depending on the system configuration - for example, it may be possible to reduce the
likelihood of encountering captchas on a particular website by using rotating proxies.

9
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A EXAMPLE TASKS PRESENTED TO USERS

Examples of Valid Interactive Tasks:

1. What are today’s top 20 headlines from CNN?
2. Compare the bus prices for one-way tickets from Boston to New York next Saturday on

different ticket purchasing websites.
3. Create a list of the top-ranked chess players on chess.com from Belgium.

Examples of Invalid Search Tasks (Alongside Why They are Invalid)

1. How do I increase my concentration while working? (This is invalid because it can be
answered using a chatbot and does not require clicking on a specific website.)

2. What is the weather today? (Google will output this answer in a box displayed at the top of
search results, again does not require clicking on a specific website.)

3. Who are the members of the Beatles? (Google provides a lot of links with the text containing
the answer to this question under those links, so you do not need to click on a website to
answer this question.)

B RANKING METHODOLOGY

We use a similar approach to other pairwise-comparison evaluation procedures for ranking models.
Here, we present an overview of the procedure in the binary preference case for M models. As
defined in (Chi et al., 2025; Chiang et al., 2024), in a sequential setting, at time t ∈ N, we first
formally define our comparative data set A = {(m,m′) : m < m′ and m,m′ ∈ [M ]}. Then, for a
pair of models At = (i, j) ∈ A, we model the human preference Ht ∈ {0, 1}, where Ht is 1 if i is
preferred over j and 0 if j is preferred over i. We then define the score function to be the vector of
Bradley-Terry coefficients β ∈ RM (Bradley and Terry, 1952). Under the Bradley-Terry model, the
probability of model i beating model j i.e. P(Ht = 1) is given as shown:

P(Ht = 1) =
eβi

eβi + eβj
(1)

The rank of a model m is then calculated as follows:

rank(β)m = 1 +
∑

m′∈[M ]

1 {βm′ > βm} (2)

The BT coefficients are then estimated via maximum likelihood estimation, with 95% confidence
intervals being calculated by bootstrapping for 100 rounds. After determining the confidence interval,
the rank of each model is estimated by computing the number of models whose lower bound is
less than its upper bound (Chi et al., 2025). This model can then be extended to cases when Ht is
not binary by estimating the BT score from a nonparametric extension of the Bradley-Terry model
(Chiang et al., 2024).
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C BROWSERUSE PERMITTED ACTIONS

Action Name Action Description

Complete Task Mark task as completed with success=True if successfully completed and success=False if at last step.
Search Google Search the query in Google on the current tab.
Go to URL Visit the specified URL in the current tab.
Go Back Go back in history to the previous website visited.
Wait Wait for x seconds where x = 3 by default
Wait for element to be visible Wait for an element specified by the CSS Selector to become visible within the specified timeout.
Click element by Index Click the HTML element specified by its numeric index
Click element by Selector Click the HTML element specified by its CSS Selector.
Click element by XPath Click the HTML element specified by its XPath path expression.
Click element with Text Click the HTML element containing the provided text.
Input Text Input the provided text into the specified input interactive element.
Save as PDF Save the current page as a PDF file.
Switch Tab Switch to a different browser tab.
Open URL in New Tab Open the specified URL in a new tab.
Close Tab Close the specified browser tab.
Extract Page Content Extract page content using an LLM prompted with the specified goal.
Save as HTML Save the raw HTML content of current page as an HTML file.
Scroll Down Scroll down by a specified pixel amount, by default scroll down one page.
Scroll Up Scroll up by a specified pixel amount, by default scroll up one page.
Send Special Keys Send special key commands (Esc, Backspace, keyboard shortcuts) to the current page.
Scroll to Text Scroll until the specified text is visible on the current page.
Get Dropdown Options Get all options from a dropdown element.
Select Dropdown Option by Text Select dropdown option using the specified text
Drag and Drop Drag and drop elements, or between coordinates of the page.

Table 1: BrowserUse actions available to LLMs, as specified in (Müller and Žunič, 2024).

D PROMPT USED FOR LLM-GENERATED CAPTCHA SOLVING TASKS

Note: While we prompt the language model to generate a 1000 tasks in most of our prompts, we
usually get between 80-100 tasks in a single response. For generating our final list tasks, we prompt
the model repeatedly and remove any duplicate tasks generated.

Model Used: GPT 4.1

System Prompt: You are a helpful task-generating agent.

User Prompt: In JSON format, generate a list of 1000 tasks for a web agent that involve navigating
to the Expedia website and searching for information. Here are some examples of the desired tasks:

1. “Find a list of activities on Expedia to do in Chicago on December 3.”
2. “Find the cheapest hotel in Houston on Expedia from August 8-12.”
3. “Find the cheapest round-trip flights between Houston and Los Angeles on Expedia from

November 10-15.”

Make sure to randomize the cities, dates, and types of tasks. Do not generate any tasks that require
the agent to take any action on the website except for searching and retrieving information. Make
sure the tasks include the phrase “on Expedia” so that the agent searches for the Expedia website.

E PROMPT USED FOR LLM-GENERATED POP-UP BANNER TASKS

Model Used: GPT 4.1

System Prompt: You are a helpful task-generating agent.

User Prompt: In JSON format, generate a list of 1000 tasks for a web agent that involve navigating
to the bbc.com website and searching for information. Here are some examples of the desired tasks:

1. “Find the top 10 headlines of the day on bbc.com.”
2. “What is the top story today in the Culture section on bbc.com.”
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3. “List all the headlines from three days ago in the innovation section on bbc.com.”

Make sure to randomize the number of days and the sections of the bbc.com website in the task. You
must only choose sections from the following list: News, Sport, Business, Innovation, Culture, Arts,
Travel, Earth, Audio, Video. Do not generate any tasks that require the agent to take any action on
the website except for searching and retrieving information. Make sure the tasks include the phrase
“on bbc.com” so that the agent searches for the bbc.com website.

F PROMPT USED FOR EVALUATING CAPTCHA ANALYSIS AGENT TRACES

Model Used: o4-mini

System Prompt: You are an LLM judge evaluating the output of an agent attempting to traverse
different websites to solve a task. The task involves navigating Expedia, a travel website which
often uses captchas to block robots from traversing the website. Your goal is to identify the captcha
avoidance strategies used by the agent. The list of captcha avoidance strategies are as follows:

1. `cache`- attempts to use Google’s cache to retrieve an unblocked version of the website.
2. `mobile`- attempts to use the mobile version of the website to retrieve an unblocked version

of the website.
3. `direct_link`- attempts to open the website by navigating directly to a link that may have

the correct website instead of searching for it on Google.
4. `google_search - attempts to conduct a Google search to identify alternative links to the

same website (without using any cache terms - if the Google search has cache terms, then
the `cache`strategy was used).

5. `randomized_interaction`- attempts to wait random amounts of time before completing an
interaction to circumvent bot detection algorithms.

6. `reloads`- reloads the website in an attempt to remove the captcha.
7. `new_tab`- attempts to open the website in a new tab to avoid any session cookies being

associated with its search.
8. `switch_websites`- switches to a non-Expedia website to solve the task instead of trying to

navigate to Expedia.
9. ’internal_navigation’ - attempts to go to the home webpage of Expedia, and navigate to the

correct webpage from the home webpage.
10. `country_domain`- attempts to use a different country domain of Expedia to retrieve an

unblocked version of the website.
11. `text-only rendering`- attempts to perform a text-only render or retrieve the plaintext version

of the website by using a proxy such as Textise.
12. `public proxy`- attempts to use a public proxy such as AllOrigins to avoid bot protection

mechanisms.
13. `internet_archive`- attempts to use the Internet Archive’s Wayback Machine to retrieve an

unblocked version of the website.
14. `google_travel_integration`- attempts to use the Google Travel integration to solve the task.

This strategy is only applicable if the term “Google Flight Integration” or “Google Travel
Integration” is mentioned in the agent’s output.

You should output a JSON string in the format `strategy_name`: `bool` which has all the keys as
strategy_names and the values as “true” or “false” depending on whether the strategy was detected in
the agent output. For example, if only the `reloads`and `new_tab`strategies were detected in the
output, your output should be:

```

{
"cache": false,

14
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"mobile": false,
"direct_link": false,
"google_search": false,
"randomized_interaction": false,
"reloads": true,
"new_tab": true,
"switch_websites": false,
"internal_navigation" false,
"country_domain": false,
"text-only rendering": false,
"public_proxy": false,
"internet_archive": false,
"google_travel_integration": false
}

```

Make sure that all the keys are present in the output, even if their value is false. Only output the
JSON string, do not include any other text, and make sure that the only keys in the JSON string are
the ones listed above. Do not include any additional keys or values in the output.

User Prompt: {Agent Trace}

G PROMPT USED FOR EVALUATING POP-UP BANNER AGENT TRACES

Model Used: o4-mini

System Prompt: You are an LLM judge evaluating the output of an agent attempting to traverse
different websites to solve a task. The task involves navigating to a website with a cookie banner,
privacy pop-up, or pop-up ad and completing the assigned task. You are provided with the task and
the agent’s output, and your goal is to identify if the agent was successful in closing the cookie banner
or pop-up ad and progressing with the task.

You should output a JSON string in the format {"banner_detected": `bool`, "banner_closed": `bool`,
"task_successfully_completed": `bool`} where the "banner_detected" key indicates whether the
agent found a cookie banner, privacy pop-up, or pop-up ad at any point while trying to complete the
task, and the "banner_closed" key indicates whether the agent successfully closed it. If no cookie
banner or pop-up ad was detected, both values should be false. The "task_successfully_completed"
key should be set to True if the agent states it successfully completed the task at the end of the trace.

Make sure that all the keys are present in the output, even if their value is false. Only output the
JSON string, do not include any other text, and make sure that the only keys in the JSON string are
the ones listed above. Do not include any additional keys or values in the output.

User Prompt: {Agent Trace}

H PROLIFIC USER STUDY COMPENSATION

We collect tasks from users in 3 batches: the 6 participants in the first batch of the pilot study were
paid $1.50 per response based on a projected median response time of 11:00 minutes for an hourly
cost of $8.17/hr. The second and third batches were paid at an hourly rate of $8.01/hr, with the 28
responses in the second batch paid at a rate of $5.40 per response based on the calculated median
response time of 40:28 minutes, while the 179 responses in the third batch were paid at a rate of
$4.69 per response based on the calculated median response time of 35:09 minutes.
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I FAILURE MODE DISCOVERY DETAILS

I.1 DATASET FEATURIZATION

We apply Dataset Featurization (Bravansky et al., 2025) to surface common failure modes from our
step-level agent task labels, following the unsupervised, two-stage pipeline of (i) feature proposal via
contrastive data–reconstruction prompts and (ii) forward selection under a reconstruction–perplexity
objective. Concretely, for each target goal string x, we draw C=5 contrastive strings {rc}5c=1 from
the corpus and prompt GPT-4o to propose K=4 short (≤20 words) binary predicates that are true of
x while (ideally) not holding for the {rc}. This contrastive step forces candidates to be discriminative
rather than generic. Pooling across N=218 goal–feedback examples yields 872 initial feature hy-
potheses. We embed each candidate (and associated step text) with text-embedding-3-small,
standardize embeddings, and perform K-means with target granularities chosen to achieve inter-
pretable coverage yielding 15, 10, 5 clusters across sweeps. From each cluster we retain one represen-
tative phrasing. We then assign binary truth values by asking GPT-4o (temperature = 0) to evaluate
every (goal string, clustered feature) pair, producing a N×K ′ binary matrix (labels “Y/N”).

The final failure modes are selected from these clusters by testing how well they allow a language
model model (Llama-3-8B) to reconstruct the step-by-step labels. Namely, we treat active features
for a text as a newline-delimited context and compute mean per-text perplexity

PPL(D | ϕ) =
1

N

N∑
n=1

PPL
(
x(n)

∣∣ctx(ϕ(x(n)))
)
,

then greedily append the feature F that most reduces perplexity, i.e.,

F = argmin
F ′

PPL
(
D

∣∣ϕ ∪ {F ′}
)
,

stopping when no candidate yields a further drop (or a feature budget is reached). Following DF, we
use a static reconstruction prompt and cache log-probabilities for texts where a feature evaluates to
FALSE to avoid redundant computation. The resulting cluster summaries instantiate the final failure
modes.

I.2 DOCENT

We also use an API-only method, Docent Meng et al. (2025), to help confirm the consistency of our
clusters and summaries across featurization methods. We pass the human-step level labels of each
agent goal, along with the prompt: Based on the step-by-step feedback metadata
on each agent step, find the failure modes where the agent fails
to complete research tasks. Be granular, e.g. not just "failure"
but "failure due to the agent not properly handling x in case y.".
The failure modes are displayed in Figure 4(a); we find significant overlap between our dataset
featurization failure modes and the Docent failure modes. To featurize the dataset, Docent uses
Claude Sonnet 4 to produce natural language summaries of our human step-level labels, two of these
(for the cookie and captcha failure modes) are presented in Figure 4(b) and (c).
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(a) Docent summarization of our human step-level labels

(b) Example individual datapoint captioning (in blue),
from the Claude Sonnet 4, for the failure mode dealing
with cookies.

(c) Example individual datapoint captioning (in blue),
from the Claude Sonnet 4, for the failure mode dealing
with cookies.

Figure 4: Failure mode identification with Docent (Meng et al., 2025).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 2: Agent failure modes found form the human step-level labels via dataset featurization
Bravansky et al. (2025), under different granularity k. Bolded rows correspond to the failure modes
we explore in detail via generated tasks in Section 5.

k Failure mode Count Share (% of total 220)

k = 5

Complex tasks with multiple steps 185 84.9
Navigation to specific website sections 116 53.2
Straightforward task sequences 65 29.8
Repeated parsing errors 54 24.8
Task completion execution errors 22 10.1
Cookie consent handling failures 12 5.5

k = 10

Specific list extraction tasks 148 67.9
Direct URL navigation attempts 77 35.3
Goal completion without failures 68 31.2
Repeated parsing errors 63 28.9
Concise task structure 58 26.6
High frequency unsuccessful attempts 57 26.1
Technical errors (non-navigation) 44 20.2
Product category focus 37 17.0
Cookie consent success 20 9.2
Inadequate human feedback 8 3.7

k = 15

Navigation to specific sections 157 72.0
Repeated task completion attempts 109 50.0
Parsing failure feedback 99 45.4
Concise task structure 79 36.2
Detailed extraction from tables 74 33.9
Goal completion without errors 67 30.7
Multiple information location attempts 65 29.8
Repeated parsing errors 51 23.4
Technical errors (non-navigation) 49 22.5
URL error references 44 20.2
Task completion execution errors 37 17.0
Travel-related task focus 36 16.5
Cookie consent success 21 9.6
CAPTCHA/verification failures 15 6.9
Inadequate human feedback 8 3.7

J CAPTCHA SOLVING STRATEGY PREFERENCES
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Captcha-Solving Strategy Gemini 2.5 o4-mini R1 Llama-4 Claude-3.7

Cache 0.00 45.45 1.82 0.00 0.00
Mobile 0.00 58.64 5.91 0.00 0.00
Direct Link 25.45 97.73 81.82 69.55 60.91
Google Search 42.73 100.00 94.55 61.36 77.27
Randomized Interaction 0.00 0.45 25.91 3.18 0.00
Reloads 9.09 3.64 27.73 12.27 1.82
New Tab 4.55 60.45 52.27 69.55 12.27
Switch Websites 15.45 5.00 31.82 22.73 60.00
Internal Navigation 0.91 40.00 22.73 0.00 0.45
Country Domain 0.45 29.09 0.91 0.00 0.00
Text-only Rendering 0.00 7.27 0.00 0.00 0.00
Public Proxy 0.00 1.36 0.00 0.00 0.00
Internet Archive 0.00 3.64 0.00 0.00 0.00
Google Travel Integration 0.00 0.45 1.36 0.00 0.91

Table 3: Percentage of times a particular captcha avoidance strategy was deployed by a model while
solving tasks in the Expedia task dataset

K POP-UP BANNER CLOSURE SCENARIOS

Pop-Up Banner Scenarios Gemini 2.5 o4-mini R1 Llama-4 Claude-3.7

Banner Detected 53.75 91.25 0.00 98.75 100.00
Banner Closed 4.65 17.81 0.00 17.72 7.5
Marked as Completed 7.5 23.75 53.75 3.75 2.5

Table 4: Percentage of times a particular pop-up banner scenario was observed in an agent’s trace
while executing tasks from the BBC task dataset. We note that the percentage in the Banner Closed
row is determined with respect to the number of tasks where the agent determines that there is a
banner as per the LLM judge. The other two rows (Banner Detected and Marked as Completed) are
computed with respect to the total number of tasks in the BBC dataset.

L DIRECT NAVIGATION ACTIONS TAKEN

Google API Google Site Wiki Direct Answer Failed

Claude-3.7 97 3 0 0 0
R1 98 2 0 0 0
Gemini 2.5 50 0 0 0 50
Llama-4 74 26 0 0 0
o4-mini 76 2 1 9 12

Table 5: Count of times agents taking different actions when asked questions from TriviaQA dataset.

M LLM USAGE

We used LLM-generated code (which was reviewed by the authors) for implementing some experi-
ments. Additionally, LLMs were used both in constructing the targeted datasets for the case studies,
and for evaluating web agent traces to classify tasks in the case studies.
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