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Abstract

We leverage the Neural Tangent Kernel and its equivalence to training infinitely-
wide neural networks to devise co-AE: an autoencoder with infinitely-wide bottle-
neck layers. The outcome is a highly expressive yet simplistic recommendation
model with a single hyper-parameter and a closed-form solution. Leveraging oo-
AE’s simplicity, we also develop DISTILL-CF for synthesizing tiny, high-fidelity
data summaries which distill the most important knowledge from the extremely
large and sparse user-item interaction matrix for efficient and accurate subsequent
data-usage like model training, inference, architecture search, efc. This takes a
data-centric approach to recommendation, where we aim to improve the quality of
logged user-feedback data for subsequent modeling, independent of the learning
algorithm. We particularly utilize the concept of differentiable Gumbel-sampling
to handle the inherent data heterogeneity, sparsity, and semi-structuredness, while
being scalable to datasets with hundreds of millions of user-item interactions. Both
of our proposed approaches significantly outperform their respective state-of-the-
art and when used together, we observe 96 — 105% of co-AE’s performance on
the full dataset with as little as 0.1% of the original dataset size, leading us to
explore the counter-intuitive question: Is more data what you need for better
recommendation?

1 Introduction

The Neural Tangent Kernel (NTK) has recently advanced the theoretical understanding of how neural
networks learn [2, 20]. Notably, performing Kernelized Ridge Regression (KRR) with the NTK has
been shown to be equivalent to training infinitely-wide neural networks for an infinite number of SGD
steps. Owing to KRR’s closed-form solution, these networks can be trained in a fast and efficient
manner whilst not sacrificing expressivity. While the application of infinite neural networks is being
explored in various learning problems [48, 3], detailed comparative analyses demonstrate that deep,
finite-width networks tend to perform significantly better than their infinite-width counterparts for a
variety of standard computer-vision tasks [31].

On the contrary, for recommendation tasks, there always has been a debate of linear vs. non-linear
networks [29, 65], along with the importance of increasing the width vs. depth of the network
[11, 39]. At a high level, the general conclusion is that a well-tuned, wide and linear network can
outperform shallow and deep neural networks for recommendation [50]. We extend this debate by
introducing our model co-AE, an autoencoder with infinitely wide bottleneck layers and examine its
behavior on the recommendation task. Our evaluation demonstrates significantly improved results
over state-of-the-art (SoTA) models across various datasets and evaluation metrics.
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A rising challenge in recommender systems research has been the increased cost of training models
on massive datasets which can involve billions of user-item interaction logs, in terms of time, com-
putational resources, as well as the downstream carbon footprint. Moreover, despite anonymization
efforts, privacy risks have been associated with publicly released user data [38]. To this end, we
further explore recommendation from a data-centric viewpoint [60], which we loosely define as:

Definition 1.1. (Data-centric AI) Systematic methods for improving the collected data’s quality,
thereby shifting the focus from merely acquiring large quantities of data; implicitly helping in a
learning algorithm’s generalization, scalability, and eco-sustainability.

Previous work on data-centric techniques generally involve constructing terse data summaries of large
datasets, and has focused on domains with continuous, real-valued features such as images [66, 41],
which are arguably more amenable to data optimization approaches. Due to the heterogeneity, sparsity,
and semi-structuredness of recommendation data, such methods are not directly applicable. Common
approaches for scaling down such recommendation datasets typically include heuristics such as
random, head-user, or k-core sampling. More principled approaches include coreset construction
[57] that focus on optimizing for picking the set of data-points that are the most representative from a
given dataset, and are generally shown to out-perform various heuristic sampling strategies. However,
synthesizing informative summaries for recommendation datasets still remains a challenge.

Consequently, we propose DISTILL-CF, a data distillation framework for collaborative filtering
(CF) datasets that utilizes co-AE in a bilevel optimization objective to create highly compressed,
informative, and generic data summaries. DISTILL-CF employs efficient multi-step differentiable
Gumbel-sampling [23] at each step of the optimization to encompass the heterogeneity, sparsity, and
semi-structuredness of recommendation data. We further provide an analysis of the denoising effect
observed when training the model on the synthesized versus the full dataset.

To summarize, in this paper, we make the following contributions:

* We develop co-AE: an infinite-width autoencoder for recommendation, that aims to reconstruct
the incomplete preferences in a user’s item consumption sequence. We demonstrate its efficacy
on four datasets, and demonstrate that co-AE outperforms complicated SoOTA models with only
a single fully-connected layer, closed-form optimization, and a single hyper-parameter. We
believe our work to be the first to demonstrate that an infinite-width network can outperform
their finite-width SoTA counterparts for practical scenarios like recommendation.

* We subsequently develop DISTILL-CF: a novel data distillation framework that can synthesize
tiny yet accurate data summaries for a variety of modeling applications. We empirically
demonstrate similar performance of models trained on the full dataset versus training the same
models on 2 — 3 orders smaller data summaries synthesized by DISTILL-CF. Notably, DISTILL-
CF and co-AE are complementary for each other’s practicality, as co-AE’s closed-form solution
enables DISTILL-CF to scale to datasets with hundreds of millions of interactions; whereas,
DISTILL-CF’s succinct data summaries help improving co-AE’s restrictive training complexity,
and achieving SoTA performance when trained on these tiny data summaries.

* Finally, we also note that DISTILL-CF has a strong data denoising effect, validated with a
counter-intuitive observation — if there is noise in the original data, models trained on less
data synthesized by DISTILL-CF can be better than the same model trained on the entire
original dataset. Such observations, along with the strong data compression results attained
by DISTILL-CF, reinforce our data-centric viewpoint to recommendation, encouraging the
community to think more about the quality of collected data, rather than its quantity.

2 Related Work

Autoencoders for recommendation. Recent approaches to implicit feedback recommendation
involve building models that can re-construct an incomplete user preference list using autoencoders
[32, 59, 54, 33]. The CDAE model [64] first introduced this idea and used a standard denoising
autoencoder for recommending new items to users. MVAE [32] later extended this idea to use
variational autoencoders, and provided a principled approach to perform variational inference for this
model architecture. More recently, EASE [59] proposed using a shallow autoencoder and estimates
only an item-item similarity matrix by performing ordinary least squares regression on the relevance
matrix, resulting in closed-form optimization.



Infinite neural networks. The Neural Tangent Kernel (NTK) [20] has gained significant attention
because of its equivalence to training infinitely-wide neural networks by performing KRR with the
NTK. Recent work also demonstrated the double-descent risk curve [4] that extends the classical
regime of train vs. test error for overparameterized neural networks, and plays a crucial role in the
generalization capabilities of such infinite neural networks. However, despite this emerging promise
of utilizing NTK for learning problems, detailed comparative analyses [43, 31, 2] for computer vision
tasks demonstrate that finite-width networks are still significantly more accurate than infinite-width
ones. Looking at recommendation systems, [65] performed a theoretical comparison between Matrix
Factorization (MF) and Neural MF [18] by studying their expressivity in the infinite-width limit,
comparing the NTK of both of these algorithms. Notably, their settings involved the typical (user-ID,
item-ID) input to the recommendation model, and observed results that were equivalent to a random
predictor. [48] performed a similar study that performed matrix completion using the NTK of a single
layer fully-connected neural network, but assumed meaningful feature-priors available beforehand.

Data sampling & distillation. Data sampling is ubiquitous — sampling negatives while contrastive
learning [51, 25], sampling large datasets for fast experimentation [57], sampling for evaluating
expensive metrics [30], efc. In this paper, we primarily focus on sampling at the dataset level,
principled approaches of which can be categorized into: (1) coreset construction methods that aim
to pick the most useful datapoints for subsequent model training [7, 27, 53, 26]. These methods
typically assume the availability of a submodular set-function f : V — R, V'V C X for a given
dataset X (see [6] for a systematic review on submodularity), and use this set-function f as a proxy
to guide the search for the most informative subset; and (2) dataset distillation: instead of picking
the most informative data-points, dataset distillation techniques aim to synthesize data-points that
can accurately distill the knowledge from the entire dataset into a small, synthetic data summary.
Originally proposed in [62], the authors built upon the notions of gradient-based hyper-parameter
optimization [34] to synthesize representative images for model training. Subsequently, a series of
works [67, 66, 40, 41] propose various subtle modifications to the original framework, for improving
the sample-complexities of models trained on data synthesized using their algorithms. Note that
such distillation techniques focused on continuous data like images, which are trivial to optimize in
the original data-distillation framework. More recently, [24] proposed a distillation technique for
synthesizing fake graphs, but also assumed to have innate node representations available beforehand,
prohibiting their method’s application for recommendation data.

3 oo-AE: Infinite-width Autoencoders for Recommendation

Notation. Given a recommendation dataset D := {(user;, item;, relevance;)};_, consisting of n
user-item interactions defined over a set of users U/, set of items Z, and operating over a binary
relevance score (implicit feedback); we aim to best model user preferences for item recommendation.
The given dataset D can also be viewed as an interaction matrix, X € RI“I*IZl where each entry X, ;
either represents the observed relevance for item ¢ by user u or is missing. Note that X is typically
extremely sparse, i.e., n < |U| x |Z|. More formally, we define the problem of recommendation as
accurate likelihood modeling of P(i | u, D) Vu € U, Vi € T.

Model. oo-AE takes an autoencoder approach to recommendation, where the all of the bottleneck
layers are infinitely-wide. Firstly, to make the original bi-variate problem of which item to recommend
to which user more amenable for autoencoders, we make a simplifying assumption that a user can
be represented only by their historic interactions with items, i.e., the much larger set of users lie in
the linear span of items. This gives us two kinds of modeling advantages: (1) we no longer have
to find a unique latent representation of users; and (2) allows co-AE to be trivially applicable for
any user not in /. More specifically, for a given user u, we represent it by the sparse, bag-of-words
vector of historical interactions with items X, € RIZl, which is simply the u™ row in X. We
then employ the Neural Tangent Kernel (NTK) [20] of an autoencoder that takes the bag-of-items
representation of users as input and aims to reconstruct it. Due to the infinite-width correspondence
[20, 2], performing Kernelized Ridge Regression (KRR) with the estimated NTK is equivalent to
training an infinitely-wide autoencoder for an infinite number of SGD steps. More formally, given
the NTK, K : RIZl x RIZI — R over an RKHS H of a single-layer autoencoder with an activation
function o (see [47] for the NTK derivation of a fully-connected neural network), we reduce the
recommendation problem to KRR as follows:
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Where ) is a fixed regularization hyper-parameter, o := [ag; 0 - -+ ;o] € RIUI>IZ are the set of
dual parameters we are interested in estimating, ¢ represents the dual activation of ¢ [14], and o’
represents its derivative. Defining a gramian matrix KX € RI“/*U| where each element can intuitively
be seen as the similarity of two users, i.e., K; j = K(X.,, Xuj ), the optimization problem defined
in Equation (1) has a closed-form solution given by & = (K + AI)~! - X. We can subsequently
perform inference for any novel user as follows: P(- | u, D) = softmax(f(X, | &)). We also provide
o0-AE’s training and inference pseudo-codes in Appendix A, Algorithms 1 and 2.

Scalability. We carefully examine the computational cost of co-AE’s training and inference. Starting
with training, co-AE has the following computationally-expensive steps: (1) computing the gramian
matrix K; and (2) performing its inversion. The overall training time complexity thus comes out to
be O([U]? - |Z| + |U|*379) if we use the Coppersmith-Winograd algorithm [12] for matrix inversion,
whereas the memory complexity is O(|U| - |Z| + [U|?) for storing the data matrix X and the gramian
matrix K. As for inference for a single user, both the time and memory requirements are O(|U| - |Z]).
Observing these computational complexities, we note that co- AE can be difficult to scale-up to larger
datasets naively. To this effect, we address co-AE’s scalability challenges in DISTILL-CF (Section 4),
by leveraging a simple observation from support vector machines: not all datapoints (users in our
case) are important for model learning. Additionally, in practice, we can perform all of these matrix
operations on accelerators like GPU/TPUs and achieve a much higher throughput.

4 DiISTILL-CF

Motivation. Representative sampling of large datasets has numerous downstream applications.
Consequently, in this section we develop DISTILL-CF: a data distillation framework to synthesize
small, high-fidelity data summaries for collaborative filtering (CF) data. We design DISTILL-CF with
the following rationales: (1) mitigating the scalability challenges in co-AE by training it only on the
terse data summaries generated by DISTILL-CF; (2) improving the sample complexity of existing,
finite-width recommendation models; (3) addressing the privacy risks of releasing user feedback data
by releasing their synthetic data summaries instead; and (4) abating the downstream CO5 emissions
of frequent, large-scale recommendation model training by estimating their parameters only on much
smaller data summaries synthesized by DISTILL-CF.

Challenges. Existing work in data distillation has focused on continuous domain data such as images
[40, 41, 67, 66], and are not directly applicable to heterogeneous and semi-structured domains such
as recommender systems and graphs. This problem is further exacerbated since the data for these
tasks is severely sparse. For example, in recommendation scenarios, a vast majority of users interact
with very few items [22]. Likewise, the nodes in a number of graph-based datasets tend to have
connections with very small set of nodes [68]. We will later show how our DISTILL-CF framework
is elegantly able to circumvent both these issues while being accurate, and scalable to large datasets.

Methodology. Given a recommendation dataset D, we aim to synthesize a smaller, support dataset
D? that can match the performance of recommendation models ¢ : ¢ x Z +— R when trained on D
versus D*. We take inspiration from [40], which is also a data distillation technique albeit for images.
Formally, given a recommendation model ¢, a held-out validation set DYa and a differentiable loss
function [ : R x R +— R that measures the correctness of a prediction with the actual user-item
relevance, the data distillation task can be viewed as the following bilevel optimization problem:

arg min E [ (¢ps(u,i),7)] ; st @ps = arg min E  [l(é(u,i),r)] (2)

Ds (w,i,r)~D¥ ) (uyi,r)~D?



This optimization problem has an outer loop which searches for the most informative support
dataset D* given a fixed recommendation model ¢*, whereas the inner loop aims to find the optimal
recommendation model for a fixed support set. In DISTILL-CF, we use co-AE as the model of
choice at each step of the inner loop for two reasons: (1) as outlined in Section 3, co-AE has a
closed-form solution with a single hyper-parameter A\, making the inner-loop extremely efficient; and
(2) due to the infinite-width correspondence [20, 2], co-AE is equivalent to training an infinitely-wide
autoencoder on D?, thereby not compromising on performance.

For the outer loop, we focus only on synthesizing fake users (given a fixed user budget 1) through
a learnable matrix X* € R**IZ| which stores the interactions for each fake user in the support
dataset. However, to handle the discrete nature of the recommendation problem, instead of directly
optimizing for X *, DISTILL-CF instead learns a continuous prior for each user-item pair, denoting
the importance of sampling that interaction in our support set (similar to the notion of propensity
[56, 58]). We then sample X5~ X*to get our final, discrete support set.

Instead of keeping this sampling operation post-hoc, i.e., after solving for the optimization problem
in Equation (2); we perform differentiable Gumbel-sampling [23] on each row (user) in X ® at every
optimization step, thereby ensuring search only over sparse and discrete support sets. A notable
property of recommendation data is that each user can interact with a variable number of items (this
distribution is typically long-tailed due to Zipf’s law [63]). We circumvent this dynamic user sparsity
issue by taking multiple Gumbel-samples for each user, with replacement. This implicitly gives
DI1STILL-CF the freedom to control the user and item popularity distributions in the generated data

summary Xs by adjusting the entropy in the prior-matrix X°.

Having controlled for the discrete and dynamic nature of recommendation data by the multi-step
Gumbel-sampling trick, we further focus on maintaining the sparsity of the synthesized data. To do
s0, in addition to the outer-loop reconstruction loss, we add an L1-penalty over X5 to promote and
explicitly control its sparsity [16, Chapter 3]. Furthermore, tuning the number of Gumbel samples we
take for each fake user, gives us more control over the sparsity in our generated data summary. More
formally, the final optimization objective in DISTILL-CF can be written as:

arg min Eu Xy -log(Ky ¢ a)+(1—-X,) - log(l - Ky . -a)] + X2 - | X5
Xs U~ w w

gl 3)
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Where, A\ represents an appropriate regularization hyper-parameter for minimizing the L1-norm
of the sampled support set X5, Kxy represents the gramian matrix for the NTK of co-AE over
X and Y as inputs, 7 represents the temperature hyper-parameter for Gumbel-sampling, ~ denotes
the number of samples to take for each fake user in X ®, and o represents an appropriate activation
function which clips all values over 1 to be exactly 1, thereby keeping X binary. We use hard-tanh
in our experiments. We also provide DISTILL-CF’s pseudo-code in Appendix A, Algorithm 3.

Scalability. We now analyze the time and memory requirements for optimizing Equation (3). The
inner loop’s major component clearly shares the same complexity as oo-AE. However, since the
parameters of co-AE (« in Equation (1)) are now being estimated over the much smaller support set
X, the time complexity reduces to O(2 - |Z|) and memory to O(p - |Z|), where 1 typically only
lies in the range of hundreds for competitive performance. On the other hand, for performing multi-
step Gumbel-sampling for each synthetic user, the memory complexity of a naive implementation
would be O(7 - i - |Z|) since AutoGrad stores all intermediary variables for backward computation.
However, since the gradient of each Gumbel-sampling step is independent of other sampling steps
and can be computed individually, using jax.custom_vjp, we reduced its memory complexity to
O(u - |Z]), adding nothing to the overall inner-loop complexity.

For the outer loop, we optimize the logistic reconstruction loss using SGD where we randomly sample
a batch of b users from U/ and update X ® directly. In totality, for an £ number of outer-loop iterations,
the time complexity to run DISTILL-CF is O(& - (u? +b+b- ) -|Z|), and O(b- u+ (p +b) - | Z]) for
memory. In our experiments, we note convergence in only hundreds of outer-loop iterations, making
D1STILL-CF scalable even for the largest of the publicly available datasets and practically useful.




Table 1: Comparison of co-AE with different methods on various datasets. All metrics are better
when higher. Brief set of data statistics can be found in Appendix B.3, Table 2. Bold values represent
the best in a given row, and underlined represent the second-best. Results for co-AE on the Netflix
dataset (marked with a *) consist of random user-sampling with a max budget of 25K = 5.4% users,
and results for DISTILL-CF + co-AE have a user-budget of 500 for all datasets.

Dataset Metric PopRec 5[11‘1‘; MF  NeuMF é‘glﬁ EASE  MVAE | oco-AE DLSE}-XEF

AUC 0.8436 08445 08475 08525 08141 06673 08507 | 0.8539 0.8584

HR@10 1435 1436 1836 1835  27.12 2631  17.94 | 27.09 2827

Amazon | HR@100 595 5935 5894 593 5800 4836 573 | 60.86 61.78
Magazine | NDCG@10 | 842 833 131 136 2257 2284 1218 | 23.06 23.81
NDCG@100 | 1938 1931 2176 2113 2992 2827 1946 | 3075 3175

PSP@10 685 673 924 9.00 132 1296 881 | 1322 13.76

AUC 0.8332 08330 09065 09045 09289 09069 08832 | 0.9457 0.9415

HR@10 1307 1293 2463 2325 2743 2854 217 | 3151 31.16

ML.v | HR@IOO | 3038 2963 5326 5142 5561 5728 5229 | 60.05 58.28
NDCG@I0 | 1384 1374 2565 2444 2885 2988 2214 | 3282 32.52

NDCG@I00 | 1949 1903 3562 3393 3829 4016 3382 | 42.53 4129

PSP@10 1.10 107 241 226 272 306 242 32 315
AUC 0.8945 08932 09288 09258 09391 08570 09129 | 09523 0.9510

HR@10 1106 1071 1269 1279 1598 1793 1536 | 23.56 2298

Douban | HR@100 1707 1663 2029 1969 2238 2541 2282 | 2837 27.20
NDCG@I0 | 1163 1124 1321 1333 1668 1948 1617 | 2494 24.20

NDCG@100 | 1263 1227 1496 1439 1720 1955 1732 | 2326 2221

PSP@10 052 050 063 063 08 106 087 1.28 124
AUC 09249 09234 09234 09244 0.9418 09495 | 0.9663* 0.9728

HR@10 1204 1149 1169 1106 2603 206 | 29.69% 2957

Netflix HR@I00 | 2847  27.66 2772 2676  Timed 5035  44.53 | 50.88* 4924
NDCG@10 | 1234 1172 1204 1148  Out 2683 2085 | 30.59* 30.54

NDCG@100 | 17.79 1695  17.17 1640 3500 2922 | 36.59* 35.58

PSP@10 1.45 128 131 1.21 359 277 | 375 3.62

S Experiments

Setup. We use four recommendation datasets with varying sizes and sparsity characteristics. A brief
set of data statistics can be found in Appendix B.3, Table 2. For each user in the dataset, we randomly
split their interaction history into 80/10/10% train-test-validation splits. Following recent warnings
against unrealistic dense preprocessing of recommender system datasets [55, 57], we only prune
users that have fewer than 3 interactions to enforce at least one interaction per user in the train, test,
and validation sets. No such preprocessing is followed for items.

Competitor methods & evaluation metrics. We compare co-AE with various baseline and SoTA
competitors as surveyed in recent comparative analyses [ 1, 13]. More details on their architectures can
be found in Appendix B.1. We evaluate all models on a variety of pertinent ranking metrics, namely
AUC, HitRate (HR @k), Normalized Discounted Cumulative Gain (nDCG @k), and Propensity-scored
Precision (PSP@Xk), each focusing on different components of the algorithm performance. A notable
addition to our list of metrics compared to the literature is the PSP metric [22], which we adapt to the
recommendation use case as an indicator of performance on tail items. The exact definition of all of
these metrics can be found in Appendix B.5.

Training details. We implement both co-AE and DISTILL-CF using JAX [8] along with the Neural-
Tangents package [44] for the relevant NTK computations.'-> We re-use the official implementation
of LightGCN, and implement the remaining competitors ourselves. To ensure a fair comparison,
we conduct a hyper-parameter search for all competitors on the validation set. More details on
the hyper-parameters for co-AE, DISTILL-CF, and all competitors can be found in Appendix B.3,
Table 3. All of our experiments are performed on a single RTX 3090 GPU, with a random-seed
initialization of 42. Additional training details about DISTILL-CF can be found in Appendix B.4.

'Our implementation for co-AE is available at https://github.com/noveens/infinite_ae_cf
2Our implementation for DISTILL-CF is available at https://github.com/noveens/distill_cf
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Figure 1: Performance of co-AE with the amount of users (log-scale) sampled according to different
sampling strategies over the HR@Q10 and PSP@10 metrics. Results for the Netflix dataset have been
clipped due to memory constraints. Results for the remaining metrics can be found in Appendix B.6,
Figure 13.
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Figure 2: Performance of the EASE model trained on different amounts of users (log-scale) sampled
by different samplers on the ML-1M dataset.

Does co-AE outperform existing methods? We compare the performance of co-AE with various
baseline and competitor methods in Table 1. We also include the results of training co-AE on
data synthesized by DISTILL-CF with an additional constraint of having a budget of only 1 = 500
synthetic users. For the sake of reference, for our largest dataset (Netflix), this equates to a mere
0.1% of the total users. There are a few prominent observations from the results in Table 1. First,
0o-AE significantly outperforms SoTA recommendation algorithms despite having only a single
fully-connected layer, and also being much simpler to train and implement. Second, we note that
oo-AE trained on just 500 users generated by DISTILL-CF is able to attain 96 — 105% of co-AE’s
performance on the full dataset while also outperforming all competitors trained on the full dataset.

How sample efficient is co-AE? Having noted from Table | that co-AE is able to outperform
all SoTA competitors with as little as 0.1% of the original users, we now aim to better understand
0o-AE’s sample complexity, i.e., the amount of training data co-AE needs in order to perform
accurate recommendation. In addition to DISTILL-CF, we use the following popular heuristics for
down-sampling (more details in Appendix B.2): interaction random negative sampling (RNS); user
RNS; head user sampling; and a coreset construction technique, SVP-CF user [57]. We then train
oo-AE on sampled data for different sampling budgets, while evaluating on the original test-set. We
plot the performance for all datasets computed over the HR@ 10 and PSP@ 10 metrics in Figure 1.
We observe that while all heuristic sampling strategies tend to be closely bound to the identity line
with a slight preference to user RNS, co-AE when trained on data synthesized by DISTILL-CF tends
to quickly saturate in terms of performance when the user budget is increased, even on the log-scale.
This indicates DISTILL-CF’s superiority in generating terse data summaries for co-AE, thereby
allowing it to get SoTA performance on the largest datasets with as little as 500 users.
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Figure 4: Performance of co-AE on data sampled by DISTILL-CF and User-RNS when there is noise
in the data. Results for EASE have been added for reference. All results are on the ML-1M dataset.
Results for the remaining metrics can be found in Appendix B.6, Figure 15.

How transferable are the data summaries synthesized by DISTILL-CF? In order to best evaluate
the quality and universality of data summaries synthesized by DISTILL-CF, we train and evaluate
EASE [59] on data synthesized by DISTILL-CF. Note that the inner loop of DISTILL-CEF still consists
of co-AE, but we nevertheless train and evaluate EASE to test the synthesized data’s universality. We
re-use the heuristic sampling strategies from the previous experiment for comparison with DISTILL-
CF. From the results in Figure 2, we observe similar scaling laws as co-AE’s for the heuristic
samplers as well as DISTILL-CF. The semantically similar results for MVAE [32] are presented
in Appendix B.6, Figure 10 for completeness. This behaviour validates the re-usability of data
summaries generated by DISTILL-CF, because they transfer well to SoTA finite-width models, which
were not involved in DISTILL-CF’s user synthesis optimization.

How robust are DISTILL-CF and co-AE to noise? User feedback data is often noisy due to
various biases (see [10] for a detailed review). Furthermore, due to the significant number of logged
interactions in these datasets, recommender systems are often trained on down-sampled data in
practice. Despite this, to the best of our knowledge, there is no prior work that explicitly studies
the interplay between noise in the data and how sampling it affects downstream model performance.
Consequently, we simulate a simple experiment: we add % noise in the original train-set — sample
the noisy training data — train recommendation models on the sampled data — evaluate their
performance on the original, noise-free test-set. For the noise model, we randomly flip 2% of the
total number of items in the corpus for each user. In Figure 3, we compare the drop in HR@10 the
EASE model suffers for different sampling strategies when different levels of noise are added to
the MovieLens-1M dataset [15]. We make a few main observations: (1) unsurprisingly, sampling
noisy data compounds the performance losses of learning algorithms; (2) DISTILL-CF has the best
noise:sampling:performance trade-off compared to other sampling strategies, with an increasing
performance gap relative to other samplers as we inject more noise into the original data; and (3)
as we down-sample noisy data more aggressively, head user sampling improves relative to other
samplers, simply because these head users are the least affected by our noise injection procedure.

Furthermore, to better understand co-AE’s denoising capabilities, we repeat the aforementioned
noise-injection experiment but now train co-AE on down-sampled, noisy data. In Figure 4, we track



the change in co-AE’s performance as a function of the number of users sampled, and the amount
of noise injected before sampling. We also add the semantically equivalent results for the EASE
model for reference. Firstly, we note that the full-data performance-gap between co-AE and EASE
significantly increases when there is more noise in the data, demonstrating co-AE’s robustness to
noise, even when its not specifically optimized for it. Furthermore, looking at the 5% noise injection
scenario, we notice two counter-intuitive observations: (1) training EASE on tiny data summaries
synthesized by DISTILL-CF is better than training it on the full data; and (2) solely looking at data
synthesized by DISTILL-CF for EASE, we notice the best performance when we have a lower user
sampling budget. Both of these observations call for more investigation of a data-centric viewpoint to
recommendation, i.e., focusing more on the quality of collected data rather than its quantity.

Applications to continual learning. Continual learning (see 9.0
[45] for a detailed review) is an important area for recommender
systems, because these systems are typically updated at regular o
intervals. A continual learning scenario involves data thatis
T

split into multiple periods, with the predictive task being: given 84 .

data until the i" period, maximize algorithm performance for 8.2

prediction on the (i + 1) period. ADER [35] is a SOTA con- = " o o
tinual learning model for recommender systems, that injects 4 Added users per Period
the most informative user sequences from the last period to Joint ADER
combat the catastrophic forgetting problem [52]. An intuitive Indiv. o DiSTILL-CF

application for DISTILL-CF is to synthesize succinct data sum-

maries of the last period and inject these instead. To compare  gjgyre 5: DISTILL-CF for contin-
these approaches, we simulate a continual learning scenario by 4] learning.

splitting the MovieLens-1M dataset into 17 equal sized epochs,

and perform experiments with MVAE [32] for each period. Note that in DISTILL-CF, we still use
o0-AE to synthesize data summaries (inner loop). We also compare with two baselines: (1) Joint:
concatenate the data from all periods before the current; and (2) Individual: use the data only from
the current period. As we can see from Figure 5, DISTILL-CF consistently outperforms ADER and
the baselines, again demonstrating its ability to generate high-fidelity data summaries.

6 Conclusion & Future Work

In this work, we proposed two complementary ideas: co-AE, an infinite-width autoencoder for
modeling recommendation data, and DISTILL-CF for creating tiny, high-fidelity data summaries
of massive datasets for subsequent model training. To our knowledge, our work is the first to
employ and demonstrate that infinite-width neural networks can beat complicated SOTA models on
recommendation tasks. Further, the data summaries synthesized through DISTILL-CF outperform
generic samplers and demonstrate further performance gains for co-AE as well as finite-width SoTA
models despite being trained on orders of magnitude less data.

Both our proposed methods are closely linked with one another: co-AE’s closed-loop formulation
is especially crucial in the practicality of DISTILL-CF, whereas DISTILL-CF’s ability to distill the
entire dataset’s knowledge into small summaries helps co-AE to scale to large datasets. Moreover,
the Gumbel sampling trick enables us to adapt data distillation techniques designed for continuous,
real-valued, dense domains to heterogeneous, semi-structured, and sparse domains like recommender
systems and graphs. We additionally explore the strong denoising effect observed with DISTILL-CF,
noting that in the case of noisy data, models trained on considerably less data synthesized by DISTILL-
CF perform better than the same model trained on the entire original dataset. These observations lead
us to contemplate a much larger, looming question: Is more data what you need for recommendation?
Our results call for further investigation on the data-centric viewpoint of recommendation.

The findings of our paper open up numerous promising research directions. First, building such
closed-form, easy-to-implement infinite networks is beneficial for various downstream practical
applications like search, sequential recommendation, or CTR prediction. Further, the anonymization
achieved by synthesizing fake data summaries is crucial for mitigating the privacy risks associated
with confidential or PII datasets. Another direction is analyzing the environmental impact and
reduction in carbon footprint as our experiments show that models can achieve similar performance
gains when trained on much less data.
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