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Abstract

Given an empirical distribution f(x) of sensitive data x, we consider the task of minimizing
F (y) = DKL(f(x)∥y) over a probability simplex, while protecting the privacy of x. We
observe that, if we take the exponential mechanism and use the KL divergence as the loss
function, then the resulting algorithm is the Dirichlet mechanism that outputs a single
draw from a Dirichlet distribution. Motivated by this, we propose a Rényi differentially
private (RDP) algorithm that employs the Dirichlet mechanism to solve the KL divergence
minimization task. In addition, given f(x) as above and ŷ an output of the Dirichlet
mechanism, we prove a probability tail bound on DKL(f(x)∥ŷ), which is then used to derive
a lower bound for the sample complexity of our RDP algorithm. Experiments on real-world
datasets demonstrate advantages of our algorithm over Gaussian and Laplace mechanisms in
supervised classification and maximum likelihood estimation.

1 Introduction

KL divergence is the most commonly used divergence measure in probabilistic and Bayesian modeling. In a
probabilistic model, for example, we estimate the model’s parameters by maximizing the likelihood function
of the parameters, which in turn is equivalent to minimizing the KL divergence between the empirical
distribution and the model’s distribution. In supervised classification, a standard way to fit a classifier is by
minimizing the cross-entropy of the model’s predictive probabilities, which is equivalent to minimizing the
KL divergence between the class-conditional empirical distribution and the model’s predictive distribution.
Such models are widely used in medical fields, social sciences and businesses, where they are used to analyze
sensitive personal information. Without privacy considerations, releasing a model to public might put the
personal data at risk of being exposed to privacy attacks, such as membership inference attacks (Shokri et al.,
2017; Ye et al., 2022). To address the model’s privacy issue, we should focus on its building blocks: the KL
divergences. How can we minimize the KL divergence over the model’s parameters, while keeping the data
private?
Differential Privacy (Dwork et al., 2006a;b) provides a framework for quantitative privacy analysis of algorithms
that run on sensitive personal data. Under this framework, one aims to design a task-specific algorithm that
preserves the privacy of the inputs, while keeping the “distance” between the privatized output and the true
output sufficiently small. A simple and well-studied technique is to add a small random noise sampled from a
zero-centered probability distribution, such as the Laplace and Gaussian distributions. Another technique
is to sample an output from a distribution, with greater probabilities of obtaining points that are closer to
the true output, such as the exponential mechanism (McSherry & Talwar, 2007). These techniques have
been deployed in many privacy-preserving tasks, from simple tasks such as private counting and histogram
queries (Dwork et al., 2006a;b) to complex tasks such as deep learning (Abadi et al., 2016).
In this work, we are interested in a setting where our algorithm outputs an empirical distribution f(x) of some
sensitive data x. To protect the privacy of individuals in x, we keep f(x) hidden, and instead release another
discrete distribution that approximates f(x) in KL divergence. This setting may not arise, for example, in
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the task of releasing a normalized histogram, as the distance between histograms is often measured in ℓ1

or ℓ2. Nonetheless, there are many tasks where KL divergence arises naturally. Prominent examples are
those in probabilistic modeling, where the outputs—the model’s estimated parameters—are obtained from
likelihood maximization. Another examples are those in Bayesian modeling, where models are evaluated
with adjusted negative log-likelihood scores, such as the Akaike information criterion (AIC) and Bayesian
information criterion (BIC). It is also increasingly common in Bayesian practice to evaluate the model with
out-of-sample log-likelihood (Vehtari et al., 2016). Again, minimizing these criteria can be formulated as
minimizing the KL divergence.
A simple approach to privatize a discrete probability distribution is by adding some random noises from a
probability distribution. However, the KL divergence does not behave smoothly with the additive noises, as
the following example illustrates: consider count data of 10 people, interpreted as a normalized histogram:
p = (0.1, 0.9). Suppose that we draw two sets of noises z1 = (−0.090, 0.045) and z2 = (−0.099,−0.038) from
Laplace(1/10). Here, the ℓ1-distances between p and its noisy versions are 0.135 and 0.137, a very small
difference. On the other hand, the KL divergences between between p and its noisy versions are 0.186 and
0.499, a 2.68 times increase. This example illustrates that adding noises to a discrete probability vector, even
at a small scale, could result in a noisy vector that is too far away from the original vector in terms of KL
divergence.
We instead consider the exponential mechanism, a differentially private algorithm that approximately
minimizes user-defined loss functions. It turns out that, by taking the loss function to be the KL divergence,
the exponential mechanism turns into one-time sampling from a Dirichlet distribution; we shall call this the
Dirichlet mechanism.
The Dirichlet mechanism, however, does not inherit the differential privacy guarantee of the exponential
mechanism: the guarantee in (McSherry & Talwar, 2007) requires the loss function to be bounded above, while
the KL divergence can be arbitrarily large. In fact, using the original definition of differential privacy (Dwork
et al., 2006b), the Dirichlet mechanism is not differentially private (see Appendix A). We thus turn to a
relaxation of differential privacy. Specifically, using the notion of the Rényi differential privacy (Mironov,
2017), we study the Dirichlet mechanism and its utility in terms of KL divergence minimization.

1.1 Overview of Our results

Below are summaries of our results.
§3 Privacy. We propose a version of the Dirichlet mechanism (Algorithm 1) that satisfies the Rényi
differential privacy (RDP). In this algorithm, we need to evaluate a polygamma function and find the root of
a strictly increasing function. Our algorithm is easy to implement, as polygamma functions, root-finding
methods and Dirichlet distributions are readily available in many scientific programming languages.
§4 Utility. We derive a probability tail bound for DKL(p∥q) when q is drawn from a Dirichlet distribution
(Theorem 2). From this, we derive a lower bound for the sample complexity of Algorithm 1 that attains a
target privacy guarantee, both in general case and on categorical data.
§5 Experiments. We compare the Dirichlet mechanism against the Gaussian and Laplace mechanisms for
two learning tasks: naïve Bayes classification and maximum likelihood estimation of Bayesian networks—both
tasks can be done with KL divergence minimization. Experiments on real-world datasets show that the
Dirichlet mechanism provides smaller cross-entropy loss in classification, and larger log-likelihood in parameter
estimation, than the other mechanisms at the same level of privacy guarantee.

1.2 Notations

In this paper, all vectors are d-dimensional, where d ≥ 2. The number of observations is always N . Let
[d] := [1, . . . , d]. For any u ∈ Rd, we let ui be the i-th coordinate of u, and for any vector-valued function
f : X → Rd, we let fi be that i-th component of f . Let Rd≥0 be the set of d-tuples of non-negative real
numbers, and Rd>0 be the set of d-tuples of positive real numbers. Denote the probability simplex by

Sd−1 :=
{
p ∈ Rd≥0 :

∑
i

pi = 1
}
.
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For any u, u′ ∈ Rd and scalar r > 0, we write u+ u′ := (u1 + u′
1, . . . , ud + u′

d) and ru := (ru1, . . . , rud). For
any positive-valued functions f, f ′, the notation f(x) ∝ f ′(x) means f(x) = Cf ′(x) for some constant C > 0
and f(x) ≈ f ′(x) means cf ′(x) ≤ f(x) ≤ Cf ′(x) for some c, C > 0. Lastly, ∥u∥2 :=

√
u2

1 + . . .+ u2
d is the ℓ2

norm of u and ∥u∥∞ := maxi|ui| is the ℓ∞ norm of u.

2 Background and related work

2.1 Privacy models

We say that two datasets are neighboring if they differ on a single entry. Here, an entry can be a row of the
datasets, or a single attribute of a row.
Definition 2.1 (Pure and Approximate differential privacy (Dwork et al., 2006a;b)). A randomized mechanism
M : Xn → Y is (ε, δ)-differentially private ((ε, δ)-DP) if for any two neighboring datasets x and x′ and all
events E ⊂ Y,

Pr[M(x) ∈ E] ≤ eε Pr[M(x′) ∈ E] + δ. (1)

If M is (ε, 0)-DP, then we say that it is ε-differential private (ε-DP).

The term pure differential privacy (pure DP) refers to ε-differential privacy, while approximate differential
privacy (approximate DP) refers to (ε, δ)-DP when δ > 0.
In this paper, we shall concern ourselves with Rényi differential privacy, a relaxed notion of differential privacy
defined in terms of the Rényi divergence between M(x) and M(x′):
Definition 2.2 (Rényi Divergence (Rényi, 1961)). Let P and Q be probability distributions. For λ ∈ (1,∞)
the Rényi divergence of order λ between P and Q is defined as

Dλ(P∥Q) = 1
λ− 1 log

(
E
y∼P

[
P (y)λ−1

Q(y)λ−1

])
.

and for λ = 1, we define D1(P∥Q) = DKL(P∥Q),
Definition 2.3 (Rényi differential privacy (Mironov, 2017)). A randomized mechanism M : Xn → Y is
(λ, ε)-Rényi differentially private ((λ, ε)-RDP) if for any two neighboring datasets x and x′,

Dλ(M(x)∥M(x′)) ≤ ε.

Intuitively, ε controls the moments of the privacy loss random variable: Z := log P [M(x)=Y ]
P [M(x′)=Y ] , where Y is

distributed as M(x), up to order λ. A smaller ε and larger λ correspond to a stronger privacy guarantee.
The following composition property of RDP mechanisms allow us to track the privacy guarantees of using
multiple Dirichlet mechanisms. This can be helpful when Dirichlet mechanisms is employed in a more complex
algorithms, such as fitting a discrete probabilistic model.
Lemma 1 (Composition of RDP mechanisms (Mironov, 2017)). Let M1 : Xn → Y be a (λ1, ε1)-RDP
mechanism and M2 : Xn → Z be a (λ2, ε2)-RDP mechanism. Then a mechanism M : Xn → Y × Z defined
by M(x) = (M1(x),M2(x)) is (min(λ1, λ2), ε1 + ε2)-RDP.

2.2 Exponential mechanism with the KL divergence

The exponential mechanism (McSherry & Talwar, 2007) is a privacy mechanism that releases an element
from a range Y that approximately minimizes a given loss function ℓ : XN × Y → R. Given a base measure
µ over Y and a dataset x ∈ XN , the mechanism outputs y ∈ Y with probability density proportional to:

e−βℓ(x,y)µ(y), (2)

where β is a function of ε, the privacy parameter.
For the first time, we point out the connection between the exponential mechanism and a well-known family
of probability distributions under a specific choice of ℓ(x, y). Let f : XN → Rd≥0 be an arbitrary vector-valued
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function on datasets. Let Y = Sd−1. Assuming that Nf :=
∑
i fi(x) is known and nonzero, we denote the

normalized vector f̃(x) = N−1
f f(x) ∈ Sd−1. In equation 2, let ℓ(x, y) = DKL(f̃(x)∥y), β = rNf , and µ(y) be

the density of Dirichlet(α), that is, µ(y) ∝
∏d
i=1 y

α−1
i . Then, the probability density of the output y of the

corresponding exponential mechanism is proportional to:

exp
(

−rNfDKL(f̃(x)∥y)
)∏

i

yα−1
i = exp

r ∑
i,xi ̸=0

fi(x) log(yi/f̃i(x))

∏
i

yα−1
i

∝
∏
i,xi ̸=0

y
rfi(x)
i

∏
i

yα−1
i

=
∏
i

y
rfi(x)+α−1
i ,

which is exactly the non-normalized density function of Dirichlet(rf(x) + α). This specific distribution will
play a major role in the main privacy mechanism introduced in the next section.
From this derivation, we can see that this particular instance of the exponential mechanism can be used to
output y that approximately minimizes the KL divergence DKL

(
f̃(x)∥y

)
while keeping x private.

To see how the choices of r and α affect the “distance” between yi and f̃i(x), we treat yi as an estimator of
f̃i(x) and look at the bias of yi:∣∣∣E[yi] − f̃i(x)

∣∣∣ =
∣∣∣∣rfi(x) + α

rNf + dα
− fi(x)

Nf

∣∣∣∣ = α|Nf − dfi(x)|
Nf (rNf + dα) . (3)

The bias is reduced when r increases and α decreases. We can also look at the variance of yi:

Var[yi] = (rfi(x) + α)(r(Nf − fi(x)) + (d− 1)α)
(rNf + dα)2(rNf + dα+ 1) ,

which is O(1/r) as r → ∞ and O(1/α) as α → ∞. This implies that draws from Dirichlet(rf(x) + α) are
more concentrated when r and α are large.

Applications. The derivation of the Dirichlet mechanism above suggests that the best use of the Dirichlet
mechanism is for privately minimizing KL divergence, which arises in the following scenarios:

1. Maximum likelihood estimation. Consider a problem of parameter estimation in a multinomial
model with d possible outcomes. Let x ∈ [d]N be N observations, f1(x), . . . , fd(x) be the frequencies
and y1, . . . , yd be the model’s parameters. Then the log-likelihood of x is

∑
i fi(x) log yi. Maximizing

the log-likelihood with respect to y is equivalent to minimizing the KL divergence:

arg max
y

∑
i

fi(x) log yi = arg min
y

DKL

(
f(x)
N

∥∥∥y).
Thus, we can use the Dirichlet mechanism to release the parameters of the model while keeping x
private.

2. Cross-entropy minimization. Consider the same multinomial model as above. One might
instead aim to minimize the cross-entropy loss: − 1

N

∑
i fi(x) log yi over y. This is also equivalent to

minimizing the KL divergence, so we can use the Dirichlet mechanism to privately solve for y.

3. Private estimation of a discrete distribution. If we further assume that x is a sample from an
unknown discrete distribution p ∈ Sd−1 with pi > 0 for all i, a single draw y ∼ Dirichlet(rf(x) + α)
can be used to privately estimate p in KL divergence. The KL divergence between p and y can be
bounded as follows:
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DKL(p∥y) = DKL(f̃(x)∥y) −DKL(f̃(x)∥p) +
∑
i

(pi − f̃i(x)) log(pi/yi)

≤ DKL(f̃(x)∥y) + max
i

|log(pi/yi)|
∑
i

|f̃i(x) − pi|. (4)

Here, we sketch a proof that, with high probability, the bound is small for a sufficiently large
Nf . Due to Theorem 2 below and Agrawal (2020, Theorem I.2), respectively, both DKL(f̃(x)∥y)
and DKL(f̃(x)∥p) are small w.h.p. Combining this with Pinsker’s inequality:

∑
i|f̃i(x) − qi| ≤√

2DKL(f̃(x)∥q), with q = y and q = p, we obtain yi ≈ f̃i(x) ≈ pi, and so the second term is also
small w.h.p. Note that we also have a similar bound for DKL(y∥p) by switching y and p in equation 4.
However, if some of the pi’s are really small, it will take a large number of data points to bound
the logarithmic term in equation 4. Finding finite sample bounds for DKL(p∥y) and DKL(y∥p) is an
interesting problem that we leave open for further investigation.

2.3 Polygamma functions
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Figure 1: A plot of ψ′(x).

In most of this study, we take advantage of several nice properties of
the log-gamma function and its derivatives. The polygamma function
of order m is the (m + 1)-th derivative of the logarithm of the gamma
function. Specifically, when m = 0, we have the digamma function ψ(x) :=
d
dx log Γ(x), which is a concave and increasing function.
Our function of interest is the polygamma function of order 1: ψ′(x), which
is a positive, convex, and decreasing function (see Figure 1). It has the
series representation:

ψ′(x) =
∞∑
k=0

1
(x+ k)2 , (5)

which allows for fast approximations of ψ′(x) at any precision. ψ′ can also be approximated by the reciprocals:

1
x

+ 1
2x2 < ψ′(x) < 1

x
+ 1
x2 , (6)

which implies that ψ′(x) ≈ 1
x2 as x → 0 and ψ′(x) ≈ 1

x as x → ∞.

2.4 Related work

There are several studies on the differential privacy of obtaining a single draw from a probability distribution
whose probability density function is of the form y 7→ 1

Z p(x|y)µ(y). Here, x is sensitive data, x 7→ p(x|y)
is a probability density function for all y in the domain, µ is any positive-valued function, and Z is the
normalizing constant. Wang et al. (2015) showed that, when |log p(x | y)| ≤ B for some constant B, then a
single draw is 4B-differentially private. However, the densities that we study are not bounded away from
zero; they have the form

∏
i y
rfi(x)+α
i which becomes small when one of the yi’s is close to zero. Dimitrakakis

et al. (2017) showed that, when p is the density of the binomial distribution and µ is the density of the
beta distribution, then a single draw is (0, δ)-DP, and the result cannot be improved unless the parameters
are assumed to be above a positive threshold. As a continuation of their work, we prove in the appendix
that, when the parameters are bounded below by α > 0, sampling from the Dirichlet distribution (which is a
generalization of the beta distribution) is (ε, δ)-DP with ε > 0.
Let x be a sufficient statistic of an exponential family with finite ℓ1-sensitivity. Foulds et al. (2016) showed
that sampling Y ∼ p(y | x̂), where x̂ = x + Laplace noise, is differentially private and as asymptotically
efficient as sampling from p(y | x). However, for a small sample size, the posterior over the noisy statistics
might be too far away from the actual posterior. Bernstein & Sheldon (2018) thus proposed to approximate
the joint distribution p(y, x, x̂) using Gibbs sampling, which is then integrated over x to obtain a more
accurate posterior over x̂.
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Geumlek et al. (2017) were the first to study sampling from exponential families with Rényi differential privacy
(RDP; Mironov (2017)). Even though they provided a general framework to find (λ, ε)-RDP guarantees for
exponential families, explicit forms of λ and the upper bound of λ were not given.
The privacy of data synthesis via sampling from Multinomial(Y ), where Y is a discrete distribution drawn
from the Dirichlet posterior, was first studied by Machanavajjhala et al. (2008). They showed that the data
synthesis is (ε,δ)-DP, where ε grows by the number of draws from Multinomial(Y ). In contrast, we show that
a single draw from the Dirichlet posterior is approximate DP, which by the post-processing property allows
us to sample from Multinomial(Y ) as many times as we want while retaining the same privacy guarantee.
Gohari et al. (2021) have recently showed that the Dirichlet mechanism is (ε̂(r, γ, η, η′), δ(r, γ, η, η′))-
DP, where γ, η, η′ ∈ (0, 1) are additional parameters. Not only the guarantee has many parame-
ters to optimize, it is also computational intensive. Specifically, for any W ⊂ [d], define Ωη,η′

W ={
p ∈ Sd−1 : pi > γ, ∀i ∈ W ;

∑
i∈W pi ≤ 1 − η′}. Gohari et al. proposed ε̂ = Θ(r log(1/γ)) and

δ = 1 − min
p∈Ωη,η′

W
,W⊂[d]

{Pr[Yi > γ; ∀i ∈ W ] : Y ∼ Dirichlet(rp)} . (7)
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Figure 2: A numerical simulation of δ
(equation 7) as a function of γ.

To compute δ, we have to approximate Pr[Y > γ] with a numerical
integration scheme with high precision, otherwise the integral may be
greater than one. Even then, the integral is highly dependent on the
scheme, and for some choices of the parameters r, η, η′, the value of
δ cannot go below a certain threshold. We illustrate this in Figure 2.
With r = 171.87, η = 0.028 and η′ = 0.114, the value of δ cannot
go below 2.1 × 10−4. In contrast, our guarantee is much simpler to
compute, as the function ψ′ can be easily approximated via its series
representation (equation 5). Moreover, we are the first to provide
the utility of the Dirichlet mechanism in terms of KL divergence
minimization.

3 Main privacy mechanism

3.1 The Dirichlet mechanism

Let f : XN → Rd≥0 be an arbitrary vector-valued function with finite ℓ2- and ℓ∞-sensitivities: there exist two
constants ∆2,∆∞ > 0 such that

sup
x,x′ neighboring

∥f(x) − f(x′)∥2
2 ≤ ∆2

2 and sup
x,x′ neighboring

∥f(x) − f(x′)∥∞ ≤ ∆∞.

Algorithm 1 below details the Dirichlet mechanism used to privatize x ∈ XN .

Algorithm 1 (λ, ε)-RDP Dirichlet mechanism
Input: A dataset x ∈ XN , A vector-valued function f : XN → Rd≥0 with ℓ2-sensitivity ∆2 and ℓ∞-sensitivity
∆∞
Parameters: λ ≥ 1, ε > 0
1. Use a root-finding algorithm to find r > 0 such that ε = 1

2λr
2∆2

2ψ
′(1 + 3(λ− 1)r∆∞).

2. Let α = 1 + 4(λ− 1)r∆∞.
3. Output y ∼ Dirichlet(rf(x) + α).

The following lemma ensures that we can obtain an r > 0 in Line 1 for any ε > 0:
Lemma 2. With ε,∆2 > 0,∆∞ > 0 and λ ≥ 1 held constant, the function r 7→ 1

2λr
2∆2

2ψ
′(1 + 3(λ− 1)r∆∞)

defined on (0,∞) is strictly increasing from 0 to ∞. Consequently, the equation

ε = 1
2λr

2∆2
2ψ

′(1 + 3(λ− 1)r∆∞)

has a unique solution in r for any ε,∆2,∆∞ > 0 and λ ≥ 1.

The proof of Lemma 2 can be found in Appendix D.
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Figure 3: Top: Plots of the Rényi divergence (ε) between Dirichlet(rf(x) +α) and Dirichlet(rf(x′) +α) using
the direct calculations and Algorithm 1 as a function of r for λ ∈ {2, 20, 200}. Here, f(x) = (11, 8, 65, 25, 38, 1),
f(x′) = (11, 7, 65, 25, 38, 0) and α = 1 + 4(λ − 1)r. Bottom: Plots of DKL(y∥f̃(x)) for multiple instances
of y drawn from Dirichlet(rf(x) + α), where f(x) = (119, 74, 618, 272, 13, 187), α = 1 + 4(λ − 1)r, and
λ ∈ {2, 20, 200}. For each ε̂, the privacy parameter r is chosen to satisfy (ε̂, 10−5)-DP according to (1) the
results of Gohari et al. (2021), and (2) the conversion from our RDP guarantee to approximate DP.

3.2 Privacy guarantee

Theorem 1. Algorithm 1 is (λ, ε)-RDP.

The proof of Theorem 1 can be found in Appendix E. A few remarks are in order.

Remark 1. In general, we can replace ψ′(1+3(λ−1)r∆∞) in Line 1 by ψ′(1+g(r)), and α = 1+4(λ−1)r∆∞
in Line 2 by α = 1 + g(r) + (λ− 1)r∆∞ for any function g : R>0 → R≥0. In particular, choosing g ≡ 0 yields
r =

√
2ε/(λ∆2

2ψ
′(1)) which can be computed without a root-finding algorithm. However, this choice of r

makes ε grows as r2, which becomes too large when r > 1. Instead, we choose g(r) to be a constant factor of an
existing term (λ− 1)r∆∞ in α, which allows us to offset the λr2 factor in ε with ψ′(1 + g(r)) = Θ

(
1

1+(λ−1)r

)
.

Remark 2. If one has prior knowledge that fi(x) > b for some b > 0 for all x ∈ XN and all i ∈ [d], then
the proof of Theorem 1 can be modified so that (λ, ε)-RDP can be obtained by setting r to be the solution
to the equation ε = 1

2λr
2∆2

2ψ
′(1 + rb+ 3(λ− 1)r∆∞). Since ψ′ is strictly decreasing, this leads to a larger

value of r compared to Algorithm 1.
To demonstrate the tightness of the privacy guarantee of Algorithm 1, we simulate two neighboring histograms:
f(x) = (11, 8, 65, 25, 38, 1) and f(x′) = (11, 7, 65, 25, 38, 0). As functions of r, we compare ε in Line 1 with
the analytic values of the Rényi divergence between Dirichlet(rf(x) + α) and Dirichlet(rf(x′) + α), where α
is given in Line 2. The plots of ε as functions of r in Figure 3 show that our proposed RDP-guarantees are
close to the actual Rényi divergences across different values of λ.
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We also perform another simulation in order to compare our privacy guarantees with the ones from Gohari
et al. (2021) in terms of their effects on the KL divergence. In this simulation, we apply the Dirichlet
mechanism with these privacy guarantees to the following count data: f(x) = (119, 74, 618, 272, 13, 187).
For each λ ∈ {2, 20, 200}, we define α = 1 + 4(λ− 1)r as in Algorithm 1. Since the results of Gohari et al.
are stated in terms of approximate DP, we have to convert our result from RDP to approximate DP (see
Appendix B for more details on the conversion). For each ε̂ ranging from 0.001 to 100, we use Theorem 1
(with the conversion) and Gohari et al.’s results to choose r > 0 so that a single draw from Dirichlet(rf(x)+α)
is (ε̂, 10−5)-DP. We then draw multiple instances, say y, from the distribution and compute DKL(f̃(x)∥y).
Finally, we plot the KL divergence as a function of ε̂, as shown in Figure 3. As a baseline, we also plot the
KL divergence between f̃(x) and the discrete uniform distribution. We can see that our privacy guarantee
generally provides smaller KL divergences than that of Gohari et al.’s. However, as λ becomes very large, the
algorithms output discrete probability distributions that are close to being uniform. The missing points in
the λ = 2 and λ = 20 plots are related to a precision issue with the Gohari et al.’s method that we pointed
out in Section 2.4: because of insufficient precision in numerical integration, we could not bring the value of δ
down to 10−5.

4 Utility

Let us recap the setting with which we apply the Dirichlet mechanism: we have a sensitive dataset x ∈ XN

and an arbitrary vector-valued function f : XN → Rd≥0. Let Nf :=
∑
i fi(x) and f̃(x) := N−1

f f(x) ∈ Sd−1.
We propose the Dirichlet mechanism (Algorithm 1) which aims to output y that minimizes DKL

(
f̃(x)∥y

)
while keeping x private. This motivates us to measure the utility of the Dirichlet mechanism in terms of the
KL divergence between f̃(x) and y. To this end, we can make use of the following bound:
Theorem 2. For any α > 0, p = (p1, . . . , pd) ∈ Sd−1 and q ∼ Dirichlet(βp + α), the following inequality
holds for any η > 0 and any β ≥ dα/(eη/2 − 1):

Pr[DKL(p∥q) > η] ≤ e−βη2/(2(2+η)(4+3η)).

The proof can be found in Appendix F. Since the Dirichlet mechanism outputs y ∼ Dirichlet(rf(x) + α) =
Dirichlet(rNf f̃(x) + α), we can apply Theorem 2 with p = f(x), q = y and β = rNf . As long as
Nf ≥ dα/

(
r(eη/2 − 1)

)
, we have the bound

Pr
[
DKL

(
f̃(x)∥y

)
> η

]
≤ e−rNfη

2/(2(2+η)(4+3η)).

We shall assume that η ≪ 1 and λ ≥ 2. To obtain DKL

(
f̃(x)∥y

)
> η with high probability, one needs

Nf = Ω
(

1
rη2 + dα

r(eη/2−1)

)
. Now, we would like to write r and α in terms of ε and λ using the following

identities from Algorithm 1.

ε = 1
2λr

2∆2
2ψ

′(1 + 3(λ− 1)r∆∞) (8)

α = 1 + 4(λ− 1)r∆∞. (9)

We recall from Lemma 2 that the right-hand side of equation 8 is a strictly increasing function of r from
0 to ∞. This implies that, as ε → ∞, we have r → ∞. Under this limit, it follows from equation 6 that
ψ′(1 + 3(λ− 1)r∆∞) = Θ

(
1

(λ−1)r

)
. Thus, equation 8 and 9 give r = Θ(ε) and α = Θ((λ− 1)ε). On the other

hand, as if ε → 0, we have r → 0 which implies ψ′(1 + 3(λ− 1)r∆∞) = Θ(1). Consequently, r = Θ(
√
ε/λ)

and α = Θ(1). Therefore, to attain the (λ, ε)-RDP guarantee, one needs

Nf =


Ω
(

1
εη2 + d(λ−1)

eη/2−1

)
if ε ≥ 1

Ω
(√

λ
ε

[
1
η2 + d

eη/2−1

])
if ε < 1.
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The most common example is when the data is categorical, that is, x ∈ [d]N and fi(x) is the number of i’s in
x. Then Nf =

∑
i fi(x) = N , and the analysis above implies that the sample complexity for (λ, ε)-RDP and

sub-η KL divergence, with λ and η fixed, is N = Ω
( 1
ε + 1

)
if ε ≥ 1 and N = Ω

(
1√
ε

)
if ε < 1.

5 Experiments and discussions

5.1 Naïve Bayes classification

We consider the Dirichlet mechanism for differentially private multinomial naïve Bayes classification. Given
a dataset D = {(x(i), y(i))}Ni=1, we construct a model to classify labels y(i) ∈ [d] from discrete features
x(i) = (x(i)

1 , . . . , x
(i)
K ) ∈

∏K
k=1 Xk, where X1, . . . ,XK are finite sets. For j ∈ [d], k ∈ [K] and c ∈ Xk, we

denote the class count by Nj :=
∑N
i=1 I(y(i) = j). For the k-th feature, we denote the feature-class count

by Nk
jc :=

∑N
i=1 I(y(i) = j, x

(i)
k = c). We can use the count data to estimate the class probabilities and the

class-conditional feature probabilities:

Pr[y = j] := π̂j = Nj/N and Pr[xk = c|y = j] := θ̂kjc = Nk
jc/Nj . (10)

The naïve Bayes model assumes that, conditioning on the label, the features are independent. As a result,
the probability of y = j conditioned on (x1, . . . , xK) can be computed as follows:

Pr[y = j|x1, . . . , xK ] ∝ Pr[y = j]
K∏
k=1

Pr[xk = c|y = j]

= Nj
N

K∏
k=1

Nk
jxk

Nj

= π̂j

K∏
k=1

θ̂kjxk
.

To modify the model with the Dirichlet mechanism, we sample (π̃1, . . . , π̃d) ∼ Dirichlet(r(N1, . . . , Nd) + α),
where r and α are chosen according to Algorithm 1 (with ∆2

2 = 2 and ∆∞ = 1) to attain (λ, ε/K + 1)-RDP.
Similarly, for each k ∈ K and c ∈ Xk, we sample (θ̃k1c, . . . , θ̃kdc) ∼ Dirichlet

(
rkc (Nk

1c, . . . , N
k
dc) + αkc

)
, where rkc

and αkc are chosen to attain (λ, ε/(K + 1))-RDP as well. We then release π̃j instead of π̂j and θ̃kjc instead
of θ̂kjc for all j, k and c, which leads to (λ, ε)-RDP by the basic composition (Lemma 1) and the parallel
composition of RDP mechanisms
To benchmark the Dirichlet mechanism, we apply the Gaussian mechanism and the Laplace mechanism to
the naïve Bayes model. Specifically, we replace Nj and Nk

jc in equation 10 by their noisy versions, namely
Ñj := Nj + zj and Ñk

jc := Nk
jc + zkjc where zj , zkjc ∼ N (0, λ(K + 1)/ε) for the Gaussian mechanism and

zj , z
k
jc ∼ Laplace(0, b), where b is calculated using Mironov (2017, Corollary 2) to attain (λ, ε/K)-RDP for

the Laplace mechanism.
In this experiment, the naïve Bayes models with differentially private mechanisms are used to classify 8 UCI
datasets (Dua & Graff, 2017) with diverse number of instances/attributes/classes. The details of the datasets
are shown in Table 1. For each dataset, we use a 70-30 train-test split. Before fitting the models, numerical
attributes are transformed into categorical ones using quantile binning, where the number of bins is fixed at
10.
For all privacy mechanisms, we fix λ = 5 and study their performances as ε increases from 10−3 to 10.
We also add the random guessing model, which is a (λ, 0)-RDP model, as the baseline. The classification
performances, measured in cross-entropy (CE) loss and accuracy on the test sets, are shown in Figure 4
and 5. We can see that, on all datasets, the test CE losses of the Dirichlet mechanism are substantially
less than those of the Gaussian mechanism and Laplace mechanism; they are remarkably close to those
of the non-private model on the CreditCard, GermanCredit, Bank and Adult datasets. This result should
not be surprising, as the Dirichlet mechanism is the exponential mechanism that aims to minimize the KL
divergence, and thus the cross-entropy between the normalized counts and the parameters.

9
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Table 1: UCI datasets used in the experiment

Dataset #Instances #Attributes #Classes %Positive Source
CreditCard 30000 23 2 22% Yeh & hui Lien (2009)
Thyroid 7200 21 3 − Quinlan et al. (1986)
Shopper 12330 17 2 15% Sakar et al. (2018)
Digit 5620 64 10 − Garris et al. (1997)
GermanCredit 1000 20 2 30% Grömping (2019)
Bank 41188 20 2 11% Moro et al. (2014)
Spam 4601 57 2 39% Cranor & LaMacchia (1998)
Adult 48842 13 2 24% Kohavi (1996)
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Figure 4: Test CE losses of the original and four (5, ε)-RDP naïve Bayes models on 8 UCI datasets.

In terms of accuracy, there is no clear winner among the three mechanisms; the Dirichlet mechanism performs
as well as the other mechanisms in most cases. Specifically, it has higher accuracies than the Gaussian
mechanism on the Digit dataset for ε > 0.1, on the Adult dataset for ε < 0.1, and on the Bank dataset for all
values of ε.
The difference between the two metrics stem from the fact that the cross entropy loss is a continuous function
of the predicted probability, while the accuracy is a result of applying a hard threshold on the probability.
Thus the accuracy does not distinguish between, for example, two instances, x, x′ with Pr[y = 1|x] = 0.1
and Pr[y = 1|x′] = 0.4, but the CE loss will suffer almost three times as much when the true label of x is 1
compared to when the true label of x′ is 1. Thus a model with high accuracy can have relatively low CE loss
when they are too confident in their incorrect predictions.
All in all, neither metric is an end-all for measuring classification performance, and we should look at more
than one metrics when fitting a model. If one wants to publish a naïve Bayes model under privacy constraint
that performs well in both CE loss and accuracy, then the Dirichlet mechanism is an attractive option.

5.2 Parameter estimations of Bayesian networks

We use the Dirichlet mechanism for differentially private parameter estimations of discrete Bayesian networks.
Consider a dataset D = {x(i)}Ni=1, where x(i) = (x(i)

1 , . . . , x
(i)
K ) ∈

∏K
k=1 Xk and X1, . . . ,XK are finite sets. We
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Figure 5: Test accuracies of the original and four (5, ε)-RDP naïve Bayes models on 8 UCI datasets. Plots of
the random guessing on some datasets are not shown as its accuracies are well below the other models’.

name the K variables by their index: 1, . . . ,K. Given a Bayesian network and k ∈ [K], we denote the set of
parents of k, that is, the set of direct causes of k by Pa(k). Let x(i)

Pa(k) := (x(i)
ℓ )ℓ∈Pa(k) be observed values of

Pa(k) and XPa(j) :=
∏
ℓ∈Pa(j) Xℓ be the product space of Pa(k). Given j ∈ Xk and c ∈ XPa(k), we denote

Nk
c :=

∑N
i=1 I(x

(i)
Pa(k) = c) and Nk

jc :=
∑N
i=1 I(x

(i)
k = j, x

(i)
Pa(k) = c). The log-likelihood of the parameters

θkjc := Pr[xk = j | xPa(k) = c] is given by:

LL(θ) :=
∑
k∈[K]

∑
j∈Xk

c∈XP a(k)

Nk
jc log θkjc. (11)

Using the first-derivative test, the maximum-likelihood estimators of the Bayesian network are as follow:

θ̂kjc :=
Nk
jc

Nk
c

. (12)

We can modify the model using the Dirichlet mechanism: assuming that Xk = [d], we replace (θ̂k1c, . . . , θ̂kdc)
by (θ̃k1c, . . . , θ̃kdc) ∼ Dirichlet

(
r(Nk

1c, . . . , N
k
dc) + α

)
. Here, r and α are chosen according to Algorithm 1 to

attain (λ, ε/K)-RDP. By the basic composition (Lemma 1) and the parallel composition, releasing θ̃kjc for all
k ∈ [K], j ∈ Xk and c ∈ XPa(k) is (λ, ε)-RDP.
We will compare the Dirichlet mechanism with the Gaussian and Laplace mechanisms. In equation 12, we
replace Nk

jc by its noisy version: Ñk
jc := Nk

jc + zkjc, where zkjc ∼ N (0, λK/ε) for the Gaussian mechanism and
zkjc ∼ Laplace(0, b), where b is calculated using Mironov (2017, Corollary 2) to attain (λ, ε/K)-RDP for the
Laplace mechanism. In addition, we replace Nk

c by Ñk
c :=

∑
j Ñ

k
jc.

In this experiment, we have prepared Bayesian networks on the Adult, Bank and GermanCredit datasets,
which are parts of full networks provided by Le Quy et al. (2022). The Bayesian networks are shown in
Figure 6. As in the previous experiment, we use a 70-30 train-test split on each dataset, and continuous
attributes are transformed into categorical attributes via quantile binning, with the number of bins fixed at
10.
For all privacy mechanisms, we fix λ = 5 and study their performances, in terms of the log-likelihoods of
the privatized parameters on the test sets, as ε increases from 10−3 to 10. The plot of the log-likelihoods
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Figure 6: Our Bayesian networks on three datasets.
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Figure 7: Test log-likelihoods of the parameters obtained from the maximum-likelihood estimation (non-
private) and three (5, ε)-RDP mechanisms.

as functions of ε are shown in Figure 7. We can see that, on all datasets, the test log-likelihoods of the
Dirichlet mechanism are substantially less than those of the Gaussian mechanism and Laplace mechanism for
ε < 1. The results agree with our suggestion to use the Dirichlet mechanism for privacy-aware KL divergence
minimization for discrete parameters, as it is equivalent to likelihood maximization.

6 Conclusion

The Dirichlet mechanism is an instance of the exponential mechanism whose loss function is the discrete
KL divergence—this motivates us to use the Dirichlet mechanism for private estimation of an empirical
distribution in KL divergence. As a consequence, the Dirichlet mechanism can be used for private likelihood
maximization and cross–entropy minimization. This work provides a choice for the multiplicative factor r
and the prior α that achieves a desired (λ, ε)-RDP guarantee. To demonstrate its efficiency, we compare our
mechanism with the Gaussian and Laplace mechanisms for differentially private naïve Bayes classification,
and as expected, the Dirichlet mechanism provides significantly lower cross-entropy losses on various datasets
compared to the other two mechanisms. We also make a comparison between the mechanisms for maximum
likelihood estimations for Bayesian networks. Our experiment on three datasets shows that the Dirichlet
mechanism provides significantly higher log-likelihoods than the Gaussian and Laplace mechanisms.
As the KL divergence is a fundamental measure in information theory, we envision that the Dirichlet
mechanism would become essential for many privacy-focused information-theoretic models with discrete
parameters.
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Broader Impact Statement

The Dirichlet mechanism does not provide privacy protection for free, but with a cost of some accuracy
loss: the higher the privacy guarantee, the lower the accuracy of the privatized model compared to the
original model. Any losses incurred from the inaccuracy must be taken into consideration before deploying
the privatized model.

Acknowledgments

The author would like to thank the reviewers and the action editors for valuable comments and suggestions.

References
Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and

Li Zhang. Deep learning with differential privacy. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi (eds.), Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28, 2016, pp. 308–318. ACM, 2016.
doi: 10.1145/2976749.2978318. URL https://doi.org/10.1145/2976749.2978318.

Rohit Agrawal. Finite-Sample Concentration of the Multinomial in Relative Entropy. IEEE Transactions on
Information Theory, 66(10):6297–6302, October 2020. ISSN 1557-9654. doi: 10.1109/TIT.2020.2996134.

Necdet Batir. Some new inequalities for gamma and polygamma functions. Research report collection, 7(3),
2004. URL https://vuir.vu.edu.au/17580/.

Garrett Bernstein and Daniel R. Sheldon. Differentially private bayesian inference for exponential
families. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pp. 2924–2934, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
08040837089cdf46631a10aca5258e16-Abstract.html.

Clément L. Canonne, Gautam Kamath, and Thomas Steinke. The discrete gaussian for differential privacy.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin
(eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html.

Lorrie Faith Cranor and Brian A. LaMacchia. Spam! Commun. ACM, 41(8):74–83, aug 1998. ISSN 0001-0782.
doi: 10.1145/280324.280336. URL https://doi.org/10.1145/280324.280336.

Christos Dimitrakakis, Blaine Nelson, Zuhe Zhang, Aikaterini Mitrokotsa, and Benjamin I. P. Rubinstein.
Differential privacy for bayesian inference through posterior sampling. J. Mach. Learn. Res., 18:11:1–11:39,
2017. URL http://jmlr.org/papers/v18/15-257.html.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/
ml.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407, 2014. doi: 10.1561/0400000042. URL https://doi.org/10.1561/
0400000042.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data, ourselves:
Privacy via distributed noise generation. In Serge Vaudenay (ed.), Advances in Cryptology - EUROCRYPT
2006, 25th Annual International Conference on the Theory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer Science,
pp. 486–503. Springer, 2006a. doi: 10.1007/11761679\_29. URL https://doi.org/10.1007/11761679_29.

13

https://doi.org/10.1145/2976749.2978318
https://vuir.vu.edu.au/17580/
https://proceedings.neurips.cc/paper/2018/hash/08040837089cdf46631a10aca5258e16-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/08040837089cdf46631a10aca5258e16-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://doi.org/10.1145/280324.280336
http://jmlr.org/papers/v18/15-257.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1007/11761679_29


Published in Transactions on Machine Learning Research (02/2023)

Cynthia Dwork, Frank Mcsherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private
data analysis. In TCC, 2006b.

James R. Foulds, Joseph Geumlek, Max Welling, and Kamalika Chaudhuri. On the theory and practice of
privacy-preserving bayesian data analysis. In Alexander T. Ihler and Dominik Janzing (eds.), Proceedings
of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, UAI 2016, June 25-29, 2016, New
York City, NY, USA. AUAI Press, 2016. URL http://auai.org/uai2016/proceedings/papers/45.pdf.

Michael Garris, J Blue, Gerald Candela, Patrick Grother, Stanley Janet, and Charles Wilson. Nist form-based
handprint recognition system, 1997-01-01 1997.

Joseph Geumlek, Shuang Song, and Kamalika Chaudhuri. Renyi differential privacy mechanisms for
posterior sampling. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pp. 5289–5298, 2017. URL https://proceedings.neurips.cc/paper/2017/
hash/56584778d5a8ab88d6393cc4cd11e090-Abstract.html.

Parham Gohari, Bo Wu, Calvin Hawkins, Matthew T. Hale, and Ufuk Topcu. Differential privacy on the
unit simplex via the dirichlet mechanism. IEEE Trans. Inf. Forensics Secur., 16:2326–2340, 2021. doi:
10.1109/TIFS.2021.3052356. URL https://doi.org/10.1109/TIFS.2021.3052356.

Ulrike Grömping. South german credit data: Correcting a widely used data set. Reports in mathematics,
physics and chemistry, Department II, Beuth University of Applied Sciences Berlin, 4 2019.

Abdolhossein Hoorfar and Mehdi Hassani. Inequalities on the lambert w function and hyperpower function.
J. Inequal. Pure and Appl. Math, 9(2):5–9, 2008.

Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, KDD’96, pp. 202–207. AAAI
Press, 1996.

Tai Le Quy, Arjun Roy, Vasileios Iosifidis, Wenbin Zhang, and Eirini Ntoutsi. A survey on datasets for
fairness-aware machine learning. WIREs Data Mining and Knowledge Discovery, 12(3):e1452, 2022.
doi: https://doi.org/10.1002/widm.1452. URL https://wires.onlinelibrary.wiley.com/doi/abs/10.
1002/widm.1452.

Ashwin Machanavajjhala, Daniel Kifer, John M. Abowd, Johannes Gehrke, and Lars Vilhuber. Privacy:
Theory meets practice on the map. In Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen (eds.),
Proceedings of the 24th International Conference on Data Engineering, ICDE 2008, April 7-12, 2008,
Cancún, Mexico, pp. 277–286. IEEE Computer Society, 2008. doi: 10.1109/ICDE.2008.4497436. URL
https://doi.org/10.1109/ICDE.2008.4497436.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI,
USA, Proceedings, pp. 94–103. IEEE Computer Society, 2007. doi: 10.1109/FOCS.2007.41. URL https:
//doi.org/10.1109/FOCS.2007.41.

Ilya Mironov. Rényi differential privacy. In 30th IEEE Computer Security Foundations Symposium, CSF
2017, Santa Barbara, CA, USA, August 21-25, 2017, pp. 263–275. IEEE Computer Society, 2017. doi:
10.1109/CSF.2017.11. URL https://doi.org/10.1109/CSF.2017.11.

Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success of bank
telemarketing. Decision Support Systems, 62:22–31, June 2014. doi: 10.1016/j.dss.2014.03.001. URL
https://doi.org/10.1016/j.dss.2014.03.001.

John Ross Quinlan, Paul J Compton, KA Horn, and Leslie Lazarus. Inductive knowledge acquisition: a
case study. In Proceedings of the second Australian Conference on the Applications of Expert Systems, pp.
183–204, 1986.

14

http://auai.org/uai2016/proceedings/papers/45.pdf
https://proceedings.neurips.cc/paper/2017/hash/56584778d5a8ab88d6393cc4cd11e090-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/56584778d5a8ab88d6393cc4cd11e090-Abstract.html
https://doi.org/10.1109/TIFS.2021.3052356
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1452
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1452
https://doi.org/10.1109/ICDE.2008.4497436
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1109/CSF.2017.11
https://doi.org/10.1016/j.dss.2014.03.001


Published in Transactions on Machine Learning Research (02/2023)

Alfréd Rényi. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. The Regents
of the University of California, 1961.

C. Okan Sakar, S. Olcay Polat, Mete Katircioglu, and Yomi Kastro. Real-time prediction of online shoppers’
purchasing intention using multilayer perceptron and LSTM recurrent neural networks. Neural Computing
and Applications, 31(10):6893–6908, May 2018. doi: 10.1007/s00521-018-3523-0. URL https://doi.org/
10.1007/s00521-018-3523-0.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose,
CA, USA, May 22-26, 2017, pp. 3–18. IEEE Computer Society, 2017. doi: 10.1109/SP.2017.41. URL
https://doi.org/10.1109/SP.2017.41.

Aki Vehtari, Andrew Gelman, and Jonah Gabry. Practical bayesian model evaluation using leave-one-out
cross-validation and WAIC. Statistics and Computing, 27(5):1413–1432, August 2016. doi: 10.1007/
s11222-016-9696-4. URL https://doi.org/10.1007/s11222-016-9696-4.

Yu-Xiang Wang, Stephen E. Fienberg, and Alexander J. Smola. Privacy for free: Posterior sampling
and stochastic gradient monte carlo. In Francis R. Bach and David M. Blei (eds.), Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pp. 2493–2502. JMLR.org, 2015. URL
http://proceedings.mlr.press/v37/wangg15.html.

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza Shokri. Enhanced
membership inference attacks against machine learning models. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi (eds.), Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pp. 3093–3106. ACM,
2022. doi: 10.1145/3548606.3560675. URL https://doi.org/10.1145/3548606.3560675.

I-Cheng Yeh and Che hui Lien. The comparisons of data mining techniques for the predictive accuracy of
probability of default of credit card clients. Expert Systems with Applications, 36(2):2473–2480, March
2009. doi: 10.1016/j.eswa.2007.12.020. URL https://doi.org/10.1016/j.eswa.2007.12.020.

A Dirichlet posterior sampling is not ε-differentially private
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pure differential privacy.
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i∏
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.

For any ε > 0, we can choose a sufficiently small y1 > 0 so that the right-hand side is larger than eε.
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Figure 8: (ε, δ)-DP guarantees of the Dirichlet mechanism following equation 14 with λ ∈ {2, 10, 50, 200} and
δ = 10−5.

B Approximate differential privacy

We can convert from RDP to approximate DP with the following conversion formula:

Lemma 3 (From RDP to Approximate DP (Canonne et al., 2020)). Let ε > 0. If M is a (λ, ε)-RDP
mechanism, then it also satisfies (ε̂, δ)-DP with

δ = exp((λ− 1)(ε− ε̂))
λ− 1

(
1 − 1

λ

)λ
. (13)

Taking the logarithm of equation 13,

log δ = (λ− 1)(ε− ε̂) + (λ− 1) log(λ− 1) − λ log(λ),

which is equivalent to

ε̂ = ε+ log(λ− 1) − log δ + λ log(λ)
λ− 1 .

Plugging in the RDP guarantee in Algorithm 1, we obtain

ε̂ = 1
2λr

2∆2
2ψ

′(1 + 3(λ− 1)r∆∞) + log(λ− 1) − log δ + λ log(λ)
λ− 1 , (14)

which gives a formula for ε̂ in terms of r, λ and δ. Figure 8 shows ε̂ as a function of r at four different values
of λ. We can see that, at a fixed δ, ε̂ is increased when we increase r and decrease λ.

C Experiments with approximate DP

We perform the same experiments as those in Section 5. But this time, we focus on approximate DP instead
of RDP, and we also include the Dirichlet mechanism with Gohari et al. (2021)’s privacy guarantee in the
experiments. Our (λ, ε)-RDP guarantee of the Dirichlet mechanism is converted to (ε̂, δ)-DP guarantee,
with δ = 10−5, using the material in Section sec:adp. The results of the naïve Bayes and Bayesian network
experiments are shown in Figure 9 and Figure 10, and those of the Bayesian networks are shown in Figure 11.
Aside from similar results as those in Section 5, We highlight that our Dirichlet mechanism performs better
than Gohari et al.’s in all experiments, and Gohari et al.’s mechanism performs significantly worse for smaller
values of ε̂. We also notice that, in contrast to the results in Section 5 the Laplace mechanism performs
better than the Gaussian mechanism; this is because the composition property for multiple uses of an ε̂ DP
mechanism is better than that of an (ε̂, δ)-DP for any δ > 0 (see Dwork & Roth (2014, Theorem 3.20)).
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Figure 9: Test CE losses of the original and five (ε̂, 10−5)-RDP naïve Bayes models on 8 UCI datasets.
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Figure 10: Test accuracies of the original and five (ε̂, 10−5)-DP naïve Bayes models on 8 UCI datasets. Plots
of the random guessing on some datasets are not shown as its accuracies are well below the other models’.
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Figure 11: Test log-likelihoods of the parameters obtained from the maximum-likelihood estimation (non-
private) and four (ε̂, 10−5)-DP mechanisms.

D Proof of Lemma 2

Denote x = 3(λ − 1)r∆∞. With ε, λ,∆2 and ∆∞ fixed as constants, we can write the equation as ε =
Cx2ψ′(1 + x) for some constant C > 0. From equation 6, we have ψ′(1 + x) = Θ

(
1

(1+x)2

)
as x → 0 and

ψ′(x) = Θ
(

1
1+x

)
as x → ∞. Consequently,

lim
x→0

x2ψ′(1 + x) = 0 and lim
x→∞

x2ψ′(1 + x) = ∞. (15)

The conclusion will follow if we can show that the function ϕ(x) := x2ψ′(1 + x) is strictly increasing. For this,
first we use ψ′(1 + x) < 1

1+x + 1
(1+x)2 to obtain

[ψ′(1 + x)]2 < ψ′(1 + x)
1 + x

+ ψ′(1 + x)
(1 + x)2 ≤ 2ψ′(1 + x)

1 + x
<

2ψ′(1 + x)
x

.

In other words, 2ψ′(1 + x) > x[ψ′(1 + x)]2. Combining this with [ψ′(x)]2 + ψ′′(x) > 0 (see e.g. Batir (2004,
Lemma1.1)), we have

ϕ′(x) = 2xψ′(1 + x) + x2ψ′′(1 + x) > x2[ψ′(1 + x)]2 + x2ψ′′(1 + x) = x2([ψ′(x)]2 + ψ′′(x)
)
> 0.

Therefore, ϕ(x) is strictly increasing, which, combined with equation 15, implies that the equation ϕ(x) = ε
has a unique solution xε for any ε > 0. We then obtain a solution in r by letting r = xε/(3(λ− 1)∆∞).

E Proof of Theorem 1

Case 1: λ > 1.

Let x and x′ be neighboring datasets. For notational convenience, let u := rf(x) + α and u′ := rf(x′) + α.
As usual, we write u = (u1, . . . , ud), u′ = (u′

1, . . . , u
′
d), u0 :=

∑
i ui and u′

0 :=
∑
i u

′
i. Let P (y) be the density

of Dirichlet(u) and P ′(y) be the density of Dirichlet(u′). To compute the Rényi divergence between P (y) and
P ′(y), we start with:

Ey∼P (y)

[
P (y)λ−1

P ′(y)λ−1

]
= B(u′)λ−1

B(u)λ−1 Ey∼P (y)

[
y(λ−1)(u−u′)

]
= B(u′)λ−1

B(u)λ−1 · B(u+ (λ− 1)(u− u′))
B(u) , (16)

where B(u) = Γ(u0)−1∏
i Γ(ui) is the multivariate beta function. Thus the ratio can be expressed in terms

of gamma functions:
B(u′)
B(u) =

∏
i Γ(u′

i)/Γ(
∑
i u

′
i)∏

i Γ(ui)/Γ(
∑
i ui)

= Γ(u0)
Γ(u′

0)
∏
i

Γ(u′
i)

Γ(ui)
,
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where u0 :=
∑
i ui and u′

0 :=
∑
i u

′
i. Similarly,

B(u+ (λ− 1)(u− u′))
B(u) =

Γ(
∑
i ui)

Γ(
∑
i ui + (λ− 1)

∑
i(ui − u′

i))
∏
i

Γ(ui + (λ− 1)(ui − u′
i))

Γ(ui)
.

Taking the logarithm on both side of equation 16, we need to find an upper bound of:

logEy∼P (y)

[
P (y)λ−1

P ′(y)λ−1

]
=
∑
i

(G(ui, u′
i) +H(ui, u′

i)) −G(u0, u
′
0) −H(u0, u

′
0), (17)

where

G(ui, u′
i) := (λ− 1)(log Γ(u′

i) − log Γ(ui))
H(ui, u′

i) := log Γ(ui + (λ− 1)(ui − u′
i)) − log Γ(ui),

and similarly for G(u0, u
′
0) and H(u0, u

′
0). Using the second-order Taylor expansion, there exists ξ between

ui + (λ− 1)(ui − u′
i) and ui, and ξ′ between ui and u′

i such that

G(ui, u′
i) = −(λ− 1)(ui − u′

i)ψ(ui) + 1
2(λ− 1)(ui − u′

i)2ψ′(ξ′)

= −(λ− 1)(fi(x) − fi(x′))rψ(ui) + 1
2(λ− 1)(fi(x) − fi(x′))2r2ψ′(ξ′)

H(ui, u′
i) = (λ− 1)(ui − u′

i)ψ(ui) + 1
2(λ− 1)2(ui − u′

i)2ψ′(ξ)

= (λ− 1)(fi(x) − fi(x′))rψ(ui) + 1
2(λ− 1)2(fi(x) − fi(x′))2r2ψ′(ξ).

We try to find an upper bound of both ψ′(ξ) and ψ′(ξ′). If fi(x) > fi(x′), then u′
i < ui < ui+ (λ− 1)(ui−u′

i).
Thus both ξ and ξ′ are bounded below by u′

i ≥ α. On the other hand, if fi(x) ≤ fi(x′), then ui + (λ− 1)(ui −
u′
i) ≤ ui ≤ u′

i. In this case, ξ and ξ′ are bounded below by:

ui + (λ− 1)(ui − u′
i) = fi(x) + α− (λ− 1)(rfi(x′) − rfi(x))

≥ α− (λ− 1)r∆∞.

Since ψ′ is decreasing, both ψ′(ξ) and ψ′(ξ′) are bounded above by ψ′(α− (λ− 1)r∆∞). Consequently,

G(ui, u′
i) +H(ui, u′

i) ≤ 1
2
(
(λ− 1) + (λ− 1)2)(fi(x) − fi(x′))2r2ψ′(α− (λ− 1)r∆∞)

= 1
2λ(λ− 1)(fi(x) − fi(x′))2r2ψ′(α− (λ− 1)r∆∞).

The same argument can be used to show that, there exist ξ0 and ξ′
0 such that:

G(u0, u
′
0) +H(u0, u

′
0) = 1

2(λ− 1)(u0 − u′
0)2ψ′(ξ′

0) + 1
2(λ− 1)2(u0 − u′

0)2ψ′(ξ0) > 0.

Therefore, continuing from equation 17,

Dλ(P (y)∥P ′(y)) = 1
λ− 1

(∑
i

(G(ui, u′
i) +H(ui, u′

i)) −G(u0, u
′
0) −H(u0, u

′
0)
)

<
1

λ− 1
∑
i

(G(ui, u′
i) +H(ui, u′

i))

≤ 1
2λ
∑
i

(fi(xi) − fi(x′
i))2r2ψ′(α− (λ− 1)r∆∞)

≤ 1
2λ∆2

2r
2ψ′(α− (λ− 1)r∆∞). (18)
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Case 2: λ = 1.

We use the following formula for the KL divergence between two Dirichlet distributions:

DKL(P (y)∥P ′(y)) = log Γ(u0) −
∑
i

log Γ(ui) − log Γ(u′
0)

+
∑
i

log Γ(u′
i) +

∑
i

(ui − u′
i)(ψ(ui) − ψ(u0)),

From this, we split the right-hand side into two parts and apply the Taylor approximation as before:

−
∑
i

log Γ(ui) +
∑
i

log Γ(u′
i) +

∑
i

(ui − u′
i)ψ(ui) ≤ 1

2
∑
i

(ui − u′
i)2ψ′(min{ui, u′

i})

≤ 1
2
∑
i

(ui − u′
i)2ψ′(1)

= 1
2
∑
i

(fi(xi) − fi(x′
i))2r2ψ′(1)

≤ 1
2∆2

2r
2ψ′(1),

and

log Γ(u0) − log Γ(u′
0) −

∑
i

(u0 − u′
0)ψ(u0) ≤ −1

2
∑
i

(ui − u′
i)2ψ′(max{u0, u

′
0})

≤ 0.

Adding these two inequalities yields the same inequality as equation 18 with λ = 1.
Thus, given any λ ≥ 1, ε > 0 and any g : R>0 → R>0, if we let r be the solution of 1

2λr
2∆2

2ψ
′(1 + g(r)) = ε

and α = 1 + g(r) + (λ− 1)r∆∞, then the inequality above implies Dλ(P (y)∥P ′(y)) < ε. We conclude that
Algorithm 1 by setting g(r) = 3(λ− 1)r∆∞.

F Proof of the Utility bound

We first note a pair of inequalities for the digamma function, which hold for all x > 1
2 :

log
(
x− 1

2

)
< ψ(x) < log x. (19)

We start with the Chernoff bound: for any t ≤ β,

Pr[DKL(p∥q) > η] ≤ e−tηE
[
etDKL(p∥q)

]
= e−tηE

[∏
i

(pi/qi)tpi

]

= e−tη
∏
i

ptpi

i E

[∏
i

q−tpi

i

]

= e−tη
∏
i

ptpi

i

1
B(βp+ α)

∫ ∏
i

qβpi−tpi+α−1
i dq

= e−tη
∏
i

ptpi

i

B(βp− tpi + α)
B(βp+ α)

= e−tη Γ(β + dα)
Γ(β − t+ dα)

∏
i

ptpi

i

Γ(βpi − tpi + α)
Γ(βpi + α) . (20)
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Using the first-order Taylor approximation, we have the following estimates for log-gamma functions:

log Γ(β + dα) ≤ log Γ(β − t+ dα) + tψ(β + dα)
log Γ(βpi − tpi + α) ≤ log Γ(βpi + dα) − tpiψ(βpi − tpi + α).

Inserting these inequalities and equation 19 into equation 20, we obtain

Pr[DKL(p∥q) > η] ≤ e−tηetψ(β+dα)
∏
i

ptpi

i e−tpiψ(βpi−tpi+α)

< e−tηet log(β+dα)
∏
i

ptpi

i e−tpi log(βpi−tpi+α−1/2)

= e−tη(β + dα)t
∏
i

ptpi

i (βpi − tpi + α− 1/2)−tpi

= e−tη(β + dα)t
∏
i

(
β − t+ p−1

i (α− 1/2)
)−tpi

= e−tη
∏
i

(
β + dα

β − t+ p−1
i (α− 1/2)

)tpi

< e−tη
∏
i

(
β + dα

β − t

)tpi

= e−tη
(
β + dα

β − t

)t
= exp

(
−tη + t log β + dα

β − t

)
:= exp(f(t)). (21)

The function f(t) is minimized at t∗ := β

(
1 −W

(
βe1+η

β+dα

)−1
)

, where W is the Lambert W function. Note

that W satisfies the identity log(W (x)/x) = −W (x) for all x ≥ −e−1. Therefore,

f(t∗) = −t∗η + t∗ log β + dα

β − t∗

= −t∗η + t∗ log
{
β + dα

β
)W
(
βe1+η

β + dα

)}
= −t∗η + t∗ log

{
β + dα

βe1+η W

(
βe1+η

β + dα

)}
+ t∗ log e1+η

= −t∗η − t∗W

(
βe1+η

β + dα

)
+ t∗(1 + η)

= t∗
(

1 −W

(
βe1+η

β + dα

))
= −β

(
1 −W

(
βe1+η

β + dα

)−1)(
W

(
βe1+η

β + dα

)
− 1
)
. (22)
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The assumption β ≥ dα/(eη/2 − 1) implies β/(β + dα) ≥ e−η/2. We use the inequality W (x) ≥ log x −
log log x+ log log x/(2 log x) for x ≥ e (Hoorfar & Hassani, 2008, Theorem 2.7) to obtain

W

(
βe1+η

β + dα

)
≥ W

(
e1+η/2

)
≥ 1 + η

2 − log
(

1 + η

2

)
+ log(1 + η/2)

2(1 + η/2)

= 1 + η

2 −
(

1 + η

2 + η

)
log
(

1 + η

2

)
≥ 1 + η

2 − η

2 · 1 + η

2 + η

= 1 + η

2(2 + η) .

Continuing from equation 22, we have

f(t∗) ≤ −β

(
1 −

(
1 + η

2(2 + η)

)−1
)(

1 + η

2(2 + η) − 1
)

= −β
(

η2

2(2 + η)(4 + 3η)

)
.

Inserting this inequality back into equation 21, we obtain

Pr[DKL(p∥q) > η] ≤ exp(f(t)) ≤ exp(f(t∗)) ≤ e−βη2/(2(2+η)(4+3η)),

as desired.
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