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Abstract

In many biochemical studies, molecular geometries serve as fundamental
data structures. Existing deep learning methods often focus on designing
SE(3)-equivariant representation functions. However, such functions are
physically constrained, which may limit the expressiveness of the models.
In this work, we introduce InertialTransformer, a preliminary attempt to ad-
dress this challenge. InertialTransformer comprises three key components:
(1) it uses the inertial frame as a canonicalization method to align molecular
geometries in 3D Euclidean space; (2) it incorporates a Euclidean-based
positional encoding scheme; and (3) it employs a self-attention module to
enable information exchange among atoms. By integrating these compo-
nents, InertialTransformer achieves an SE(3)-equivariant yet unconstrained
framework for geometric representation. We evaluate InertialTransformer
on molecular geometry prediction tasks. While its performance does not
yet match that of state-of-the-art 3D graph neural networks, it significantly
outperforms existing SE(3)-equivariant Transformer-based approaches. We
posit that InertialTransformer stands to benefit substantially from large-
scale pretraining, which we leave as a direction for future work.

1 Introduction

Transformer architectures have had a profound impact on natural language processing (De-
vlin et al., 2019; Radford et al., 2019) and computer vision (Dosovitskiy et al., 2020; Khan et al.,
2022), due to their pioneering self-attention mechanism and positional encoding (Vaswani,
2017; Su et al., 2024). The key strengths of Transformer lie in its ability to effectively cap-
ture global contextual information across the entire input tokens while exhibiting superior
scalability on large-scale datasets. These characteristics have established Transformers as
the dominant architecture for developing state-of-the-art foundation models (Achiam et al.,
2023; Liu et al., 2024).

The emergence of “AI for Science” has catalyzed significant research efforts to harness the
Transformer’s capabilities for scientific domains, particularly in chemistry, materials science,
and biology (Li et al., 2024; Flam-Shepherd & Aspuru-Guzik, 2023; Yan et al., 2024; Fu et al.,
2024). Among these scientific tasks, the molecular geometries serve as the fundamental data
structures; thus, how to incorporate the physical constraints, i.e., SE(3)-equivariance, into
the modeling is a critical challenge.

Along this line, existing methods are SE(3)-constrained functions and can be roughly di-
vided into two venues: graph neural network (GNN)-based and Transformer-based. They
have shown remarkable performance, including but not limited to 3D molecular property
prediction (Liu et al., 2023; Schütt et al., 2021; Shi et al., 2023) and large-scale geometric
self-supervised pretraining (Liu et al., 2021). The connection between Transformers and
GNNs lies in the attention mechanism, which can be interpreted as a GNN layer applied
to a fully connected graph, where each node corresponds to a token. The key distinction
is that Transformers incorporate explicit positional encoding and tokenization modules,
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which are typically absent in standard GNNs. In this work, we focus on Transformers,
which have emerged as one of the most expressive and widely adopted architectures in the
AI community (Touvron et al., 2023; Bai et al., 2023; Minaee et al., 2025). Notably, unlike
conventional sequential data (e.g., texts in NLP) or grid-based data (e.g., images in CV),
molecular geometries, as a set of atoms in the 3D Euclidean space, pose unique challenges
for the tokenization, as will be discussed next.

Physical Constraint and Model Expressiveness. The molecular representations are ex-
pected to preserve SE(3)-equivariance, i.e., the output transforming correspondingly under
rotations and translations of the whole molecular system (Thomas et al., 2018). Most existing
methods achieve this by designing physics-constrained neural networks (Liu et al., 2023).
However, another research line proposes an alternative solution by simply performing
data augmentation without requiring the model to be SE(3)-equivariant (Abramson et al.,
2024). The underlying conjecture is that without enforcing the physical constraint, the deep
learning models can possess stronger model expressiveness, thus leading to better model
performance. Motivated by this observation, we raise a critical research question: Would
it be possible to design a Transformer method, such that it can satisfy the physical constraint while
possessing strong model expressiveness?

Our Contributions. To answer this question, in this work, we introduce the InertialTrans-
former, a Transformer-based architecture targeting at solving the structure tokenization. As
shown in Figure 1, there are three key steps in InertialTransformer. (1) The first key step
in InertialTransformer is the utility of the inertial frame for pose canonicalization. More
concretely, we first fix the molecular system to its center of mass and then align it with its
inertial frame, resulting in an invariant canonical pose. (2) The second key step is to intro-
duce a structure-aware tokenization strategy, where the goal is to encode all the geometric
information, i.e., scalars and vectors, into the positional encodings. (3) Last but not least,
these encodings are designed to carry sufficient information to be effectively utilized by the
self-attention layers.

Results and Limitations. To verify the effectiveness of the InertialTransformer, we con-
duct experiments on molecular 3D property prediction tasks. By comparing with relevant
Transformer-based and GNN-based baselines, we get the following interesting observations.
Along the research line of 3D Transformer with structure tokenization, InertialTransformer
demonstrates superior performance compared to the existing baseline (Li et al., 2024).
However, when evaluated against 3D GNN baselines, while our model surpasses certain
established approaches, it maintains competitive performance without surpassing current
state-of-the-art 3D GNN architectures. We posit that a large-scale pretraining could address
this limitation, and leave this as the next step. We openly acknowledge these unresolved
questions and share these observations with the community in the hope of fostering discus-
sion. We welcome any constructive feedback or suggestions.

2 Related Works

Geometric Representation Learning for 3D Molecules. Learning effective representations
of 3D molecular structures requires handling SE(3) symmetry—ensuring representations
remain invariant or equivariant under rotations and translations. Current approaches can
be categorized into four main paradigms. SE(3)-equivariant architectures explicitly enforce
symmetry through specialized network designs: spherical frame basis models (Thomas
et al., 2018; Liao & Smidt, 2023) project features into irreducible representations of SO(3),
while vector frame basis models (Schütt et al., 2021; Satorras et al., 2022) construct local
coordinate frames for equivariant operations. Invariant feature approaches circumvent
architectural constraints by utilizing geometrically invariant inputs such as pairwise dis-
tances, bond angles, and dihedral angles (Schütt et al., 2017; Gasteiger et al., 2022). Data
augmentation strategies encourage models to implicitly learn symmetric representations by
training on randomly rotated and translated molecular conformations, particularly valuable
for large-scale models where explicit equivariance is complex to scale (Flam-Shepherd &
Aspuru-Guzik, 2023; Abramson et al., 2024). Input canonicalization methods (Antunes
et al., 2024; Yan et al., 2024; Li et al., 2024; Fu et al., 2024) establish a canonical orientation or
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Figure 1: Comparison of existing SE(3)-equivariant graph neural networks and InertialTransformer.

reference frame for input molecules through preprocessing, transforming each molecule
into a standardized pose so that subsequent neural networks can operate on SE(3)-invariant
inputs without intrinsic SE(3)-equivariant constraints.

Transformer-based Geometric Modeling of 3D Molecules. The adaptation of Transformer
architectures for 3D molecular modeling necessitates strategies to incorporate geometric
information and handle SE(3) symmetries. Fuchs et al. (2020) develops equivariant architec-
tures that integrate self-attention principles with Graph Neural Networks, emphasizing local
neighborhood interactions and intricate geometric feature transformations. Shi et al. (2023)
incorporates SE(3)-invariant geometric features, such as pairwise inter-atomic distances and
structural descriptors, as bias terms in Transformer attention computation. This enables
enhanced capture of spatial relationships without requiring strict architectural equivari-
ance constraints. While these two approaches ensure strong geometric inductive biases,
they actually operate as a message-passing GNN and do not fully leverage the parallel,
all-to-all attention mechanisms of standard Transformers. Li et al. (2024) addresses SE(3)
properties through preprocessing molecular input data rather than explicit architectural
constraints. Under this research line, approaches typically perform data augmentation or
input canonicalization, and then convert 3D molecular structures into specialized tokenized
representations, which is crucial for standard Transformer architectures.

Structure Tokenization of 3D Molecules. The discretization of 3D molecular structures into
tokenized representations compatible with Transformer models poses significant technical
challenges. Text sequence-based tokenization (Li et al., 2024; Yan et al., 2024; Flam-Shepherd
& Aspuru-Guzik, 2023) directly converts 3D molecular structures into 1D ”textualized”
sequences. This approach treats molecular structures similarly to natural language text
by directly tokenizing each atom’s type and its continuous 3D coordinates into discrete
sequential tokens. However, current tokenization methods still face challenges in generating
tokenized representations that preserve complete three-dimensional geometric informa-
tion while maintaining compatibility with standard Transformer architectures, indicating
promising directions for future exploration.

3 InertialTransformer

In this section, we will go over the detailed design of InertialTransformer. In Section 3.1, we
introduce an inertial frame as an SE(3)-equivariant canonicalization method, leading to an in-
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Figure 2: Illustration of introducing a fourth node as the anchor node. We define the sign of the x-y-z
axis to make sure that x4 is in the first quadrant, and there are four cases as illustrated in the four
subfigures, respectively.

variant structure for each molecular system. Following this, we establish a Transformer-like
framework, specifically the expressive geometric-aware self-attention module, in Section 3.2.
Notice that in addition to the attention module, tokenization is another important mod-
ule. The interesting part in InertialTransformer is how to design the geometrically aware
tokenization on top of the inertial frame, as will be introduced in Section 3.3.

3.1 Inertial Frame Construction

First, we employ the following four sequential steps to derive the reference frames that
construct the rotation matrix from N atomic positions r:

• Calculate the mass center: c = 1
N ∑i ri.

• Adjust position relative to the center ri = ri − c.
• Compute the inertia tensor Î = ∑i ∥ri∥2 I − rirT

i , where I is the unit diagonal matrix.
• Obtain the principal axes of inertia by applying eigen-decomposition on Î. We have

Î = QΛQT , where Q is the orthogonal matrix whose columns are the eigenvectors
of Î, and Λ is the diagonal matrix whose elements are the eigenvalues λi of Î,
representing the principal moments of inertial along the principal axes.

How to define the orderings of inertial frame axes? We follow the ordering of the eigen-
values to define the ordering of the eigen-vectors, which form the rotation matrix. The key
point to note is how to handle the tie between the eigenvalues. In such cases, the molecular
system is symmetric (e.g., CO2 or CH4), leading to degenerate eigenvalues of the inertia
tensor. Consequently, the inertial frame is not uniquely defined, yet all valid frames are
physically equivalent.

How to define the directions of inertial frame axes? The orthonormal I is the basis.
Meanwhile, there are eight possible combinations for the directions or signs of the x-, y-,
and z-axes, given by {±1,±1,±1}, respectively. First, we enforce the ordering of the x-y-z
axis to be right-handed, i.e., the determinant of I to be 1, not -1. This still gives us four
possible combinations. Then we can define a unique direction for each molecule system by
introducing a fourth node, as in Theorem 1.
Theorem 1. For an inertial frame F, we build up the corresponding right-handed axes as coordinate
systems Q. Then we need to incorporate a fourth point that is not on the y-z plane or x-z plane to
uniquely determine the directions of the coordinate system with one rotation transformation matrix.

As illustrated in Theorem 1, we must include a fourth node to uniquely determine the
directions of the three axes. To achieve this, we consider a fourth node x4 that is not on
the y-z plane or x-z plane and with the largest distance to the origin. Then we define the
requirement that x-x4-z and x4-y-z are also right-handed; in other words, this requirement is
essentially saying that x4 should be in the first quadrant of the x-y plane. For implementation,
x4 is a 3D point whose projection onto the x–y plane falls into one of the four quadrants: the
first, second, third, or fourth quadrant, depending on the signs of its x and y coordinates.
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Each of them defines the signs (or directions) of the inertial frame axes, as illustrated
in Figure 2.

Summary. All these options for finding an inertial frame for each molecule are to find a
canonical pose by rotating the molecule system to have the inertial frame lie precisely in
the x-y-z axes, as shown in Figure 1. The expectation is that such a canonical posing of
molecules can (1) serve as an invariant global frame system for follow-up modules, (2)
naturally merge with the Transformer architecture, and (3) support stronger generation
ability.

3.2 Method: InertialTransformer

In Section 3.1, we introduce the use of an inertial frame as a global frame for each molecule.
We rotate the entire molecular system into a canonical pose, aligning its inertial frame with
the global x–y–z axes.

Building upon this canonical data structure, we develop InertialTransformer, which follows
the standard Transformer architecture with three key components: tokenization, posi-
tional encoding, and multi-head self-attention. (1) Structure-aware tokenization encodes
both the discrete atomic type and continuous Euclidean coordinates for each atom into
a unified token representation. (2) Geometric positional encoding addresses the inherent
position-agnostic nature of Transformer architectures by incorporating spatial relationship
information. We employ a specialized positional encoding scheme designed for continuous
Euclidean coordinates, as detailed in Section 3.3. (3) The encoded tokens are subsequently
processed through multi-head self-attention mechanisms (Vaswani, 2017), enabling the
model to capture inter-atomic relationships and dependencies.

The core insight of our approach is that through appropriate positional encoding, pairwise
atomic relationships can be effectively learned via inner product operations between token
representations within the attention mechanism. Here we discuss two types of tokenization
methods, and then employ the standard self-attention mechanism, as shown in Equation (1).

a =
KTQ√

d
, o = aV. (1)

3.3 Positional Encoding for InertialTransformer

3.3.1 RoPE as Separate Tokenization

What are we expecting for the position embedding? We hope to design a position embedding
such that it can hold both the absolute position while maintaining the relative distance when
calculating the inner product, i.e., RT

x1,y1,z1
Rx2,y2,z2 = Rx2−x1,y2−y1,z2−z1 .

Inspired by Su (2021), we propose the geometric position embedding for atomic points in
the Euclidean space:

Rx,y,zq =


q0
q1
q2
q3
q4
q5

 ·


cos xθ0
cos xθ0
cos yθ0
cos yθ0
cos zθ0
cos zθ0

+


−q1
q0
−q3
q2
−q5
q4

 ·


sin xθ0
sin xθ0
sin yθ0
sin yθ0
sin zθ0
sin zθ0

 . (2)

By this, we can tell that qT RT
x1,y1,z1

Rx2,y2,z2 k = qT Rx2−x1,y2−y1,z2−z1 k.

3.3.2 Nyström Approximation for Pairwise Distance Tokenization

One limitation of using RoPE-3D in Equation (2) for structure tokenization is that it treats
each axis separately. Though by expectation, it should be able to learn the token pairwise
distance information. We empirically observe that merely using RoPE-3D cannot learn
adequate information, while explicitly adding the pairwise information is more informative.
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Then the question is how to incorporate the pairwise distance into the model. One straight-
forward way is to directly inject the distance information into the attention score, like Shi
et al. (2023). However, such an architecture is not compatible with the classic transformer
architecture used in large language models (Bai et al., 2023; Achiam et al., 2023; Touvron
et al., 2023), which is not suitable for us because the ultimate goal along this research line is
to enable the multi-modal alignment between the geometric structures and other modalities
like natural language.

To alleviate this issue, we consider the Nyström method (Williams & Seeger, 2000). It is a
low-rank approximation to obtain the pairwise distance. More concretely, suppose we have
a Gram matrix over n points, i.e., K ∈ Rn×n. Each element Kij is the radial basis function

(RBF) over the distance between i-th and j-th points, Kij = RBF(xi, xj) = exp(− ∥xi−xj∥2

2σ2 ).
Then we sample m anchor points, (c1, c2, ..., cm), where each is a 3D position in an Euclidean
space and n ≫ m.

First we can decompose matrix K with eigendecomposition,

K = UΛUT , (3)

where U ∈ Rn×n is an orthonormal matrix with eigenvecturos, and Λ ∈ Rm×m is block diag-
onal matrix with eigenvalues. Then, Nyström approximation is a low rank approximation,
assuming that matrix K can be approximated using K̃:

K ≈ K̃

= ŨΛ̃ŨT

=

[
A B
BT C

]
,

(4)

where Ũ is the first m columns of U and Λ̃ is the block diagonal matrix of first m eigenvalues
of Λ. At this point, we assume that the m points picked can estimate the m-rank matrix

A with positive eigenvalues. Then let us have Ũ =

[
U1
U2

]
, where U1 ∈ Rm×m and U2 ∈

R(n−m)×m, and A = U1Λ̃UT
1 . Thus, we can rewrite Equation (4) as:

K̃ =

[
U1
U2

]
Λ̃
[

U1
U2

]T

=

[
U1ΛUT

1 U1ΛUT
2

U2ΛUT
1 U2ΛUT

2

]
.

(5)

Combining this with Equation (4), we have U2 = BTU1Λ−1 and UT
2 = Λ−1UT

1 B. Thus, we
can have

C = U2ΛUT
2 = BTU1Λ−1UT

1 B = BT A−1B. (6)

To inject this back to Equation (4), we have

K̃ = ŨΛ̃ŨT

=

[
U

BTUΛ−1

]
Λ
[
UT Λ−1UT B

]
=

[
A B
BT BT A−1B

]
=

[
A
BT

]
A−1 [A B] .

(7)

This wraps up the key idea of Nyström method. Then, to obtain the RBF of a new point
pair K(i, j), we first construct the feature between point i, j and the m anchor points as ki =
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Featurization Model α ↓ ∇E ↓ EHOMO ↓ ELUMO ↓ µ ↓ Cv ↓ G ↓ H ↓ R2 ↓ U ↓ U0 ↓ ZPVE ↓
α3

0 meV meV meV D cal
mol·K meV meV α2

0 meV meV meV

1D FPs
MLP 2.231 196.72 131.27 164.94 0.526 0.919 2158.64 2358.23 68.621 2340.61 2314.77 155.921
RF 3.801 207.02 165.72 183.04 0.534 1.485 3391.79 3729.94 94.512 3705.75 3678.25 253.132
XGB 2.748 199.71 139.88 165.43 0.516 1.062 2563.93 2804.27 82.959 2786.28 2769.29 180.989

1D SMILES CNN 0.364 165.22 124.65 114.81 0.566 0.173 156.66 170.59 20.403 166.18 169.89 10.070
BERT 0.313 117.50 84.93 98.88 0.446 0.176 170.01 183.43 18.002 183.84 188.60 13.410

1D SELFIES CNN 0.345 157.04 115.51 113.00 0.499 0.168 136.42 146.56 20.080 143.00 140.01 10.149
BERT 0.348 123.11 91.15 90.80 0.461 0.203 168.20 187.50 19.125 204.93 195.98 17.328

2D Graph

GCN 1.338 145.82 96.21 106.66 0.434 0.526 1198.12 1291.57 37.585 1281.03 1303.39 85.103
ENN-S2S 1.401 270.59 129.18 132.84 0.577 0.760 1487.21 955.24 34.609 1800.79 1521.32 51.226
GraphSAGE 1.601 131.45 88.78 93.21 0.402 0.544 1473.42 1617.73 38.112 1553.01 1565.65 95.344
GAT 1.132 135.90 94.70 98.52 0.406 0.291 911.82 991.31 26.583 1161.29 592.67 55.061
GIN 1.165 175.82 90.66 110.74 0.539 0.691 848.24 1090.36 35.110 1498.23 1364.18 108.331
D-MPNN 0.568 118.42 85.01 86.20 0.441 0.241 423.14 458.39 24.816 470.01 445.91 29.291
PNA 0.681 148.88 88.72 97.31 0.361 0.409 664.98 692.74 23.855 616.70 694.92 57.217
Graphormer 2.836 79.27 54.24 52.42 0.330 0.080 2066.28 2546.01 131.158 2229.88 2525.51 144.595
AWARE 0.297 144.91 133.89 98.86 0.602 0.129 86.62 94.47 22.180 93.59 95.73 5.275
GraphGPS 0.209 75.98 54.75 54.53 0.288 0.089 528.50 693.19 12.488 296.00 411.16 49.888

3D Graph

SchNet 0.060 44.13 27.64 22.55 0.028 0.031 14.19 14.05 0.133 13.93 13.27 1.749
DimeNet++ 0.044 36.22 20.01 16.66 0.028 0.022 7.45 6.14 0.323 6.33 7.18 1.118
SE(3)-Trans 0.137 56.52 34.65 34.41 0.050 0.063 65.28 70.70 1.747 68.92 68.88 5.428
EGNN 0.062 49.56 30.08 24.98 0.029 0.030 10.01 9.14 0.089 9.28 9.08 1.519
PaiNN 0.049 42.73 24.46 20.16 0.016 0.025 8.43 7.88 0.169 8.18 7.63 1.419
GemNet-T 0.041 35.46 17.85 15.86 0.021 0.023 7.61 7.08 0.271 6.42 5.88 1.232
SphereNet 0.047 38.93 21.45 18.25 0.027 0.025 8.16 13.68 0.288 6.77 7.43 1.295
SEGNN 0.048 33.61 17.66 17.01 0.021 0.026 11.60 12.45 0.404 11.29 12.20 1.590
Allegro 0.097 102.44 61.86 63.17 0.176 0.032 42.08 44.96 1.977 44.64 44.43 2.949
NequIP 0.066 61.94 42.00 31.64 0.036 0.028 22.08 23.36 0.415 23.23 23.02 1.899
Equiformer 0.051 33.46 17.93 16.85 0.015 0.023 14.49 14.60 0.433 14.88 13.78 2.342
Graphormer-3D 0.063 48.58 32.58 26.80 0.042 0.031 16.11 15.79 0.258 16.85 16.21 1.788

3D Transformer
(w/ tokenization)

Geo2Seq 1.061 514.95 271.77 467.47 0.774 1.080 598.63 601.19 72.554 600.70 607.10 25.606
InertialTransformer 0.074 45.32 27.60 25.92 0.046 0.034 23.23 25.97 0.723 25.74 25.19 2.050

Table 1: Results on 12 quantum mechanics prediction tasks in QM9, with 110K for training, 10K
for validation, and 11K for testing. The task unit is specified, and the evaluation is the mean absolute
error (MAE).

[RBF(i, 0), RBF(i, 1), ..., RBF(i, m)]T ∈ Rm×1. The approximated RBF(i,j) can be obtained as:

k̃(i, j) = kT
i A−1k j

=
(

A−1/2ki
)T(A−1/2k j

)
=

(
L−1ki

)T(L−1k j
)
,

(8)

where A = LLT is the Cholesky decomposition.

Discussion. There is another research line using random features (e.g., random Fourier
features) for the pairwise distance approximation (Rahimi & Recht, 2007). There are certain
works that have proved that Nyström method is more accurate (Yang et al., 2012). One
intuitive way to understand this is that Nyström method utilizes the data-dependent basis,
while the random features use data-independent basis functions.

4 Results

We use QM9 dataset (Ramakrishnan et al., 2014) to evaluate the performance of Inertial-
Transformer for the prediction of scalar properties across chemical compound space. QM9
is a dataset consisting of 134K molecules, each with up to 9 heavy atoms. It includes 12
tasks that are related to the quantum properties. For example, U0 and U are the internal
energies at temperatures of 0K and 298.15K, respectively, and U and G are the other two
energies that can be calculated from H. The other 8 tasks are quantum mechanics related to
the density functional theory (DFT) process. The data partition we use has 110k, 10k, and
11k molecules in training, validation and testing sets. We minimize mean absolute error
(MAE) between prediction and normalized ground truth.

Section 4 shows the mean absolute error (MAE) of InertialTransformer for 12 target proper-
ties of QM9 in comparison with previous approaches. Compared to 3D Transformer baseline
that employs structure tokenization (Li et al., 2024), our model consistently outperforms
across all tasks, achieving lower MAE values with notable improvements. However, when
evaluated against 3D GNN baselines, while our model surpasses certain established 3D
GNN models (Musaelian et al. (2022) & Fuchs et al. (2020)), it remains competitive but does
not exceed the performance of some state-of-the-art 3D GNN models such as Schütt et al.
(2021).
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5 Conclusion

Future Directions. InertialTransformer has the potential to be adopted to solve more
challenging problems, such as protein folding or protein structure prediction. These are
important questions, thus we would like to leave them for future exploration. On the other
hand, InertialTransformer enables the modeling of molecules to be naturally combined
with the attention and Transformer modules, which can be more effectively and efficiently
merged into the multi-modal paradigms.
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