
Published in Transactions on Machine Learning Research (06/2024)

Learning Tree-Structured Composition of Data Augmentation

Dongyue Li li.dongyu@northeastern.edu
Northeastern University, Boston

Kailai Chen chen.kailai@northeastern.edu
Northeastern University, Boston

Predrag Radivojac predrag@northeastern.edu
Northeastern University, Boston

Hongyang R. Zhang ho.zhang@northeastern.edu
Northeastern University, Boston

Reviewed on OpenReview: https://openreview.net/forum?id=lmgf03HeqV

Abstract

Data augmentation is widely used in scenarios where one needs to train a neural network given
little labeled data. A common practice of augmentation training is applying a composition
of multiple transformations sequentially to the data. Existing augmentation methods such
as RandAugment rely on domain expertise to select a list of transformations, while other
methods such as AutoAugment formulate an optimization problem over a search space of size
kd, which is the number of sequences of length d, given a list of k transformation functions.
In this paper, we focus on designing efficient algorithms whose running time complexity is
much faster than the worst-case complexity of O(kd), provably. We propose a new algorithm
to search for a binary tree-structured composition of k transformations, where each tree node
corresponds to one transformation. The binary tree generalizes sequential augmentations,
such as the one constructed by SimCLR. Using a top-down, recursive search procedure, our
algorithm achieves a runtime complexity of O(2dk), which is much faster than O(kd) as k
increases above 2. We apply the algorithm to tackle data distributions with heterogeneous
subpopulations, by searching for one tree in each subpopulation, and then learn a weighted
combination, leading to a forest of the trees.
We validate the proposed algorithms on numerous graph and image data sets, including
a multi-label graph classification data set we collected. The data set exhibits significant
variations in the sizes of graphs and their average degrees, making it ideal for studying data
augmentation. We show that our approach can reduce the computation cost (measured by
GPU hours) by 43% over existing augmentation search methods while improving performance
by 4.3%. Extensive experiments on contrastive learning also validate the benefit of our
approach. The tree structures can be used to interpret the relative importance of each
transformation, such as identifying the important transformations on small vs. large graphs.

1 Introduction

Data augmentation is a technique to expand the training data set of a machine learning algorithm by
transforming data samples with pre-defined transformation functions. Data augmentation is widely used
in settings where only a small fraction of the unlabeled data is annotated, such as self-supervised learning
(Xie et al., 2020; Chen et al., 2020b). A common practice of augmentation training is to apply a sequence of
transformations (Ratner et al., 2017; Cubuk et al., 2019; Lim et al., 2019; Zhang et al., 2020). For instance,
AutoAugment (Cubuk et al., 2019) first applies random rotation to the images, then equalizes the histogram

1

https://openreview.net/forum?id=lmgf03HeqV

Published in Transactions on Machine Learning Research (06/2024)

𝐴!

𝐴" 𝐴#

𝐴$ 𝐴% 𝐴& 𝐴'

𝑝" 1 − 𝑝"

𝑝# 1 − 𝑝# 𝑝$ 1 − 𝑝$

𝑥
𝑝!

1 Finding a tree-structured composition of transformations

𝐴!, 𝐴", … , 𝐴(

Input
Transformations

2 Learning a forest of trees for stratified subpopulations

Permuting
Edges

Dropping
Nodes

Permuting
Edges

Dropping
Nodes

Generating
Subgraphs

Figure 1: We illustrate the overall procedure of our algorithms. The input consists of k transformation
functions, denoted as A1, . . . , Ak. Given a data set, our algorithm constructs a probablistic binary tree-
structured composition of these transformations, as shown on the left. Given an input data x, A1 is applied to
map x to A1(x), with probability p1; otherwise, no transformation is applied, and x remains unchanged. Let
x′ denote the output. In the next step, we will apply A2 to x′ with probability p2, or A3 to x′ with probability
1− p2, etc. The second algorithm will first partition the entire data set into a few groups, e.g., by the sizes of
graphs, as illustrated above. Then, the first algorithm is applied to learn one tree for each partition. These
trees are weighted jointly to form a “forest” as the final augmentation scheme. A byproduct is that we can
now measure the importance of each transformation in the tree of each group. For example, we find that
permuting edges by randomly adding or deleting a fraction of edges works best for small graphs. For large
graphs, generating a subgraph by simulating a random walk works better. Notice that in an augmentation
tree, if a branch only has a single child node, it means if the transformation is not applied, then we will not
change the input or use any augmentation, which is the same as applying A(x) = x.

of each cell. The sequence of transformations to apply depends on the downstream application; For instance,
transformations that apply to colored images may not be suitable for black-and-white images. Thus, it would
be desirable to have a procedure that, given a list of transformations and a target data set of interest, finds
the most beneficial composition of transformations for that data set.

Various techniques have been introduced in prior work to overcome the computational challenge of finding
transformation compositions, which often involve solving a highly complex optimization problem with a worst-
case complexity of O(kd) (Ratner et al., 2017; Cubuk et al., 2019). Concretely, if there are k transformations,
and the goal is to find the best sequence of length d, the search space would have kd possible choices. The
abovementioned optimization methods suffer from a worst-case complexity of O(kd) because the search space
includes all the kd choices. This paper aims to revisit this issue in a range of settings of strong practical
interest by designing search algorithms whose runtime complexity is much faster than this worst-case.

As an example, we start by considering a data set of proteins with the goal of predicting their biological
activity (function), a task relevant to biological discovery (Radivojac, 2022) and precision medicine (Rost
et al., 2016). Each protein is given as a graph, with nodes corresponding to amino acid residues and edges
indicating spatial proximity between the residues in a protein’s 3D structure. Protein function prediction can
be seen here as a graph-level multi-label classification problem (Clark & Radivojac, 2011), where the presence
of a specific function indicates a binary label and proteins can have multiple functions. Since the graphs can
vary considerably in size and degree distribution, finding the right augmentation for this type of data set is
particularly challenging. On a related note, see also Zhang et al. (2022); Gao et al. (2023); Nguyen et al.
(2023) for studies on image data sets with stratified subpopulations.

Existing approaches for finding compositionality either rely on domain expertise to identify the most relevant
transformations, or tackle a hyper-parameter optimization problem over the search space (Wu et al., 2020).
For instance, reinforcement learning-based methods are one type of approach (Cubuk et al., 2019; Luo et al.,
2023), which define a reward function given an augmentation, and then search over the space of compositions

2

Published in Transactions on Machine Learning Research (06/2024)

to optimize the reward function. These methods require exploring a search space of size kd for finding a
sequence of length d. Therefore, in the worst case, the runtime complexity can still be O(kd).

The contribution of this paper is designing a faster algorithm to find a binary tree composition of k
transformations of depth d, whose running time complexity is instead only O(2dk), provably. Our empirical
results show that this complexity reduction does not come at the cost of downstream performance. The
algorithm conducts a top-down, recursive search to construct a binary tree, where each node of the tree
corresponds to one transformation. This tree structure leads to a natural notion of importance score for each
transformation, analogous to the feature importance score used in tree-based methods. Additionally, the
algorithm can be used to tackle the abovementioned scenario where the underlying data involves a mixture of
stratified subpopulations. See Figure 1 for an overall illustration of our approach.

We conduct extensive experiments on numerous data sets to validate our proposed algorithms. First, we apply
our algorithm to a newly collected graph classification data set generated using AlphaFold2 protein structure
prediction APIs (Jumper et al., 2021), containing 20,504 human proteins and 1,198 types of protein functions
listed in Gene Ontology (Ashburner et al., 2000). Compared to existing data sets in Borgwardt et al. (2005)
and Hu et al. (2020a), our data set is based on a newer source and contains a broader set of protein functions.
We find that our algorithm can outperform RandAugment which does not search for composition by 4.3%.
Compared to recent augmentation optimization methods such as GraphAug (Luo et al., 2023), our algorithm
reduces its runtime by 43% and achieves 1.9% better performance. Second, we evaluate our algorithm in
contrastive learning settings. Compared to the augmentation method of Chen et al. (2020b), the performance
is on par with natural images such as CIFAR-10. On a medical image classification data set, our algorithm
can find a better augmentation scheme that outperforms SimCLR by 5.9%. Finally, we justify the design of
our algorithm through a detailed ablation analysis. The details can be found in the experiments section.

To summarize, we list the main results of our paper as follows:

• We design an algorithm whose worst-case running time complexity is O(2dk), where k is the number
of input transformations and d is the length of the composition. This is a significant improvement
compared to the worst-case complexity of O(kd) (e.g., when k > 10 and d > 3).

• We use the algorithm to tackle data distributions that involve a mixture of heterogeneous subpopula-
tions, by first partitioning the data set into several groups, e.g., according to the graph sizes. The
algorithm is tested on a newly collected graph classification dataset and a few other benchmark data
sets, reducing runtime while showing improved performance compared to several search methods.

• We construct a new multi-label graph classification data set, which contains a wide spectrum of
graph sizes and degrees, making it ideal for studying data augmentation in future work.

1.1 Related Work

Motivated by the computational considerations around AutoAugment, active sampling has been used to
accelerate the search procedure in data augmentation training (Wu et al., 2020). Besides, bilevel optimization
(Benton et al., 2020), which applies a weighted training procedure on the augmentations, is another effective
approach. Yang et al. (2022) introduce an adversarial training objective to find hard positive examples.
Hounie et al. (2023) formulate data augmentation as an invariance-constrained learning problem and leverage
Monte Carlo Markov Chain (MCMC) sampling to solve it. It is worth noting that the tree structures we are
proposing in this work can be adopted as the base compositionality in all of these optimization frameworks.
Further exploring the utility of tree structures would be an interesting direction for future work.

Apart from supervised learning, data augmentation plays a crucial role in contrastive learning (You et al.,
2020). The invariance introduced by data transformation methods can serve as a regularizer in self and
semi-supervised learning techniques (Xie et al., 2020). Related to graph structures, there is a line of work
on model robustness to graph size shifts by comparing local graph structures (Yehudai et al., 2021), or by
applying regularization on representation distances between different sizes (Buffelli et al., 2022) (see the
discussion in Ju et al. (2023) for further references). In particular, Li et al. (2023) and Nippani et al. (2023)
design multitask learning algorithms to improve the robustness of learning under distributional shifts or data

3

Published in Transactions on Machine Learning Research (06/2024)

imbalance. Our work contributes to this line of literature by developing a simple, efficient data augmentation
search procedure. Besides, there has been developments on novel use cases of higher-order graph structures
in graph neural networks (Chien et al., 2022), and spectral clustering within a Superimposed Stochastic
Block Model (Paul et al., 2023). Specific to graph contrastive learning, little is known regarding the use of
higher-order graph structures. Further fleshing this out may be a promising avenue for future work.

Even though data augmentation has generally been quite useful in practice, the theoretical understanding
of data augmentation training is relatively scarce. Part of the challenge is that the data augmentation
training paradigm violates the independent sampling assumption typically required by supervised learning.
For instance, suppose one would like to understand how a sequence of transformations, like rotation, cropping,
etc., to an image, affects the downstream performance. This would require modeling such transformations
within the data augmentation paradigm. There have been few developments in this direction. Dao et al.
(2019) model the behavior of stochastic augmentation in a Markov chain, and reason about its behavior more
precisely using kernel methods. Chen et al. (2020a) develop a group-theoretical framework modeling data
augmentation. Their framework applies to the family of label-preserving transformations. Wu et al. (2020)
categorize the generalization effects of linear transformations using a bias-variance decomposition and study
their effects on the ridge estimator in an over-parameterized linear regression setting. Shao et al. (2022)
develop a PAC-learning framework for transformation-variant hypothesis spaces.

Specific to the approach taken by this paper, we note that greedy recursive partitioning is a known method
for constructing decision trees. There are studies, albeit in a very different setting, on the approximation
ratio of the greedy search for constructing trees (e.g., Adler & Heeringa (2008); Gupta et al. (2017)). It is an
interesting question to revisit these results in the setting of designing tree data augmentation.

Organization. We start with our problem setup in Section 2. Then, we describe the proposed algorithms
in Section 3. We will also give some examples of the algorithms to illustrate their design. Next, we present
the empirical evaluations in Section 4, with a detailed comparison to existing approaches. The Appendix
includes theoretical derivations and analysis omitted from the main text.

2 Learning Composition of Data Augmentation

This section describes the problem setup for learning a composition of transformations. Consider a prediction
problem where the goal is to map an input feature vector x ∈ X to a label y ∈ Y. We have access to a data
set P̂ , which includes a list of examples (x, y) drawn independently from an unknown distribution P over
X × Y. Given k transformation functions, denoted as A1, . . . , Ak, each transforms an input feature vector
from X → X . The problem is to find a composition Q of a subset of the k functions, such that a model fθ

is learned to minimize the loss, denoted as ℓ, of the augmented examples. For example, in the case that ℓ
is the cross-entropy loss over C classes, it maps from RC × Y → R. We will design Q with a probabilistic
distribution over sequences of compositions. Concretely, let τ be a sequence sampled from Q. The learning
objective can be written as:

L(fθ;Q) = E
(x,y)∼P

E
τ∼Q

[ℓ(fθ(τ(x)), y)].

When the underlying distribution involves several groups of stratified subpopulations, we can write the above
objective as a mixture of losses over the groups. Let m denote the number of groups and let G = {1, . . . ,m}
denote the set of group labels. Let Pg denote the data distribution of P restricted to group g. For our context,
it is sufficient to think that the group labels are available during training and testing time. For this setting,
the learning objective becomes

L(fθ;Q) =
m∑

g=1
qg · Lg(fθ;Q), where Lg(fθ;Q) = E

(x,y)∼Pg

E
τ∼Q

[ℓ(fθ(τ(x), y)] , (1)

and qg ∈ (0, 1) indicates the proportion of examples coming from group g. Besides this empirical risk
minimization setup, an alternative min-max optimization is studied in robust optimization (Zhang et al.,
2022; Nguyen et al., 2023). We note that the ideas to be presented next can also be used in this min-max
formulation.

4

Published in Transactions on Machine Learning Research (06/2024)

Color
Distortion

𝑝
Random
Cropping

Gaussian
Blur

𝑝

𝑝

Figure 2: Illustrating a sequential aug-
mentation scheme (Chen et al., 2020b).

One type of compositionality is using a probabilistic sequence. We
illustrate such an example in Figure 2, used in SimCLR (Chen et al.,
2020b). This example applies “random cropping” with probability p.
With probability 1− p, the input is not changed, and is pushed to
“color distortion,” and finally “Gaussian blurring.” The probability
value of each transformation indicates the likelihood of applying it at
that step. More generally, consider a sequence of length d, denoted
as (A1, p1), (A2, p2), . . . , (Ad, pd), where each Ai is associated with
pi ∈ [0, 1]. The transformations are applied sequentially from the
first node to the last node, each in a probabilistic way. For example,
if Ai is not applied, then the input to Ai remains unchanged and is
passed to the next node, similar to a skip connection, and so on.

In this paper, we will consider the family of binary tree-structured compositions, which naturally generalizes
the sequence illustrated in Figure 2. We define the compositionality as a binary tree. With depth d, there
will be 2d − 1 nodes in total. Each node is associated with a transformation Ai and the probability value pi,
indexed from i = 1, . . . , 2d − 1. Given such a tree, we apply the transformations from the root node to one of
the leaf nodes. For instance, after applying Ai, the augmentation proceeds to either the left or right node. A
special case is when the node itself is the identity mapping. In such cases, the transformation will terminate
at that point.

We now elaborate on the computational cost of existing methods. AutoAugment (Cubuk et al., 2019) uses
reinforcement learning as the search method to find a composition that optimizes the validation performance.
This method takes many GPU hours to search for a composition with depth d = 2 out of k = 16 augmentations
on CIFAR-10. Fast AutoAugment (Lim et al., 2019) uses Bayesian optimization as the search method. Both
of these two methods use a worst-case search space of O(kd). Instead of searching in a discrete space,
Chatzipantazis et al. (2023) parameterizes the composition space with O(kd) continuous variables, and then
uses SGD to optimize the model weights and these variables jointly.

3 Our Proposed Algorithms

We now present our algorithm for learning tree compositions. Our algorithm conducts a greedy search from
the root to one of the leaves. We will provide illustrative examples to validate this algorithm. Then, we
extend the algorithm to a setting involving multiple subpopulations. We will design a weighted, probabilistic
combination of the trees in a forest.

3.1 Learning Tree-Structured Composition

We consider a top-down binary search procedure inspired by the recursive binary splitting of building a
decision tree. The procedure searches from the root of a tree and iteratively finds one augmentation in one of
the empty leaf nodes. A node would indicate a new branch of two nodes to build the tree further.

For a particular node i in the tree, we search for the choice of Ai and pi that leads to the best improvement in
the validation performance, such as cross-entropy loss. Each search iterates over all possible transformations
A1, . . . , Ak and a discrete list of probabilities. We include A(x) = x, namely identity mapping, to one of the
k transformations. Naively optimizing the validation performance requires training O(k) models for each
choice and choosing one via cross-validation. This can be slow when k is large.

We enhance the efficiency of each search step by employing a density matching technique, without repeatedly
training multiple models. This method has been used in prior work (Lim et al., 2019). Specifically, we train
one model with the current tree, denoted as fθ⋆ . Then, for each choice of A and p, we incorporate them at
position i of the current composition and evaluate the performance of fθ⋆ on n augmented examples generated
by applying the new composition to the validation set. Denote a tree composition as T . We measure its

5

Published in Transactions on Machine Learning Research (06/2024)

performance on a validation set of size n as:

Lval(T) = 1
n

n∑
i=1

E
τ∼T

[ℓ(fθ⋆(τ(xi)), yi)]. (2)

Thus, each search only trains one model, with O(k) evaluations of adding each transformation to position i
of T . Empirically, we find that density matching identifies the same tree as fully-trained models on a protein
graph data set and another image classification dataset. We evaluate the relative residual sum of squares
error between Lval(T) and that of training a model for each transformation. We find that the gap is ≤ 0.7%.

This concludes the search procedure for a single tree node. We will repeat the same procedure for all the
other nodes of the tree:

• When a child node is added with transformation Ai and probability pi, the other child node of the
same parent node should find a transformation from one of the k input ones, and apply the chosen
transformation with probability 1− pi. In other words, the probability value 1− pi will be fixed.

• The process continues until the tree reaches a pre-specified depth d, or until Lval no longer improves
after adding any transformation.

We summarize the complete procedure in Algorithm 1.

Algorithm 1 A top-down recursive search procedure for finding a binary tree-structured data
augmentation scheme
Input: k transformation functions A1, A2, . . . , Ak (including identity mapping), training and validation sets
Require: Maximum tree depth d; A list H of probability values
Output: A probabilistic, binary tree-structured composition T of {A1, A2, . . . , Ak}

1: Initialize T = {}, V = {1}, Lval =∞
2: while depth(T) ≤ d and V is not empty do
3: Randomly choose i ∈ V , let Ai, pi, L

(i)
val ← Build-one-node(i, T), then remove i from V

4: Add Ai, pi to index i of T /* If Ai is the identity mapping, it means no improvement is found */
5: if L(i)

val < Lval then
6: Update Lval ← L

(i)
val and V ← V ∪ {2i, 2i+ 1}

7: end if
8: end while
9: return T

10: procedure Build-one-node(i, T)
11: Train a model with T denoted as θ⋆

12: if i’s has a sibling node that is in T then
13: Let p = 1− pk, where k is the index of the sibling node of i
14: for j ∈ {1, . . . , k} do
15: Add (Aj , p) to at position i of T and evaluate Lval(T)
16: end for
17: else
18: for j ∈ {1, . . . , k} and p ∈ H do
19: Add (Aj , p) to position i of T and evaluate Lval(T)
20: end for
21: end if
22: return (Aj , p) achieving the lowest Lval
23: end procedure

Importance scores. The tree structures allow us to interpret the relative importance of each transformation,
analogous to feature importance scores used in tree-based methods. Concretely, we can measure the usefulness

6

Published in Transactions on Machine Learning Research (06/2024)

of each transformation by the amount by which it reduces Lval, added across all of its appearances in the
tree. Thus, a higher score indicates that a transformation contributes more to reducing the loss. We will
refer to this as the importance score of a transformation and measure it in the experiments later on.

3.1.1 Running Time Analysis

We examine the running time of building a single tree. At depth d, the number of search steps is at most
2d − 1, the maximum size of the tree. Each step involves training one model and iterating over the list of
k transformations and probability values. Thus, the overall procedure takes O(2dk) time to complete the
search. By contrast, the worst-case complexity of existing methods scales as O(kd) which is the space of all
possible sequences of length k. We present the comparison in Table 1.

Table 1: Summary of comparisons between our approach and previous optimization algorithms to search for
compositions of data augmentations. We use d to denote a composition’s length and k to denote the number
of transformations to the input.

Method Running Time Compositionality

AutoAugment (Cubuk et al., 2019) Reinforcement Learning O(kd) Sequences
Fast AutoAugment (Lim et al., 2019) Bayesian Optimization O(kd) Sequences
SCALE (Chatzipantazis et al., 2023) Stochastic Gradient Descent O(kd) Sequences
Algorithm 1 (Ours) Binary Search O(2dk) Forest of Trees

3.1.2 Illustrative Examples

Next, we give an example of running our algorithm before getting further into the technical details. We will
illustrate its runtime as well as previous methods’s runtime. We train WideResNet-28-10 on CIFAR-10 and
CIFAR-100 in supervised learning, following the setting of AutoAugment. We use k = 16 transformations,
each with five values of perturbation scales (Cubuk et al., 2019), including ShearX/Y, TranslateX/Y, Rotate,
AutoContrast, Invert, Equalize, Solarize, Posterize, Contrast, Color, Brightness, Sharpness, Cutout, and
Sample Pairing. As for H, we set it as 0, 0.1, 0.2, . . . , 1.0. We use a reduced set of randomly sampled 4, 000
examples as the training set during the search. After the search, we train a model on the full data set and
report the test performance. For each algorithm, we report the runtime using an Nvidia RTX 6000 GPU.

The results are shown in Table 2. Our algorithm uses 4.7 GPU hours to complete, reducing the runtime by
51% compared to the existing methods. Meanwhile, the test performance remains close to the methods.

Table 2: We compare our algorithm with several existing approaches, trained from randomly initialized
WideResNet-28-10 on CIFAR-10 and CIFAR-100. We report the number of GPU hours of the search on a
single GPU. We also report the error rate on the test set, averaged over five random seeds.

CIFAR-10 CIFAR-100
GPU hours Error rates (%) GPU hours Error rates (%)

AutoAugment ≥5000 2.6±0.1 ≥5000 17.1±0.3
Fast AutoAugment 19.2 2.7±0.1 19.6 17.3±0.2
SCALE 9.6 3.3±0.1 9.6 17.3±0.1
Algorithm 1 (Ours) 4.7 3.1±0.1 4.7 17.3±0.1

Next, we show an example of using augmentation composition for training ResNet-50 on CIFAR-10 in
contrastive learning (Chen et al., 2020b). We use seven transformations, including Random Cropping, Cutout,
Rotation, Color Distortion, Sobel filtering, Gaussian noise, Gaussian blur, and the same H.

Figure 3 shows the tree found by our algorithm. Interestingly, this tree shares three nodes, as in SimCLR,
which is carefully designed by domain experts. The tree begins by applying random cropping and color
distortion, similar to SimCLR augmentation. Then, the tree uses Gaussian blur as one branch but adds
rotation as another branch. As shown in Table 2, this is comparable to the tree illustrated in Figure 2.

7

Published in Transactions on Machine Learning Research (06/2024)

Color
Distortion

𝑝 = 1.0
Random
Cropping

Gaussian
Blur

𝑝 = 0.6

𝑝 = 0.4

Rotation

𝑝 = 0.6

Identity
Mapping

𝑝 = 0.4

𝑥

Figure 3: Illustrating the binary tree returned by Algorithm 1, conducted on CIFAR-10. On the right branch,
no further transformation is applied after the identity mapping.

Lastly, we also find that the top-down search performs comparably to the exhaustive search of all possible
trees of depth two. On several image and graph classification data sets, the greedy search is only 0.4% below
the test result of the exhaustive search on average.

3.2 Learning a Forest of Trees

With the efficient search procedure, we proceed to study the case of learning from multiple subpopulations.
We start by presenting a motivating example, showing that learning a single tree does not suffice. We
conduct experiments on a protein graph classification data set. The problem involves multiple binary-labeled
classifications, aiming to classify proteins into their protein functions, each treated as a zero-one label. Since
labeling the protein functions requires domain expertise, we could only obtain about 4e−3 labels of all the
unlabeled data. We will design data augmentation schemes to generate synthetic labels based on the labeled
examples. The dataset exhibits significant variations in graph sizes and degrees. The sizes of the graphs range
from 16 to 34,350 nodes, and the average degrees range from 1.8 to 9.4. In the experiment, we will divide the
data set into 16 groups, which corresponds to 16 intervals of sizes and average degrees. We will use graph
neural networks as the base learner (Hu et al., 2020b). We consider four augmentation methods, including
DropNodes, PermuteEdges, Subgraph, and MaskingNodes, as in You et al. (2020). We use the same list H.

We first find a tree by minimizing the average loss. We also apply this to each group and compare it with a
model trained without augmentation. For graphs with less than 200 nodes or an average degree of less than
0.1, just minimizing the average loss can lead to a worse result than stand-alone training.

Next, we search for one tree in each group, across all groups. For each group, we run Algorithm 1 to construct
a tree. Notice that the data we use for executing this step is separate across groups. Hence, there is no
synchronization performed on different groups. In other words, the models trained in each group will not be
reused in training other groups (or in the weighted training step later). This leads to some heterogeneity
in the tree structure we obtain for different groups. To give an example, in Figure 4, we plot two trees,
corresponding to a group of the smallest sizes and another group of the largest sizes. The latter uses larger
scales and one more step. We find that “Permuting Edges” and “Dropping Nodes” are used on the small-sized
graphs, which remove randomly sampled edges and nodes, respectively. Meanwhile, all the transformations
are used on the large graphs, including “Generating Subgraph,” which extracts a subgraph by random walks,
and “Masking Nodes,” which randomly masks a fraction of node attributes to zero. We also report the
importance score of each transformation. In Figure 4a, “Permuting Edges” has the highest importance score.
Whereas in Figure 4b, “Generating subgraph” has the highest importance score.

We give another example from an image classification data set. This dataset contains three groups of images
with different colors and backgrounds. We illustrate the trees found for one group of colored images and
another group of black-and-white images. We note distinct differences between the two trees. Transformations
that alter the color distributions, such as Auto Contrast, Solarize, and Color Enhancing, are applied to the
colored images. In contrast, transformations applied to black-and-white images modify the grayscale or
shape, including Equalize, TranslateY, and Posterize. Additionally, for the colored images, the Auto Contrast
transformation has the highest importance score, while for the black-and-white images, Equalize has the
highest importance score. These observations validate that augmentation schemes vary across groups.

8

Published in Transactions on Machine Learning Research (06/2024)

Dropping
Nodes

𝑝 = 0.2

Permuting
Edges

𝑝 = 0.6

Score: 0.12

Score: 0.02

𝑥

Identity
Mapping

𝑝 = 0.8

Identity
Mapping

𝑝 = 0.4

Score: 0

(a) Augmentation tree found on small graphs
with the number of nodes less than 200.

Permuting
Edges

𝑝 = 0.6

Generating
Subgraph

Dropping
Nodes

𝑝 = 0.6

𝑝 = 0.6

Dropping
Nodes

𝑝 = 0.4

Permuting
Edges

𝑝 = 0.2
Masking
Nodes

𝑝 = 0.8

Score: 0.26

Score: 0.03Score: 0.04

Score: 0.01

𝑥

Identity
Mapping

𝑝 = 0.4

Identity
Mapping

𝑝 = 0.4

Score: 0

(b) Augmentation tree found on larger graphs with the number of
nodes larger than 600.

Figure 4: The augmentation trees found from different groups can vary dramatically. On a protein graph
classification data set, the augmentation tree on small graphs (left) involves fewer augmentation steps than
the tree found on large graphs (right). We also report each augmentation’s importance score, computed from
the validation set. To clarify, after the identity map, i.e., A(x) = x, no further transformation will be applied.

Solarize

𝑝 = 0.4

Color
Enhancing

𝑝 = 0.6

𝑝 = 0.8

Auto
ContrastScore: 0.21

Score: 0.11 Score: 0.09

Identity
Mapping

𝑝 = 0.2
𝑥

Score: 0

(a) Augmentation tree found on colored images.

TranslateY

𝑝 = 0.8

Posterize

𝑝 = 0.2

𝑝 = 0.6

EqualizeScore: 0.64

Score: 0.25 Score: 0.09

Identity
Mapping

𝑝 = 0.4
𝑥

Score: 0

(b) Augmentation tree found on black-white images.

Figure 5: Illustrating the trees found between colored images and black-white images on an image classification
data set. The tree on the left involves different transformations compared to the right.

3.2.1 Learning the Weight of Each Tree

With one tree learned for each group, we next unify the trees through weighted training of a new model fθ

and the weight of each group. For each group g, denote the augmentation tree as Qg, for g = 1, 2, . . . ,m.
Consider a bilevel optimization problem:

min
w,θw

L̂(fθw), such that θw ∈ arg min
θ

m∑
g=1

wgL̂g(fθ;Qg). (3)

where the loss of group i is associated with a weight wi ∈ R(0, 1), and
∑m

i=1 wi = 1. We write objective (3)
as a function of θw:

min
w∈Rm

L̂(fθw) =
m∑

g=1
qg · L̂g(fθw ;Qg). (4)

We derive the gradient of objective (4) with respect to w. This is achieved by applying the chain rule and
computing the gradient of θw, for any i = 1, . . . ,m:

di := ∂L̂(fθw)
∂wi

= −
(

m∑
g=1

qg∇θL̂g(fθw ;Qg)
)⊤

H−1∇θL̂i(fθw ;Qi), where H =
m∑

g=1
wg∇2

θL̂g(fθw ;Qg). (5)

We defer the complete derivation to Appendix A. di can be viewed as a similarity value of group i compared
to the averaged group, normalized by Hessian inverse.

9

Published in Transactions on Machine Learning Research (06/2024)

We will use alternating minimization to update both θ and w. Let the model parameters and weights at
iteration t be θ(t) and w(t).

• With a fixed w(t), update the model parameters from θ(t) to θ(t+1) by running α SGD steps:

min
θ

m∑
g=1

w(t)
g · L̂g(fθ;Qg).

• With a fixed θ(t+1), obtain the gradient d(t)
i from equation (5). Then, update w(t)

i as:

w
(t+1)
i =

w
(t)
i exp

(
− ηd(t)

i

)
∑m

j=1 w
(t)
j exp

(
− ηd(t)

j

) . (6)

Taken together, we summarize the complete procedure for learning a unified augmentation scheme in Algorithm
2. To recap, the final augmentation scheme is a probabilistic mixture of m trees, one for each group.

Algorithm 2 Learning a forest of trees from a mixture of subpopulations
Input: k transformations A1, A2, . . . , Ak; Training/Validation splits of m groups
Require: Number of iterations S, SGD steps α, learning rate η
Output: m trees with a probability value for each tree: (Q1, w1), (Q2, w2), . . . , (Qm, wm); Model weight θ⋆

1: for g = 1, . . . ,m do
2: Compute an augmentation scheme Qg for group g using Algorithm 1
3: end for
4: Initialize model parameters θ(0); Set weight variables w(0) as the uniform proportions [1/m, . . . , 1/m]
5: for t = 0, . . . , S − 1 do
6: Update θ(t) with α SGD steps to get θ(t+1)

7: Update w(t+1) from w(t) according to equations (5) and (6)
8: end for
9: return (Q1, w

(S)
1), (Q2, w

(S)
2), . . . , (Qm, w

(S)
m); θ(S)

In Appendix 2, we provide a generalization bound to justify the consistency of this procedure. We demonstrate
that the generalization error of the model trained by Algorithm 2 is bounded by a bias increase term from
transferring from across different groups, and a variance reduction term from data augmentation. The proof
technique involves carefully analyzing the bilevel optimization algorithm using covering numbers, which builds
on the transfer exponent framework of Chen et al. (2022) and the work of Hanneke & Kpotufe (2019).

3.2.2 Running Time Analysis

Next, we examine the runtime of the weighted training step. Compared to SGD, the algorithm includes
updating the group weights using equations (5) and (6). This step involves computing Hessian inverse and
the product between Hessian inverse with the gradient of each group. To avoid explicitly computing Hessian
inverse, we use the following method:

• First, estimate the inverse Hessian-gradient vector s := H−1v, where v =
∑m

g=1 qg∇θL̂g(fθw).
We apply conjugate gradient with stochastic estimation. We samples n data points {(xj , yj)}n

j=1,
recursively computing

Ajv = v + (I −∇2
θL(fθ(xj), yj))Aj−1v,

and takes Anv as the final estimate of H−1v. For n data points and θ ∈ Rp, this procedure takes
O(np) time.

• Secondly, compute di = −s⊤∇θL̂i(fθw ;Qi). Since there are m groups, this step takes O(mp) time.

10

Published in Transactions on Machine Learning Research (06/2024)

Taken together, updating the group weights takes O(np + mp) time. In our implementation, we conduct
the above estimation using one batch of b data points from each group, leading to a running time of
O(bmp+mp) = O(bmp).

Empirically, we find that the running time is comparable to SGD. To illustrate, we train a three-layer graph
neural network for protein graph classification. Running the above update takes 1.8 GPU hours, which is
1.1× of SGD, which takes 1.6 GPU hours. On another image classification data set for training ResNet-50,
the runtime is 0.8 GPU hours, 1.3× of SGD, which takes 0.6 hours.

Lastly, we illustrate the convergence behavior in Figure 6. The loss curves on both data sets behave similarly
to SGD, with weighted training achieving a lower test loss.

0 25 50 75 100
Number of epochs

0.0

0.5

1.0

1.5

L
os

s

Test loss: SGD

Test loss: Alg. 2

Training loss: SGD

Training loss: Alg. 2

(a) Training a three-layer GNN for graph classification

0 5 10 15 20
Number of epochs

0

2

4

6

8

L
os

s

Test loss: SGD

Test loss: Alg. 2

Training loss: SGD

Training loss: Alg. 2

(b) Training a ResNet-50 for image classification

Figure 6: Showing the loss curves of both weighted training and SGD. The left figure shows the results of
training a three-layer neural network on protein graph classification. The right figures show the result of
training a ResNet-50 on image classification.

4 Experiments

In this section, we evaluate the performance of Algorithm 2 for numerous data sets in terms of both the runtime
and the performance of the augmentation. We will consider both supervised and self-supervised learning
settings. In particular, we will compare our method with existing optimization methods for augmentation
training. We will also compare with schemes designed based on domain knowledge, such as RandAugment
(Cubuk et al., 2020) and SimCLR (Chen et al., 2020b). The results are broadly relevant to learning with
little labeled data, with a particular focus on graphs and images. We summarize a few key findings as follows:

• In supervised learning settings with both graph data sets (such as protein graphs) and image data sets
(such as medical images), our approach can outperform augmentation search methods on the graph
classification data set by 1.9% with 43% less runtime and on the image classification data set by
3.0% with 38% less runtime. Compared to RandAugment which does not search for a composition,
we note 4.3% and 5.7% better performance, respectively.

• For contrastive learning settings, we can now get up to 7.4% improvement across eight graph
and image data sets. The runtime is also reduced by 32%. Compared to SimCLR (see Figure 3),
the augmentation scheme can deliver comparable performance on CIFAR-10. On a medical image
classification task, we now find a new scheme that outperforms SimCLR by 5.9%.

• We verify that the improvement is statistically significant, by conducting the Wilcoxon signed-rank
test on the performance of our algorithm compared to the baselines across ten datasets. When
comparing our algorithm with the recent augmentation search method and with RandAugment, the
test yields p-values of 0.0025 and 0.0019, respectively. This indicates that the probability of our
algorithm showing no improvement is less than 1%.

• Lastly, we provide ablation studies to justify the design, including finding the tree for each group
and the weighted training, for achieving the final performance.

11

Published in Transactions on Machine Learning Research (06/2024)

Our code for reproducing the experiments is available at https://github.com/VirtuosoResearch/Tree-data-
augmentation, which also includes instructions for loading the new dataset.

4.1 Experimental Setup

We apply our algorithm to two settings. The first setting is supervised learning, which uses data augmentation
to generate labeled examples. The second setting is contrastive learning, which uses data augmentation to
generate contrastive examples.

Data sets. For supervised learning, we construct a graph classification data set for protein function prediction
collected from the AlphaFold Protein Structure Database.1 This data set includes 20,504 human proteins
structured as undirected graphs, where nodes correspond to amino acid residues labeled with one of 20 amino
acid types. The edges are the spatial distances between two amino acids thresholded at 6Å between two Cα
atoms. The problem is multi-label classification containing 1,198 protein functions, each function viewed as a
binary label. We split the data set into 16 groups using intervals of graph sizes and average degrees. The idea
is to group graphs of similar sizes together. To determine the optimal number of groups, we experiment with
dividing the graphs into 4, 9, 16, and 25 groups, corresponding to splitting graph sizes and average degrees
into 2, 3, 4, and 5 intervals, respectively. Increasing m beyond 16 did not lead to any benefit. Therefore, we
restrict m to less than 16.

The main difference between our data set and previous data sets (Borgwardt et al., 2005; Hu et al., 2020a)
is the coverage of protein functions. The data set from Borgwardt et al. (2005) predicts whether a protein
is an enzyme as a binary classification task. The data set from Hu et al. (2020a) classifies a protein into
37 taxonomic groups as different species as a multiclass classification problem. Our data set involves 1,198
protein functions using Gene Ontology (GO) annotation. Another difference is in constructing the graphs.
Borgwardt et al. (2005) and our data set abstract the structure of the protein itself as a graph. Hu et al.
(2020a) constructs the graph based on a relationship between proteins in protein association networks. The
third difference is that the graphs in our data set exhibit more significant variations in their sizes, ranging
from 16 to 34, 350. This comparison is summarized in Table 3.

Table 3: Comparison of our protein graph classification data set to two existing data sets. Our data set is
constructed from a newer data source and covers a broader range of (protein) functions than previous ones.

PROTEINS OGBG-PPA Our Data Set
Graphs 1113 158, 100 20, 504
Functions 2 37 1, 198
Nodes 4 ∼ 620 50 ∼ 300 16 ∼ 34, 350
Avg. Degree 3.4 ∼ 10.1 2.0 ∼ 240.9 1.8 ∼ 9.4
Category Binary classification: whether

or not the protein is an enzyme
Multi-class classification for 37
species, e.g., mammals, bacte-
rial families, archaeans

Multi-label classification for
1,198 GO terms that describe
biological functions of proteins

Graph Type Attributed and undirected
graphs, where nodes represent
secondary structure elements
(SSE), and edges represent spa-
tial closeness

Undirected graphs of protein
associations, where nodes rep-
resent proteins and edges in-
dicate biologically meaningful
associations between proteins.

Undirected graphs, where
nodes represent the amino
acids and edges represent their
spatial distance thresholded at
6Å between two Cα atoms

Data Source Protein data bank Protein association network AlphaFold APIs

Next, we consider an image classification task using the iWildCam data set from the WILDS benchmark
(Beery et al., 2021), where images are collected from different camera traps with varied illumination, camera
angles, and backgrounds. The problem is multi-class classification: given a camera trap image, predict the
labels as one of 182 animal species. We evaluate the macro-F1 score on this data set, which is the averaged
F1 score over every class. We consider three groups from three cameras with the most images.

1https://alphafold.ebi.ac.uk/

12

https://github.com/VirtuosoResearch/Tree-data-augmentation
https://github.com/VirtuosoResearch/Tree-data-augmentation
https://alphafold.ebi.ac.uk/api-docs

Published in Transactions on Machine Learning Research (06/2024)

For contrastive learning, we consider image classification, including CIFAR-10 and a medical image data
set containing eye fundus images for diabetic retinopathy classifications. This is a multi-class classification
problem: given an eye fundus image, predict the severity of diabetic retinopathy into five levels. We consider
three groups based on three hospitals, which differ in the patient population and imaging devices. The sources
are available online: Messidor,2 APTOS,3 and Jinchi4.

We also consider six graph classification data sets from TUdatasets (Morris et al., 2020), including NCI1,
Proteins, DD, COLLAB, REDDIT, and IMDB, for testing graph contrastive learning. The first three data
sets contain small molecular graphs where nodes represent atoms and edges represent chemical bonds. The
goal is to predict the biological properties of molecular graphs. The latter three data sets contain social
networks abstracted from scientific collaborations, online blogs, and actor collaborations. The goal is to
predict the topic of the network. We split each data set into four groups by their sizes and average degrees.

Baselines. We compare our approach with pre-specified data augmentation methods, including ones
designed for specific group shifts, and optimization methods that search for compositions. For supervised
learning, we consider RandAugment (Cubuk et al., 2020), Learning Invariant Predictors with Selective
Augmentation (LISA) (Yao et al., 2022), and targeted augmentations (Gao et al., 2023). We also consider
optimization methods including GraphAug (Luo et al., 2023) on graph data sets and Stochastic Compositional
Augmentation Learning (SCALE) (Chatzipantazis et al., 2023) on image data sets.

For contrastive learning, we consider SimCLR (Chen et al., 2020b) and LISA (Yao et al., 2022) on image
data sets, InfoGraph (Sun et al., 2020), RandAugment (Cubuk et al., 2020), and GraphCL (You et al., 2020)
on graph data sets. We also consider Joint Augmentation Optimization (JOAO) (You et al., 2021) on graph
data sets, and SCALE (Chatzipantazis et al., 2023) on image data sets.

Implementations. We use four graph transformation functions from You et al. (2020), including DropN-
odes, PermuteEdges, Subgraph, and MaskingNodes. Each method modifies a fraction of nodes, edges, or
node features. Specifically, DropNodes deletes a randomly sampled set of nodes and their connections.
PermuteEdges adds and deletes a randomly sampled set of edges. Subgraph extracts a subgraph generated by
random walks from randomly sampled nodes in the graph. NodeMasking masks a randomly sampled fraction
of node attributes to zero. We use 0.1, 0.2, 0.3, 0.4, 0.5 as their perturbation magnitudes. In total, k = 20.

For images, we use sixteen image transformations including ShearX/Y, TranslateX/Y, Rotate, AutoContrast,
Invert, Equalize, Solarize, Posterize, Contrast, Color, Brightness, Sharpness, Cutout, and Sample Pairing.
We consider five values of perturbation magnitude uniformly spaced between intervals. In total, k = 80.

We use a three-layer graph neural network on graph data sets. We use pretrained ResNet-50 on image
data sets. In terms of hyperparameters, we search the maximum depth d up to 4 and H between [0, 1].
For weighted training, we adjust the learning rate η between 0.01, 0.1, 1.0 and the SGD steps α between
25, 50, 100.

4.2 Experimental Results

Supervised learning. We first discuss the results in supervised learning settings, as reported in Table 4.
We compare our algorithm with two types of baselines, including pre-specified augmentation methods and
optimization methods that search for the composition.

On the protein graph classification data set, our algorithm outperforms RandAugment, which randomly
samples a composition of augmentations for each batch of data, and LISA, which applies the mixup technique
between input examples, by 4.3% and 2.3%, respectively. This shows the benefit of searching augmentations
over pre-specified schemes. In addition, we also see an improvement of 1.9% over GraphAug.

2https://www.adcis.net
3https://kaggle.com/competitions/aptos2019
4https://figshare.com

13

https://www.adcis.net/en/third-party/messidor2/
https://kaggle.com/competitions/aptos2019-blindness-detection
https://figshare.com/articles/figure/Davis_Grading_of_One_and_Concatenated_Figures/4879853/1

Published in Transactions on Machine Learning Research (06/2024)

Table 4: We compare our algorithm with several existing data augmentation schemes on a protein graph
classification data set (left) and a wildlife image classification data set (right). In particular, the left-hand
side shows the average test AUROC scores for protein function prediction. The right shows the test macro F1
score on the image classification data set. We report the averaged results over five random seeds.

Graph Classification Image Classification

Training Set Size 12,302 6,568
Validation Set Size 4,100 426
Testing Set Size 4,102 789
Classes 1,198 182

Metric AUROC Macro F1

Empirical Risk Min. 71.3 ± 0.3 52.4 ± 1.1
RandAugment 71.8 ± 0.8 58.9 ± 0.4
LISA 73.2 ± 0.3 59.7 ± 0.3
Targeted Augmentation - 56.3 ± 0.4
GraphAug 73.5 ± 0.3 -
SCALE - 60.4 ± 0.5

Algorithm 2 (Ours) 74.9 ± 0.4 62.3 ± 0.6

On the image classification data set, our algorithm outperforms pre-specified data augmentation methods,
including RandAugment, targeted augmentation, and LISA, by 6.8% on average. The improvement over
SCALE is about 3.0%.

Next, we report the runtime. Recall that we first find augmentation composition in each group and then
learn a weighted combination of them. This algorithm takes 8.2 hours on the graph data set and 2.6 hours on
the image data set. This is 44% and 38% less than the optimization methods on the graph and image data
sets, which use 14.4 and 4.2 hours, respectively. Moreover, as discussed in Section 3.2, the weighted training
procedure of our algorithm takes a comparable runtime as SGD.

Contrastive learning. Next, we report the results of contrastive learning. Again, we consider pre-specified
augmentation methods, such as SimCLR, and existing optimization methods. We evaluate trained models by
linear evaluation using an SVM classifier on the contrastive features.

We first report the results of contrastive learning on image data sets in Table 5. On CIFAR-10, which
contains natural images, our algorithm performs on par with SimCLR designed by domain experts. On
a medical image data set, we observe that the SimCLR augmentation scheme does not work on medical
images and even decreases the performance compared to just using the pretrained network’s features. By
finding compositions of augmentations, our algorithm improves over SimCLR by 5.9%. In both data sets,
our algorithm outperforms RandAugment by 2.4% on average.

Moreover, our algorithm improves an optimization method, SCALE, by 1.1% on both image data sets on
average. Our algorithm also takes 32% less runtime than the optimization method.

For graph contrastive learning, we report the 10-fold cross-validation results in Table 6. Compared to
pre-specified schemes, our algorithm outperforms RandAugment by up to 20% and GraphCL by up to 17%
across six data sets. Compared to JOAO, our algorithm improves by 7.1%. Our algorithm benefits from
splitting graphs into groups with similar sizes and degrees before applying graph contrastive learning.

Ablation studies. We verify that both parts of the algorithm contribute to the results, including finding
one tree per group and weighted training. First, we remove the tree for each group and instead find a single
tree for all groups. This resulted in a performance decrease of 0.6% and 1.0% on the protein graph and
image classification data set, respectively. Second, we remove weighted training and replace it with uniform
weighting. This leads to a performance decrease of 1.0% and 1.6%, respectively. From analyzing model
features, we find that our approach results in more similar features between groups than a single tree. For
details, see Appendix C.

14

Published in Transactions on Machine Learning Research (06/2024)

Table 5: We compare our algorithm with several augmentation methods for contrastive learning on images.
We report the test accuracy on CIFAR-10 and a medical image classification data set (Messidor). We conduct
contrastive learning using ResNet-50 pretrained on ImageNet and evaluate the test accuracy using linear
evaluations of last-layer features. The results are averaged over five random seeds.

Natural Image Classification Medical Image Classification

Training Set Size 45,000 10,659
Validation Set Size 5,000 2,670
Test Set Size 5,000 3,072
Classes 10 5

Pretrained Features 88.9% ± 0.0 70.1% ± 0.0
SimCLR 92.8% ± 0.5 69.1% ± 1.1
RandAugment 89.8% ± 0.7 72.4% ± 0.5
LISA - 72.1% ± 0.5
SCALE 91.3% ± 0.3 72.4% ± 0.2

Algorithm 2 (Ours) 93.0% ± 0.4 73.2% ± 0.3

Table 6: We compare our algorithm with several existing augmentation methods in graph contrastive learning.
We report the test classification accuracy on several graph prediction data sets. We first conduct contrastive
learning using three-layer graph neural networks and evaluate the test accuracy using linear evaluations of
last-layer features. The results are based on ten-fold cross-validation.

NCI1 PROTEINS DD COLLAB REDDIT-B IMDB-B

Graphs 4,110 1,113 1,178 5,000 2,000 1,000
Classes 2 2 2 3 2 2

InfoGraph 76.2% 74.4% 72.8% 70.6% 82.5% 73.0%
RandAugment 62.0% 72.2% 75.7% 58.1% 76.3% 55.2%
GraphCL 77.8% 74.3% 78.6% 71.3% 89.4% 71.1%
JOAO 78.0% 74.5% 77.4% 69.5% 86.4% 70.8%

Algorithm 2 (Ours) 79.3% 77.7% 78.9% 78.4% 89.4% 74.4%

In Algorithm 1, we require the maximum depth of the tree d and the probabilities H. In Algorithm 2, we
require the number of SGD steps α, and learning rate η for updating combination weights. In each ablation
study, we vary one hyper-parameter while keeping the others constant. The fixed hyperparameters are as
follows: tree depth of 4, number of probabilities of 10, SGD steps of 50, and learning rate of 0.1. Table 7
presents the findings. Setting d = 4 and |H| = 10 yields the best results. Additionally, using α = 50 and
η = 0.1 yields the best results. We also note that these are effective in other settings. Therefore, we use these
values as the default in all of our experiments.

4.3 Extension and Discussion

Extension. To further illustrate the application of our approach, we consider semi-supervised learning and
use tree augmentation for consistency regularization (Xie et al., 2020).

We evaluate our approach on CIFAR-10 and SVHN. For CIFAR-10, we use 1,000 labeled and 44,000 unlabeled
examples. For SVHN, we use 1,000 labeled and 64,932 unlabeled examples. we also consider Chest-X-Ray,
which contains frontal-view X-ray images labeled with 14 diseases, each viewed as a zero-one label (Wang
et al., 2017; Rajpurkar et al., 2017). We use 1,000 labeled and 9,000 unlabeled examples. We train a randomly
initialized Wide-ResNet-28-10 on all datasets using SGD with a learning rate of 0.03 and 100,000 gradient
update steps, following Xie et al. (2020). To determine the composition of data augmentation, we use the
same 16 types of transformations as in other image data sets.

15

Published in Transactions on Machine Learning Research (06/2024)

Table 7: Ablation study of varying maximum tree depth d, number of probability values |H|, SGD steps
α, and learning rate η in Algorithm 2. We report the average AUROC for the protein graph classification
data set and the Macro-F1 for the wildlife image classification data set (on validation sets). The results are
averaged over five random seeds.

Graph Classification (AUROC) Image Classification (macro F1)

d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

72.4% ± 0.1 74.2% ± 0.2 74.5% ± 0.4 61.6% ± 0.6 65.0% ± 0.3 65.3% ± 0.6

|H| = 5 |H| = 10 |H| = 20 |H| = 5 |H| = 10 |H| = 20

72.9% ± 0.2 74.5% ± 0.4 74.5% ± 0.6 64.7% ± 0.3 65.3% ± 0.6 65.3% ± 0.4

α = 25 α = 50 α = 100 α = 25 α = 50 α = 100

74.0% ± 0.2 74.5% ± 0.4 73.4% ± 0.8 64.8% ± 0.3 65.3% ± 0.6 64.2% ± 0.4

η = 1.0 η = 0.1 η = 0.01 η = 1.0 η = 0.1 η = 0.01

71.0% ± 0.1 74.5% ± 0.4 72.4% ± 0.8 60.5% ± 0.7 65.3% ± 0.6 64.3% ± 0.5

Table 8 reports the test performance on three data sets. We verify that our algorithm can outperform UDA,
which uses RandAugment, by 1.2% averaged over the data sets.

Table 8: We apply our approach for semi-supervised learning. We compare to Unsupervised Data Augmentation
(UDA) (Xie et al., 2020), which uses RandAugment as the base augmentation scheme. We report the results
from training a randomly initialized WideResNet-28-10, averaged over five random seeds.

CIFAR-10 SVHN Chest-X-Ray
Labeled Training Set Size 1,000 1,000 1,000
Unlabeled Training Set Size 44,000 64.932 9,000
Validation Set Size 5,000 7,325 7,846
Test Set Size 10,000 26,032 22,433
Metrics Error Rates (↓) Error Rates (↓) AUROC (↑)

UDA 4.9% ± 0.1 2.7% ± 0.1 73.3% ± 0.5
Algorithm 1 (Ours) 4.5% ± 0.1 2.2% ± 0.1 75.2% ± 0.6

Discussion. One justification for our empirical findings is that the trees generalize the sequences, which
have been the focus of prior work (Ratner et al., 2017; Wu et al., 2020; Xie et al., 2020; Chen et al., 2020b).
Since the search now happens in this generalized set, the results are expected to be on par, if not better. It is
an interesting research question to understand why the greedy construction of trees works well empirically.
See a recent work (Deng & Hsu, 2024) that develops a new framework for formally reasoning about learning
hierarchical groups in multi-group learning.

5 Conclusion

This paper designs an algorithm for learning a binary tree composition of data augmentation. The algorithm
uses a top-down recursive search method to find a tree with reduced running time complexity. Experiments
validate that the algorithm reduces the runtime compared to existing search methods without decreasing
downstream performance. Next, the algorithm is extended to the case of learning under group shifts. The
algorithm first finds one tree for each group to account for heterogeneous features and then reweights each
tree into a forest of trees. Extensive experiments show the empirical benefits of this approach over existing
augmentation methods. The algorithm can be readily extended to tackle different loss metrics such as the
worst-group loss. It may also be worth revisiting out-of-domain generalization where heterogeneous domains
are present through the design of automatic data augmentation.

16

Published in Transactions on Machine Learning Research (06/2024)

Acknowledgement

We would like to thank Michelle Velyunskiy for her work on collecting the protein graphs data set during the
initial stage of this project. Thanks to Jinhong Yu for setting up some of the computational environments in
the experiments. We are very grateful to the anonymous reviewers and the action editor for various insightful
comments that have resulted in a significant improvement of this work.

References
Micah Adler and Brent Heeringa. Approximating optimal binary decision trees. In International Workshop

on Approximation Algorithms for Combinatorial Optimization, pp. 1–9. Springer, 2008. 4

Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler, J. Michael Cherry,
Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T. Eppig, Midori A. Harris, David P. Hill, Laurie
Issel-Tarver, Andrew Kasarskis, Suzanna Lewis, John C. Matese, Joel E. Richardson, Martin Ringwald,
Gerald M. Rubin, and Gavin Sherlock. Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet, 25(1):25–29, 2000. 3

Sara Beery, Arushi Agarwal, Elijah Cole, and Vighnesh Birodkar. The iwildcam 2021 competition dataset.
CVPR, 2021. 12

Gregory Benton, Marc Finzi, Pavel Izmailov, and Andrew G Wilson. Learning invariances in neural networks
from training data. NeurIPS, 2020. 3

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and Hans-Peter
Kriegel. Protein function prediction via graph kernels. Bioinformatics, 2005. 3, 12

Davide Buffelli, Pietro Liò, and Fabio Vandin. Sizeshiftreg: a regularization method for improving size-
generalization in graph neural networks. NeurIPS, 2022. 3

Evangelos Chatzipantazis, Stefanos Pertigkiozoglou, Kostas Daniilidis, and Edgar Dobriban. Learning
augmentation distributions using transformed risk minimization. TMLR, 2023. 5, 7, 13

Shuxiao Chen, Edgar Dobriban, and Jane H Lee. A group-theoretic framework for data augmentation. The
Journal of Machine Learning Research, 21(1):9885–9955, 2020a. 4

Shuxiao Chen, Koby Crammer, Hangfeng He, Dan Roth, and Weijie J Su. Weighted training for cross-task
learning. ICLR, 2022. 10, 21

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In ICML, 2020b. 1, 3, 5, 7, 11, 13, 16

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function framework
for hypergraph neural networks. ICLR, 2022. 4

Wyatt T Clark and Predrag Radivojac. Analysis of protein function and its prediction from amino acid
sequence. Proteins: Structure, Function, and Bioinformatics, 2011. 2

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: Learning
augmentation policies from data. CVPR, 2019. 1, 2, 5, 7

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical data augmentation
with no separate search. CVPRW, 2020. 11, 13

Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, and Christopher Ré. A kernel theory of
modern data augmentation. In International conference on machine learning, pp. 1528–1537. PMLR, 2019.
4

Samuel Deng and Daniel Hsu. Multi-group learning for hierarchical groups. ICML, 2024. 16

17

Published in Transactions on Machine Learning Research (06/2024)

Irena Gao, Shiori Sagawa, Pang Wei Koh, Tatsunori Hashimoto, and Percy Liang. Out-of-domain robustness
via targeted augmentations. ICML, 2023. 2, 13

Anupam Gupta, Viswanath Nagarajan, and R Ravi. Approximation algorithms for optimal decision trees
and adaptive tsp problems. Mathematics of Operations Research, 42(3):876–896, 2017. 4

Steve Hanneke and Samory Kpotufe. On the value of target data in transfer learning. NeurIPS, 2019. 10, 21

Ignacio Hounie, Luiz FO Chamon, and Alejandro Ribeiro. Automatic data augmentation via invariance-
constrained learning. In ICML, 2023. 3

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS, 2020a. 3, 12

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. ICLR, 2020b. 8

Haotian Ju, Dongyue Li, Aneesh Sharma, and Hongyang R Zhang. Generalization in graph neural networks:
Improved pac-bayesian bounds on graph diffusion. In AISTATS, 2023. 3

John Jumper, Richard. Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon
A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub
Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin
Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals,
Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein
structure prediction with AlphaFold. Nature, 596(7873):583–589, 2021. 3

Dongyue Li, Haotian Ju, Aneesh Sharma, and Hongyang R Zhang. Boosting multitask learning on graphs
through higher-order task affinities. In KDD, 2023. 3

Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast autoaugment. In NeurIPS,
2019. 1, 5, 7

Youzhi Luo, Michael McThrow, Wing Yee Au, Tao Komikado, Kanji Uchino, Koji Maruhashi, and Shuiwang
Ji. Automated data augmentations for graph classification. ICLR, 2023. 2, 3, 13

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint arXiv:2007.08663,
2020. 13

Thien Hang Nguyen, Hongyang R Zhang, and Huy Nguyen. Improved group robustness via classifier retraining
on independent splits. Transactions on Machine Learning Research, 2023. 2, 4

Abhinav Nippani, Dongyue Li, Haotian Ju, Haris Koutsopoulos, and Hongyang Zhang. Graph neural networks
for road safety modeling: Datasets and evaluations for accident analysis. NeurIPS, 2023. 3

Subhadeep Paul, Olgica Milenkovic, and Yuguo Chen. Higher-order spectral clustering under superimposed
stochastic block models. Journal of Machine Learning Research, 24(320):1–58, 2023. 4

Predrag Radivojac. Advancing remote homology detection: a step toward understanding and accurately
predicting protein function. Cell Systems, 2022. 2

Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony Duan, Daisy Ding, Aarti
Bagul, Curtis Langlotz, Katie Shpanskaya, et al. Chexnet: Radiologist-level pneumonia detection on chest
x-rays with deep learning. arXiv preprint arXiv:1711.05225, 2017. 15

Alexander J Ratner, Henry Ehrenberg, Zeshan Hussain, Jared Dunnmon, and Christopher Ré. Learning to
compose domain-specific transformations for data augmentation. NeurIPS, 2017. 1, 2, 16

18

Published in Transactions on Machine Learning Research (06/2024)

Burkhard Rost, Predrag Radivojac, and Yana Bromberg. Protein function in precision medicine: deep
understanding with machine learning. FEBS Letters, 2016. 2

Han Shao, Omar Montasser, and Avrim Blum. A theory of pac learnability under transformation invariances.
Advances in Neural Information Processing Systems, 35:13989–14001, 2022. 4

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-supervised
graph-level representation learning via mutual information maximization. ICLR, 2020. 13

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M Summers.
Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and
localization of common thorax diseases. In CVPR, 2017. 15

Sen Wu, Hongyang R Zhang, Gregory Valiant, and Christopher Ré. On the generalization effects of linear
transformations in data augmentation. In ICML, 2020. 2, 3, 4, 16

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation for
consistency training. NeurIPS, 2020. 1, 3, 15, 16

Kaiwen Yang, Yanchao Sun, Jiahao Su, Fengxiang He, Xinmei Tian, Furong Huang, Tianyi Zhou, and
Dacheng Tao. Adversarial auto-augment with label preservation: A representation learning principle guided
approach. NeurIPS, 2022. 3

Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. Improving
out-of-distribution robustness via selective augmentation. In ICML, 2022. 13

Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local structures to size
generalization in graph neural networks. In ICML, 2021. 3

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. NeurIPS, 33, 2020. 3, 8, 13

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning automated. In
ICML, 2021. 13

Michael Zhang, Nimit S Sohoni, Hongyang R Zhang, Chelsea Finn, and Christopher Ré. Correct-n-contrast:
A contrastive approach for improving robustness to spurious correlations. ICML, 2022. 2, 4

Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong. Adversarial autoaugment. In ICLR, 2020. 1

19

Published in Transactions on Machine Learning Research (06/2024)

A Derivation of Equation (5)

By regarding θw as a function of w and applying the chain rule, we have the following:

∂L̂(fθw)
∂w

=
(
∇θL̂(fθw)

)⊤ ∂θw

∂w
. (7)

By the definition of θw, we must have that θw is a minimizer of
∑m

g=1 wg · L̂g(fθ;Qg). Thus, the gradient
with respect to θ must be zero, given w. Next, we write the gradient as:

F (w, θ) = ∇θ

m∑
g=1

wg · L̂g(fθ;Qg) =
m∑

g=1
wg · ∇θL̂g(fθ;Qg). (8)

For a stationary point (w, θw) of equation (4), we have F (w, θw) = 0. By the implicit function theorem,5 if
F (w, θ) is differentiable and ∂F (w,θ)

∂θ is invertible, then for a (w, θ) near some (w̃, θ̃) satisfying F (w̃, θ̃) = 0,
there exists a function mapping w → θw which is continuous and continuously differentiable and the derivative
of this mapping over w is given by:

∂θw

∂w
= −

(
∂F (w, θ)

∂θ

∣∣∣∣∣
θw

)−1(
∂F (w, θ)
∂w

∣∣∣∣∣
θw

)
. (9)

Replacing equation (9) into equation (7), we get

∂L̂(fθw)
∂wi

= −
(

m∑
g=1

qg∇θL̂g(fθw ;Qg)
)⊤(m∑

g=1
wg∇2

θL̂g(fθw ;Qg)
)−1

∇θL̂i(fθw ;Qi), (10)

which concludes the proof of equation (5).

B Consistency of the Weighted Training Procedure

This section derives a generalization bound for the bilevel optimization algorithm. The result shows that
when the number of samples goes to infinity, the gap between training and test errors will shrink to zero,
plus a discrepancy distance term between the source and target tasks. Let {Pg}m

g=1 denote the m groups
of augmented data distributions. Concretely, for group g, we have ng i.i.d samples. Let P̂g = (xg,i, yg,i)ng

i=1
denote the augmented set, by applying Qg to the input samples from Pg. We denote P0 as a target data
distribution. Given a bounded loss function ℓ, let Lg(fθ) and L̂g(fθ) denote the expected and empirical loss
on group g, respectively. We denote the minimizer of the weighted empirical loss as

θ̂ ∈ arg min
θ∈Θ

m∑
g=1

wgL̂g(fθ). (11)

We denote the optimal representation as:

θ⋆
0 ∈ arg min

θ0∈Θ
L0(θ0).

We denote the w-weighted optimal representation as:

θ̄w ∈ arg min
θ∈Θ

m∑
g=1

wgLg(θ).

Since θ̄w may not be unique, we introduce the function space θ̄w ∈ Θ̄w to include all w-weighted θ̄w.
5https://en.wikipedia.org/wiki/Implicit_function_theorem

20

https://en.wikipedia.org/wiki/Implicit_function_theorem

Published in Transactions on Machine Learning Research (06/2024)

Definition B.1 ((ρ, Cρ)-transferable). A representation θ ∈ Θ is (ρ, Cρ)-transferable from w-weighted source
subsets to the target subset, if there exists ρ > 0, Cρ > 0 such that for any θ̄w ∈ Θ̄w, we have

L0(θ)− L0(θ̄w) ≤ Cρ

(m∑
g=1

wg

(
Lg(θ)− Lg(θ̄w)

)) 1
ρ

.

Next, we state two technical assumptions. The first assumption describes the loss function’s Lipschitz
continuity.

Assumption B.1. Let the loss function ℓ : X × Y → [0, 1] be C-Lipschitz in x ∈ X , meaning for all
x1, x2 ∈ X and y ∈ Y, the following holds

|ℓ(x1, y)− ℓ(x2, y)| ≤ C · ∥x1 − x2∥ .

The second assumption describes the covering size of the functional class.

Assumption B.2. There exist constants CΘ and vΘ greater than 0 such that for any probability measure
QX on X ⊆ Rd, we have

N
(
ϵ; Φ;L2(QX)

)
≤
(
CΘ

ϵ

)vΘ

for any ϵ > 0,

where N
(
ϵ; Φ;L2(QX)

)
is the minimum number of L2(QX) balls with radius ϵ required to cover the entire

space. Here, the L2(QX) distance between two vector-valued functions θ and ψ is defined as

L2(QX) =
(∫
∥θ(x)− ψ(x)∥2 dQX (x)

) 1
2

.

Given a weight vector w, let us define

dist
(m∑

g=1
wgPg, P0

)
:= sup

θ̄w∈Θ̄w

L0(θ̄w)− L0(θ⋆
0),

which represents the distance between the source w-weighted and target groups. Now, we are ready to state
the result.

Theorem B.3. Let θ̂, θ̄w, θ⋆
0 be defined as the above equations with a fixed w. Suppose Assumptions B.1

and B.2 both hold. Let δ ∈ (0, 1) be a fixed real number. Then, for any representation θ̂ ∈ Θ̄w such that θ̂ is
(ρ, Cρ)-transferable, with probability at least 1− δ, we have:

L0(θ̂)− L0(θ⋆
0) ≤ dist

(
m∑

g=1
wgPg, P0

)
+ Cρ

(
C1
√
vΘ log(CΘC) + C2

√
log(δ−1)√

Nw

) 1
ρ

,

where Nw =
(∑m

g=1
w2

g

ng

)−1, C1 and C2 are two constants that do not grow with the size of the input.

At a high level, the first distance term represents the bias increase by transferring across groups, and the
second variance term is the empirical error of learning an imperfect representation θ̄w. This term reduces
under pooling; Consider a scenario where ng is the same across groups, then through Nw, the second term
reduces by a factor of m−1. The proof technique is based on carefully examining the weighted training
procedure using covering numbers (Chen et al., 2022; Hanneke & Kpotufe, 2019).

21

Published in Transactions on Machine Learning Research (06/2024)

Proof. Let Θ be the domain for which θ lies in. Consider a bounded loss function ℓ. To establish the result, we
begin by decomposing the difference between L0(θ̂) and L0(θ̄w). We proceed with the following calculations:

L0(θ̂)− L0(θ̄w) = L0(θ̂)− L0(θ̄w) + L0(θ̄w)− L0(θ⋆
0)︸ ︷︷ ︸

adding and subtracting L0(θ̄w)

≤ Cρ

(
m∑

g=1
ωg(Lg(θ̂)− Lg(θ̄w))

) 1
ρ

+ sup
θ̄w∈Θ̄w

(
L0(θ̄w)− L0(θ⋆

0)
)

︸ ︷︷ ︸
upper bounded by the supremum

(12)

= Cρ

(
m∑

g=1
ωg(Lg(θ̂)− Lg(θ̄w))

) 1
ρ

+ dist
(

m∑
g=1

ωgPg, P0

)
.

Now we focus on the first term from above, which is
∑m

g=1 ωg(Lg(θ̂)− Lg(θ̄w)). We have

m∑
g=1

ωg(Lg(θ̂)− Lg(θ̄w)) =
m∑

g=1
ωg

(
Lg(θ̂)− L̂g(θ̂) + L̂g(θ̂)− L̂g(θ̄w) + L̂g(θ̄w)− Lg(θ̄w)

)
≤

m∑
g=1

ωg

(
(Lg(θ̂)− L̂g(θ̂) + L̂g(θ̄w)− Lg(θ̄w)

)
(13)

≤ sup
θ∈Θ

(
m∑

g=1
ωg

(
(Lg(θ)− L̂g(θ) + L̂g(θ̄w)− Lg(θ̄w)

))

= sup
θ∈Θ

(
m∑

g=1
ωg ·

1
ng

ng∑
i=1

(
Lg(θ)− ℓ(fθ(xg,i), yg,i) + ℓ(fθ̄w (xg,i), yg,i)− Lg(θ̄w)

))
.

Denote the last equation above asG({zg,i}), where zg,i = {xg,i, yg,i}. Step (13) is by noting that L̂g(θ̂)−L̂g(θ̄w)
is at most zero according to equation (11).

Next, we will apply McDiarmid’s inequality. Let us fix two indices 1 ≤ g′ ≤ m and 1 ≤ ig′ ≤ ng. Let us
define {z̃g′,i} by replacing zg′,ig′ with another z̃g′,ig′ = (x̃g′,ig′ , ỹg′,ig′) ∈ X ×Y . Given that {zg,i} and {z̃g′,i}
differ by only one element, we have

|G({zg,i})−G({z̃g′,i})| =
∣∣∣∣ ∑

g ̸=g′

ng∑
i=1

ωg

ng

(
Lg(θ)− ℓ(fθ(xg,i), yg,i) + ℓ(fθ̄w (xg,i), yg,i)− Lg(θ̄w)

)
+
∑

i ̸=ig′

ωg′

ng′

(
Lg′(θ)− ℓ(fθ(xg′,i), yg′,i) + ℓ(fθ̄w (xg′,i), yg′,i)− Lg′(θ̄w)

)
+ ωg′

ng′

(
Lg′(θ)− ℓ(fθ(xg′,ig′), yg′,ig′) + ℓ(fθ̄w (xg′,ig′), yg′,ig′)− Lg′(θ̄w)

) ∣∣∣∣
≤ωg′

ng′

(∣∣∣Lg′(θ)− ℓ(fθ(xg′,ig′), yg′,ig′)
∣∣∣+
∣∣∣Lg′(θ̄w)− ℓ(fθ̄w (xg′,ig′), yg′,ig′)

∣∣∣
+
∣∣∣Lg′(θ)− ℓ(fθ(x̃g′,ig′), ỹg′,ig′)

∣∣∣+
∣∣∣Lg′(θ̄w)− ℓ(fθ̄w (x̃g′,ig′), ỹg′,ig′)

∣∣∣) ≤ 4ωg′

ng′
.

The last step above is based on the fact that the loss function is bounded between 0 and 1. Thus, we derive
the following result:

Pr (G({zg,i})− E[G({zg,i})] ≥ ϵ) ≤ exp

− 2ϵ2∑m
g=1

∑ng

i=1
16ω2

g

n2
g

 , ∀ϵ > 0. (14)

22

Published in Transactions on Machine Learning Research (06/2024)

Recall our previous definition that Nw =
(∑m

g=1
ω2

g

ng

)−1
. By setting δ as

δ = exp

− 2ϵ2∑m
g=1

∑ng

i=1
16ω2

g

n2
g

 ,

we get that ϵ = 2
√

2
√

log(1/δ)
Nw

. Thus, Equation (14) can be equivalently stated as:

G({zg,i}) ≤ E[G({zg,i})] + 2
√

2

√
log(1/δ)
Nw

, (15)

which holds with a probability of at least 1− δ for every δ ∈ (0, 1).

Next, for the function space Θ, let

Mθ =
√
Nw

m∑
g=1

ng∑
i=1

rg,i
ωg

ng
(−ℓ(fθ(xg,i), yg,i)) , ∀ θ ∈ Θ,

where rg,i are independent Rademacher random variables. For any θ1, θ2 ∈ Θ, we define d as

d2(θ1, θ2) = Nw

m∑
g=1

ng∑
i=1

ω2
g

n2
g

(ℓ(fθ1(xg,i), yg,i)− ℓ(fθ2(xg,i), yg,i))2
.

Now, we justify why this represents a random process with sub-Gaussian increments. In the definition of Mθ,
the Rademacher random variable rg,i introduces randomness from the sign of each term. Mθ can thus be
understood as an empirical average over random sign flips. Additionally, d2(θ1, θ2) computes the squared
difference in losses under θ1 and θ2. The squared term ensures that this quantity is non-negative and gives
a measure of “distance” between the two functions in terms of their losses. Combining both observations,
we have that the difference Mθ1 −Mθ2 is a random process with increments characterized by the metric d2.
Moreover,

E
[
exp

(
λ(Mθ1 −Mθ2)

)]
≤ exp

(
λ2

2 d2(θ1, θ2)
)
, ∀ λ ≥ 0, θ1 ∈ Θ, θ2 ∈ Θ.

This result shows that the tail probabilities of the process Mθ1 −Mθ2 decay at least as fast as those of a
Gaussian process, justifying the sub-Gaussian property.

Next, we use Dudley’s entropy integral inequality conditioned on the randomness of zg,i to obtain

E
[
sup
θ∈Θ

Mθ −Mθ̄w |{zg,i}
]
≤ 8
√

2
∫ 1

0

√
logN (ϵ; Θ; d)dϵ. (16)

Recall the definition of the covering number from Assumption B.2. Given that

√
NwE[G({zg,i})] ≤ 2

√
Nw × E

[
sup
θ∈Θ

m∑
g=1

ng∑
i=1

rg,i ·
ωg

ng
(ℓ(fθ̄w (xg,i), yg,i)− ℓ(fθ(xg,i), yg,i))

]
,

Eq. (16) can be transformed to

E [G({zg,i})] ≤
16
√

2√
Nw

∫ 1

0

√
logN (ϵ; Θ; d)dϵ. (17)

Next, we consider the covering number of Θ. We define

Q =
m∑

g=1
Nw

ω2
g

ng

ng∑
i=1

δxg,i

ng
, where δxg,i represents a point mass at xg,i.

23

Published in Transactions on Machine Learning Research (06/2024)

Denote Nϵ as N (ϵ; Θ;L2(Q)). Let {θ(1), · · · , θ(Nϵ)} ⊆ Θ be an ϵ-covering of Θ with respect to L2(Q). This
implies that for any θ ∈ Θ, there exists j ∈ {1, · · · , Nϵ} such that

∥fθ − fθ(j)∥2
L2(Q) =

m∑
g=1

ng∑
i=1

Nω

ω2
g

n2
g

∥fθ(xg,i)− fθ(j)(xg,i)∥2 ≤ ϵ2.

In conclusion, from the previous steps, we have:

d2(θ, θ(j)) = Nω

m∑
g=1

ng∑
i=1

ω2
g

n2
g

(ℓ(fθ(xg,i), yg,i)− l(fθ(j)(xg,i), yg,i))2

≤ C2Nω

m∑
g=1

ng∑
i=1

ω2
g

n2
g

∥fθ(xg,i)− fθ(j)(xg,i)∥2

= C2∥fθ − fθ(j)∥2
L2(Q) ≤ C

2ϵ2. (18)

From the above, we have that

N(Llϵ; Θ; d) ≤ Nϵ ≤
(
CΘ

ϵ

)vΘ

⇒ logN(ϵ; Θ; d) ≤ vΘ

(
log(CΘC) + log

(
1
ϵ

))
.

Applying the above to Eq. (17), we get

E[G({zg,i})] ≤
16
√

2√
Nω

∫ 1

0

√
vΘ

(
log(CΘC) + log

(
1
ϵ

))
dϵ

≤
16
√

2
√
vΘ log(CΘC)√
Nω

(
1 +

∫ 1

0

√
log
(

1
ϵ

)
dϵ

)
. (19)

Further applying the above to Eq. (15), we get

G({zg,i}) ≤
16
√

2
√
vΘ log(CΘC)√
Nω

(
1 +

∫ 1

0

√
log
(

1
ϵ

)
dϵ

)
+ 2
√

2

√
log(1/δ)
Nw

.

Finally, from Eq. (12), we can conclude that:

L0(θ̂) − L0(θ̄w) ≤ Cρ

(
16

√
2
√

vΘ log(CΘC)
√

Nω

(
1 +

∫ 1

0

√
log
(1

ϵ

)
dϵ

)
+ 2

√
2
√

log(1/δ)
Nw

) 1
ρ

+ dist

(
m∑

g=1

ωgPg, P0

)
.

The proof of Theorem B.3 is thus finished.

C Illustration of Feature Similarity

In this section, we explore how our algorithm affects the learned features across groups. We use the protein
graph dataset as an example. For every pair of groups i and j, we compute a feature similarity score s(i, j)
between the last-layer features’ covariance matrices. For group i, denote Xi ∈ Rni×d as the feature vectors of
ni samples with dimension d. Denote the covariance matrix as X⊤

i Xi. We use the rank-ri approximation
to the covariance matrix Ui,ri

Di,ri
U⊤

i,ri
, where ri is chosen to contain 99% of the singular values. Then, we

measure the similarity as

s(i, j) =
∥(Ui,ri

D
1/2
i,ri

)⊤Uj,rj
D

1/2
j,rj
∥

F

∥Ui,riD
1/2
i,ri
∥

F
∥Uj,rjD

1/2
j,rj
∥

F

. (20)

In particular, higher values of s(i, j) indicate greater similarity between i and j.

24

Published in Transactions on Machine Learning Research (06/2024)

We verify that after splitting the graphs based on sizes and average degrees, the feature similarity score
indeed varies. In particular, for every pair of two groups, we train a model on their combined data set and
measure the feature similarity score between them. At the same time, we compute the differences in average
graph sizes and average degrees between the two groups. Figure 7a shows that the feature similarity score
drops as the disparity between graph sizes grows. Figure 7b shows qualitatively similar results when we
measure the disparity by average degrees.

Our method can improve the feature similarity between groups; this is shown in Figure 7c. Here we measure
the averaged feature similarity score, over every pair of groups.

0 200 400 600

Difference in number of nodes

0.5

0.7

0.9

F
ea

tu
re

S
im

ila
ri

ty

(a) Varying graph sizes

2 4 6 8

Difference in average degrees

0.6

0.7

0.8

F
ea

tu
re

S
im

ila
ri

ty

(b) Varying average degrees

ERM

GraphAug
LISA

Alg.
2

0.5

0.6

0.7

0.8

F
ea

tu
re

si
m

ila
ri

ty

(c) Averaged feature similarity score

Figure 7: We observe that groups with larger differences in graph size or average degree exhibit more distinct
features in a trained model. Using augmentation can result in higher similarities between groups than not
using it. In particular, our algorithm improves the similarity score of equation (20) between different groups.
Here, ERM refers to empirical risk minimization.

25

	Introduction
	Related Work

	Learning Composition of Data Augmentation
	Our Proposed Algorithms
	Learning Tree-Structured Composition
	Running Time Analysis
	Illustrative Examples

	Learning a Forest of Trees
	Learning the Weight of Each Tree
	Running Time Analysis

	Experiments
	Experimental Setup
	Experimental Results
	Extension and Discussion

	Conclusion
	Derivation of Equation (5)
	Consistency of the Weighted Training Procedure
	Illustration of Feature Similarity

