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Abstract

Prevalent human-object interaction (HOI) detection approaches typically leverage
large-scale visual-linguistic models to help recognize events involving humans and
objects. Though promising, models trained via contrastive learning on text-image
pairs often neglect mid/low-level visual cues and struggle at compositional reason-
ing. In response, we introduce DIFFUSIONHOI, a new HOI detector shedding light
on text-to-image diffusion models. Unlike the aforementioned models, diffusion
models excel in discerning mid/low-level visual concepts as generative models, and
possess strong compositionality to handle novel concepts expressed in text inputs.
Considering diffusion models usually emphasize instance objects, we first devise
an inversion-based strategy to learn the expression of relation patterns between
humans and objects in embedding space. These learned relation embeddings then
serve as textual prompts, to steer diffusion models generate images that depict
specific interactions, and extract HOI-relevant cues from images without heavy
fine-tuning. Benefited from above, DIFFUSIONHOI achieves SOTA performance
on three datasets under both regular and zero-shot setups.

1 Introduction

As a crucial topic in the field of visual scene understanding, human-object interaction (HOI) detection
demands not only inferring the semantics and locations of entities but also should comprehend the
ongoing events happening between them[1, 2]. Given the complexity and diversity of human activities
in object-rich realistic scenes, this task presents challenges in long-tailed distributions and zero-shot
discovery[3]. A set of studies seek to tackle these two issues by leveraging large-scale visual-linguistic
models (e.g., CLIP[4]) which show strong generalization ability on dozens of tasks. Though strides
made, it has been observed that models trained by aligning high-level text-image semantics face diffi-
culties in discerning spatial locations[5], and struggle at compositionality[6] which is a fundamental
ability for human to capture new concepts by combining known parts. In fact, both middle-level visual
cues (e.g., spatial relation) and compositionality are essential facets for HOI detection. The former can
help deduce feasible interactions according to locations between instances, while compositionality
contributes significantly to zero-shot generalization. For example, we can easily understand human-
hold-horse by composing human-hold-dog and class horse that have encountered previously.

In contrast, the text-to-image diffusion models [7–14] also pre-trained on large-scale image-text
pairs, are demonstrating superior capabilities outperforming models like CLIP. Concretely, they are
able to generate diverse high-quality images conditioned on textual inputs, showing proficiency in
understanding high-level semantics[15, 16]. In addition, the generated images convey reasonable
shape, texture, layout, and structure, indicating the comprehension in mid/low-level visual concepts as
generative models[17]. More importantly, the descriptions are typically organized in a compositional
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Figure 1: Existing solutions utilize mere linguistic knowledge (a). Our solution utilizes both text-prompt image
generation (b) and conditioned feature extraction (c) abilities of diffusion models for knowledge transfer.

manner, with phrases such as “happy”,“near a bridge”, or “hugged by a man” continually appended
to objects like “a dog”. This suggests that diffusion models inherently possess compositionality, to
systematically adapt to newly encountered user requirements by composing known visual concepts.

The above analysis motivates us to explore diffusion models for HOI detection. Nonetheless, to fully
unlock the potential of diffusion models and accommodate the unique characteristic of HOI detection
task, the following questions naturally arise: ❶ With diffusion models typically emphasizing instance
generation, how to steer it to prioritize the relationships between humans and objects? ❷ How to
transfer the extensive knowledge obtained from large-scale pre-training in diffusion models to assist
the recognition of interactions? To address ❶, we harness textual inversion[18] which conceptualizes
a user-provided object by inverting it to a text embedding. However, this method focuses solely on
instance objects. To facilitate a smooth shift from object-centric to relation-centric modeling, we de-
vise a human-object relation inversion strategy grounded in the disentanglement of HOI. Concretely,
given the HOI latent describing human-action-object, we build a cycle-consistency objective to
reconstruct it from a intermediate relation latent derived from the original HOI latent. This reconstruc-
tion process is guided by a set of learnable relation embeddings as text prompts, for which we use
the placeholder R∗ to denote the textual form before encoded into embedding space. These relation
embeddings further involves in a relation-centric contrastive learning to enhance the awareness of
high-level relational semantics. To answer ❷, we leverage both the text promoted image generation
and conditioned feature extraction abilities of diffusion models. We realize relation-driven image
generation by compositionally organizing R∗ with other linguistic elements to formulate new text
prompts (Fig.1(b)). This allows for the generation of novel interactions with unseen objects, and
extends the training set for HOI detectors. Moreover, we directly utilize diffusion models as backbone
to extract HOI-relevant features conditioned on R∗ (Fig.1(c)). After a single noise-free forward step,
features distinct for each interaction can be obtained. Finally, to establish a loop for mutual boosting
between above relation-inspired HOI detection and relation modeling, we devise an online update
strategy to facilitate the continual evolving of relation embeddings during HOI detection learning.

Benefited from controllable image generation and knowledge transfer from diffusion models, our
method named DIFFUSIONHOI enjoys several appealing advantages: First, it steers diffusion models
to focus on complex relationships rather than single objects in an efficient way. This offers a robust
foundation for HOI modeling. Second, from the perspective of relation-driven, it unlocks the image
generation power of diffusion models tailored for the HOI detection task. This enriches the pool of
training samples, particularly for long-tailed/unseen interaction classes. Third, the relation-inspired
prompting improves both the flexibility and accuracy of HOI detectors. It adapts to each individual
image to extract action or object related cues, while CLIP-based methods[3, 19] produce action/object
features merely from texts (i.e., Fig.1(a)), remaining static and unresponsive to image content.

By embracing text-to-image diffusion models as well as facilitating relation-driven image generation
and prompting, our method demonstrates superior performance. It surpasses all top-leading solutions
on HICO-DET [20] and V-COCO [21], and sets new state-of-the-arts. In addition, it yields up to
6.43% mAP improvements on SWiG-HOI [22] under the zero-shot HOI discovery setup. These
promising performance evidences the great potential of integrating diffusion models for visual relation
understanding. We hope this work could foster the broader exploration of large-scale pre-trained
diffusion models on more computer vision tasks beyond mere image generation.

2 Related Work

Human-Object Interaction Detection. According to the architecture design of networks, existing
solutions for HOI detection can be broadly categorized into two groups: one-stage and two-stage.
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The one-stage methods[23–26] typically employ a multi-task learning pipeline that jointly undertake
the tasks of human-object detection and interaction classification in an end-to-end manner, therefore
distinguished by fast inference. In contrast, two-stage methods[27–37] first detect entities with off-
the-shelf detectors such as Faster R-CNN[38], and the predict the dense relationships among possible
human-object pairs. This paradigm effectively disentangles the HOI detection process and results
in improved performance. Inspired by DETR[39], recent advancements shift to adopt Transformer-
based architectures [3, 40–46]. Several studies [3, 47–51] also supplement the Transformer-based
HOI detectors with large-scale visual-linguistic models like CLIP [4] or visual knowledge[52, 53] to
conduct logic-induced reasoning[54]. However, these models focus solely on aligning high-level
semantics and overlooking mid/low-level visual cues. To tackle this, we redirect our attention to
diffusion models, which perfectly address the aforementioned challenges and possess the capacity to
handle previously unseen concepts through their strong compositionality.

Controllable Image Generation. To facilitate customized image generation with respect to prede-
fined class, attribute, text or image[55], various approaches based on GANs[56] have been proposed.
For instance, [57, 58] develop a photo realistic hairstyle transfer method through latent space optimiza-
tion. However, these methods typically show limited diversity when compared to likelihood-based
models[59]. In response, diffusion models[60–62] have emerged that not only demonstrate remark-
able synthesis quality but also offer enhanced controllability. The core idea behind is to transform
a simple and known distribution (e.g., Gaussian) into the desired data distribution. These models
have proven to be highly effective in various conditional scenarios. According to the conditional
targets, the prevalent work can be grouped into class-driven [63, 64] text-driven [7, 8], exemplar
image-driven[65, 66], etc.. These advances have found application in a wide range of domains such
as super resolution[66, 67], image editing[13, 68]. Recently, a new approach achieves guided image
generation by learning a single word embedding through a frozen text-to-image model to properly
describe the desired target objects[18]. Take inspiration from it, we achieve relation-driven image
generation by extending such object-centric concept modeling approach to relation-centric.

Knowledge Transfer from Diffusion Models. In light of the notable success achieved by diffusion
models in applications, there is a growing interest in transferring knowledge acquired from large-scale
pre-training to various tasks [17, 69–75]. For example, given the limited availability of data for
constructing NeRFs and the unprecedented generalizability of diffusion models, researchers are
motivated to explore generating 3D NeRFs via a 2D text-to-image diffusion model using diverse input
text[69–71]. More recently, a notable trend has emerged where efforts are dedicated towards learning
semantic representations from diffusion models by extracting intermediate feature maps. It finds
diverse application in image segmentation[17], semantic correspondence learning[72–74], and general
representation learning [75]. In this work, we extensively harness both the image generation and
semantic representation abilities of diffusion models, by using relation-centric embeddings to control
the generation and prompt semantic extraction from images with respect to specific interactions.

3 Methodology

3.1 Preliminary: Textual Inversion

Latent diffusion models [14] represent an evolution of diffusion models which offer significant
enhancements in both computational and memory efficiency by executing denosing in the latent
space. It comprises two primary components. The first is a pre-trained generator equipped with an
encoder E to map the input image x into a latent vector z = E(x), from which the original data can
be reconstructed via a decoder D by x̂ = D(z) ≈ x. The second is a diffusion model to generate
latent codes z conditioned on user guidance y which can be text, image, etc.The latent codes then
serve as inputs to D for image generation w.r.t. y. The training objective is given as:

LLDM := EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, cθ(y))∥22

]
, (1)

where cθ is a conditioning model to encode y, zt is the noised latent at time t, ϵ is sampled noise, ϵθ
is the denoising network. Based on latent diffusion models, inversion-based diffusion[18] seeks to
learn a text embedding v∗ that accurately describes novel concepts in user provided images. This
is achieved by optimizing v∗ with Eq.1 to iteratively reconstruct the latent code z of user provided
images with text prompts y like “an image of S∗”, where S∗ is the placeholder of new concept:

v∗ = argmin
v

EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, cθ(y))∥22

]
. (2)
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Figure 2: (Left) Disentanglement-based cycle-consistency learning. (Right) Relation-centric contrastive learning.

As such, it enables image generation w.r.t. target concepts in diverse scenes by using the learned
embedding v∗ to replace the tokenized placeholder S∗ in text prompts.

3.2 Inversion-Based HOI Modeling

Disentanglement-based Relation Embedding Learning. To facilitate above inversion technology
for relation modeling, two options present: i) directly optimizing embeddings describing interactions
(i.e., human-action-object), which risks overfitting with limited samples for long-tailed categories
and cannot generalize to novel concepts, and ii) learning action embeddings with diverse images
sharing a common action but different objects, which seems feasible but poses significant convergence
issues due to the complex content, and the optimization target cannot be fixed to actions but not other
unrelated elements. In contrast, drawn from the compositional nature of HOI, we adopt a disentangled
solution (i.e., Fig.2) where HOI triplets are broken into human-action and object. Here human-
action is considered to describe the relation between human and object, as action is executed
by and strictly adheres to human involved. Then, denoting the text describing human-action as R∗,
encoded relation embeddings as vRel

∗ = cθ(R∗), and the latent of one happening HOI in image as
zHOI, a relation latent zRel

0 could be reconstructed (i.e., denoising with ϵθ from time T to 0) by:

ϵθ((z
HOI − zObj)T , T, v

Rel
∗ ) → zRel

0 . (3)

Here (∗)T is the noised version at time T , and zObj is retrieved by encoding the cropped object from
image with provided bounding box annotations. We consider zHOI − zObj is able to describe the
human-action component by subtracting the object from human-action-object. Then, we can
reconstruct the latent representing the complete HOI image by adding zObj back to zRel

0 :

ϵθ((z
Rel
0 + zObj)T , T, [v

Rel
∗ ;Po]) → zHOI

0 , (4)

where Po is the CLIP encoded text embedding of object, and it is combined with the relation
embedding vRel

∗ to generate the prompt that describes the entire HOI image. In this way, with only
one learnable relation embedding (i.e., vRel

∗ ), we build a cycle to generate relation latent zRel
0 from the

HOI image latent zHOI, and subsequently, the original HOI image latent is reconstructed from the
generated relation latent. The learning of vRel

∗ can be supervised without human annotation, but just
ensuring the consistency between the original HOI latent and the reconstructed one:

LConsistency = ||ℓ2(zHOI)− ℓ2(z
HOI
0 )||22, (5)

where all latents are ℓ2-normalized for improved training stability [76]. Through such a disentan-
glement-based relation modeling and cycle-consistency training, the optimization objective become
clearer and easier to learn. It enables using same action from different interactions to enhance the
comprehension of a relation, and generalizing to new interactions by combining it with other object.

Relation-Centric Contrastive Learning. Eq.5 is a pixel-level reconstruction loss which prioritizes
aligning low-level cues. We supplement it with a relation-centric contrastive loss to enhance the
awareness of high-level semantics. Instead of directly engaging learning with relation latents, we
combine them with object latents to form new HOI latents, thus significantly enriching the diversity
of samples:

x = zRel
0 + zObj, x+ = zRel

0 + pObj,

x−
Obj = zRel

0 + nObj
k , x−

Rel = nRel
0,i + sObj

j ,
(6)

where x is the anchor sample, x+ is the positive sample composed of a different object latent pObj

sharing the same class as zObj. Conversely, x−
Obj and x−

Rel are negative samples, with x−
Obj composed
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of a different class object latent nObj compared to x, and x−
Rel composed of any other relation latent

nRel
0 and arbitrary object latent sObj. The final optimization objective is given as:

LContrastive = − log
exp(x · x+/τ)

exp(x · x+/τ) +
∑

k exp(x · x−
Obj/τ) +

∑
i

∑
j exp(x · x−

Rel/τ)
, (7)

to optimize vRel
∗ which involves in reconstructing zRel

0 . τ = 0.07 is the temperature parameter.

3.3 Relation-Driven Sample Generation

Text Prompts Preparation. We harness the captions provided in the MS COCO Caption dataset[77]
to generate diverse prompts. Compared to text synthesized by GPT-4, these captions are more precise
and closer to real visual scenes as they are annotated by human subjects. The preparation initiates
with a filtration where captions not containing pronouns indicating human (e.g., man, woman, boy) or
action words are removed. To further enrich the diversity of prompts, given two randomly selected
sentences that share the same action, we exchange the clauses following the action word. Prompts
are exclusively generated with GPT-4 only when actions or objects not present in COCO Caption.
This results in 33,834 text prompts in total. Finally, action words in prompts are replaced with
placeholders corresponding to learned relation embeddings, so as to empower the diffusion model
with enhanced awareness of relation patterns between human and object during generation.

Image and Annotation Generation. Denoting text prompts as P = {P1, · · ·,PN}, we aim to
construct a dataset X = {(I1,A1), · · ·, (IN ,AN )} where Ii ∈RH×W×3 represents the synthesized
image and Ai={Bh

i ,Bo
i , Co

i , Ca
i } is the pseudo annotation containing bounding boxes Bh

i for human,
Bo
i for object, and class labels Co

i for object, Ca
i for action. For the generation of Ii, the text

prompts Pi is first encoded by CLIP text encoder to obtain the conditioning vector Pi=cθ(Pi)∈Rd,
where the placeholder string is directly replaced with relation embedding vRel

∗ . Then, a random
sampled noise tensor zT ∈Rh×w×d is iteratively denoised to yield a new latent z0. Ii is generated
by a single pass through D, i.e., Ii = D(z0). For the generation of Ai, Co

i and Ca
i can be easily

determined by referring to the action and object words in Pi, while Bh
i and Bo

i are derived from the
cross-attention maps computed within the U-shape denoising network ϵθ. Specifically, to effectively
tackle various input modalities, ϵθ is equipped with cross-attention mechanisms in each layer to inject
Pi into z conforming to the similarity between them. For the l-th layer at the last denoising step
0, the cross-attention map is computed as: M l

i,0= softmax(z0 ·P⊤
i /

√
d) ∈ Rh×w. According to

prior work[17, 78], here M l
i,0 signifies the correspondence between text prompt Pi and regions in

generated image. Thus, we explicitly concatenate words describing human and object with Pi (i.e.,
[Pi;wordhuman;wordobject]), resulting in a new text embedding P̂i ∈ Rd×3 and corresponding
cross-attention maps M̂ l

i,0 ∈ Rh×w×3 where the last two items along the third dimension channel
are probability maps of human and object. Finally, we leverage the implementation in weakly
supervised object localization[79] to outline bounding boxes from these probability maps.

3.4 HOI Knowledge Transfer from Diffusion Models

While prior studies[3, 48–50] have investigated knowledge transfer from visual-linguistic models
such as CLIP, they utilize visual knowledge solely during training. The prediction relies on a
confined set of CLIP encoded word embeddings, which leads to limited knowledge transfer and
rigid inference unresponsive to image content. In contrast, we propose directly leveraging diffusion
models as the feature extractor and build HOI detector on this basis. Moreover, given the conditioning
property of diffusion model, relation embeddings can serve as text prompts to guide the retrieval of
interaction-relevant visual cues from images, further benefiting HOI detection.

HOI Detector Built Upon Diffusion Models. Pioneering studies [17, 78, 80] have empirically
demonstrated that the output of frozen text-to-image diffusion models possesses rich visual features
to tackle complex perception tasks. Next we illustrate how to build a HOI detector on this basis. As
shown in Fig.3, our method is a one-stage solution composed of: a visual encoder with diffusion
models serving as the backbone, and a HOI decoder consisting of two parallel decoders for instance
and interaction detection. For the visual encoder, given an image I , it is encoded into latent space with
the encoder E of a pre-trained generator (e.g., VQGAN): z = E(I). Then, z is fed into ϵθ through a
single noise-free forward pass to derive text conditioned features: ϵθ(z, T, cθ(y)) → {zl

T }4l=1. All
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scales of features are aggregated with FPN[81], yielding z′
T in a downsampling factor of 32. The

architecture of HOI decoder is similar to GEN-VLKT[3]. Concretely, the instance decoderDIns em-
ploys a set of human queries {qi

h}
Nq

i=1 and object queries {qj
o}

Nq

j=1, and considers those at the same
index (i.e., i = j) as a pair to initialize queries qr for the interaction decoder DHOI. In fact, the HOI
decoder can be replaced with any other one-stage models. We do not claim the detector architecture
as the contribution, but focus on how to derive HOI-relevant feature to assist in HOI detection.

Relation-Inspired HOI Detection. As the relation embeddings are optimized towards modeling
the interactions between human and object, we use them as conditions to inspire the extraction of
HOI-relevant cues. This can eliminate the potential domain gap between general-purpose diffusion
models and the downstream HOI detection task. Specifically, all feasible HOI phrases (e.g., “human
feed horse”) are encoded with CLIP text encoder into embedding space and concatenated together,
with the human-action component replaced with learned relation embeddings (e.g., “R∗ horse”).
This results in HOI prompts Pr∈RNr×dl which further participates into the cross-attention in ϵθ via:

zl
T = zl

T +M l
r · VPr ∈Rh×w×dl , M l

r=softmax(zl
T ·K⊤

Pr
/
√
d) ∈ Rh×w×Nr , (8)

where KPr and VPr are key and value embeddings projected from Pr. As seen, Pr contributes to: i)
encourage the denoising network ϵθ to extract visual features zl

T w.r.t. HOI prompts, and ii) guide the
derivative of cross-attention maps M l

r in response to ongoing interactions in I. The final interaction
maps are computed as the average value of {M l

r}4l=1. we also derive cross-attention maps for human
Mh and objectMo in a similar way as Mr, by without update to zl

T . Then, these cross-attention
maps are used to initialize queries from the aggregated visual feature z′

T via mask pooling:

q̂r = MaskPooling(z′
T ,M

k
r ), q̂o = MaskPooling(z′

T ,Mo), q̂h = MaskPooling(z′
T ,Mh). (9)

Note we conduct Hungarian matching between q̂k
r and q̂i

o + q̂j
h, so as to arrange HOI, and com-

bined human-object queries that are most similar to the same index in their respective query lists.
Following[17], the classification for interaction and instance are jointly supervised by:

LHOI = CE(softmax(q̃r · Pr/τr), yr) + CE(softmax(FFN(q̃r)), yr),
LIns = CE(softmax(q̃o · Po/τo), yo) + CE(softmax(FFN(q̃o)), yo),

(10)

where yr and yo are ground truth for interaction and object categories, q̃r and q̃o are queries
after decoding through DHOI and DIns, CE and FFN denote the cross entropy loss and feed-forward
network. Beyond the score delivered by conventional linear classifier (i.e., softmax(FFN(q̃o))), here
softmax(q̃ · P /τ) with learnable parameters τr and τo computes the similarity between decoded
queries and conditioning prompts, thereby facilitating the recognition for unseen categories.

Online Update for Relation Embedding. To enable the continual evolution of relation embeddings
vRel
∗ throughout the supervised HOI detection learning, an additional loss considering the composi-

tional nature of HOI is devised. Specifically, we concatenate all Na relation embeddings into a new
prompt Pa, from which a set of relation query embeddings q̂a can be initialized in the same way as
q̂o (c.f., Eq.9). In addition, another set of embeddings describing relations can be derived from q̃r
and q̃o by: q̃a = q̃r − q̃o. The goal is to align q̂a directly derived from visual features with relation
embeddings as conditions, and q̃a computed from interaction and object queries after decoding:

LRel = ||ℓ2(q̂a)− ℓ2(q̃a)||22. (11)

Here LRel solely optimizes vRel
∗ to render a mutual boost between HOI detection and relation embed-

ding learning. Concretely, enhanced relation embeddings inspires improved HOI feature discovery,
and in turn, the more precise query decoding benefits the update of relation embeddings.
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Table 1: Quantitative results for regular HOI detection on HICO-DET[20] and V-COCO[21].
VL Default Known Object V-COCOMethod Backbone

Pretrain Full Rare Non-Rare Full Rare Non-Rare APS1
role APS2

role

iCAN[83] [BMVC18] R50 - 14.84 10.45 16.150 16.26 11.33 17.73 45.3 -
PPDM[24] [CVPR20] HG104 - 21.73 13.78 24.10 24.58 16.65 26.84 - -
HOTR[41] [CVPR21] R50 - 23.46 16.21 25.60 - - - 55.2 64.4
QPIC[42] [CVPR21] R101 - 29.90 23.92 31.69 32.38 26.06 34.27 58.3 60.7

CDN[44] [NeurIPS21] R101 - 32.07 27.19 33.53 34.79 29.48 36.38 63.9 65.9
CPChoi[84] [CVPR22] R50 - 29.63 23.14 31.57 - - - 63.1 65.4

STIP[85] [CVPR22] R50 - 32.22 28.15 33.43 35.29 31.43 36.45 66.0 70.7
UPT[86] [CVPR22] R101 - 32.62 28.62 33.81 36.08 31.41 37.47 61.3 67.1
Iwin[87] [ECCV22] R101 - 32.79 27.84 35.40 35.84 28.74 36.09 60.9 -

MCPC[88] [ECCV22] R50 - 35.15 33.71 35.58 37.56 35.87 38.06 63.0 65.1
PViC[89] [ICCV23] R50 - 34.69 32.14 35.45 38.14 35.38 38.97 62.8 67.8

PViC†[89] [ICCV23] Swin-L - 44.32 44.61 44.24 47.81 48.38 47.64 64.1 70.2
GEN-VLK[3] [CVPR22] R101 CLIP 34.95 31.18 36.08 38.22 34.36 39.37 63.6 65.9
HOICLIP[19] [CVPR23] R50 CLIP 34.69 31.12 35.74 37.61 34.47 38.54 63.5 64.8

CQL[90] [CVPR23] R50 CLIP 35.36 32.97 36.07 38.43 34.85 39.50 66.4 69.2
ViPLO[91] [CVPR23] ViT-B CLIP 37.22 35.45 37.75 40.61 38.82 41.15 62.2 68.0
AGER[92] [ICCV23] R50 CLIP 36.75 33.53 37.71 39.84 35.58 40.2 65.7 69.7
RmLR[93] [ICCV23] R101 MobileBERT 37.41 28.81 39.97 38.69 31.27 40.91 64.2 70.2

ADA-CM[94] [ICCV23] ViT-L CLIP 38.40 37.52 38.66 - - - 58.6 64.0
DIFFUSIONHOI VQGAN Stable Diffusion 38.12 38.93 37.84 40.93 42.87 40.04 66.8 70.9
DIFFUSIONHOI ViT-L Stable unCLIP 42.54 42.95 42.35 44.91 45.18 44.83 67.1 71.1

†: Models built upon advanced object dector, i.e., H-Deform-DETR[95].

3.5 Implementation Details

Network Architecture. DIFFUSIONHOI is built upon Stable Diffusion v1.5 with xFormers [82]
installed. The denoising UNet ϵθ receives input latents at a downsampling factor of 1/8, with four
encoder blocks output feature at a size of 1/2l+3 where l is the block index. For the final visual
feature z′ after FPN aggregation, it is interpolated to a size of 1/32 and then projected to 256 channels
to enhance computing efficiency. Both DHOI and DIns consist of six Transformer decoding layers
with hidden dimension of 768. The query number Nq is uniformly set to 64 for both DHOI and DIns.

Training Objective. The inversion-based HOI modeling is jointly optimized by two embedding
learning losses: LInversion = LConsistency + λ1LContrastive, where λ1 ∈ [0, 0.2] is scheduled following a
cosine annealing policy. For HOI detection learning, we follow DETR[39] to match predictions and
ground truths with Hungarian algorithm. Denoting the bounding box detection loss as LDet, the final
training objective is given as: L = LHOI + LIns + LDet + λ2LRel where λ2 is fixed to 0.5.

4 Experiment

4.1 Experimental Setup

Datasets. We conduct extensive experiments on three datasets.
• HICO-DET [20] is a large-scale HOI detection benchmark with 38,118/9,658 images for train-

ing/testing, respectively. This dataset includes 80 object categories as in MS-COCO[96] and 117
action categories, formulating a rich vocabulary of 600 human-object interactions in total.

• V-COCO [21] is a curated subset of MS-COCO [96] including 2,533/2,867/4,946 images in
train/val/ test sets. It also contains 80 object categories from MS-COCO [96] and a much
smaller set of 29 action classes, resulting in a total of 263 human-object interactions.

• SWiG-HOI[22] is assembled from SWiG[97] and DOH[98] with about 45,000/14,000 for train-
ing/testing. This dataset covers 406 human actions and 1,000 object categories.

Zero-Shot HOI Discovery. In accordance with prior research[3, 19, 99–102], the zero-shot HOI
discovery on HICO-DET[20] uses four setups: Rare First Unseen Combination (RF-UC), Non-rare
First Unseen Combination (NF-UC), Unseen Verb (UV), and Unseen Object (UO). The RF-UC
and NF-UC configurations excluded the 120 most frequent/infrequent interaction categories from
the training sets for testing purposes only. The UV and UO setups reserve 20 verb classes and 12
object classes never encountered during training for testing. For SWiG-HOI[22], the test set includes
approximately 5,500 interactions, with around 1,800 of them not present in the training set.
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Table 2: Zero-shot generalization on HICO-DET [20].
Method Type Unseen Seen Full

ATL[101] [CVPR21] RF-UC 9.18 24.67 21.57
FCL[100] [CVPR21] RF-UC 13.16 24.23 22.01
SCL[102] [ECCV22] RF-UC 19.07 30.39 28.08

GEN-VLKT[3] [CVPR22] RF-UC 21.36 32.91 30.56
OpenCat[103] [CVPR23] RF-UC 21.46 33.86 31.38
HOICLIP[19] [CVPR23] RF-UC 25.53 34.85 32.99

DIFFUSIONHOI RF-UC 32.06 36.77 35.89
ATL[101] [CVPR21] NF-UC 18.25 18.78 18.67
FCL[100] [CVPR21] NF-UC 18.66 19.55 19.37
SCL[102] [ECCV22] NF-UC 21.73 25.00 24.34

GEN-VLKT[3] [CVPR22] NF-UC 25.05 23.38 23.71
OpenCat[103] [CVPR23] NF-UC 23.25 28.04 27.08
HOICLIP[19] [CVPR23] NF-UC 26.39 28.10 27.75

DIFFUSIONHOI NF-UC 30.04 30.29 30.25
ATL[101] [CVPR21] UO 5.05 14.69 13.08
FCL[100] [CVPR21] UO 15.54 20.74 19.87

GEN-VLKT[3] [CVPR22] UO 10.51 28.92 25.63
OpenCat[103] [CVPR23] UO 23.84 28.49 27.72
HOICLIP[19] [CVPR23] UO 16.20 30.99 28.53

DIFFUSIONHOI UO 22.37 32.03 31.12
GEN-VLKT[3] [CVPR22] UV 20.96 30.23 28.74

HOICLIP[19] [CVPR23] UV 24.30 32.19 31.09
DIFFUSIONHOI UV 28.05 33.24 32.67

Table 3: Zero-shot generalization on SWiG-DET [22].
Method Non-rare Rare Unseen Full

QPIC[42] [CVPR21] 16.95 10.84 6.21 11.12
THID[48] [CVPR22] 17.67 12.82 10.04 13.26

CMD-SE[104] [CVPR24] 21.46 14.64 10.70 15.26
DIFFUSIONHOI 25.59 20.61 18.93 21.69

Table 4: Comparison of parameters and running effi-
ciency. * means applying accelerated technology.

TrainableMethod Backbone Params (M) FPS HICO-DET

Two-stages Detectors:
iCAN[83] [BMVC18] R50 39.8 6.23 14.84
DRG[105] [ECCV20] R50 46.1 6.05 19.26

STIP[85] [CVPR22] R50 50.4 7.12 32.22
ViPLO[91] [CVPR23] ViT-B 118.2 5.66 37.22

ADA-CM[94] [ICCV23] ViT-L 6.6 3.24 38.40
One-stages Detectors:

PPDM[24] [CVPR20] HG104 194.9 17.58 21.73
HOTR[41] [CVPR21] R50 51.2 15.92 23.46
QPIC[42] [CVPR21] R50 41.9 17.41 29.07

CDN[44] [NeurIPS21] R50 42.1 16.24 31.78
GEN-VLKT[3] [CVPR22] R50 42.8 18.23 33.75

DIFFUSIONHOI VQ-GAN 27.6 9.49 38.12
*DIFFUSIONHOI VQ-GAN 27.6 24.77 38.12

Evaluation Metric. Following conventions[3, 41, 42], we adopt mAP as metrics. For HICO-DET,
we report performance according to Default and Known Object two setups. The former computes
mAP across all testing images, while the latter is tailored for each object class. For each setup, the
scores are reported in Full/Rare/Non-Rare three types. For V-COCO, we evaluate the performance
under scenario 1 (S1) which contains all 29 actions and scenario 2 (S2) which excludes 4 actions
interact with no objects. For zero-shot setup, the evaluation is divided into Seen/Unseen/Full three
sets for HICO-DET, and Non-Rare/Rare/Unseen/Full four sets for SWiG-HOI.

Training and Testing. The diffusion model and CLIP text encoder are kept frozen during training.
For inversion-based HOI modeling, the only learnable parameters are relation embeddings, which are
updated for 40,000 steps using images sampled from HICO-DET. Following [18], we employ a base
learning rate of 8e−2 with a batch size of 32. For HOI detection learning, we train the interaction
decoder DIns and object decoder DHOI for 60 epochs with a base learning rate of 1e−4 and batch size
of 16, using both synthesized data and the target dataset. Subsequently, the model is trained only on
the target dataset for an additional 30 epochs with a base learning rate of 1e−5. During inference, no
data augmentation is used to ensure fair comparison. Following[3, 103], the inputs are resized to
maximum of 1,333 pixels on long sides, and the shortest sides falls between 480 and 800 pixels.

Reproducibility. DIFFUSIONHOI is implemented in PyTorch and trained on 8 Tesla A40 GPUs with
48GB memory per card.

4.2 Comparison with State-of-the-Arts

Regular Setup. We first compare DIFFUSIONHOI with top-leading solutions on HICO-DET[20] and
V-COCO[21] under the regular setup. As shown in Table 1, for HICO-DET, our method achieves the
best performance on both Default and Known Object setups. Notably, with the encoder of VQGAN as
the backbone, it surpasses the previous SOTA, RemLR[93], which employs a similar level backbone
(i.e., ResNet-50) by 1.19% and 2.64% on the Full categories. Benefited from synthesized data
and comprehensive knowledge transfer from diffusion models, the performance on Rare categories
improves significantly, achieving higher scores than on Non-Rare categories for the first time. Finally,
with a more powerful VL model (i.e., Stable unCLIP[11]) and backbone (i.e., ViT-L), the performance
is boosted to 42.54% under the Default setup, surpassing nearly all existing work by a considerable
margin. Please note that PViC[89] with Swin-L as the backbone leverages H-Deform-DETR[95] as
the detector which achieves 48.7 mAP on MS COCO[96] by running merely 12 epochs, significantly
higher than DETR[39] which achieves 36.2 mAP by running 50 epochs.

Zero-Shot Setup. Next we investigate the effectiveness of DIFFUSIONHOI under the zero-shot
generalization setup. As shown in Table 2, our method yields remarkable performance across all
four setups on HICO-DET. In particular, it surpasses the previous SOTA (i.e., HOICLIP[19]) by
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Table 5: Detailed analysis of essential components of
DIFFUSIONHOI on HICO-DET[20].

Default RF-UCAlgorithm Component
Full Rare Non-Rare Full Unseen Seen

BASELINE 33.24 30.25 34.32 30.47 20.63 33.09
+ Synthesized Data only 35.49 36.27 35.02 33.79 28.22 34.85
+ Relation Prompting only 36.45 35.78 36.71 34.25 26.57 35.58
DIFFUSIONHOI 38.12 38.93 37.84 35.89 32.06 36.77

Table 6: Analysis of conditioning input for relation-
inspired HOI detection on HICO-DET[20].

Default RF-UCConditioning Input
Full Rare Non-Rare Full Unseen Seen

- 33.24 30.25 34.32 30.47 20.63 33.09
Textual Description 33.71 30.98 34.73 30.72 21.29 33.24
Relation Embedding 36.45 35.78 36.71 34.25 26.57 35.58

Table 7: Analysis of relation embeddings with different
learning strategies for relation-inspired HOI detection.

Default RF-UCLearning Strategy
Full Rare Non-Rare Full Unseen Seen

Textual Inversion 34.03 32.17 34.61 30.93 21.55 33.45
Cycle-Consistency 35.23 34.56 35.46 32.96 24.24 34.54
+ Relation-Centric CL 35.94 35.06 36.32 33.72 25.73 35.17
+ Online Update 36.45 35.78 36.71 34.25 26.57 35.58

Table 8: Analysis of prompts for dataset generation. TD:
textual description, RE: relation embedding.

Default RF-UCTraining Set
Full Rare Non-Rare Full Unseen Seen

HICO-DET 33.24 30.25 34.32 30.47 20.63 33.09
+ TD Synthesized Data 32.54 30.04 33.49 30.12 20.55 32.57
+ RE Synthesized Data 35.49 36.27 35.02 33.79 28.22 34.85

2.90% under the RF-UC setup. This setup emphasizes compositional generalization which requires
models to comprehend new types of interactions using known actions and objects. It aligns well with
the strengths of text-to-image diffusion models to generate images conditioned on compositionally
organized textual descriptions. Moreover, due to the effective knowledge transfer, DIFFUSIONHOI
also achieves satisfactory improvement under the UV and UO setups which focus on the recognition
of novel actions and objects. Table 3 further confirms the exceptional ability of our method, showing
5.97%/8.23% mAP improvements over CMD-SE[104] under Rare and Unseen two categories.

Model Efficiency. We compare the trainable parameter number and inference time in Table 4.
As seen, DIFFUSIONHOI demonstrates significantly fewer trainable parameters compared to the
one-stage counterparts. This is attributed to our inversion-based HOI modeling, which avoids fine-
tuning diffusion models like previous work[78], while effectively capturing task-specific properties.
Regarding inference speed, even with stable diffusion for feature extraction, our method still achieves
9.49 FPS, a rate similar to two-stage models. This is due to the inference involving only one single
forward pass, and the downsampling factor of stable diffusion from 1/8 to 1/64 is smaller than
conventional backbones typically from 1/4 to 1/32. Moreover, thank to the flourishing community
of stable diffusion, a variety of optimized inference solutions have emerged. By running at fp16
precision and using traced UNet, the FPS increases to 24.77, surpassing most one-stage methods.

4.3 Diagnostic Analysis

Key Component Analysis. We first examine the essential components of DIFFUSIONHOI in
Table 5. Here BASELINE denotes HOI detector built upon stable diffusion without text prompting.
Through jointly training with the synthesized data, both Default and RF-UC setups observe notable
improvements (e.g., up to 2.25% and 3.32% on Full categories ). This verifies the effectiveness of
our relation-driven HOI image generation strategy. in addition, after imposing relation embedding
to prompt the feature extraction and HOI detection processes, the performance boosts to 36.45%
and 34.25% under two setups. Finally, after combining these two core components together, our
DIFFUSIONHOI delivers consistent improvements and sets new SOTA across all setups.

Conditioning Input. To assess the effectiveness of learned relational embeddings, we present the
experimental results using different conditional inputs to stimulate HOI detection in Table 6. As seen,
though action words offer limited improvement, they are far surpassed by relation embeddings which
enables HOI-oriented feature extraction and enhance query initialization through cross-attention.

Relation Embedding Learning. Next we probe the impact of different strategies for relation
embedding learning. The results regarding relation-inspired HOI detection are summarized in Table 7.
It can be observed that textual inversion, which directly uses different images sharing the same action
for relation embedding learning, is inferior to our cycle-consistency learning strategy that considers
the disentanglement nature of HOI interactions. On this basis, the relation-centric contrastive learning
and online update strategies consistently bring improvement in both setups.

Prompt for Dataset Generation. Finally we study the impact of data synthesized by different types
of textual prompts in Table 8. As observed, data generated with purely textual description using plain
action words like “The man at bat readies to swing at the pitch” gives negative improvement over
baseline. The potentially indicates that diffusion models cannot understand the relations between
human-object pairs and generate meaningful images when provided with straightforward textual
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Table 9: Comparison of total training time on HICO-DET[20].
Method CDN[44] HOTR[41] UPT[86] STIP[85] GEN-VLKT[3] HOICLIP[19] CQL[90] DIFFUSIONHOI
Time (Hour) 25.2 23.6 17.9 16.4 28.4 29.1 29.7 5.7+11.5

description. In contrast, through relation modeling, data generated with relation embeddings to
replace the plain action words provides high-quality samples for the training of HOI detectors.

Analysis on Training Cost. For our inversion-based HOI modeling to learn relation-centric embed-
dings, unlike the original textual inversion technology that learns text embeddings within the image
space, we optimize relation embeddings within the latent space by reconstructing interaction features.
This lead to reduced training costs. Consequently, the 117 relation embeddings in HICO-DET[20] can
be learned within 5.7 hours (23 minutes per relation embedding) which is more efficient than textual
inversion (i.e., 32 minutes per embedding). For the main training of HOI detection on HICO-DET,
since our method utilizes significantly fewer trainable parameters compared to existing work (e.g.,
27.6M v.s. 50.4M for STIP[85], 41.9M for QPIC[42], and 42.8M for GEN-VLKT[3] in Table 4), the
training process can be completed in just 11.5 hours. The comparison of the whole training time with
some representative work is summarized in Table 9, with all experiments conducted on 8 Tesla A40
cards. It can be observed that DIFFUSIONHOI requires less training time than most existing work.

5 Conclusion

We present DIFFUSIONHOI, a new HOI detector built upon diffusion models. By explicitly modeling
the relations between humans and objects in an inversion-based manner, we enable effective knowl-
edge transfer from diffusion models while adapting unique characteristics of the HOI detection task.
This is achieved in two aspects: i) relation-driven image generation using diffusion models to enrich
the training set with more HOI-oriented samples, and ii) relation-inspired HOI detection with learned
relation embeddings as prompts to retrieve task-specific features from images, thereby enhancing the
recognition of ongoing interactions. Extensive experiments demonstrate that DIFFUSIONHOI excels
in both regular or zero-shot setups and sets new SOTAs. We believe this work provides insights to
unleash the power of diffusion models for downstream visual perception tasks in an efficient manner.

Acknowledgement. This work was supported by the National Science and Technology Major Project
(No. 2023ZD0121300), the National Natural Science Foundation of China (No. 62372405), the
Fundamental Research Funds for the Central Universities 226-2024-00058, National Key Laboratory
of Human-Machine Hybrid Augmented Intelligence, Xi’an Jiaotong University (No. HMHAI-
202403), and CIPSC-SMP-Zhipu Large Model Cross-Disciplinary Fund.

10



References
[1] Bangpeng Yao and Li Fei-Fei. Modeling mutual context of object and human pose in human-object

interaction activities. In CVPR, 2010. 1

[2] Lifeng Fan, Wenguan Wang, Siyuan Huang, Xinyu Tang, and Song-Chun Zhu. Understanding human
gaze communication by spatio-temporal graph reasoning. In ICCV, 2019. 1

[3] Yue Liao, Aixi Zhang, Miao Lu, Yongliang Wang, Xiaobo Li, and Si Liu. Gen-vlkt: Simplify association
and enhance interaction understanding for hoi detection. In CVPR, 2022. 1, 2, 3, 5, 6, 7, 8, 10, 17

[4] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In ICML, 2021. 1, 3

[5] Sanjay Subramanian, William Merrill, Trevor Darrell, Matt Gardner, Sameer Singh, and Anna Rohrbach.
Reclip: A strong zero-shot baseline for referring expression comprehension. In ACL, 2022. 1

[6] Zixian Ma, Jerry Hong, Mustafa Omer Gul, Mona Gandhi, Irena Gao, and Ranjay Krishna. Crepe: Can
vision-language foundation models reason compositionally? In CVPR, 2023. 1

[7] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-
image diffusion models with deep language understanding. In NeurIPS, 2022. 1, 3

[8] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
generation with composable diffusion models. In ECCV, 2022. 3

[9] Xihui Liu, Dong Huk Park, Samaneh Azadi, Gong Zhang, Arman Chopikyan, Yuxiao Hu, Humphrey
Shi, Anna Rohrbach, and Trevor Darrell. More control for free! image synthesis with semantic diffusion
guidance. In WACV, 2023.

[10] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining
Guo. Vector quantized diffusion model for text-to-image synthesis. In CVPR, 2022.

[11] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022. 8

[12] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator. In
ICLR, 2022.

[13] Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of natural
images. In CVPR, 2022. 3

[14] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In CVPR, 2022. 1, 3

[15] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Diffusion
autoencoders: Toward a meaningful and decodable representation. In CVPR, 2022. 1

[16] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic latent space.
In ICLR, 2022. 1

[17] Jiarui Xu, Sifei Liu, Arash Vahdat, Wonmin Byeon, Xiaolong Wang, and Shalini De Mello. Open-
vocabulary panoptic segmentation with text-to-image diffusion models. In CVPR, 2023. 1, 3, 5, 6

[18] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and Daniel
Cohen-or. An image is worth one word: Personalizing text-to-image generation using textual inversion.
In ICLR, 2022. 2, 3, 8

[19] Shan Ning, Longtian Qiu, Yongfei Liu, and Xuming He. Hoiclip: Efficient knowledge transfer for hoi
detection with vision-language models. In CVPR, 2023. 2, 7, 8, 10, 17

[20] Yu-Wei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng, and Jia Deng. Learning to detect human-object
interactions. In WACV, 2018. 2, 7, 8, 9, 10, 17

[21] Saurabh Gupta and Jitendra Malik. Visual semantic role labeling. arXiv preprint arXiv:1505.04474, 2015.
2, 7, 8, 17

[22] Suchen Wang, Kim-Hui Yap, Henghui Ding, Jiyan Wu, Junsong Yuan, and Yap-Peng Tan. Discovering
human interactions with large-vocabulary objects via query and multi-scale detection. In ICCV, 2021. 2,
7, 8, 17

[23] Bumsoo Kim, Taeho Choi, Jaewoo Kang, and Hyunwoo J Kim. Uniondet: Union-level detector towards
real-time human-object interaction detection. In ECCV, 2020. 3, 17

[24] Yue Liao, Si Liu, Fei Wang, Yanjie Chen, Chen Qian, and Jiashi Feng. Ppdm: Parallel point detection
and matching for real-time human-object interaction detection. In CVPR, 2020. 7, 8, 17

11



[25] Tiancai Wang, Tong Yang, Martin Danelljan, Fahad Shahbaz Khan, Xiangyu Zhang, and Jian Sun.
Learning human-object interaction detection using interaction points. In CVPR, 2020.

[26] Hao-Shu Fang, Yichen Xie, Dian Shao, and Cewu Lu. Dirv: Dense interaction region voting for end-to-end
human-object interaction detection. In AAAI, 2021. 3

[27] Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen, and Song-Chun Zhu. Learning human-object
interactions by graph parsing neural networks. In ECCV, 2018. 3

[28] Bo Wan, Desen Zhou, Yongfei Liu, Rongjie Li, and Xuming He. Pose-aware multi-level feature network
for human object interaction detection. In ICCV, 2019.

[29] Hai Wang, Wei-shi Zheng, and Ling Yingbiao. Contextual heterogeneous graph network for human-object
interaction detection. In ECCV, 2020.

[30] Yong-Lu Li, Xinpeng Liu, Xiaoqian Wu, Yizhuo Li, and Cewu Lu. Hoi analysis: Integrating and
decomposing human-object interaction. In NeurIPS, 2020.

[31] Yong-Lu Li, Xinpeng Liu, Han Lu, Shiyi Wang, Junqi Liu, Jiefeng Li, and Cewu Lu. Detailed 2d-3d joint
representation for human-object interaction. In CVPR, 2020.

[32] Frederic Z Zhang, Dylan Campbell, and Stephen Gould. Spatially conditioned graphs for detecting
human-object interactions. In ICCV, 2021.

[33] Georgia Gkioxari, Ross Girshick, Piotr Dollár, and Kaiming He. Detecting and recognizing human-object
interactions. In CVPR, 2018.

[34] Tianfei Zhou, Wenguan Wang, Siyuan Qi, Haibin Ling, and Jianbing Shen. Cascaded human-object
interaction recognition. In CVPR, 2020.

[35] Tianfei Zhou, Siyuan Qi, Wenguan Wang, Jianbing Shen, and Song-Chun Zhu. Cascaded parsing of
human-object interaction recognition. IEEE TPAMI, 44(6):2827–2840, 2021.

[36] Minghan Chen, Guikun Chen, Wenguan Wang, and Yi Yang. Hydra-sgg: Hybrid relation assignment for
one-stage scene graph generation. arXiv preprint arXiv:2409.10262, 2024.

[37] Jianan Wei, Tianfei Zhou, Yi Yang, and Wenguan Wang. Nonverbal interaction detection. In ECCV, 2024.
3

[38] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In NeurIPS, 2015. 3

[39] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020. 3, 7, 8

[40] Mingfei Chen, Yue Liao, Si Liu, Zhiyuan Chen, Fei Wang, and Chen Qian. Reformulating hoi detection
as adaptive set prediction. In CVPR, 2021. 3, 17

[41] Bumsoo Kim, Junhyun Lee, Jaewoo Kang, Eun-Sol Kim, and Hyunwoo J Kim. Hotr: End-to-end
human-object interaction detection with transformers. In CVPR, 2021. 7, 8, 10, 17

[42] Masato Tamura, Hiroki Ohashi, and Tomoaki Yoshinaga. Qpic: Query-based pairwise human-object
interaction detection with image-wide contextual information. In CVPR, 2021. 7, 8, 10, 17

[43] Cheng Zou, Bohan Wang, Yue Hu, Junqi Liu, Qian Wu, Yu Zhao, Boxun Li, Chenguang Zhang, Chi
Zhang, Yichen Wei, et al. End-to-end human object interaction detection with hoi transformer. In CVPR,
2021.

[44] Aixi Zhang, Yue Liao, Si Liu, Miao Lu, Yongliang Wang, Chen Gao, and Xiaobo Li. Mining the benefits
of two-stage and one-stage hoi detection. In NeurIPS, 2021. 7, 8, 10, 17

[45] Desen Zhou, Zhichao Liu, Jian Wang, Leshan Wang, Tao Hu, Errui Ding, and Jingdong Wang. Human-
object interaction detection via disentangled transformer. In CVPR, 2022.

[46] Xubin Zhong, Changxing Ding, Zijian Li, and Shaoli Huang. Towards hard-positive query mining for
detr-based human-object interaction detection. In ECCV, 2022. 3

[47] ASM Iftekhar, Hao Chen, Kaustav Kundu, Xinyu Li, Joseph Tighe, and Davide Modolo. What to look at
and where: Semantic and spatial refined transformer for detecting human-object interactions. In CVPR,
2022. 3, 17

[48] Suchen Wang, Yueqi Duan, Henghui Ding, Yap-Peng Tan, Kim-Hui Yap, and Junsong Yuan. Learning
transferable human-object interaction detector with natural language supervision. In CVPR, 2022. 5, 8

[49] Xian Qu, Changxing Ding, Xingao Li, Xubin Zhong, and Dacheng Tao. Distillation using oracle queries
for transformer-based human-object interaction detection. In CVPR, 2022. 17

[50] Leizhen Dong, Zhimin Li, Kunlun Xu, Zhijun Zhang, Luxin Yan, Sheng Zhong, and Xu Zou. Category-
aware transformer network for better human-object interaction detection. In CVPR, 2022. 5, 17

12



[51] Guikun Chen, Jin Li, and Wenguan Wang. Scene graph generation with role-playing large language
models. In NeurIPS, 2024. 3

[52] Liulei Li, Jianan Wei, Wenguan Wang, and Yi Yang. Neural-logic human-object interaction detection. In
NeurIPS, 2023. 3

[53] Wenguan Wang, Yi Yang, and Yunhe Pan. Visual knowledge in the big model era: Retrospect and
prospect. Frontiers of Information Technology & Electronic Engineering, 2024. 3

[54] Liulei Li, Wenguan Wang, and Yi Yang. Logicseg: Parsing visual semantics with neural logic learning
and reasoning. In ICCV, 2023. 3

[55] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
models. In ICCV, 2023. 3

[56] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014. 3

[57] Rohit Saha, Brendan Duke, Florian Shkurti, Graham W Taylor, and Parham Aarabi. Loho: Latent
optimization of hairstyles via orthogonalization. In CVPR, 2021. 3

[58] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
Mcgrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing
with text-guided diffusion models. In ICML, 2022. 3

[59] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. In NeurIPS, 2019. 3

[60] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, 2015. 3

[61] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS, 2020.

[62] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR, 2020. 3

[63] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In NeurIPS,
2021. 3

[64] Abhishek Sinha, Jiaming Song, Chenlin Meng, and Stefano Ermon. D2c: Diffusion-decoding models for
few-shot conditional generation. In NeurIPS, 2021. 3

[65] Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann. Conditional image
generation with score-based diffusion models. arXiv preprint arXiv:2111.13606, 2021. 3

[66] Max Daniels, Tyler Maunu, and Paul Hand. Score-based generative neural networks for large-scale
optimal transport. 2021. 3

[67] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
Image super-resolution via iterative refinement. IEEE TPAMI, 45(4):4713–4726, 2022. 3

[68] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations. In ICLR, 2021. 3

[69] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. In ICLR, 2022. 3

[70] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jacobian
chaining: Lifting pretrained 2d diffusion models for 3d generation. In CVPR, 2023.

[71] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis,
Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content creation. In
CVPR, 2023. 3

[72] Grace Luo, Lisa Dunlap, Dong Huk Park, Aleksander Holynski, and Trevor Darrell. Diffusion hyperfea-
tures: Searching through time and space for semantic correspondence. In NeurIPS, 2023. 3

[73] Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath Hariharan. Emergent
correspondence from image diffusion. arXiv preprint arXiv:2306.03881, 2023.

[74] Junyi Zhang, Charles Herrmann, Junhwa Hur, Luisa Polania Cabrera, Varun Jampani, Deqing Sun, and
Ming-Hsuan Yang. A tale of two features: Stable diffusion complements dino for zero-shot semantic
correspondence. In NeurIPS, 2023. 3

[75] Xingyi Yang and Xinchao Wang. Diffusion model as representation learner. In ICCV, 2023. 3

[76] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong Xu,
Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan. In ICLR,
2022. 4

13



[77] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv preprint
arXiv:1504.00325, 2015. 5

[78] Wenliang Zhao, Yongming Rao, Zuyan Liu, Benlin Liu, Jie Zhou, and Jiwen Lu. Unleashing text-to-image
diffusion models for visual perception. In ICCV, 2023. 5, 9

[79] Junsuk Choe, Seong Joon Oh, Seungho Lee, Sanghyuk Chun, Zeynep Akata, and Hyunjung Shim.
Evaluating weakly supervised object localization methods right. In CVPR, 2020. 5

[80] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-to-
prompt image editing with cross attention control. In ICLR, 2022. 5

[81] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature
pyramid networks for object detection. In CVPR, 2017. 6

[82] Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean Naren,
Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca Wehrstedt, Jeremy
Reizenstein, and Grigory Sizov. xformers: A modular and hackable transformer modelling library.
https://github.com/facebookresearch/xformers, 2022. 7

[83] Chen Gao, Yuliang Zou, and Jia-Bin Huang. ican: Instance-centric attention network for human-object
interaction detection. In BMVC, 2018. 7, 8, 17

[84] Jihwan Park, SeungJun Lee, Hwan Heo, Hyeong Kyu Choi, and Hyunwoo J Kim. Consistency learning
via decoding path augmentation for transformers in human object interaction detection. In CVPR, 2022.
7, 17

[85] Yong Zhang, Yingwei Pan, Ting Yao, Rui Huang, Tao Mei, and Chang-Wen Chen. Exploring structure-
aware transformer over interaction proposals for human-object interaction detection. In CVPR, 2022. 7,
8, 10, 17

[86] Frederic Z Zhang, Dylan Campbell, and Stephen Gould. Efficient two-stage detection of human-object
interactions with a novel unary-pairwise transformer. In CVPR, 2022. 7, 10, 17

[87] Danyang Tu, Xiongkuo Min, Huiyu Duan, Guodong Guo, Guangtao Zhai, and Wei Shen. Iwin: Human-
object interaction detection via transformer with irregular windows. In ECCV, 2022. 7, 17

[88] Xiaoqian Wu, Yong-Lu Li, Xinpeng Liu, Junyi Zhang, Yuzhe Wu, and Cewu Lu. Mining cross-person
cues for body-part interactiveness learning in hoi detection. In ECCV, 2022. 7, 17

[89] Frederic Z Zhang, Yuhui Yuan, Dylan Campbell, Zhuoyao Zhong, and Stephen Gould. Exploring
predicate visual context in detecting of human-object interactions. In ICCV, 2023. 7, 8, 17

[90] Chi Xie, Fangao Zeng, Yue Hu, Shuang Liang, and Yichen Wei. Category query learning for human-object
interaction classification. In CVPR, 2023. 7, 10, 17

[91] Jeeseung Park, Jin-Woo Park, and Jong-Seok Lee. Viplo: Vision transformer based pose-conditioned
self-loop graph for human-object interaction detection. In CVPR, 2023. 7, 8, 17

[92] Danyang Tu, Wei Sun, Guangtao Zhai, and Wei Shen. Agglomerative transformer for human-object
interaction detection. In ICCV, 2023. 7, 17

[93] Yichao Cao, Qingfei Tang, Feng Yang, Xiu Su, Shan You, Xiaobo Lu, and Chang Xu. Re-mine, learn and
reason: Exploring the cross-modal semantic correlations for language-guided hoi detection. In ICCV,
2023. 7, 8, 17

[94] Ting Lei, Fabian Caba, Qingchao Chen, Hailin Jin, Yuxin Peng, and Yang Liu. Efficient adaptive
human-object interaction detection with concept-guided memory. In ICCV, 2023. 7, 8, 17

[95] Ding Jia, Yuhui Yuan, Haodi He, Xiaopei Wu, Haojun Yu, Weihong Lin, Lei Sun, Chao Zhang, and Han
Hu. Detrs with hybrid matching. In CVPR, 2023. 7, 8, 17

[96] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014. 7, 8

[97] Sarah Pratt, Mark Yatskar, Luca Weihs, Ali Farhadi, and Aniruddha Kembhavi. Grounded situation
recognition. In ECCV, 2020. 7

[98] Dandan Shan, Jiaqi Geng, Michelle Shu, and David F Fouhey. Understanding human hands in contact at
internet scale. In CVPR, 2020. 7

[99] Zhi Hou, Xiaojiang Peng, Yu Qiao, and Dacheng Tao. Visual compositional learning for human-object
interaction detection. In ECCV, 2020. 7

[100] Zhi Hou, Baosheng Yu, Yu Qiao, Xiaojiang Peng, and Dacheng Tao. Detecting human-object interaction
via fabricated compositional learning. In CVPR, 2021. 8

[101] Zhi Hou, Baosheng Yu, Yu Qiao, Xiaojiang Peng, and Dacheng Tao. Affordance transfer learning for
human-object interaction detection. In CVPR, 2021. 8

14

https://github.com/facebookresearch/xformers


[102] Zhi Hou, Baosheng Yu, and Dacheng Tao. Discovering human-object interaction concepts via self-
compositional learning. In ECCV, 2022. 7, 8

[103] Sipeng Zheng, Boshen Xu, and Qin Jin. Open-category human-object interaction pre-training via language
modeling framework. In CVPR, 2023. 8

[104] Ting Lei, Shaofeng Yin, and Yang Liu. Exploring the potential of large foundation models for open-
vocabulary hoi detection. In CVPR, 2024. 8, 9

[105] Chen Gao, Jiarui Xu, Yuliang Zou, and Jia-Bin Huang. Drg: Dual relation graph for human-object
interaction detection. In ECCV, 2020. 8, 17

[106] Ye Liu, Junsong Yuan, and Chang Wen Chen. Consnet: Learning consistency graph for zero-shot
human-object interaction detection. In ACM MM, 2020. 17

[107] Bumsoo Kim, Jonghwan Mun, Kyoung-Woon On, Minchul Shin, Junhyun Lee, and Eun-Sol Kim. Mstr:
Multi-scale transformer for end-to-end human-object interaction detection. In CVPR, 2022. 17

[108] Xinpeng Liu, Yong-Lu Li, Xiaoqian Wu, Yu-Wing Tai, Cewu Lu, and Chi-Keung Tang. Interactiveness
field in human-object interactions. In CVPR, 2022. 17

[109] Guangzhi Wang, Yangyang Guo, Yongkang Wong, and Mohan Kankanhalli. Chairs can be stood on:
Overcoming object bias in human-object interaction detection. In ECCV, 2022. 17

15



A Discussion

A.1 Limitation

One potential limitation of our method is that it does not run as quickly as previous one-stage
methods due to the adoption of diffusion models. A detailed comparison is provided in Table 4.
As shown, DIFFUSIONHOI achieves inference speeds similar to two-stage methods. However,
currently there is a trend towards leveraging large-scale pre-trained models to assist in various
perception tasks. These models offer substantial enhancements in performance and accuracy. For
instance, after utilizing diffusion models, our method has demonstrated an 8.23% improvement on
unseen categories in the SWiG-HOI benchmark. Though it is inevitable that these advancements
introduce additional computational overhead, the trade-off is generally considered acceptable given
the significant improvements in task performance and the ability to generalize better to previously
unseen scenarios. Therefore, an important consideration in future research is the balance between
computational cost and the enhanced capabilities provided by large-scale pre-trained models. In
this work, we implement acceleration technology for Stable Diffusion which successfully boosts the
inference speed of DIFFUSIONHOI to 24.77 FPS, surpassing most one-stage methods.

A.2 Failure Case

As shown in Fig.S1, we found that failure cases primarily manifest in the following scenarios: i)
scenes featuring only partial human bodies, such as arm or leg, which introduces challenges for
person detection; and ii) chaotic scenes teeming with people, which causes occlusion and difficulties
in identifying interactions. Despite these challenges, DIFFUSIONHOI has shown remarkable im-
provement over existing approaches. Additionally, the patterns of these failure cases provide valuable
insights for future research.

A.3 Broader Impact

On the positive side, this work proposes a more powerful solution for recognizing complex interactions
between humans and objects in a scene. It is particularly effective for few- and zero-shot setups that
are common in real-world scenarios. This advancement can significantly contribute to a range of
applications, such as healthcare and assistive systems, smart homes and IoT (Internet of Things),
security, and more. However, there are also potential negative aspects. Our method carries the risk of
being used for continuous monitoring, which could raise concerns over intrusive surveillance and
the unauthorized collection of personal data. Additionally, the inversion-based modeling strategy for
adjusting diffusion models could be misused to create harmful or false information about individuals.
Hence, it is essential to rigorously consider ethical standards and legal regulations to address privacy
concerns, so as to avoid potential negative societal impacts.

B Detailed Comparison

We present a more detailed comparison of DIFFUSIONHOI with other methods in Table S1. As
demonstrated, DIFFUSIONHOI consistently achieves state-of-the-art performance.

C Qualitative Results for Image Generation

We present the qualitative results of relation-driven sample generation in Fig.S2. It can be observed
that the synthesized images exhibit realistic shapes and textures for individual instances, as well
as coherent structure and layout for entire scenes. Additionally, the generated images accurately
depict the interactions between humans and objects, demonstrating the effectiveness of our proposed
inversion-based HOI modeling strategies.
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Person hold person

Person drag suitcasePerson pet dogPerson hold wine_glassPerson hold knife

Person teach personPerson hug sheepPerson ride cow

Figure S1: Typical failure case on HICO-DET[19]. Actions highlighted in red indicate missing predictions that
should be detected, while text with strikethrough means wrong predictions that should be removed.

D License

The V-COCO [21] and SWiG-HOI [22] datasets are released under the MIT license. The HICO-
DET[20] dataset is released under the CC0: Public Domain license. The weight of Stable Diffusion
is released under CreativeML Open RAIL M License.

Table S1: Detailed comparison for regular HOI detection on HICO-DET[20] and V-COCO[21].
VL Default Known Object V-COCOMethod Backbone

Pretrain Full Rare Non-Rare Full Rare Non-Rare APS1
role APS2

role

iCAN[83] [BMVC18] R50 - 14.84 10.45 16.150 16.26 11.33 17.73 45.3 -
UnionDet[23] [ECCV20] R50 - 17.58 11.72 19.33 19.76 14.68 21.27 47.5 56.2

DRG[105] [ECCV20] R50-FPN - 19.26 17.74 19.71 23.40 21.75 23.89 51.0 -
PPDM[24] [CVPR20] HG104 - 21.73 13.78 24.10 24.58 16.65 26.84 - -
HOTR[41] [CVPR21] R50 - 23.46 16.21 25.60 - - - 55.2 64.4

ConsNet[106] [MM20] R50 - 24.39 17.10 26.56 - - -
AS-Net[40] [CVPR21] R50 - 28.87 24.25 30.25 31.74 27.07 33.14 53.9 -

QPIC[42] [CVPR21] R50 - 29.07 21.85 31.23 31.68 24.14 33.93 58.8 61.0
CDN[44] [NeurIPS21] R50 - 31.78 27.55 33.05 34.53 29.73 35.96 62.3 64.4

CPChoi[84] [CVPR22] R50 - 29.63 23.14 31.57 - - - 63.1 65.4
MSTR[107] [CVPR22] R50 - 31.17 25.31 32.92 34.02 28.83 35.57 62.0 65.2

UPT[86] [CVPR22] R50 - 31.66 25.94 33.36 35.05 29.27 36.77 59.0 64.5
STIP[85] [CVPR22] R50 - 32.22 28.15 33.43 35.29 31.43 36.45 66.0 70.7

IF-HOI[108] [CVPR22] R50 - 33.51 30.30 34.46 36.28 33.16 37.21 63.0 65.2
ODM[109] [ECCV22] R50-FPN - 31.65 24.95 33.65 - - - - -

Iwin[87] [ECCV22] R50-FPN - 32.03 27.62 34.14 35.17 28.79 35.91 60.5 -
MCPC[88] [ECCV22] R50 - 35.15 33.71 35.58 37.56 35.87 38.06 63.0 65.1

PViC[89] [ICCV23] R50 - 34.69 32.14 35.45 38.14 35.38 38.97 62.8 67.8
PViC†[89] [ICCV23] Swin-L - 44.32 44.61 44.24 47.81 48.38 47.64 64.1 70.2
CTAN[50] [CVPR22] R50 CLIP 31.71 24.82 33.77 33.96 26.37 36.23 60.1
SSRT[47] [CVPR22] R50 CLIP 30.36 25.42 31.83 - - - 63.7 65.9
DOQ[49] [CVPR22] R50 CLIP 33.28 29.19 34.50 - - - 63.5 -

GEN-VLK[3] [CVPR22] R50 CLIP 33.75 29.25 35.10 37.80 34.76 38.71 62.4 64.4
HOICLIP[19] [CVPR23] R50 CLIP 34.69 31.12 35.74 37.61 34.47 38.54 63.5 64.8

CQL[90] [CVPR23] R50 CLIP 35.36 32.97 36.07 38.43 34.85 39.50 66.4 69.2
ViPLO[91] [CVPR23] ViT-B CLIP 37.22 35.45 37.75 40.61 38.82 41.15 62.2 68.0
AGER[92] [ICCV23] R50 CLIP 36.75 33.53 37.71 39.84 35.58 40.2 65.7 69.7
RmLR[93] [ICCV23] R50 MobileBERT 36.93 29.03 39.29 38.29 31.41 40.3 63.8 69.8

ADA-CM[94] [ICCV23] ViT-L CLIP 38.40 37.52 38.66 - - - 58.6 64.0
DIFFUSIONHOI VQGAN Stable Diffusion 38.12 38.93 37.84 40.93 42.87 40.04 66.8 70.9
DIFFUSIONHOI ViT-L Stable unCLIP 42.54 42.95 42.35 44.91 45.18 44.83 67.1 71.1

†: Models built upon advanced object dector, i.e., H-Deform-DETR[95].
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Figure S2: Qualitative results for relation-driven image generation.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contributions have been claimed in abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The computational efficiency has been discussed in §4.2. The limitation of the
proposed algorithm has been discussed in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There is no theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation details have been provided in §3.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code is available at https://github.com/0liliulei/DiffusionHOI.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setup, including data splits, training and testing detailed, are
provided in §4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The prior work included into comparison does not provide error bar. It could
be too expensive and time-consuming to run the experiments on large-scale datasets for
multiple times.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources are described in §4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work conforms the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The border impacts is provided in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed method uses pre-trained models. This proposed methods is safe
under the safeguards of adopted pre-trained models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The V-COCO and SWiG-HOI datasets are released under the MIT license.
The HICO-DET dataset is released under the CC0: Public Domain license. The weight of
Stable Diffusion is released under CreativeML Open RAIL M License.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

23

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There is no new assets released in this work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There is no research with human subjects in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There is no research with human subjects in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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