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ABSTRACT

While audio-visual learning equips models with a richer understanding of the real
world by leveraging multiple sensory modalities, this integration also introduces
new vulnerabilities to adversarial attacks. In this paper, we present a comprehen-
sive study of the adversarial robustness of audio-visual models, considering both
temporal and modality-specific vulnerabilities. We propose two powerful adver-
sarial attacks: 1) a temporal invariance attack that exploits the inherent temporal
redundancy across consecutive time segments and 2) a modality misalignment at-
tack that introduces incongruence between the audio and visual modalities. These
attacks are designed to thoroughly assess the robustness of audio-visual models
against diverse threats. Furthermore, to defend against such attacks, we introduce
a novel audio-visual adversarial training framework. This framework addresses
key challenges in vanilla adversarial training by incorporating efficient adversar-
ial perturbation crafting tailored to multi-modal data and an adversarial curricu-
lum strategy. Extensive experiments in the Kinetics-Sounds dataset demonstrate
that our proposed temporal and modality-based attacks in degrading model per-
formance can achieve state-of-the-art performance, while our adversarial train-
ing defense largely improves the adversarial robustness as well as the adversarial
training efficiency.

1 INTRODUCTION

Audio-visual models, capable of integrating both auditory and visual information, have gained sig-
nificant traction in recent years due to their ability to create a comprehensive understanding of the
surrounding world (Zhu et al., 2021a; Wei et al., 2022; Li et al., 2022a). These models have demon-
strated remarkable success in a wide range of applications, including multimedia analysis (Di-
moulas, 2016), human-computer interaction (Zhen et al., 2023), and autonomous systems (Guo
et al., 2023). However, a critical challenge lies in their susceptibility to adversarial attacks. These
attacks can craft imperceptible perturbations to the input data, causing audio-visual models to make
erroneous predictions (Wang et al., 2022) or interpretations (Han et al., 2023). Such errors can have
disastrous consequences, especially in safety-critical domains like auto-driving (Kloukiniotis et al.,
2022) and identity verification (Zhang et al., 2021).

While prior work has investigated the adversarial robustness of audio-visual models (Tian & Xu,
2021; Yang et al., 2021; Li et al., 2022b), they primarily rely on general adversarial attack methods,
such as FGSM (Goodfellow et al., 2015) and I-FGSM (Kurakin et al., 2017), originally designed for
the single-modality data. These methods are simply adapted to the audio-visual domain without fully
capitalizing on its unique characteristics. A key limitation of such approaches lies in their inability
to consider the inherent properties of audio-visual data. Unlike single modality, audio-visual data
possesses two crucial aspects: temporal consistency and intermodal correlation. For instance, in a
video of a dog barking, we see and hear the barking event unfold over time, not just in a single
frame. These properties play a vital role in human perception of the real world (Sun et al., 2022;
Yang et al., 2023a). However, current attack methods fail to exploit them, potentially limiting their
effectiveness. Conversely, by leveraging these characteristics, we can craft more potent attacks and
develop improved robust learning strategies specifically tailored for audio-visual models.
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In this work, we rethink the adversarial vulnerability of audio-visual models through the lenses of
temporal and modality perspectives. We begin with an empirical analysis to assess the vulnerability
of existing models. Our case study experiments reveal several key findings, including the presence
of adversarial transferability within the audio-visual domain, and the significant impact of temporal
consistency and modality correlations on model robustness. Leveraging these insights, we propose
two novel adversarial attacks tailored to the unique properties of multi-modal data: 1) the temporal
invariance attack, which targets robust and temporally consistent audio-visual features by introduc-
ing inconsistencies across consecutive frames, and 2) the modality misalignment attack, which crafts
adversarial examples by inducing incongruencies between the audio and visual streams.

To mitigate the vulnerabilities exposed by these dedicated attacks, we propose a novel audio-visual
adversarial training framework that serves as a robust defense mechanism. Our framework addresses
critical challenges in robust multi-modal learning by incorporating efficient adversarial perturbation
crafting techniques along with an adversarial curriculum training strategy. The proposed defense
aims to significantly improve the robustness of audio-visual models against adversarial attacks with
minimal impact on training efficiency.

Our contributions can be summarized as follows:

1. We first identify the existence of adversarial transferability in audio-visual learning, and
introduce two powerful adversarial attacks, namely the Temporal Invariance-based Attack
(TIA) and the Modality Misalignment-based Attack (MMA), to evaluate the adversarial
robustness of audio-visual models comprehensively.

2. We propose efficient adversarial perturbation crafting and adversarial curriculum training
aimed at enhancing both the robustness and efficiency of audio-visual models.

3. We validate the effectiveness of both our proposed attacks and defense mechanisms through
extensive experiments conducted on the widely-used Kinetics-Sounds dataset.

2 RELATED WORK

2.1 AUDIO-VISUAL LEARNING

The field of audio-visual learning encompasses a wide range of tasks, including audio-visual event
recognition (Brousmiche et al., 2019; Xia & Zhao, 2022; Brousmiche et al., 2022), separation (Wu
et al., 2019a; Majumder et al., 2021; Majumder & Grauman, 2022), localization (Wu et al., 2019b;
2021; Mo & Morgado, 2022), correspondence learning (Min et al., 2020; Zhu et al., 2021b; Morgado
et al., 2021), representation learning (Zhou et al., 2019; Cheng et al., 2020; Rahman et al., 2021),
and cross-modal generation (Chen et al., 2017; Hao et al., 2018; Sung-Bin et al., 2023). Among
these, audio-visual event recognition stands out as a fundamental task (Gao et al., 2024) that has
attracted significant research attention, particularly regarding robustness and security issues (Yang
et al., 2023b).

Deep learning models employed in audio-visual event recognition typically comprise three main
components: visual encoder, audio encoder, and fusion layer. Although prior research has exten-
sively focused on optimizing these components to enhance task performance, there has been limited
consideration of their implications for security and robustness.

In this work, we delve into the individual components of these models and examine their respective
impacts on robustness, shedding light on crucial but often overlooked aspects.

2.2 ADVERSARIAL ATTACK & DEFENSE

Research efforts in adversarial robustness for audio-visual models have been relatively limited. Tian
et al. (Tian & Xu, 2021) were among the first to explore the potential of audio-visual integration
in enhancing robustness against multi-modal attacks. Yang et al.(Yang et al., 2021) proposed an
adversarially robust audio-visual fusion layer to defend against single-source adversarial attacks.
Li et al. (Li et al., 2022b) introduced a novel mix-up strategy in the audio-visual fusion layer to
improve the robustness of audio-visual models. Yang et al. (Yang et al., 2023b) proposed a certified
robust training method to boost the multi-modal robustness. However, they primarily focused on
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adapting single-modality adversarial attacks to audio-visual scenes. There remains a critical need for
powerful audio-visual adversarial attacks that can serve as benchmarks for evaluating the adversarial
robustness of audio-visual methods and the effectiveness of robust training techniques.

In this work, we address the gap by designing an effective audio-visual adversarial attack method that
facilitates a more comprehensive assessment of model robustness. We further propose an efficient
defense technique to enhance the robustness of audio-visual models against adversarial attacks.

3 EMPIRICAL ROBUSTNESS ANALYSIS OF AUDIO-VISUAL MODELS

Notations. Given an audio clip xa and video frames xv , we use an audio network fa(xa; θa) to
extract audio features, a visual network fv(xv; θv) to extract visual features and a fusion network
fu for modality integration. We denote the complete audio-visual network with F (xv, xa; θ) :=
fu(fv(xv; θv), fa(xa; θa); θu), where θ = (θv, θa, θu) are the overall network parameters.

Temporal consistency and modality correlation are two fundamental characteristics of audio-visual
learning. On the one hand, these characteristics provide the robustness and generalization capa-
bilities to audio-visual models. The temporal consistency in audio-visual data reinforces learning
across consecutive frames, while the cross-modal correlations between auditory and visual signals
offer mutually complementary information. These properties enable audio-visual models to learn
robust and reliable representations. However, the temporal and cross-modal dependency also para-
doxically create new vulnerabilities. Unlike conventional attack methods, audio-visual adversarial
attacks can exploit these relationships to cause inconsistencies within the model, leading to errors.
This duality underscores the critical need to understand and address adversarial robustness in audio-
visual models from both temporal and modality perspectives.

Corruption Robustness. Here, we provide experiments to support our arguments. We train an
audio-visual model on the Kinetics-Sounds dataset (Arandjelovic & Zisserman, 2017), which takes
the VGG as the vision encoder, the AlexNet as the audio encoder, and the sum operation as the
fusion operation followed by the decision layer. We randomly mask a ratio of ρ of the audio-visual
data along the temporal dimension, where 0% < ρ < 30%, and evaluate the model performance on
the masked audio-visual data. For a comprehensive understanding of how different modalities affect
the audio-visual model’s decision, we set up three groups, namely perturbing the video only (V×),
perturbing the audio only (A×), and perturbing both the audio and visual synchronously (A×⊕V×)
and asynchronously (A×⊗V×).
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Figure 1: Classification accuracy of the model
when masking the audio and visual data with a
ratio of ρ.
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Figure 2: Average black-box attack success rate
(%) against 7 black-box models.

We have three observations from the results shown in fig. 1. First, the audio-visual data is relatively
redundant in temporal information. By masking the audio-visual data with certain ranges, e.g.,
ρ < 20%, the model remains at least 50% classification success rate, indicating robustness against
the temporal perturbation. Second, the model heavily relies on the visual modality to make the deci-
sion, leaving the audio modality less attention. With the same ratio ρ to be masked, the degradation
of model performance caused by perturbing the visual data is significantly greater than perturbing
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the audio data only with a clear margin of 12.3%. Third, the correlations between different modal-
ities increase the performance of audio-visual learning. Compared to asynchronous perturbation of
audio and visual data, synchronous perturbation causes relatively larger performance degradation,
indicating the complementary of two modalities in helping the model make decisions.

Adversarial Robustness. For a given audio-visual input (xa, xv) with ground-truth y, the goal of
the adversarial attack is crafting perturbation δa (audio) and δv (visual) to deceive F into making a
wrong prediction. This process is formulated as follows,

max L(F (xv + δv, xa + δa; θ), y)

s.t. ∥δv∥p ≤ ϵv, ∥δa∥p ≤ ϵa,
(1)

where L is an arbitrary loss function, ∥∥p is the p-norm, and ϵv and ϵa are the adversarial perturbation
budgets for visual and audio modalities, respectively.

For a further study of the impact of temporal consistency and modality correlation on the adversar-
ial robustness, we additionally train various audio-visual models on the Kinetics-Sounds dataset to
evaluate the adversarial attack performance. We, respectively, use the VGG and ResNet as the vi-
sion backbone, the AlexNet and ResNet as the audio backbone, and the sum and concat as the fusion
layer, in a total of 8 models. We set the model with VGG as the vision backbone, AlexNet as the
audio backbone, and concat as the fusion layer, as the surrogate model to generate adversarial exam-
ples by FGSM (Goodfellow et al., 2015) under the white-box setting, which is up to 78.3% attack
success rate. Then, we set the other 7 models as black-box models to further evaluate adversarial
transferability.

As shown in fig. 2, we can find that adversarial transferability between different models also exists
in the audio-visual data. Without any precomputed masking operation, the generated audio-visual
adversarial examples have an average attack success rate of 31.7% against the selected black-box
models. By masking different modalities along the temporal dimension adequately with ratio ρ
to generate multiple copies for gradient calculation, the adversarial transferability can be boosted.
Also, a high setting of ρ causes a loss of information, hindering the quality of generated adversarial
examples and degrading the adversarial transferability. Specifically, it can bring up to an improve-
ment of 3.8% by only masking the audio, 9.3% by only masking the video, and 13.8% by masking
both the audio and visual modality. These results uncover that temporal redundancy in audio and
visual data can be naturally used to boost adversarial transferability. Besides, the compensation
function from the modality correlation mitigates the impact of adversarial transferability with up to
1.5%, comparing the synchronous and asynchronous perturbation.

Takeaways of our empirical study

(1) The adversarial transferability is also exhibited in audio-visual learning, posing security
problems in applications.
(2) Temporal consistency and redundancy bring robustness against corruption but also re-
main potentially leveraged to improve adversarial transferability.
(3) The inter-modal correlation compensates against temporal corruptions and alleviates the
influence of adversarial perturbation.

4 AUDIO-VISUAL ADVERSARIAL ATTACK

Motivated by previous empirical robustness analysis on temporal consistency and modality corre-
lation, we propose two powerful audio-visual adversarial attacks, namely the temporal invariance-
based attack and the modality misalignment-based attack.

4.1 TEMPORAL INVARIANCE-BASED ATTACK

Audio-visual data comprises temporally invariant features and time-varying information within each
frame. Our goal is to craft adversarial perturbations that target these invariant features, thereby
fostering the transferability of adversarial instances. We achieve this by introducing a temporal
regularization term that steers perturbations toward the most significant video features. With this
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Table 1: The average black-box attack success rate (A.S.R.) and cosine similarity (C.S.) of the
audio-visual adversarial examples generated by different attack methods.

Method FGSM I-FGSM MI-FGSM NI-FGSM
A.S.R. (%) 31.7 30.2 53.1 54.8
C.S. (%) 47.6 49.3 35.2 34.9

novel regularization, we ensure that the adversarial perturbations are consistent and coherent across
different frames.

Specifically, we calculate the variation of extracted features along the temporal dimension as a
structure-unrelated statistic of feature consistency. By minimizing this variation for both audio and
visual features, we encourage perturbations to focus on temporally invariant characteristics.

Additionally, leveraging the inherent temporal dependency, we can diversify video inputs to encour-
age the model to learn robust, invariant features. In practice, we apply different input transformations
on temporal inputs, including scaling, masking, blurring, and mix-up on audio or visual modalities,
independently or in parallel, synchronously or asynchronously.

This temporal regularization can be expressed as

LR = Var
[
{E (fa (Ta (xa + δa) ; θa) (t))}Tt=1

]
+ Var

[
{E (fv (Tv (xv + δv) ; θv) (t))}Tt=1

]
,

(2)

where we denote fa(xa+δa; θa)(t) and fv(xv+δv; θv)(t) as the audio and visual features extracted
at the t-th frame by the audio and visual networks, Ta and Tv as input transformation methods for
audio and visual modalities, respectively. We consider the mean value of the feature at each time
step and compute the variance along the temporal axis.

4.2 MODALITY MISALIGNMENT-BASED ATTACK

From the empirical study about the modality correlation in section 3, especially the comparison
between the synchronous and asynchronous perturbation, we notice that aligning semantic changes
across modalities can mitigate the influence of adversarial perturbations and diminish the adversarial
transferability. Inspired by this, we propose a novel attack strategy that disrupts the strong semantic
correlation between audio and visual modalities. We hypothesize that lower semantic correlation
leads to higher adversarial audio-visual transferability.

We conduct experiments to support this hypothesis. To quantify semantic information, we use fea-
ture vectors from both modalities and assess their alignment with cosine similarity. Following the
experimental setting in section 3 (without masking operation), we compute cosine similarities be-
tween feature vectors of adversarial examples generated by FGSM (Goodfellow et al., 2015), I-
FGSM (Kurakin et al., 2017), MI-FGSM (Dong et al., 2018), and NI-FGSM (Lin et al., 2019),
which exhibit progressively stronger attack performance under the white-box setting.

From the results shown in table 1, we can see that as the attack success rate against black-box
models (i.e., adversarial transferability) increases, the cosine similarity between audio and visual
feature vectors decreases. This correlation reinforces our claim that disrupting semantic alignment
between modalities enhances transferability.

Thus, to enhance the transferability of adversarial attacks, we propose an approach that aims to
misalign the semantic correspondence between audio and visual features. Specifically, during each
iteration of the adversarial attack, we minimize the feature similarity between the modalities, ensur-
ing that the perturbations disrupt the semantic alignment at the modality level,

LM =
fa(xa + δa; θa) · fv(xv + δv; θv)

∥fa(xa + δa; θa) · fv(xv + δv; θv)∥2
, (3)

where fa(xa + δa; θa) and fv(xv + δv; θv) are the feature vectors encoded by the audio and visual
backbones, respectively.
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Figure 3: Overview of the adversarial perturbation crafting in the adversarial training process. Given
an audio-visual data, we randomly segment it into different parts (green and yellow) and sample
frames from each of the segments with ratio α (red). Then, we diversify each sampled frame by
NT̂ copies and employ TIA and MMA to craft the adversarial perturbation. Finally, we map the
generated adversarial perturbation to corresponding segments, creating adversarial examples for
adversarial training.

4.3 ATTACK INTEGRATION

The temporal invariance-based and modality misalignment-based attacks can be integrated together
with the classification loss to achieve strong adversarial audiovisual attacks. At each iteration, we
optimize the following loss function to conduct the attack,

max Lcls(F (T (xv + δv, xa + δa); θ), y)

− λ1LR(F (T (xv + δv, xa + δa); θ))

− λ2LM (F (T (xv + δv, xa + δa); θ))

s.t. ∥δv∥p ≤ ϵv, ∥δa∥p ≤ ϵa,

(4)

where Lcls is the classification loss function, T is the input transformation on audio-visual data, and
λ1 and λ2 are two coefficients to balance losses.

5 AUDIO-VISUAL ADVERSARIAL TRAINING

Having established the powerful audio-visual adversarial attacks, a question naturally arises: How
can we defend these attacks efficiently? In this section, we start with the preliminary adversarial
training method, followed by an in-depth analysis of adversarial perturbations in audio-visual data,
and propose several strategies to fortify audio-visual models against such attacks.

5.1 PRELIMINARY METHOD

Adversarial training is one of the most powerful robust training paradigms to defend adversarial
examples, which trains the model on adversarial examples and can be formalized in the audio-visual
context as follows,

min
θ

max
δv,δa

Lcls(F (xv + δv, xa + δa), θ), (5)

which optimizes the model parameters to minimize the upper bound of the loss function.

It is challenging to directly optimize the min-max problem in eq. (5). In practice, it is solved by
training models on adversarial examples, in which adversarial examples are used to compute the
values of the inner maximum loss function (Madry et al., 2018).

5.2 DISCUSSION ON AUDIO-VISUAL PERTURBATION

Audio-visual adversarial training presents a unique challenge compared to its uni-modal counterpart
(e.g., perturbating a single image). Here, generating adversarial perturbations across multiple time
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steps in both audio and visual data leads to significant computational overhead. This hinders the use
of strong attacks and advanced mitigation techniques during training. Thus, the key to solving the
challenge is to reduce the computational cost for audio-visual adversarial example crafting.

As shown in section 3, random masking of audio-visual data slightly affects model performance
yet boosts adversarial transferability. Additionally, recent studies (Kim et al., 2023) demonstrate
that the universal adversarial perturbation of a single image model can be used to fool the video
model. These findings indicate that an effective strategy should reduce the computational overhead
of adversarial training by generating temporal universal adversarial perturbations instead of frame-
specific perturbations. However, strong attacks are crucial for effective adversarial training. To
address this, we propose generating universal adversarial perturbations for continuous local regions
in the video and audio data, rather than a single perturbation for all frames. We also employ a bag
of tricks to amplify the impact of these generated perturbations on the model.

5.3 OUR APPROACH

Efficient adversarial perturbation crafting. Since audio-visual data exhibits strong temporal cor-
relation, adversarial perturbations crafted from a subset of time samples can be propagated to the
remaining samples as well.

To exploit this property and achieve efficient perturbation crafting, we propose the following ap-
proach: We first divide the entire audio-visual data into smaller segments. Within each segment, we
randomly sample a portion of audio and visual frames with a selection ratio of ρ. We then generate
universal adversarial perturbations upon the selected frames and propagate them to the remaining.
The optimization of perturbations δv and δa can be expressed as follows,

δv, δa = argmax
δ̂v,δ̂a

E
(x̂v,x̂a)∼(xv,xa)

[L(x̂v + δ̂v, x̂a + δ̂a, y)], (6)

where the (x̂v, x̂a) is sampled from (xv, xa), L is the loss we proposed in eq. (4) which encounters
both the temporal invariance-based and modality misalignment-based attacks. The adversarial per-
turbations generated δv and δa are shared with neighboring frames within the same segment. This
design allows us to generate adversarial examples efficiently.

Adversarial curriculum training. Previous studies (Yu et al., 2022; Kim et al., 2021; Rice et al.,
2020) have identified that adversarial training easily gets overfitted to certain attack methods and
settings, leaving the model vulnerable to others. To address this issue and improve the generalization
ability, we propose a randomized adversarial curriculum learning to optimize eq. (5).

Concretely, our proposed randomized adversarial curriculum learning approach incorporates two
strategies:

• Data-level strategy. Temporal redundancy can be leveraged to control the impact of adver-
sarial examples crafted in adversarial training, leaving the potential to alleviate overfitting.
We propose to randomly sample ρx of the audio-visual input along the temporal dimension,
where 0 < ρx < 1. We cyclically vary the value of ρx to generate adversarial examples for
curriculum learning.

• Model-level strategy. The over-parameterization of models can be exploited in adversarial
training to boost the models’ generalization. We randomly drop out the neurons of the
fusion layer with a ratio of ρf , where 0 < ρf < 1 and the dropout ratio ρf is synchronized
with ρx.

The curriculum learning approach hinges on a cyclical variation in the data-level masking ratio ρx
and the model-level dropout ratio ρf . This cyclic design offers a key advantage: it gradually in-
creases the training difficulty. During the initial stages of the cycle, both sampling and dropout
ratios are lower and the number of steps to generate attacks is reduced. This translates to a simpler
training task with fewer adversarial perturbations applied to the data. As both ratios and the number
of steps gradually increase, complex adversarial examples are created, resulting in a more difficult
learning task. With this cyclic design, the models are trained on diverse perturbations, thus fully ex-
ploring the loss landscape for the searching minimum and improving the robustness against different
attacks.

7
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Figure 4: Attack success rates (%) of eight deep models, where the adversarial examples are gen-
erated on the white-box surrogate model and attack all models (one white-box model and seven
black-box models). TIA, MMA, and TMA are our proposed attack methods.

6 PERFORMANCE EVALUATION

6.1 EXPERIMENTAL SETUP

Datasets. We use the Kinetics-Sounds (Arandjelovic & Zisserman, 2017) for evaluation, which
contains 1, 551, 610 second video clips in 27 human action categories. We split the dataset into
7 : 2 : 1 for training, validation, and testing. We also conduct experiments on MIT-MUSIC (Zhao
et al., 2018b) for further verification, which is provided in the appendix.

Models. The audio-visual model comprises three modules: the visual backbone, the audio back-
bone, and the audio-visual fusion network. For the audio backbone, we select VGG and ResNet as
candidates. For the visual backbone, we select AlexNet and ResNet as candidates. We can study the
impact of model capacity on the adversarial transferability by this design. Following the previous
work on audio-visual adversarial robustness (Tian & Xu, 2021), we selected the sum and concat
operation as candidates for the fusion layer. There are 2× 2× 2 = 8 models in total. For simplicity,
we use the format of “{ visual backbone }-{ fusion layer }-{ audio backbone }” to represent the
audio-visual models, where the initials indicate each backbone and layer. We denote AlexNet as A,
VGG as V, ResNet as R, sum operation as s, and concat operation as c. For example, ResNet as the
visual backbone, the audio-visual model with AlexNet as the audio backbone, and the sum operation
as the fusion layer can be represented by “RsA”.

Baselines. For attack methods, we use FGSM (Goodfellow et al., 2015), I-FGSM (Kurakin et al.,
2017), MI-FGSM (Dong et al., 2018), MIG (Ma et al., 2023), and PAM (Zhang et al., 2023) as
baselines. We compare the baseline methods with our proposed approaches, which encompass the
temporal invariance-based attack (TIA), the modality misalignment attack (MMA), and the integra-
tion of TIA and MAA attacks, namely the temporal and modality-based attack (TMA). For defense
methods, we use the vanilla adversarial training (AT) (Madry et al., 2018), discriminative and com-
pact feature learning (DCFL) (Tian & Xu, 2021), single-source defensive fusion (SSDF) (Yang et al.,
2021), the mix-up strategy for adversarial defense (Mixup) (Li et al., 2022b), and the certified robust
multi-modal training method (CRMT-AT) (Yang et al., 2023b).

6.2 SINGLE MODEL ATTACK

To validate the effectiveness of our proposed methods, we first compare ours with five popular
attacks selected by previous audio-visual robustness research, namely FGSM, I-FGSM, MI-FGSM,
MIG, and PAM. Among these methods, FGSM and I-FGSM are initially designed for white-box
attacks, while others are designed for transferable adversarial attacks in the image domain. We
generate adversarial examples on a single model and test them on the other models. The attack
success rates, i.e., and the misclassification rates of the victim model in the adversarial examples
crafted are summarized in fig. 4.
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The figure shows that audio-visual adversarial examples crafted on white-box models can partially
deceive black-box models, confirming adversarial transferability in audio-visual learning. However,
unlike in the image domain, momentum doesn’t always improve performance. For instance, when
using VGG as the audio backbone and AlexNet with a sum fusion layer, FGSM achieves a 31.5%
success rate, while MI-FGSM decreases performance by 2.3%, indicating momentum’s negative
impact on audio-visual transferability. This issue is common with models using sum fusion layers.
In contrast, models with concat fusion layers show better black-box performance (+3.6%). The
results also suggest that improving input diversity with PAM helps momentum perform better over
sum fusion layers. Our proposed methods (TIA, MMA, and TMA) consistently outperform others,
with TIA exceeding PAM by 15.7% and further improving by 5.2% on average. Combining TIA
and MMA achieves a 95.2% success rate across all eight models.
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Figure 5: Attack success rates
(%) of each of 8 deep mod-
els under the ensemble set-
ting. TIA, MMA, and TMA
are our proposed attack meth-
ods.
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6.3 ENSEMBLE MODEL ATTACK

There have been many works studying using the ensemble uni-modal model to craft the adversarial
example to improve the adversarial transferability (Dong et al., 2018). Here, we conduct experiments
to utilize the ensemble of multi-modal, i.e., the audio-visual models, to boost the performance. We
iteratively select each one of the 8 models as the victim black-box model and use the remaining 7
models as surrogate models to craft the adversarial examples. We use the adversarial attack success
rate against the victim model to evaluate the performance.

As shown in fig. 5, we can notice that the performances of all selected methods are significantly
boosted by the ensemble strategy, even surpassing the performance under the white-box attacks. It
indicates that different audio-visual models also share similar areas of interest. By considering as
many surrogate models as possible in attacks, we can fool the target victim model with a high success
rate. The previous result shows that the audio-visual model with concat operation as the fusion layer
is relatively robust against different attacks. Using the ensemble attacks, the FGSM has an average
attack success rate of up to 79.9% against these models, indicating the dimming performance of the
concat fusion layer on defense. It should be noted that all our proposed methods achieve an attack
success rate of 100% on all victim models, sufficiently demonstrating the effectiveness.

6.4 ATTACKING DEFENSE MODELS

Our proposed attack methods, including TIA, MMA, and TMA, have achieved the best attack per-
formance on eight normally trained audio-visual models with different backbones and fusion layers.
Recent studies on audio-visual learning proposed to mitigate the threat of audio-visual adversarial
examples. In our work, we also propose a bag of novel tricks to enhance adversarial training for
defense. Here, to validate the effectiveness of these defenses, as well as show the power of our pro-
posed attack method against the defense mechanism, we conduct white-box adversarial attacks on
these eight audio-visual models. For defense methods, we select adversarial training (AT) (Madry
et al., 2018), DCFL (Tian & Xu, 2021), Mixup (Li et al., 2022b), CRMT-AT (Yang et al., 2023b), and

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Ablation study of the sampling ratio on the performance of adversarial training. We use our
proposed TMA to generate the adversarial example for adversarial training.

Sampling ratio 5% 10% 15% 20% 25% 30% 35% 40%
Successful defense rate (%) 72.1 75.4 81.5 82.0 82.6 82.9 83.0 83.0

Training time (Hours) 6.2 9.3 17.8 18.9 21.3 26.4 31.8 34.2

the combination of our tricks (Ours). We use our strongest attack TMA to evaluate the robustness.
To align the attack setting, we use 10-step PGD adversarial training as the baseline.

The results are shown in fig. 6. Among the different defense methods, training the models on the
adversarial examples is more efficient. We can see the adversarial training-based methods, including
AT, CRMT-AT, and ours, perform much better than non-adversarial training methods with a clear gap
of 10.9%. By integrating our proposed techniques, including the efficient adversarial perturbation
crafting and curriculum adversarial training, our adversarial training can further boost the robustness
by 2.28% on average versus the runner-up method CRMT-AT.

6.5 ABLATION STUDY

On the number of iterations for the attack. In experiments, we find that the multistep FGSM,
i.e., I-FGSM, cannot always beat FGSM under both white- and black-box settings. This raises the
question of whether the number of iterations impacts the adversarial transferability in audio-visual
learning. This motivates us to do the ablation study of the number of iterations in attacks.1 As
shown in fig. 7, by generating the adversarial examples on the audio-visual model (AcV), we can
see that the number of iterations greatly impacts the attack performance. With increasing the num-
ber of iterations, the adversarial transferability of I-FGSM is degraded. While the use of momentum
(MI-FGSM) can alleviate the overfitting to the surrogate model, a sufficiently large number of iter-
ations still leads to getting stuck in a local optimum, degrading the performance. The use of input
transformations (PAM) can improve the input diversity for better capturing the robust feature, thus
boosting the adversarial transferability, but still limited. Our proposed temporal invariant and modal-
ity misalignment attack methods sufficiently help the optimization jump over the local optima, thus
significantly boosting the performance.

On the sampling ratio for the adversarial training. In our approaches, we propose to sample a
ratio of frames to generate the temporal-universal adversarial perturbation for efficient adversarial
training. There is a balance between the time consumption of adversarial training and the adversarial
robustness by selecting different sample ratios. Here, we conduct an ablation study on the sampling
ratio. As shown in table 2, with increasing the sampling ratio in adversarial training, the defense
performance is improved, but it also leads to more time consumption, supporting our argument
on the balance. We advocate the selection of 15% in adversarial training. At the same time, a
larger sampling ratio does not improve the adversarial robustness much but introduces more time
consumption, and a smaller sampling ratio harms defense performance.

7 CONCLUSION

In this work, we developed two efficient audio-visual adversarial attack methods: the temporal
invariance-based attack and the modality misalignment-based attack. We also introduced an adver-
sarial training framework with strategies for efficient perturbation crafting and curriculum training
to reduce time and improve robustness.

Results on the Kinetics-Sounds dataset show that our attacks effectively benchmark audio-visual
model robustness and that our training framework improves both robustness and efficiency. Our
experiments provided new insights, including the importance of temporal consistency, modality
alignment, and the concat fusion layer’s robustness. We hope this research will serve as a benchmark
for audio-visual robustness and inspire further exploration of AI security in multi-modal data.

1With the number of iterations as 1, the MI-FGSM and I-FGSM degrade to the FGSM.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Relja Arandjelovic and Andrew Zisserman. Look, listen and learn. In ICCV, pp. 609–617, 2017.
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A RESULTS ON MIT-MUSIC DATASET

Setup. We use the MIT-MUSIC (Zhao et al., 2018a) for further verification, which contains 685
videos of musical solos and duets. It consists of 11 categories. We split the dataset into 7 : 1 : 2
as the train, validation and test set. Following the same setting in our paper, we train 8 audio-visual
models on the MIT-MUSIC dataset and respectively use one surrogate model to attack others under
the black-box setting. We use FGSM, I-FGSM, MI-FGSM, MIG, and PAM as our baselines, and
compare the attack performance with our proposed methods, including TIA, MMA, and TMA. For
defense methods, we select AT, DCFL, Mixup, CRMT-AT, and the baselines.

Results. We first use various attack methods to generate adversarial examples by attacking AcR
under the white-box setting, and then attack other models under the black-box setting. As shown in
fig. 8, our proposed TIA, MMA, and TMA achieve state-of-the-art attack performance among the se-
lected methods. Specifically, TIA achieves an average attack success rate of 95.2%, MMA achieves
an average attack success rate of 93.7%, and the combination method TMA achieves an average
attack success rate of 97.1%, while that of the runner-up method is 85.1%. We can also see a con-
sistent phenomenon that the adversarial example is easier to transfer between similar architecture,
i.e., from AcR to AsR.

We also evaluate the defense performance of our method. The results are depicted in fig. 9. Our
proposed method surpasses the baseline methods with a clear margin of 2.2% on defending the
adversarial attack versus the runner-up method CRMT-AT.
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Figure 8: Attack success rates (%) of eight
deep models, where the adversarial exam-
ples are generated on the white-box surrogate
model and attack all models (one white-box
model and seven black-box models).
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Figure 9: Attack success rates (%) of each of
8 deep models on the adversarial examples
crafted under the white-box setting with our
proposed TMA method.

B ABLATION STUDY ON THE ADVERSARIAL CURRICULUM TRAINING

In our paper, we propose adversarial curriculum training to enhance the performance of adversarial
training. This approach includes both data-level and model-level strategies. To study the influence of
the scheduler used to adjust the masking ratio (i.e., ρx and ρf ), we conduct additional experiments to
evaluate the impact of different schedulers on audio-visual robustness. These schedulers are applied
to boost the audio-visual adversarial robustness of RsV. Details are as follows:

• None: This represents standard adversarial training without employing the adversarial cur-
riculum training strategy.

• D*M: 5/20/30%: These represent constant ratios used in the data- and model-centric strate-
gies. For example:

– D*M: 5% indicates that 5% of the audio-visual frames and 5% of the model param-
eters are randomly masked to generate adversarial examples. This setup provides a
relatively simple defense scenario for the model.
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– D*M: 20% means that 20% of the frames and 20% of the parameters are used to
generate adversarial examples. This setup creates a stronger adversarial attack and
increases the difficulty of adversarial training.

– D*M: 30% follows a similar logic with a higher masking ratio for stronger adversarial
perturbations.

• D: 20%: This indicates that only 20% of the frames are randomly sampled for adversarial
example generation during adversarial training, without masking model parameters.

• M: 20%: This indicates that 20% of the model parameters are randomly masked in each
iteration for adversarial example generation, without randomly dropping frames.

• M: 40%: This indicates that 40% of the model parameters are randomly masked in each
iteration for adversarial example generation, without randomly dropping frames.

• Linear: This applies a linear scheduler from 5% to 20% for both data sampling and model
masking ratios.

• Cosine: This applies a cosine scheduler from 5% to 20% for both data sampling and model
masking ratios.

None D*M: 5% D*M: 20% D*M: 30% D: 20% M: 20% M: 40% Linear Cosine
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Figure 10: Evaluation results on applying differ-
ent schedulers to the adversarial curriculum train-
ing. The studied model is RsV (ResNet as the vi-
sual backbone, VGG as the audio backbone, and
sum operation as the fusion layer.)

The results are shown in fig. 10. Compared
with vanilla adversarial training, applying the
proposed schedulers in adversarial curriculum
training enhances adversarial robustness. For
instance, when we synchronize masking at 20%
on both data and model parameters (D*M:
20%), the success defense rate improves by
3.8%. Furthermore, integrating linear and co-
sine schedulers to dynamically adjust the dif-
ficulty of adversarial examples during training
leads to additional improvements of 0.8% and
1.4%, respectively.

It is worth noting that a lower sampling ra-
tio for frames combined with a higher param-
eter masking ratio can negatively impact the
quality of the generated adversarial examples.
This, in turn, degrades adversarial robustness,
as demonstrated by the results for D*M: 5%
and M: 40%.

C THE DIFFERENCE BETWEEN VISION-LANGUAGE AND AUDIO-VISUAL
ATTACKS/DEFENSE

There are certain similarities between audio-visual attack/defense and vision-language at-
tack/defense methods (Zhang et al., 2022; Lu et al., 2023), as both require consideration of alignment
and consistency between the two modalities. However, there are also notable differences between
them. (1) Task difference: vision-language attacks aim at attacking content retrieval-related prob-
lems while audio-visual attacks focus on classification problems. (2) Operation difference: vision-
language attacks perturb input data by optimizing latent embeddings while our method perturbs
input by adjusting output logits. (3) Modality difference: vision-language attacks focus on static
images while our approach considers the temporal redundancy of dynamic videos. This redundancy
motivates our design of curriculum training to exploit sparsity, enhancing adversarial robustness
while improving training efficiency.

Considering these reasons, we do not apply our proposed methods to the vision-language domain.
However, we believe these works in audio-visual learning are inspiring for other multi-modal areas
and we think exploring audio-visual attacks from the perspectives of model pretraining, modality
alignment, and content retrieval is a valuable future direction.
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D DEMO APPLICATION ON ATTACKING VIDEOLLAMA

Figure 11: Demo evaluation on attacking the
VideoLLaMA2 using the generated audio-visual
adversarial examples by our proposed attack
method.

To showcase the scalability of our method in
real-world applications, we employ our pro-
posed attack method to generate audio-visual
adversarial examples under an ensemble set-
ting. These examples are then used to deceive
VideoLLaMA2 (Cheng et al., 2024). Using the
prompt, ”Please point out the main object gen-
erating the sound based on the input video,”
we evaluate VideoLLaMA’s responses. Three
results are illustrated in fig. 11, where all in-
puts are misidentified by VideoLLaMA. For
instance, in the case of an airplane, VideoL-
LaMA incorrectly recognizes it as car racing.
This demonstrates the vulnerability of current
MLLMs to adversarial attacks, even when the
adversarial examples are generated using con-
ventional models.

For a quantitative evaluation, we generated a
total of 100 audio-visual adversarial examples
using our proposed TMA method and the best
baseline method, PAM, respectively, and tested
them on VideoLLaMA. While PAM success-
fully deceived VideoLLaMA in 41 cases, our
proposed TMA achieved a higher success rate, with 74 examples successfully attacked.
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