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Abstract
Cross-modality transfer aims to leverage large
pretrained models to complete tasks that may not
belong to the modality of pretraining data. Ex-
isting works achieve certain success in extending
classical finetuning to cross-modal scenarios, yet
we still lack understanding about the influence
of modality gap on the transfer. In this work, a
series of experiments focusing on the source rep-
resentation quality during transfer are conducted,
revealing the connection between larger modality
gap and lesser knowledge reuse which means in-
effective transfer. We then formalize the gap as
the knowledge misalignment between modalities
using conditional distribution P (Y |X). Towards
this problem, we present Modality kNowledge
Alignment (MoNA), a meta-learning approach
that learns target data transformation to reduce
the modality knowledge discrepancy ahead of
the transfer. Experiments show that out method
enables better reuse of source modality knowl-
edge in cross-modality transfer, which leads to
improvements upon existing finetuning methods

1. Introduction
Transferring knowledge from past experience to new tasks
is a fundamental ability of human intelligence (Pan & Yang,
2010; Long et al., 2018; Zhuang et al., 2020). Such an abil-
ity to acquire and reuse knowledge is continuously pursued
in machine learning community, aiming to build artificial
intelligence systems that predicts more accurately and learns
more data-efficiently. Today, as large fundation models that
are trained on massive data are widely available (Bai et al.,
2023; Touvron et al., 2023; Liu et al., 2023), using such
pretrained model as powerful feature extractor for new tasks
has become a common practice of tranfer learning (Ding
et al., 2023; Zhang et al., 2023a). Naturally, the pretrained
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Figure 1. Comparison between in-modality finetuning (a)(b) and
cross-modal finetuning (c). Both unimodal and multimodal fine-
tuning are considered to be in-modality finetuning because the
target modality is in the scope of the pretrained model’s modality.
In contrast, cross-modal finetuning exploits the pretrained model
on target modalities that the pretrained model is not trained on.

model and the downstream task come from the same modal-
ity, e.g., the model is a vision transformer pretrained on
ImageNet (Dosovitskiy et al., 2020) and the task is CIFAR-
100 classification (Krizhevsky et al., 2009). However, re-
cent stuides have been attempt to broaden this boundary to
cross-modality transfer, using vision transformer for audio
classification (Lin et al., 2023), and finetuning language
model for tabular data (Dinh et al., 2022; Zhou et al., 2023).
Fig. 1 illustrates the difference between in-modality and
cross-modality transfer.

The motivation of such cross-modal transfer is easy to com-
prehend, especially when the target modality is data scarce.
Scientific tasks like electrocardiogram classification (Clif-
ford et al., 2017) and protein distance prediction (Adhikari,
2020) find difficulties in collecting large amount of training
data, and further requires much expensive annotating costs
from human experts. In such cases, it is desirable to lever-
age the pretrained model from other modalities like vision
and language, in which data are easier to collect, to help the
target modality tasks. However, the cross-modal transfer
is not as straightforward as the in-modality transfer due to
two challenges: 1) the input space and the label space are
different across modalities, and 2) the knowledge required
for addressing tasks in different modality may also differ.

Previous works tackle the first challenge by designing
modality-specific embedders and predictors to interface with
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the pretrained model from input to output. However, the
second challenge have not yet been well addressed. Some
approaches (Zhang et al., 2023b; Han et al., 2023) argue
that the large pretrained model can be served as universal
encoder and thus freeze the pretrained model during fine-
tuning. Other methods (Lu et al., 2022; Shen et al., 2023;
Dinh et al., 2022) finetune the pretrained model along with
modality-specific components. Both line of works empiri-
cally show that the pretrained model can be transferred to
other modalities. Still, the key problem of what knowledge
from source modality is transferred via the pretrained model
and how does it benefit the target modality remains unsolved.
For instance, ORCA (Shen et al., 2023) observes that train-
ing the model from scratch on some target modality tasks
is even better than the vanilla finetuning of the pretrained
model, which indicates that the knowledge contained in the
pretrained model may not improve target performance if it
is not properly transferred.

In this work, we delve deeper into this second challenge of
cross-modal transfer. We begin with experiments investigat-
ing how target modality finetuning affects the representation
quality of the source modality data. It is observed that
finetuning a pretrained Swin Transformer (Liu et al., 2021)
on some target modality tasks can help the Swin encoder
to extract more discriminative features for images, while
finetuning on other modalities impairs such ability. This
empirical observation shows that there may exist aspects of
knowledge, which we refer to as modality semantic knowl-
edge, that differ between modalities in different degree and
affect the validity of cross-modal transfer.

To specify such aspect of difference between modalities,
we interpret the modality semantic knowledge as the con-
ditional probability distribution P (Y |X). We modify the
conditional distribution of the source modality according
to the tasks in target modality to make the two comparable.
Consequently, we are able to formalize the modality knowl-
edge discrepancy in terms of the divergence between con-
ditional distributions of source and target modality. When
the target conditional distribution is similar to the modified
source conditional distribution, we say that the modality se-
mantic knowledge is aligned and the source discriminative
function learned by the pretrained model can be reused for
the target modality. On the opposite, the modality semantic
knowledge contradict each other and may not be mutually
beneficial, which explains the observation in ORCA.

Our interpretation provides a new perspective towards under-
standing the effectiveness of the two-stage tuning pipeline
proposed by previous cross-modal transfer works (Dinh
et al., 2022; Shen et al., 2023): viewing the first stage as
an implicit data transformation learning for target modality
such that the conditional distribution on the transformed data
are more aligned with source. As a result, it enlightens us

to directly learn a proper target embedding function ahead
of finetuning, which helps minimize the knowledge mis-
alignment. To this end, we propose a new method, MoNA,
that improves the cross-modal transfer with two-stage train-
ing. In the first stage, MoNA leverages meta learning to
learn an optimal target embedder which, when served as an
initialization along with the pretrained weights for the full
finetuning, allows a maximum reuse of the source modality
knowledge during full finetuning. In the second stage, using
the learned target embedder as the starting point, we follow
the vanilla finetuning approach and update all the parame-
ters to adapt to the target task while maximally leveraging
source knowledge.

We conduct extensive experiments on two cross-modal trans-
fer benchmarks, NAS-Bench-360 (Tu et al., 2022) and
PDEBench (Takamoto et al., 2022), to validate our hypoth-
esis and the effectiveness of our proposed methods. Both
benchmarks focus on scientific problem related modalities,
in which the training data scarcity is particularly acute. Com-
parisons of MoNA against previous methods are made, in
which the results show that our method performs superior.

2. Problem Formulation and Analysis
In this section, we propose to test an assumption commonly
made by previous cross-modal transfer approaches (Lu et al.,
2022; Shen et al., 2023; Dinh et al., 2022; Zhang et al.,
2023b) that the pretrained model can serve as a universal
encoder for different modalities. Our experiments lead to
an intuitive conclusion that the knowledge gap between
modalities are not the same, and thus the assumption should
take the modality knowledge discrepancy into consideration.

2.1. Introduction to basic notations and architecture

We consider the knowledge transfer between source modal-
ityMs and target modalityMt. Data in source modality,
such as vision or language, is easier and cheaper to obtain,
and large pretrained models are publicly available. Instead,
the target modality considered in this paper has insufficient
data to pretrain its own large models. The two modalities
differ in both input space and label space, i.e., X s ̸= X t,
Ys ̸= Yt. Cross-modal transfer aims to leverage a source
pretrained model, parameterized by θS , to help a given
target task with a small set of labeled data {xt

i, y
t
i}

nt
i=1.

Following previous works (Lu et al., 2022; Shen et al.,
2023), our model architecture gθ includes an embedder
e(·;θe), a transformer encoder f(·;θf ) and a predictor
h(·;θh), and the parameter of the full model is denoted
as θ = {θe,θf ,θh}. Particularly, the pretrained trans-
former has its own embedder and predictor, and thus we
denote the pretrained weights of the source model as θS

0 =
{θS

e0 ,θ
S
f0 ,θ

S
h0
}.
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Figure 2. T-SNE visualization showing that the gap between different modalities are not the same. Figure in the middle depicts the
embeddings of CIFAR-10 generated by an ImageNet pretrained Swin Transformer. The rest four figures are the embeddings of CIFAR-10
generated by the same model after being finetuned on different modalities. None of these models are trained on CIFAR-10 directly.
Nevertheless, finetuning on CIFAR-100 and Spherical improve the visual representation from pretrained model while finetuning on
NinaPro and FSD50K distort it. Davies-Bouldin indexes are shown at upper-right corner. Smaller index means better clustering.

The embedder maps the input data into a shared input em-
bedding space X̂ , and the encoder extracts features from
the embedded input. The predictor is a linear layer that
maps the encoder output to the label space. For our target
model gθT : θT = {θT

e ,θ
T
f ,θ

T
h }, both embedder and the

predictor are specifically re-designed to accommodate the
input and label space of the target task, while we use θS

f0 to
initialize the encoder weight θT

f .

The flexibility of such architecture enables end-to-end train-
ing on the target task. Vanilla finetuning simply updates
all the parameters of the target model by minimizing the
task-specific loss on the given training dataset:

θ∗
T = argmin

θT

nt∑
i=1

ℓ
(
gθT (xt

i), y
t
i

)
, (1)

where ℓ is the task loss function such as cross-entropy.
Learning directly from target supervision in this way encour-
ages the model to learn knowledge that help discriminate the
target data. As the pretrained model already contains source
discriminative knowledge, it is natural for cross-modal trans-
fer to expect that source and target knowledge share simi-
larities in some aspects so that the source knowledge can
be reused to promote target learning. In the following, we
1) conduct experiments to show that this similarity depends
on the modality, and 2) provide interpretation of modality
knowledge and formalize the knowledge discrepancy.

2.2. Distortion of learned source modality knowledge

We look for a quantitative way to compare the extent of
knowledge reuse among various cross-modal transfer sce-
narios. In this section, we select image modality as knowl-
edge source and choose four target tasks from different
modalities. We include two tasks closely related to images:
CIFAR-100 (Krizhevsky et al., 2009), Spherical (Cohen
et al., 2018) that contains spherically projected images, and
two tasks dissimilar to image modality: NinaPro (Atzori
et al., 2012) that represents hand gestures with electromyog-
raphy signals, FSD50K (Fonseca et al., 2017b) that contains

audio clips of sound events. To be specific, we adopt Swin
Transformer Base pretrained on ImageNet-22k as the source
model and examine the properties of the model after fine-
tuning it on different tasks.

Given that the comparison is conducted across distinct
modalities, there lacks a general metric measuring the de-
gree of knowledge reuse during transfer. Therefore, we
turn to compare the distortion of source knowledge. Specif-
ically, we would expect smaller distortion if more source
knowledge is reused to solve target task, and vise versa. So
we leverage the pretrained source model to extract the vi-
sual representation of CIFAR-10, a surrogate image dataset
unseen by the model. Samples in this particular source
dataset are denoted as {xs

i , y
s
i } and their corresponding

feature set {fs
i = f(e(xs

i ;θ
S
e0);θ

S
f0)}. Then, we finetune

the pretrained model on the four target tasks using Eq. (1)
respectively. After the finetuning process, we once again
extract the representation of CIFAR-10 using the finetuned
encoder and obtain {fs

i (Mt) = f(e(xs
i ;θ

S
e0);θ

T
f ,Mt)}.

Fig. 2 shows the T-SNE visualization results of the five
different sets of CIFAR-10 image features.

The figure illustrates that encoders finetuned on CIFAR-100
or Spherical maintain or even improve their discriminabil-
ity on image samples in CIFAR-10, whereas the encoders
finetuned on NinaPro and FSD50K can no longer extract
class discriminative features for images. Considering that
finetuning on target modality makes the encoder focus on
classifying target data and learning target discriminative
function, what this observation indicates is that the knowl-
edge required for discriminating samples in CIFAR-100
and Spherical are more aligned with that for CIFAR-10,
compared to the latter two modalities. Such conclusion
aligns with our intuition, since CIFAR-100 is vision dataset
and Spherical is originated from natural images, whereas
NinaPro and FSD50K are less relevant to images.

On the flip side, the results shows that CIFAR-100 and
Spherical can better reuse the source knowledge in the pre-
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trained encoder for task solving while NinaPro and FSD50K
require the encoder to make greater adjustments in order to
adapt to target tasks.

To investigate the source knowledge reuse (or distortion)
during cross-modal transfer more quantitatively, we use lin-
ear probing on CIFAR-10 to evaluate the quality of extracted
representations with encoders finetuned 1) on different tar-
get modalities, 2) with different epochs, and 3) with differ-
ent transfer methods. Additional to vanilla finetuning, we
consider the following two baselines:

• ORCA (Shen et al., 2023) adds an embedder training
stage before finetuning. This first stage only updates
the target embedder parameters θT

e to minimize the
Optimal Transport Dataset Distance (Alvarez-Melis &
Fusi, 2020) between source and target embeddings in
the shared input space X̂ .

• We propose another baseline modified from previous
works (Kumar et al., 2022; Zhang et al., 2023b), Em-
bedder warmup (Emb), which is also a two-stage train-
ing method. The first stage solely updates the target
embedder using the same task loss as vanilla finetun-
ing while keeping the rest of the network frozen. The
second stage finetunes the full network.

Fig. 3 shows the error rate of linear probing, where the dash
line shows the linear probing results on pretrained encoder
as a reference. Note that all these results are error rates on
CIFAR-10 dataset that reflects the extent to which the model
retains the source modality knowledge. The performance
comparison on target modalities is not what we concern right
now and can be found later in table. 2. From experiments we
observe that modality has the greatest effect on linear prob-
ing results. Finetuning on FSD50K significantly distorts
the encoder and impairs its discriminability on image data.
We also notice that tuning on target dataset for more epochs
leads to larger distortion of source knowledge on all target
modalities except for image modality (CIFAR-100). These
observation leads to the conclusion that knowledge for dis-
criminating samples in different modalities differ in varying
degrees, which we refer to as the misalignment of modality
semantic knowledge. We argue that a large discrepancy may
hinder the effectiveness of cross-modal transfer, and thus
the assumption that source modality pretraining is beneficial
to target modality should depends on the discrepancy.

We make additional observations about the source knowl-
edge preservation effect of two-stage training methods. We
observe that both ORCA and Emb achieves lower source er-
ror compared to vanilla finetuning, and Emb performs better
than ORCA. This suggests that the target embedder trained
in their first stage implicitly learns a mapping from X t to X̂
that mitigates the knowledge misalignment between target

and source, and thus reduces the model distortion during its
adaptation towards target tasks.

The above experiments motivate us to formalize the discrep-
ancy of modality semantic knowledge, and to propose an
improved objective for training target embedders that reduce
such discrepancy.
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Figure 3. Linear probing results on CIFAR-10 using representa-
tions extracted by vision encoders finetuned on four different
modalities and with different finetuning methods. “Pretrained”
refers to the baseline that directly uses pretrained vision encoder.

2.3. Modality semantic knowledge discrepancy

We consider representing the semantic knowledge within a
modality using the conditional distribution P (Y |X), which
describes the relationship between raw data space and se-
mantic space of the modality. This is because for neural
networks, acquiring the semantic knowledge means learning
a mapping from data space to semantic space that resembles
the true conditional distribution.

However, to measure the degree of alignment or “similarity”
of such knowledge between two modalities is quite challeng-
ing. The difficulty lies in the fact that both the data space X
and the label space Y are different and even non-overlapping
across modalities.

Therefore, we need to modify the conditional distribution to
make it comparable across modalities. Modifying the input
space is rather easy, as we can simply embed the inputs
into a shared space X̂ using modality-specific embedders.
However, modifying the label space is more sophisticated.

Considering that source modalities, like vision and language,
having large pretrained models are both rich in seman-
tics, we make the following assumption: The cardinality of
source modality label space is larger than the cardinality of
the label space of the target modality, i.e., |Ys| ≥ |Yt|.

This assumption is easily satisfied in practice. For example,
vision transformers trained on ImageNet learns a discrimina-
tive function of one thousand categories whereas only four
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classes are considered in an electrocardiogram classification
task. With the assumption, we can select a subset of the
source modality label space Ys

B ⊂ Ys such that |Ys
B| = |Yt|.

We further introduce a category permutation π(·) that ad-
justs the order of source classes. To this end, we can define
a new label space of the source modality, namely the source
subset after permutation Ys

π,B ≜ π(Ys
B). By measuring the

discrepancy between the modified conditional distributions
P (Y s

π,B|X̂) and P (Y t|X̂), we can formalize the degree of
alignment of the modality semantic knowledge as follows:
Definition 2.1. (Modality semantic knowledge discrep-
ancy). Given the source modalityMs and the target modal-
ity Mt satisfying the assumption, let ˆmathcalX be the
shared input space generated from raw data spaces by
modality-specific embedders, and let P (Y s|X̂), P (Y t|X̂)
be the conditional distribution for the source and target
modality. Then, the modality semantic knowledge discrep-
ancy between the two modalities is

D(Ms,Mt) = inf
π,B

d(P (Y s
π,B|X̂), P (Y t|X̂)),

where d(·, ·) is an arbitrary discrepancy measure between
two conditional distributions.

The definition basically says that, if we can find an op-
timal subset within source semantics that, with a proper
one-to-one matching between source semantics and target
semantics, shares similar conditional distribution with target
modality, then the knowledge discrepancy is considered to
be small. The source model should be able to correctly dis-
tinguish target samples like the way it discriminates source
samples within the subset.
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Figure 4. Modality knowledge discrepancy between image modal-
ity and four target modalities. Computation uses approximation.

With the definition, we calculate the modality semantic
knowledge discrepancy between image modality and the
four target tasks using an extreme approximating algorithm.
Here we only demonstrate the results in Fig. 4 while leaving
the implementation details in supplementary. Our calcula-
tion aligns with previous observations, showing that modal-
ities do have different degree of knowledge discrepancy,
and FSD50K is the most dissimilar modality from image
modality among the four.

3. Modality Knowledge Alignment
Discovering that the modality knowledge may not be well
aligned and its consequence of insufficient source knowl-
edge reuse, we propose a new method that improves the
modality knowledge alignment and the effectiveness of
cross-modality transfer.

3.1. Embedder Warmup

In the previous experiments we find that Embedder warmup,
in spite of its simplicity in training objective, preserves
source knowledge better than other methods. Correspond-
ingly, we turn to examine its performance on target modali-
ties. Table 2 shows that Emb likewise surpasses its counter-
parts. We argue that during the embedder warmup, in order
to minimize the task loss, the embedder are forced explicitly
to project target original inputs into embeddings that are
distinguishable by the source model, which is frozen and
extract features according to the source knowledge.

Combined with our previous analysis, we hypothesize that
the key to effective transfer is to learn a target embedding
function eT : X → X̂ that makes the target conditional
distribution P (Y t|X̂) more aligned with the source knowl-
edge. Consequently, we propose to train the target embedder
solely using objective in the next section to learn such em-
bedding function ahead of the full finetuning process.

3.2. Learning to Align Modality Knowledge

Since we cannot estimate the target conditional probability
without training a model, adopting the modality knowledge
divergence directly as a objective for optimization is diffi-
cult. As an alternative, we propose to leverage meta learn-
ing pipeline to simulate the process in Fig. 3 and optimize
the representation quality of source data after finetuning.
Specifically, an ideal target embedder aligns the modality
knowledge, allowing the encoder to retain its discriminabil-
ity on image data during target finetuning. Therefore, if we
use a source dataset to evaluate the finetuned encoder that is
initialized by this ideal target embedder, we would obtain
minimal error on the source data.

Such process is a standard bi-level optimization problem
widely studied in meta-learning (Finn et al., 2017). Particu-
larly in our case, the outer-loop updates the target embedder
based on the outer-loop loss, which is computed using target
encoder after inner-loop optimization. Fig. 5(a) illustrates
a single step update of the embedder parameter ϕe in the
outer-loop during meta learning, and Fig. 5(b) shows the
process of bi-level optimization.

More specifically, the inner-loop is the optimization of the
model on target dataset, subjected to the condition that the
target embedder is initialized by ϕe, which is

θT ∗
(ϕe) = argmin

θT
Linner(x

t, yt;ϕe), (2)
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Figure 5. The framework of our proposed method. (a) illustrates a single update step of the embedder ϕe in the first stage of MoNA.
The target data is forward propagated first to compute the inner-loop loss Linner , and the gradient is backpropagated to virtually update
the full target model. Then, the updated encoder θT ∗

f receives source data embeddings from pretrained source embedder θS
e0 , and the

outer-loop loss is computed using source features. Finally, the outer-loop gradient is used to update the embedder while the virtually
updated model is discarded. (b) illustrated the bi-level optimization where the outer-loop updates ϕe according to inner-loop results.

where Linner is the same loss as in Eq. (1), and

θT
et = θT

et−1
− α∇Linner, θT

e0 = ϕe. (3)

This inner-loop optimization simulates the full finetun-
ing process in the second stage, and returns an encoder
that is already adapted to target modality. Note that the
whole optimal target model in the inner-loop depends on
the initialization of the target embedder. Therefore we have
θT ∗

(ϕe) = {θ
T ∗

e (ϕe),θ
T ∗

f (ϕe),θ
T ∗

h (ϕe)}.

The outer-loop is an optimization problem with respect to
the target embedder. Our goal is to find optimal embedder
parameters ϕ∗

e such that the resulting optimal target encoder
θT ∗

f (ϕ∗
e) generates high quality representations of source

data. To calculate the loss, we leverage a small labeled
dataset {xs

i , y
s
i } in source modality as a surrogate and com-

pute their features {fs
i = f(e(xs

i ;θ
S
e0);θ

T ∗

f (ϕe))}. Then
we normalize these features onto a unit sphere and measure
the alignment and uniformity of the source features (Wang
& Isola, 2020). In particular, the alignment loss measures
whether features from the same class are close, and the
uniformity loss measures whether features from different
classes are evenly distributed on the sphere.

Our outer-loop objective that measures the source discrim-
inability of the induced encoder takes the following form:
Louter = Lalign + Luniform

= − E
i,j:ys

i=ys
j

[||fs
i − fs

j ||22]− log E
i,j

[
e−2||fs

i−fs
j ||

2
2

]
.

(4)
Notably, the source knowledge cannot be well-preserved
at the beginning of the embedder training. To prevent the
embedder from overly focusing on source modality, and also
to keep the optimization process stable, we strike a balance
between source and target knowledge learning by jointly
minimizing the two objectives with a trade-off parameter λ:

L
′

outer = λLouter + Linner. (5)

Algorithm 1 MoNA: Modality Knowledge Alignment
Input: Source pretrained model gθS

0
; Learning rate α, β;

Maximum iterations I1, I2.
Output: Model for the target task: gθT .
Stage 1: Target embedder training
for iter = 1, 2, · · · , I1 do

Initialize the target model gθT with ϕe and θS
f0 .

Virtually update: θT ∗
= θT − α∇θT Linner.

Compute source features {fs
i} with θS

e0 and θT ∗

f .
Obtain outer-loop loss using Eq. (4).
Update target embedder: ϕe ← ϕe − β∇ϕe

L′

outer.
end for
Stage 2: Full finetuning
for iter = 1, 2, · · · , I2 do

Initialize the target model gθT with ϕe and θS
f0 .

Update target model towards Eq. (1).
end for

In practice, we adopt single step update in the inner loop,
a simplification that will be discussed in the analytical ex-
periment section. This enables us to reuse the loss Linner

calculated during the inner-loop virtual update to compute
this combined objective L′

outer efficiently. To this end, our
proposed MoNA updates the target embedder in the first
stage using:

ϕ∗
e = argmin

ϕe

L
′

outer. (6)

With the modality knowledge being better aligned, MoNA
conducts vanilla finetuning in the second stage. The com-
plete algorithm of MoNA is demonstrated in Alg. 1.

4. Experiments
In this section, we show experiments conducted on two
cross-modal benchmarks. We follow the test protocol in
ORCA (Shen et al., 2023) and evaluate MoNA on NAS-
Bench-360 (Tu et al., 2022) and PDEBench (Takamoto
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Table 1. Prediction errors (↓) on ten tasks of NAS-Bench-360.
CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K ECG Satellite DeepSEA

0-1 error (%) 0-1 error (%) relative l2 MAE8 1-AUROC 0-1 error (%) 1-mAP 1-F1 score 0-1 error (%) 1-AUROC

Hand-designed 19.39 67.41 8.00E-3 3.35 0.127 8.73 0.62 0.28 19.8 0.3
NAS-Bench-360 23.39 48.23 2.60E-3 2.94 0.229 7.34 0.6 0.34 12.51 0.32
DASH 24.37 71.28 7.90E-3 3.3 0.19 6.60 0.6 0.32 12.28 0.28
Perceiver IO 70.04 82.57 2.40E-2 8.06 0.485 22.22 0.72 0.66 15.93 0.38

FPT 10.11 76.38 2.10E-2 4.66 0.233 15.69 0.67 0.5 20.83 0.37
ORCA 6.53 29.85 7.28E-3 1.91 0.152 7.54 0.56 0.28 11.59 0.29
MoNA 6.48 27.13 6.80E-3 0.99 0.121 7.28 0.55 0.27 11.13 0.28

Table 2. Comparing various cross-modal transfer methods on NAS-Bench-360.
CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K ECG Satellite DeepSEA

0-1 error (%) 0-1 error (%) relative l2 MAE8 1-AUROC 0-1 error (%) 1-mAP 1-F1 score 0-1 error (%) 1-AUROC

Train-from-scratch 50.87 76.67 8.00E-2 5.09 0.50 9.96 0.75 0.42 12.38 0.39

Finetuning 7.67 55.26 7.34E-3 1.92 0.17 8.35 0.63 0.44 13.86 0.51
Finetuning++ 6.60 33.17 7.50E-3 1.91 0.168 8.00 0.63 0.35 12.73 0.38
Frozen-encoder 10.02 59.62 6.84E-3 3.43 0.481 35.20 0.72 0.37 19.71 0.36

ORCA 6.53 29.85 7.28E-3 1.91 0.152 7.54 0.56 0.28 11.59 0.29
Emb 6.52 28.76 7.50E-3 1.35 0.139 7.74 0.56 0.28 11.40 0.29
MoNA 6.48 27.13 6.80E-3 0.99 0.121 7.28 0.55 0.27 11.13 0.28

et al., 2022). NAS-Bench-360 is a comprehensive bench-
mark that contains diverse tasks from ten different modali-
ties. PDEBench covers a wide range of partial differential
equations (PDEs) including challenging physical problems.

Each benchmark involves both tasks with 1D and 2D inputs.
Following previous works, we adopt pretrained language
model RoBERTa (Liu et al., 2019) and pretrained vision
model Swin Transformer (Liu et al., 2021) for 1D and 2D
tasks respectively. Following ORCA, We use CoNLL-2003
and CIFAR-10 as the source modality datasets to compute
the outer-loop meta loss. Hyper-parameters for each task
are in supplementary.

4.1. Results on NAS-Bench-360
Several experiments are conducted on this benchmark. The
benchmark involves seven tasks with 2D inputs and three
tasks with 1D inputs. Table 1 shows the results compari-
son using the full training set in each modality. We com-
pare different kinds of baselines including training hand-
designed and NAS-based architectures (NAS-Bench-360,
DASH (Shen et al., 2022)) solely on target modalities, gen-
eral purpose networks Perceiver IO (Jaegle et al., 2022),
and cross-modal transfer methods FPT (Lu et al., 2022) and
ORCA. We observe that MoNA achieves top performance
on nine out of ten tasks, and surpasses previous cross-modal
transfer methods on all tasks.

We also compares several variants of cross-modal trans-
fer. In single stage methods, finetuning refers to the vanilla
finetuning in Eq. (1). Finetuning++ initializes the target
embedder using source embedder weights under certain
modifications to map the dimension. Frozen encoder resem-
bles to previous works (Zhang et al., 2023b) and it keeps
the pretrained weight frozen during finetuning. In two-
stage methods where a warmup stage is conducted before
finetuning, we consider ORCA, Emb and MoNA. These

Table 3. Performance Comparison (↓) with Different Backbones.
Method Pretrained Model (Size) Pretrained Dataset

Spherical NinaPro FSD
0-1 error (%) 0-1 error (%) 1-mAP

Finetuning ViT-Base (86M) IN-22K 47.24 15.63 0.74
ORCA ViT-Base (86M) IN-22K 36.52 8.78 0.63
MoNA ViT-Base (86M) IN-22K 33.34 8.00 0.62
Finetuning CLIP ViT-B/16 (86M) WIT-400M 57.47 13.81 0.77
ORCA CLIP ViT-B/16 (86M) WIT-400M 43.12 8.50 0.69
MoNA CLIP ViT-B/16 (86M) WIT-400M 41.35 7.59 0.67
Finetuning Swin-Base (88M) IN-22K 55.26 8.35 0.63
ORCA Swin-Base (88M) IN-22K 29.85 7.54 0.56
MoNA Swin-Base (88M) IN-22K 27.13 7.28 0.55

experiments serves as an ablation study of our method and
their results is reported in table 2.

The results lead to following conclusions: 1) finetuning the
encoder helps the pretrained model adapt to target modality
and performances better than frozen encoder. 2) Two-stage
methods are generally superior than single stage methods,
indicating that a proper target embedding function leads to
better knowledge transfer. 3) Combined with the results on
source knowledge preservation experiment in Fig. 3, we see
that methods that better align modality knowledge achieves
higher cross-modal transfer performance.

To show that MoNA achieves consistent performance im-
provement across different pretrained models, we conduct
experiments on other two vision backbones, which are ViT-
Base (Dosovitskiy et al., 2020) pretrained on ImageNet-22K
and CLIP ViT-Base/16 (Radford et al., 2021) pretrained on
WIT-400M. The results in table 3 show that, although the
performance on target modalities varies due to the differ-
ent capability of the pretrained models, MoNA consistently
improves knowledge transfer and is superior to the State-of-
the-Art method on different pretrained models.

4.2. Results on PDEBench

The benchmark includes eight PDEs with 1D/2D inputs,
which we address similarly using language and vision

7



Learning Modality Knowledge Alignment for Cross-Modality Transfer

Table 4. Normalized Root Mean Squared Errors (nRMSEs, ↓) on 8 PDEBench tasks.
Advection Burgers Diffusion-Reaction Diffusion-Sorption Navier-Stokes Darcy-Flow Shallow-Water Diffusion-Reaction

1D 1D 1D 1D 1D 2D 2D 2D

PINN 0.67 0.36 0.006 0.15 0.72 0.18 0.083 0.84
FNO 0.011 0.0031 0.0014 0.0017 0.068 0.22 0.0044 0.12
U-Net 1.1 0.99 0.08 0.22 – – 0.017 1.6

ORCA 0.0098 0.0120 0.0030 0.0016 0.062 0.081 0.0060 0.820
MoNA 0.0088 0.0114 0.0028 0.0016 0.054 0.079 0.0057 0.818

Table 5. Prediction errors (↓) on three classic benchmarks from
different modalities.

AudioSet-20k ESC50 UCF101
1-mAP 0-1 error (%) 0-1 error (%)

From scratch 0.634 30.00 57.62
Finetuning 0.541 27.50 26.51
ORCA 0.538 12.75 16.86
MoNA 0.523 9.64 13.45

Table 6. Ablation Studies on Loss Design.
Loss Ablations CIFAR-100 Spherical NinaPro FSD50K
MoNA w/o Linner in Eq. (5) 8.00 28.76 7.74 0.58
MoNA 6.48 27.13 7.28 0.55
Contrastive Loss for Louter 6.51 27.90 7.44 0.55
Clustering Metric for Louter 7.09 28.02 8.19 0.56

pretrained models. We consider three baselines in the
original paper, namely U-Net (Ronneberger et al., 2015),
PINN (Raissi et al., 2019), FNO (Li et al., 2020), where the
last two methods are specifically designed for PDEs. We
also compare ORCA as the cross-modal transfer baseline.
The result is shown in table 4.

We observe that MoNA achieves state-of-the-art on four
out of eight tasks on PDEBench. Notably, it outperforms
ORCA on seven tasks with significant improvements on
Advection Equation and Navier-Stokes’ Equation, and it
achieves competitive results with specialized method FNO.

4.3. Results on Several Other Tasks
To further demonstrate the scalability of MoNA, we conduct
experiments on more datasets and modalities, including Au-
dioSet (Gemmeke et al., 2017) and ESC50 in audio modality,
and UCF101 (Soomro et al., 2012) in video modality.

As shown in table 5, MoNA surpasses all baselines including
ORCA. These results validate the scalability of our method,
indicating that MoNA is a general cross-modality transfer
method that can be applied on a wide range of tasks.

4.4. Analytical Experiments
Ablation Studies. To validate the effectiveness of our de-
sign, we conduct several ablation studies on four tasks in
NAS-Bench-360. The first ablation study investigates the
effect of different training objectives as shown in table 6.
We begin with excluding the inner-loop loss Linner from
the total objective of the outer-loop in Eq. (5). Comparing
to MoNA, the performance drop on all four tasks shows that
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Figure 6. Analytical experiments. Accuracies with varying value
of trade-off λ (left two), and different inner-loop iterations (right).

Table 7. Comparison on Training Time in GPU Hour.
CIFAR-100 Spherical NinaPro FSD50K

ORCA 11.57 12.40 1.42 16.20
MoNA 12.15 12.32 1.15 17.74
Performance Gain (relative) +0.7% +9.1% +3.4% +1.8%

Linner is crucial to ensure the adaptation of the embedder.

We move on to replace the alignment and uniformity loss
(i.e., Louter) by two variants. The contrastive loss refers to
the supervised contrastive loss (Khosla et al., 2020), and the
clustering metric we adopt is the Davies-Bouldin index. The
results in table 6 shows that contrastive loss achieves slightly
worse performance than MoNA, while the clustering metric
leads to much worse results. We hypothesize the reason
is that the DB index becomes less informative when the
feature dimension is high.

The ablations on different training strategies can be found
in table 2. Comparing two-stage MoNA against one-stage
finetuning method, we find that the knowledge alignment
stage brings significant improvement.

MoNA reduces modality knowledge misalignment. We
empirically validate that MoNA reduces the discrepancy
between source modality and four target tasks (Fig. 4), and
by which better retains source knowledge during finetuning
than other methods (Fig. 3). Our empirical results align
with our hypothesis that reducing knowledge misalignment
between modalities leads to more effective transfer and
higher performance on target tasks.

Parameter sensitivity of λ. This parameter balances the
trade-off between adapting to target knowledge and pre-
serving source knowledge. Fig. 6(a)(b) shows results on
Spherical and NinaPro tasks with varying λ. We observe
that optimal value lies in the range of [0.3, 0.5], whereas
much higher or lower values lead to performance drop.

Inner-loop update steps. We take different steps of gradi-
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ent descent in the inner-loop and show the results in Fig. 6(c).
We observe that increasing the inner-loop steps slightly im-
proves the performance. However, it also causes an in-
creasing accuracy variation as well as computational cost.
Therefore, following standard gradient-based meta-learning
algorithms like MAML (Finn et al., 2017), we adopt the
single step update. This helps to reduce the optimization
time as well as the requirements for large memory.

Training Efficiency. The double loop optimization
paradigm of meta-learning has its intrinsic limitation. How-
ever, MoNA mitigates this issue in practice and achieves
comparable efficiency with ORCA, as shown in table 7. The
reason is two fold: first, we adopt single step update as
discussed above to reduce the inner-loop optimization time.
Second, MoNA requires only 5 epochs of target embedder
training to achieve satisfactory performance, which is sig-
nificantly lesser than ORCA, which requires more than 60
epochs in the first stage. Therefore, although MoNA cost
longer time in training one epoch, the overall training time
is comparable between the two methods.

5. Related Work
5.1. Cross-domain Transfer
Transfer learning is extensively investigated in the topic
of domain shift (Pan & Yang, 2010). Domain Adaptation
(DA) (Ben-David et al., 2010; Long et al., 2018; Ganin &
Lempitsky, 2015; Li et al., 2021) studies the knowledge
transfer between source and target domain that differ in data
distribution yet share the same task. finetuning (Yosinski
et al., 2014; Xuhong et al., 2018; You et al., 2020; Kumar
et al., 2022; Ma et al., 2023) is another powerful pipeline
that enables knowledge transfer from large source dataset
to different downstream tasks. It initializes the target model
for downstream tasks using weights pretrained on massive
source data, achieving higher performances than training
the model from scratch. Our work belongs to the second
transfer pipeline, yet addressing the more challenging situa-
tion where knowledge required for solving target tasks may
not be quite aligned with source.

5.2. Cross-modality Transfer
Cross-modal transfer extends the boundary of transfer learn-
ing from same modality to different modalities (Shen et al.,
2023). The possibility of leveraging model pretrained on
one modality to benefit tasks on other modalities gains in-
creasing attention in recent years (Dinh et al., 2022; Lu
et al., 2022; Reid et al., 2022; Mirchandani et al., 2023;
Pang et al., 2023). One stream of works focuses on the
knowledge reuse and transfer from source pretrained models.
FPT (Lu et al., 2022) empirically shows that a pretrained lan-
guage model (PLM) can benefit a variety of non-language
downstream tasks, whereas other works transfer PLM to
specific modalities (Zhou et al., 2023; Pang et al., 2023;

Reid et al., 2022). ORCA proposes a general workflow for
cross-modal transfer that first aligns the data distribution be-
tween source and target embeddings and then finetunes the
source model to adapt to target modality. Another line of re-
searches aims to learn a general model for several modalities.
Meta-transformer (Zhang et al., 2023b) proposes to design
modality-specific embedders while keeping a multimodal
pretrained model like CLIP (Radford et al., 2021) frozen
as the unified backbone. OneLLM (Han et al., 2023) fur-
ther adds projection layers on top of the pretrained encoder,
interfacing it to large language models.

Despite the empirical success of previous works, we still
lack understanding of the reason behind these success. As
the target modalities can be greatly diverse, the common
assumption that knowledge from source modality is bene-
ficial to all target modalities requires further examination.
In this work, we formalize the knowledge discrepancy be-
tween modalities as an interpretation to the actual feasibil-
ity of knowledge transfer between certain source to target
modality, and propose a novel method to reduce modality
knowledge misalignment.

5.3. Meta-Learning
Our work leverages the optimization-based meta-learning
approaches that use bi-level optimization to embed learning
procedures like gradient descent into the meta-optimization
problem (Hospedales et al., 2021; Rajeswaran et al., 2019).
MAML (Finn et al., 2017) is a representative work alone
this line of meta-learning. It learns parameters that can
serve as a general initialization to solve new downstream
tasks with high efficiency. The method mimics the learning
process on new tasks in the inner-loop, and updates the
outer-loop parameters according to the final performances
of each new task within the inner-loop. The spirit of such
idea also inspires researches in domain generalization (Li
et al., 2018; Balaji et al., 2018; Dou et al., 2019; Li et al.,
2019; Liu et al., 2020), where the inner-loop simulates the
model’s generalization in unseen target domains.

6. Conclusion and Discussion
In this work, we empirically reveal the connection between
the modality knowledge discrepancy and the effectiveness
of cross-modal transfer. We provide interpretation of such
discrepancy in terms of the divergence between conditional
distributions. We further propose MoNA, a meta-learning
based method to align source and target modality knowledge
and improve from existing cross-modal transfer methods.
Extensive experiments on two benchmarks with various
modalities validate our approach.

Based on our formulation of modality knowledge discrep-
ancy, future work may involve evaluating different source
modalities and pretrained models to find the most transfer-
able source model to the given target task.
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A. Appendix
A.1. Benchmark Introduction and Training Details

We summarize the details of ten tasks in NAS-Bench-360 in table 8. The ten tasks can be divided into three groups: 2D
point prediction (classification), 2D dense prediction and 1D classification.

CIFAR-100 (Krizhevsky et al., 2009) in a standard classification task on natural images. Spherical (Cohen et al., 2018)
classifies spherical projections of the CIFAR-100 images which simulate distorted image signals. NinaPro (Atzori et al., 2012)
moves away from the image modality to classify hand gestures indicated by electromyography signals. FSD50K (Fonseca
et al., 2017b) is an audio classification task originated from the larger Freesound dataset (Fonseca et al., 2017a) with
spectrogram as input and multiple labels as output.

Darcy-Flow (Li et al., 2020) is a regression task for learning a map from the initial conditions of Partial Differential
Equations (PDEs) to the solution at a later time-step. PSICOV (Adhikari, 2020) predicts the inter-residual distance of a
small set of protein structures. Cosmic (Zhang & Bloom, 2020) is the last dense prediction task in benchmark, aiming to
identify comsic ray contamination in the images collected from the Hubble Space Telescope.

ECG (Clifford et al., 2017) is the classification task on electrocardiogram signals that is frequently used in heart disease
diagnosis. Satellite (Petitjean et al., 2012) is the classification of land cover type giving the satellite image time series as
inputs. DeepSEA (Zhou & Troyanskaya, 2015) predicts the functional effects from genetic sequences and makes prediction
among 36 categories of chromatin protein behavior. Please find more detailed description of these tasks in the original
paper (Tu et al., 2022).

The training configurations for vanilla finetuning (MoNA’s second stage) for each task basically follow the setups in
ORCA (Shen et al., 2023) and is summarized in table 9. For the first stage, we uniformly adopt AdamW (Loshchilov &
Hutter, 2017) with learning rate 3e-5 and weight decay 0.1 since we find it works reasonably well on all tasks. We warmup
the embedder with ten epochs before moving to the second stage.

Table 8. Introduction of the ten tasks in NAS-Bench-360.
CIFAR100 Spherical NinaPro FSD50K DarcyFlow PSICOV Cosmic ECG Satellite DeepSEA

# training data 60K 60K 3956 51K 1.1K 3606 5250 330K 1M 250K
Input shape 2D 2D 2D 2D 2D 2D 2D 1D 1D 1D

Output type Point Point Point Point Dense Dense Dense Point Point Point
# classes 100 100 18 200 – – – 4 24 36
Loss CE CE LpLoss MSELoss BCE FocalLoss BCE CE CE BCE

Expert network DenseNet-BC S2CN Attention Model VGG FNO DEEPCON deepCR-mask ResNet-1D ROCKET DeepSEA

Table 9. Configuration of hyper-parameters and optimizers used in NAS-Bench-360.
CIFAR100 Spherical NinaPro FSD50K Darcy Flow PSICOV Cosmic ECG Satellite DeepSEA

Batch Size 32 32 32 32 4 1 4 4 16 16

Epoch 60 60 60 100 100 10 60 15 60 13

Grad. Accum. 32 4 1 1 1 32 1 16 4 1

Optimizer SGD AdamW Adam Adam AdamW Adam AdamW SGD AdamW Adam

Learning Rate 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-03 5.00E-06 1.00E-03 1.00E-06 3.00E-05 1.00E-05

Weight Decay 1.00E-03 1.00E-01 1.00E-05 5.00E-05 5.00E-03 1.00E-05 0.00E+00 1.00E-01 3.00E-06 0.00E+00

On PDEBench, we evaluate all tasks except 2D and 3D Navier-Stokes Equations which are too computational expensive.
We provide simple introduction to each PDE and refer more details to the original paper (Takamoto et al., 2022).

1D Advection equation models pure advection behavior without non-linearity, with parameter β informing the constant
advection speed. 1D Burgers’ equation models the non-linear behavior and diffusion process in fluid dynamics. The
parameter ν is the diffusion coefficient which is assumed constant. 1D Diffusion-Reaction equation combines a diffusion
process and a rapid evolution from a source term, where two parameters ν, ρ control the degree of combination. 1D
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Diffusion-Sorption equation models a diffusion process which is retarded by a sorption process. The equation is applicable
to real world scenarios. 1D compressible Navier-Stokes equation describes the dynamics of compressible fluid, where η and
ζ are the shear and bulk viscosity, respectively.

2D Darcy-Flow equation describes a steady-state solution of the flow dynamics over the unit square. The force term f(x) is
simplified as the constant β and it changes the scale of the solution. 2D shallow-water equations are derived from the general
Navier-Stokes equation that presents a suitable framework for modelling free-surface flow problems. 2D Diffusion-Reaction
equation extends the 1D equation by considering two non-linearly coupled variables.This task serves as a challenging
problem since the coupling is non-linear and its real world application is huge.

Table 10. Introduction of eight tasks evaluated on PDEBench.
Advection Burgers Diffusion-Reaction Diffusion-Sorption Navier-Stokes Darcy-Flow Shallow-Water Diffusion-Reaction

Input shape 1D 1D 1D 1D 1D 2D 2D 2D

Output type Dense

Resolution 1024 1024 1024 1024 1024 128 * 128 128 * 128 128 * 128

Parameters β = 0.4 ν = 1.0 ν = 0.5, ρ = 1.0 – η = 1.0, ζ = 1.0 β = 0.1 – –

Loss Normalized Root Mean Squared Errors (nRMSEs)

Table 11. Configuration of hyper-parameters and optimizers used in NAS-Bench-360
Advection Burgers Diffusion-Reaction Diffusion-Sorption Navier-Stokes Darcy-Flow Shallow-Water Diffusion-Reaction

Batch Size 4 4 4 4 4 4 4 4

Epoch 200 200 200 200 200 100 200 200

Grad. Accum. 1 1 1 1 1 1 1 1

Optimizer Adam Adam SGD AdamW AdamW AdamW AdamW Adam

Learning Rate 1.00E-04 1.00E-05 1.00E-03 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04

Weight Decay 1.00E-05 1.00E-05 1.00E-05 0 1.00E-03 1.00E-05 0 1.00E-03

A.2. Detailed Explanation of the Model Architecture

In this section we provide a detailed explanation of the modality-specific embedders and predictors. Note that our
implementation of these modules follows exactly the designs in ORCA.

The structure of the modality-specific embedder depends on whether the task is 2D or 1D.

• For 2D tasks, the embedder consists of a linear projection layer and a LayerNorm operation. For any input data with
size C × H ×W , where C,H and W are channels, height and width, we first resize it to C × 2242 and divide it
into N patches of size C × 42. Then the linear projection layer maps each patch into a token of size 128 and the
LayerNorm operation is applied on all the projected patches. Therefore, the embedder can be formulated as a function
e2D : RN×16C → RN×128.

• For 1D tasks, the embedder consists of a linear projection layer, a LayerNorm operation and learnable positional
embeddings. For any input data with size C ×L where C and L are channels and sequence length respectively, we first
divide it into N patches of size C × L

N . Then the linear projection layer maps each patch into a token of size 768 and
the LayerNorm operation is applied on all the projector patches. Finally, the positional embeddings are added to the
patches. Therefore, the embedder can be formulated as a function e1D : RCL → R768N .

The structure of the modality-specific predictor depends on whether the task is classification or dense prediction.

• For classification tasks, the predictor consists of an average pooling layer and a linear projection layer. The average
pooling layer averages the dense feature map of size N ′ × d to produce feature of size d, then the linear projection
layer maps the feature to logits of size K, where d and K represent feature dimension and the number of categories.
Therefore, the predictor can be formulated as a function hc : RN ′d → RK .
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• For dense prediction tasks, the predictor consists of a linear projection layer, a pixel rearrangement operation and two
adaptive pooling layers. The linear projection layer takes the dense feature map of size 72 × d as input and output a
new feature of size 72× 3072, which is then reorganized into shape 2242× 3. Next, two pooling operations are applied
sequentially, turning the feature size from 3× 2242 to K × 2242 and finally K ×H ×W which is in accordance with
the input spatial dimension. Therefore, the predictor can be formulated as a function hd : R49d → RKHW .

A.3. Theoretical Foundation for the Meta-Learning Objective

We provide a preliminary theoretical analysis of our meta-learning objective. As in our paper, we denote the target embedder
parameter as ϕe and the pretrained encoder parameter as θf . The objective of MoNA is:

min
ϕe

Linner(θf , ϕe) + λLouter(θf − α∇θfLinner(θf , ϕe)). (7)

We then get the approximation of the objective using Taylor expansion as:

min
ϕe

Linner(θf , ϕe) + λLouter(θf ) + λ∇Louter(θf ) · (−α∇Linner(θf , ϕe)). (8)

Since it is the optimization problem of ϕe, the second term is neglected and we obtain the final form as:

min
ϕe

Linner(θf , ϕe)− λα(∇Louter(θf )) · (∇Linner(θf , ϕe)). (9)

We see that the first term directly minimizes the target task loss, whereas the second term maximizes the dot product of the
source loss gradient and the target loss gradient, both with respect to θf . In other words, the second term updates the target
embedder in a way that makes the gradient direction of the target task loss align with the gradient direction of the source
modality loss. In the optimal situation where the two gradients point to the same direction, finetuning the encoder θf using
target loss will maximally maintain the source knowledge. With this theoretical support, we argue the optimality of the
target embedder update objective in terms of achieving cross-modal knowledge alignment.

A.4. Approximation Algorithm for Computing Modality Knowledge Discrepancy

We explain the algorithm used to approximate the modality knowledge discrepancy in definition 2.2. The results is shown in
Figure 4. For each target sample (xt

i, y
t
i), we use the one-hot embedding of its label as the target conditional distribution

p(yt|xt
i). For the source conditional distribution, we leverage the complete source pretrained model (with the original

classifier trained on ImageNet) to compute the logits zs
i . We then simplify the searching for optimal subset B in the definition

as a random category selection. Number of the selected source classes are equal to the number of the target categories being
compared. With the subset selected, we consider the maximum logit value within the subset and assign the source category
as ysi,B = argmaxk∈B[z

s
i ]k, and we also use the one-hot embedding of source predicted category to model the source

conditional distribution p(ysB|xt
i). To this end, the discrepancy between two conditional distribution can be simplified as

d(p(ysB|xt
i), p(y

t|xt
i)) = I[ys

i,B ̸=yt
i ]
, (10)

Therefore, we can compute the modality knowledge discrepancy as

D(Ms,Mt) =
1

nt

nt∑
i=1

d(p(ysB|xt
i), p(y

t|xt
i)). (11)

Still, we need to find the optimal permutation π that matches source and target categories one-to-one. Since it is too
computational expensive to iteration through all the permutations, we opt to randomly permute the target label indexes.
Therefore in practice, we conduct random experiment for 100,000 times. Each time we randomly select subset of the source
and randomly permute the target label indexes. We compute the modality knowledge discrepancy using Eq. (11), and the
final discrepancy is the minimum value during the whole process. Alg. 2 summarizes the complete process.

A.5. Cross-Modality Transfer Against Cross-Modality Knowledge Distillation

Cross-modal Knowledge Distillation (Xue et al., 2023) is an alternative paradigm for cross-modality knowledge sharing,
and is proven to be useful on diverse applications including video representation learning (Sarkar & Etemad, 2024), action
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Algorithm 2 Approximation Algorithm for Modality Knowledge Discrepancy
1: Input: Source pretrained model gθS

0
; Target data {xt

i, y
t
i}; Target task category number K; Maximum experiments I .

2: Output: Modality Knowledge Discrepancy D(Ms,Mt).
3: Compute the source logit for each target sample: zs

i = gθS
0
(xt

i).
4: minD ← 1.
5: for exp = 1, 2, · · · , I do
6: Randomly select a subset B of class index from source class indexes with the size equals to target class number,

|B| = K.
7: ysi,B ← argmaxk∈B[z

s
i ]k

8: Randomly shuffle the index of target labels: yt ← π(yt), (e.g., π(1) = 2, π(2) = 1.)
9: Compute Dexp(Ms,Mt) using Eq. (11).

10: minD ← min(Dexp,minD).
11: end for
12: Return minD.

recognition (Garcia et al., 2018; Dai et al., 2021), lip reading (Ren et al., 2021; Afouras et al., 2020), depth (Gupta et al.,
2016), sound (Aytar et al., 2016) and etc. Specifically, XKD (Sarkar & Etemad, 2024) explores leveraging Maximum Mean
Discrepancy to align video and image modality, ASR (Afouras et al., 2020) proposes a novel Connectionist Temporal
Classification loss that enables learning sequence-to-sequence tasks without the need for explicit alignment of training
targets to input frames, and Augmented RGB (Dai et al., 2021) also investigates the sequence-to-sequence knowledge
distillation framework using a contrastive strategy.

A common thread among these methodologies is their reliance on paired data or multimodal representations of identical data
points. This prerequisite, however, may not always be feasible or accessible in certain modalities, such as those involving
Partial Differential Equations (PDEs) or protein structure prediction, thereby limiting their applicability.

In contrast, cross-modal transfer learning emerges as a more versatile and inclusive framework for knowledge sharing
across modalities, primarily because it eschews the need for paired data, thereby casting a wider net in terms of application
potential. However, this flexibility comes at the cost of an increased risk of ineffective transfer, particularly when faced with
substantial modality knowledge discrepancies and in the absence of paired data to serve as a bridge between the disparate
modalities.

Therefore, one of the primal purposes of this work is to describe the extent of modality discrepancy systematically. We
hope that our effort can motivate research in modality discrepancy, which would eventually provide guidelines for better
cross-modal knowledge transfer.

A.6. Limitation

Here we discuss a few limitations of our work as well as potential solution towards these limitations.

Firstly, our experimental framework adheres to the protocols established by ORCA, which involves utilizing CIFAR10
and CoNLL-2003 as surrogate source datasets for the vision and language modalities, respectively. This approach, while
facilitating a direct comparison with established benchmarks, introduces a limitation in that the choice of surrogate datasets
might influence the outcomes of cross-modal transfer learning. The potential variability in transfer performance attributed
to different source datasets is a factor that our current analysis does not account for, presenting a critical area for future
exploration.

Secondly, in the implementation of MoNA, we opted for a simplistic yet effective strategy akin to Model-Agnostic Meta-
Learning (MAML), using a single-step update within the inner loop to balance the performance and computational cost.
Noticed that with recent advancements in gradient-based meta-learning proposing improved algorithms for inner-loop
optimization, we are committed to actively exploring these methods to improve the algorithm of MoNA.
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