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ABSTRACT

This paper presents sharp rates of convergence of the gradient descent (GD)
method for overparameterized deep linear neural networks with different random
initializations. This study touches upon one major open theoretical problem in
machine learning–why deep neural networks trained with GD methods are ef-
ficient in many practical applications? While the solution of this problem is still
beyond the reach of general nonlinear deep neural networks, extensive efforts have
been invested in studying relevant questions for deep linear neural networks, and
many interesting results have been reported to date. For example, recent results
on loss landscape show that even though the loss function of deep linear neural
networks is non-convex, every local minimizer is also a global minimizer. When
the GD method is applied to train deep linear networks, it’s convergence behavior
depends on the initialization. In this study, we obtained sharp rate of convergence
of GD for deep linear networks and demonstrated that this rate does not depend
on the types of random initialization. Furthermore, here, we show that the depth
of the network does not affect the optimal rate of convergence, if the width of
each hidden layer is appropriately large. Finally, we explain why the GD for an
overparameterized deep linear network automatically avoids bad saddles.

1 INTRODUCTION

Deep linear neural networks, as a class of toy models, are frequently used to understand loss surfaces
and gradient-based optimization methods related to non-convex problems. Dauphin et al. (2014) and
Choromanska et al. (2015a) explored the loss function of deep nonlinear networks based on random
matrix theory (such as a spherical spin-glass model). This theory essentially converts the loss surface
of deep nonlinear neural networks into that of deep linear neural networks under certain assumptions,
some of which are unrealistic. Choromanska et al. (2015b) suggested an open problem to establish a
connection between the loss function of neural networks and the Hamiltonian of spherical spin-glass
models under milder assumptions. Later, Kawaguchi (2016) successfully discarded most of these
assumptions by analyzing the loss surface of the deep linear neural networks.

The landscape for deep linear neural network (Kawaguchi, 2016; Kawaguchi & Lu, 2017; Laurent
& Brecht, 2018) focuses on several properties of the critical points: (i) every local minimum is a
global minimum; (ii) every critical point that is not a local minimum is a saddle point; and (iii) there
exists a saddle such that all eigenvalues of its Hessian are zeros if the network is deeper than three
layers. Thus, for deep linear neural networks, convergence to a global minimum is impeded by the
existence of poor saddles.

Lee et al. (2016) showed that the gradient method almost surely never converges to a strict saddle
point, although the time cost can depend exponentially on the dimension (Du et al., 2017). Gra-
dient descent (GD) with perturbations (Ge et al., 2015; Jin et al., 2017) can find a local minimizer
in polynomial time. Thus, the trajectory approach combined with random initialization or random
algorithm circumvents the obstacle of existence of poor saddles. According to studies on continuous
time dynamics of a gradient flow (Du et al., 2018; Arora et al., 2018b), the balance property of deep
linear network is preserved if the initialization is balanced. Arora et al. (2018a;b), Du & Hu (2019),
and Hu et al. (2020) successfully proved that GD with its corresponding initialization schemes con-
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verges to a global minimizer of deep linear neural networks with high probability. Furthermore, the
rate of convergence is linear, and behaves like GD for a convex problem.

Hu et al. (2020) established that the convergence for Gaussian initialization can be very slow for
deep linear neural networks with large depths, unless the width is almost linear. They also showed
that orthogonal initialization in deep linear neural networks accelerate the convergence. Thus, the
convergence behavior of the GD method, for training deep linear neural networks, crucially networks
depends on the initialization.

Recent studies have demonstrated the connection between deep learning and kernel meth-
ods (Daniely, 2017; Arora et al., 2019a;b; Chizat et al., 2019; Lee et al., 2019; Du et al., 2019;
Cao & Gu, 2019; Woodworth et al., 2020), especially the neural tangent kernel (NTK), introduced
by Jacot et al. (2018). For most common neural networks, the NTK becomes constant (Jacot et al.,
2018; Liu et al., 2020) and remains so throughout the training in the limit of a large layer width.
Throughout the training, the neural networks are well described by their first-order Taylor expan-
sion around their parameters at the initialization (Lee et al., 2019).

In this paper, we first evaluate the convergence region, i.e. the set of initialization parameters
that lead to the linear convergence of GD for deep linear neural networks (see Lemma 4.1 or
Lemma D.1). Next, we demonstrate that if the minimum width among all the hidden layers is suffi-
ciently large, then the random initialization will fall into the convergence region with high probabil-
ity (see Theorem 3.1, Theorem B.1, Theorem B.2 and Theorem B.3). Furthermore, the worst-case
convergence rate of GD for deep linear neural networks is almost the same as the original convex
problem with a corresponding learning rate. We also demonstrate that the GD trajectories for deep
linear neural networks are arbitrarily close to those for the convex problem. The precise statement
is related to remark 3, Theorem 3.2, Corollary 1 and Lemma 4.4 (also see Lemma D.5).

The present study was inspired by a recent reported work Du & Hu (2019); Hu et al. (2020), in
which the authors carefully constructed the upper and lower bounds of the eigenvalues of the Gram
matrix along the GD and established a linear convergence. In this paper, we generalize their re-
sults to strongly convex loss functions with layer varying widths and obtain sharper results. We
also show that our rate of convergence for GD in deep linear neural networks is sharp in the sense
that it matches the worst-case convergence rate for the original convex problem. The trajectories
between the GD for deep linear neural networks and the original convex problem (1) can be arbi-
trary close. Furthermore, we show that if the width of each hidden layer is appropriately large, then
the optimal rate does not depend on the random initialization types and network depth. Lastly, we
elucidate the mechanism underlying the observed automatic avoidance of bad saddles by the GD for
overparameterized deep linear networks.

2 PRELIMINARIES

2.1 PROBLEM SETUP

Let x ∈ Rnx and y ∈ Rny be an input vector and a target vector, respectively. Define {(xi, yi)}mi=1
as a training dataset of sizem, and letX = [x1, x2, · · · , xm] ̸= 0 and Y = [y1, y2, · · · , ym]. Denote
the weight parameters by W ∈ Rny×nx .

Consider the well-studied convex optimization problem:

minimize
W

L(W ) :=
1

m

m∑
i=1

l(Wxi, yi). (1)

The GD for convex problem (1) with a learning rate of η∗ is given by:

W (t+ 1) =W (t)− η∗∇L(W (t)), t = 0, 1, 2, · · · . (2)

For any matrix A, let σmax(A) and σmin(A) be the largest and smallest singular values of A
respectively. Here, we consider two types of matrix norms and one type of semi-norm for A,
∥A∥ := σmax(A), ∥A∥2F := tr(AAT ), and ∥A∥X := ∥APX∥F , where PX = X(XTX)†XT

is the orthogonal projection matrix onto the column space ofX , and (XTX)† is the Moore–Penrose
inverse.

2



Under review as a conference paper at ICLR 2023

For two real matrices A,B with the same sizes, we consider their Frobenius inner product as well
as their semi-inner product, ⟨A,B⟩ = ⟨A,B⟩F := tr(ATB), ⟨A,B⟩X := ⟨APX , BPX⟩. Here, we
list some basic properties for the semi-norm and semi-inner product.
Lemma 2.1. The loss function L(W ) defined in (1) satisfies the following properties: for any
W,V ∈ Rny×nx ,

1.L(W ) = L(WPX), 2.∇L(W ) = ∇L(WPX)PX , 3.⟨∇L(W ), V ⟩F = ⟨∇L(W ), V ⟩X ,
4. ∥∇L(W )∥F = ∥∇L(W )∥X , 5. ∥W∥X ≡ ∥W∥F if and only if X is full row rank.

The next lemma demonstrates the importance of the semi-norm ∥·∥X in our analysis.
Lemma 2.2. Assume that l(·, y) is α(l)−strongly convex. Then, the following statements hold.

1. If X is not a full row rank matrix, then L(W ) is neither strictly convex nor strongly convex
with respect to ∥·∥F .

2. L(W ) is α(l)λmin(XXT )
m −strongly convex with respect to ∥·∥X , where λmin(XX

T ) is the
smallest non-zero eigenvalue of XXT .

The proofs of the two aforementioned lemmas are provided in appendix A. Hereafter, if inner prod-
uct is not specified, then we will consider the semi-inner product.

Assume that L is α−strongly convex (α > 0), and ∇L is β−Lipschitz (with respect to the semi-
norm ∥·∥X ); that means, for any W,V ∈ Rny×nx ,

L(W ) ≥ L(V ) + ⟨∇L(V ),W − V ⟩X +
α

2
∥W − V ∥2X ,

∥∇L(W )−∇L(V )∥X = ∥∇L(W )−∇L(V )∥F ≤ β ∥W − V ∥X .

Without loss of generality, we assume that α and β are the best constants. Then, Lemma 2.2 implies
that α ≥ α(l)λmin(XXT )

m . Similarly, we can also show that β ≤ β(l)λmax(XXT )
m , where ∇l(·, y) is

β(l)−Lipschitz and λmax(XX
T ) is the largest eigenvalue of XXT .

Define the effective condition number of the convex function L by κ = κ(L) = β
α < ∞. κ appears

naturally in the rate of convergence of the GD. Let W∗ be a global minimizer of L(W ), that is
L(W∗) = minW L(W ). Notice that W∗ might not be unique, but W∗PX is unique.

The well-known results for the rate of convergence of GD (2) state are:

η∗ =
1

β
=⇒ E(t) ≤

(
1− 1

κ

)t

E(0), t = 1, 2, · · · , as well as, (3)

η∗ =
2

α+ β
=⇒ E(t) ≤ β

2

(
1− 4κ

(1 + κ)2

)t

∥W (0)−W∗∥2X , t = 1, 2, · · · , (4)

where E(t) = L(W (t))− L(W∗).

2.2 DEEP LINEAR NETWORK SETUP

Let N − 1 be the number of hidden layers. Assume rank(X) = r. Denote the weight parameters
by Wk ∈ Rnk×nk−1 , k = 1, 2 · · · , N , with nN = ny, n0 = nx, where the nk is the width of
the k-th layer. Set nmin = min{n1, n2, · · · , nN−1}, and nmax = max{n1, n2, · · · , nN−1}. For
notational convenience, we denote nj:i =

∏
i≤k≤j nk and denote Wj:i = WjWj−1 · · ·Wi for each

1 ≤ i ≤ j ≤ N . Define ni−1:i = 1 and Wi−1:i = I (of appropriate dimension) for completeness.

Considering the implicit regularization W = WN :1 for the convex problem (1). We obtain the
following non-convex optimization problem of deep linear neural networks:

minimize
W1,··· ,WN

L(WN :1) =
1

m

m∑
i=1

l(WN :1xi, yi). (5)

Example 2.1. Specifically, if we set the loss to be l(Wxi, yi) = ∥Wxi − yi∥22, then L(W ) =
1
m ∥WX − Y ∥2F is 2λmin(XXT )

m −strongly convex, and ∇L is 2λmax(XXT )
m −Lipschitz.
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Example 2.2. Deep linear neural networks with regularization λ ∥WN · · ·W1PX∥2F can be con-
verted into a new optimization problem

minimize
W1,··· ,WN

L(WN :1) + λ ∥WN :1∥2X .

Let Lλ(W ) = L(W ) + λ ∥W∥2X . Then, Lλ(·) is α + 2λ-strongly convex, and ∇Lλ(·) is β + 2λ-
Lipschitz.

More generally, if we consider regularization with a form R(W ) = λ · g(WPX), and g(·) is α′-
strongly convex, and β′-Lipschitz, then for the optimization problem

minimize
W1,··· ,WN

L(WN :1) +R(WN · · ·W1) =: LR(WN · · ·W1),

we know that LR(·) is α+ λα′-strongly convex, and ∇LR(·) is β + λβ′-Lipschitz.

2.3 INITIALIZATION SCHEMES

In previous studies, the following form of deep linear networks was considered, instead of (5):

minimize
W1,··· ,WN

L(aNWN :1) =
1

m

m∑
i=1

l(aNWN :1xi, yi), (6)

where aN = 1/
√
n1n2 · · ·nN is a normalization constant.

By applying GD on (6), where we update Wj simultaneously for j, we obtain

Wj(t+ 1) =Wj(t)− η · aN (WN :j+1(t))
T ∇L (aNWN :1(t)) (Wj−1:1(t))

T
, j = 1, · · · , N. (7)

In a recent study, the authors considered GD (7) and adopted a Gaussian initialization (Du & Hu,
2019) or scaled orthogonal initialization (Hu et al., 2020) for initializing Wj(0).

In this paper, we consider the following three kinds of random initializations, which generalize their
idea.

Gaussian initialization: Let W1(0), · · · ,WN (0) be the weight matrices at initialization. We as-
sume that all the entries of Wj , 1 ≤ j ≤ N are independent Gaussian random variables with a zero
mean and unit variance.

Then, aN is a normalization constant in the sense that for any x ∈ Rn0 , we have

E
[
∥aNWN :1(0)x∥22

]
= ∥x∥22 . (8)

In fact, all the initializations discussed in this paper satisfy (8).
Remark 1. Let Vi(t) = 1√

ni
Wi(t), for 1 ≤ i ≤ N . Then, GD (7) with a unit variance Gaussian

initialization is equivalent to

Vj(t+ 1) = Vj(t)−
η

nj
(VN :j+1(t))

T ∇L (VN :1(t)) (Vj−1:1(t))
T
, (9)

with a zero mean and variance 1
ni

Gaussian initialization for Vi, i = 1, · · · , N .

GD (9) for loss (5) is equivalent to GD (7) for loss (6). Hereafter, we will only consider GD (7) for
deep linear neural network (6).

Orthogonal initialization: We consider the so-called one peak random orthogonal projection and
embedding initialization, which generalize the idea of orthogonal initialization (Hu et al., 2020).
Definition 2.1. An initialization WN :1(0) = WN (0)WN−1(0) · · ·W1(0) is said to be a one
peak random orthogonal projection and embedding initialization if there exists 1 ≤ p < N ,
such that n0 ≤ n1 ≤ n2 ≤ · · · ≤ np, np ≥ np+1 ≥ np+2 ≥ · · ·nN−1 ≥ nN , and
W1(0),W2(0), · · · ,Wp(0),Wp+1(0),Wp+2(0), · · · ,WnN

(0) are independent and uniformly dis-
tributed over rectangular matrices, which satisfy{

WT
i (0)Wi(0) = niIni−1

, 1 ≤ i ≤ p,

Wj(0)W
T
j (0) = nj−1Inj

, p+ 1 ≤ j ≤ N.
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Remark 2. In this definition,
√

1
ni
Wi(0), 1 ≤ i ≤ p are random embeddings and

√
1

nj−1
Wj(0), p+

1 ≤ j ≤ N are random orthogonal projections. Notably, A is a random orthogonal projection if and
only if AT is a random embedding.

Arora et al. (2018a) studied the rate of convergence of GD to a global optimum for training a deep
linear neural network for a balanced initialization. Here, we will consider a special case of balanced
initialization, which is described as follows:

Special balanced initialization: Assume n1 = · · · = nN−1 = n. Consider the initialization
WN (0) =

√
nUN [Iny , 0ny×(n−ny)]V

T
N , W1(0) =

√
nU1[Inx , 0nx×(n−nx)]

TV T
1 and Wi(0) =√

nUiInV
T
i , 2 ≤ i ≤ N − 1, where UN−1, UN , V1, Vi = Ui−1, 2 ≤ i ≤ N − 1 are orthog-

onal matrices (random or deterministic), and VN has a uniform distribution over the orthogonal
matrices. Notice that only VN is required to be random.

A simple estimation of the loss at the initialization is given by the following lemma.
Lemma 2.3. If the initialization satisfies (8) for all x, then with probability at least 1− δ

2 , we have

L(aNWN :1(0))− L(W∗) ≤ βBδ, where Bδ =

(
2 · rank(X)

δ
+ ∥W∗∥2X

)
.

Note that the bound Bδ can be improved by using a sharp concentration inequality.

3 MAIN THEOREMS

Assume the thinnest layer is either the input layer or the output layer; that is nmin ≥ max{n0, nN},
and the ratio between the width of any hidden layer is bounded from above, precisely we have
nmax

nmin
≤ C0 < ∞. The quantities C2, C5 and C6 are defined in appendix D and are dependent on

hyperparameters nN , κ, δ, rank(X), C0, and N .

For notational convenience, we denote

E(t) = L(W (t))− L(W∗), and EDLN (t) = L(aNWN :1(t))− L(W∗).

Our assumptions and notation are now in place. We next state our main theorems in this section.

3.1 LINEAR CONVERGENCE OF DEEP LINEAR NEURAL NETWORKS

In appendix B we present a sharp estimate of the linear convergence of GD for deep linear neural
networks in Theorem B.1 for Gaussian initialization, Theorem B.2 for orthogonal initialization, and
Theorem B.3 for a special balanced initialization. In particular, with a specific learning rate η = nN

βN ,
Theorem B.1 and Theorem B.2 yield the following optimum rate of convergence:
Theorem 3.1. Given any δ, ε ∈ (0, 12 ), there exists a constant C := C(ε), such that if one of the
following two overparameterization condition holds:

1. nmin ≥ C · C2 ·N with the Gaussian initialization,

2. nmin ≥ C · C5 with the one peak random orthogonal projection and embedding initialization

and with probability at least 1− δ, then we have

EDLN (t) ≤
(
1− 1− ε

κ

)t

EDLN (0), t = 1, 2, · · · .

Remark 3. Consider GD (2) with a learning rate of η∗ = 1
β and initialization W (0) = aNWN :1(0).

The well-known result of rate of convergence (3) for GD (2) of convex problem (1) matches the
rates obtained from Theorem B.1 and Theorem B.2.
Remark 4. Du & Hu (2019), and Hu et al. (2020) showed that the number of iterations required
to reach a precision ε is O

(
κ log 1

ϵ

)
for l2 loss. We only improved the rate of convergence and

generalized their results to any strongly convex loss.
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3.2 RESULTS OF TRAJECTORIES

Theorem 3.1 and remark 3 establish that the rate of convergence to a global optimum for GD to
train a deep linear neural network is almost the same as the trajectories for the GD to train the
corresponding convex problem with high probability, if the width is sufficiently large. Moreover,
the GD for the fully-connected deep linear neural network (7) and that for GD (2) have almost the
same trajectories.

Let η1 = 2nN

βN be an upper bound of the learning rate η. We can show that the trajectories of GD (7)
for deep linear neural network (6) with a learning rate of η < η1 are close to those of GD (2) with
a learning rate of η∗ = N

nN
η for the corresponding convex problem (1) with high probability, if the

width of each hidden layer is sufficiently large. The precise statement is as follows:
Theorem 3.2. Consider the GD for deep linear neural network (7) with a learning rate of η < η1
for aNWN :1(t), t = 0, 1, · · · , and GD (2) with a learning rate of η∗ = N

nN
η for W (t), t = 0, 1, · · · .

Given τ, δ ∈ (0, 1), there exists a constant C := C(τ, η/η1) such that if one of the following three
overparameterization conditions holds:

1. nmin ≥ C · C2 ·N with the Gaussian initialization,

2. nmin ≥ C · C5 with the one peak random orthogonal projection and embedding initialization,

3. nmin ≥ C · C6 with the special balanced initialization,

then with probability at least 1− δ, we obtain

∥aNWN :1(t)−W (t)∥2X ≤ D(τ, q, t) ∥aNWN :1(0)−W∗∥2X , (10a)

|EDLN (t)− E(t)| ≤ β

(
qt/2

√
D(τ, q, t) +

1

2
D(τ, q, t)

)
∥aNWN :1(0)−W∗∥2X , (10b)

EDLN (t) ≤ 3β(q + τ)t ∥aNWN :1(0)−W∗∥2X , (10c)

where D(τ, q, t) = min
{

τ
1−q , 2(q + τ)t

}
, with 0 < q < 1 defined in (15).

Remark 5. To the best of knowledge, this is the first paper that reveals that the trajectory of the
overparameterized deep linear neural networks is close to the original convex problem with an ap-
propriately rescaled learning rate.
Corollary 1. According to Theorem 3.2, if we set η = 2nN

(α+β)N , the following inequality holds with
high probability,

EDLN (t) ≤ 3β

(
1− 4κ

(1 + κ)2
+ τ

)t

∥aNWN :1(0)−W∗∥2X . (11)

Notably, the rate of convergence in (11) is better than that in Theorem 3.1, because if κ > 1, then
we can choose a sufficiently small τ such that the following inequality holds:

1− 4κ

(1 + κ)2
+ τ < 1− 1

κ
.

Theorem 3.1, Theorem 3.2, Theorem B.1, and Theorem B.2 indicate that the implicit regularization
induced by the GD for a convex problem recovers the convex problem itself in terms of optimization,
at the cost of linear convergence only with high probability for random initialization.

Remark 6. Recall the constants C2, C5, and C6 defined in appendix B. The term rank(X)
δ is not

optimal, since our concentration inequality depends only on the second moment. By using stronger
concentration inequalities for our Lemma 2.3, similar to the proof of proposition 6.5 (Du & Hu,
2019) and Lemma 4.2 (Hu et al., 2020), the rank(X)

δ can be improved to 1 + log( rank(X)
δ ). C2 is

proportional to κ2, which is slightly better than the constant in Du & Hu (2019), which is propor-
tional to κ3. C5 is also slightly better than the constant reported by Hu et al. (2020), since we do not
have the extra term ∥X∥2

F

∥X∥2 . The improvement of the constant is mainly due to the introduction of the
semi-norm ∥·∥X .
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4 INSIGHTS FOR THEOREM 3.2

Initialization and convergence region: Arora et al. (2018a) showed that if the initialization is ap-
proximately balanced, and the product matrix WN :1(0) is very close to a global minimizer, then
the GD linearly converges to the global minimum for the deep linear network without any width re-
quirement. However, the convergence region in (Arora et al., 2018a) is very small, becauseWN :1(0)
needs to be very close to W∗. Later, Du & Hu (2019), and Hu et al. (2020) successfully proved that
the GD with a Gaussian, or orthogonal initialization linearly converges to a global minimizer of the
overparameterized deep linear neural network with high probability. They introduced a technique to
analyze the trajectories of GD with large widths for any deterministic initialization.

We introduce the following lemma, which describes the linear convergence result for a deep linear
network with a deterministic initialization.
Lemma 4.1. Under the setting of Lemma D.1, the GD for a deep linear network satisfies

EDLN (t) ≤ (1− ηγ)
t EDLN (0), t = 1, 2, · · · .

Our convergence region (see (31) in Lemma D.1 and Definition D.1) originates from the analysis
of Du & Hu (2019), and Hu et al. (2020) and can be view as a neighborhood of the special bal-
anced initialization, if n1 = n2 = · · · = nN−1. Both Gaussian and orthogonal initialization are
approximately balanced.

For l2 loss, without loss of generality, we can assume X to be a full rank matrix and L(W∗) = 0 be-
cause of the decomposition method in claim B.1 from Du & Hu (2019). However, when considering
a general strongly convex loss, we have to confront the low rank X directly in our analysis. Thus,
∥·∥X appears naturally and aids in achieving the sharp rate of convergence in our main theorems.
In addition to the technique reported in Du & Hu (2019), and Hu et al. (2020), we also used clas-
sical convex optimization techniques (such as inequalities in Lemma C.1, and Polyak-Łojasiewicz
inequality in (26)) as well as the classical concentration inequalities for beta distribution (such as
the Chernoff type bound in Lemma F.3).

Why GD trajectories for overparameterized deep linear neural networks with approximate
balanced initialization are close to those for convex problems? The underlying mechanism can
be understood as follows: Even though recent results of (Ziyin et al., 2022) can describe the exact
global minimizer for a deep linear network (with a regularization term such as l2), the evolution of
each Wj is still difficult to track. Instead, we consider the discrete dynamics for product matrices
(see (41) and (42)):

aNWN :1(t+ 1) = aNWN :1(t)− η · P (t)[∇L(aNWN :1(t)PX)] + aNE(t).

For their own linear operator Pt, Du & Hu (2019) showed that λmax(Pt) ≤ O( N
nN

) · λmax(X
TX)

and λmin(Pt) ≥ Ω( N
nN

) · λmin(X
TX). To the best of our knowledge, the present paper is the first

to proved that for our operator P (t)[·] ≈ N
nN
I (also see (44)), where I is the identity operator. E(t)

is negligible, which leads to the following result on discrete dynamics (see Lemma D.3).
Lemma 4.2. Under the setting of Lemma D.3, we have

aNWN :1(t+ 1) = aNWN :1(t)−
N

nN
η∇L(aNWN :1(t)) +R(t),

with ∥R(t)∥X ≤ τ ∥aNWN :1(t)−W∗∥X .

Without the R(t) term, the discrete dynamics is exactly the GD for a convex function. To control
the distance between the two trajectories, we introduce the following lemma (also see Lemma D.4).
Lemma 4.3. Assume τ ∈ [0, 1), and consider a discrete dynamical system V (t) such that,

V (t+ 1) = V (t)− η∗∇L(V (t)) +R(t), where ∥R(t)∥X ≤ τ ∥V (t)−W∗∥X .

If η∗ ≤ 2/β, then we have ∥V (t)−W∗∥2X ≤ (q+7τ)t ∥V (0)−W∗∥2X , where q is defined in (15).

With the help of this lemma, we further obtain the following trajectories comparison lemma (also
see Lemma D.5), which leads to the main conclusions in Theorem 3.2.
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Lemma 4.4. Under the setting of Lemma D.5, we have

∥aNWN :1(t)−W (t)∥2X ≤ D(τ, q, t) ∥aNWN :1(0)−W∗∥2X , (12a)

|EDLN (t)− E(t)| ≤ β

(
qt/2

√
D(τ, q, t) +

1

2
D(τ, q, t)

)
∥aNWN :1(0)−W∗∥2X , (12b)

EDLN (t) ≤ 3β(q + τ)t ∥aNWN :1(0)−W∗∥2X , (12c)

where D(τ, q, t) = min
{

τ
1−q , 2(q + τ)t

}
, with 0 < q < 1 defined in (15).

Why do bad saddles not affect GD for overparameterized deep linear neural networks? A
critical point x∗ of f is a bad saddle if λmin(∇2f(x∗)) = 0. Kawaguchi (2016) showed that
deep linear networks have bad saddles, and thus, in general, a vanishing Hessian can hinder the
optimization. Theorem 2.3 in Kawaguchi (2016) explains that for all bad saddles satisfy thatWN−1:2

is a non-full rank matrix. Thus, to show that the trajectories of GD are away from bad saddle points,
it is sufficient to demonstrate that inft σmin(WN−1:2(t)) > 0. According to previous studies, there
are two main ways to avoid bad saddles for GD to train deep linear networks.

On the one hand, following Arora et al. (2018b), it can be showed that if the approximate balanced
initialization satisfies ∥WN :1(0)−W∗∥F ≤ σmin(W∗) − c, for some 0 < c < σmin(W∗), then
σmin(WN :1(t)) ≥ c through the training as well as ∥W1(t)∥ ≤ (4 ∥W∗∥F )1/N , and ∥WN (t)∥ ≤
(4 ∥W∗∥F )1/N , then σmin(WN−1:2(t)) ≥ σmin(WN:1(t))

∥W1(t)∥∥WN (t)∥ ≥ c
(4∥W∗∥)2/N

.

On the other hand, if we assume that our rescaled and overparameterized weight initialization falls
into convergence region (31), then we can show that (see B(t) in the proof of Lemma D.1)

σmin(WN−1:2(t)) ≥ max

{
σmin(WN :2(t))

σmax(WN (t))
,
σmin(WN−1:1(t))

σmax(W1(t))

}
.

Thus, σmin(
WN−1:2

(nN−1:2)1/2
) ≥ e−c1−c2 max{ n1

nN−1
, nN−1

n1
} ≥ e−c1−c2 > 0.

In conclusion, we first made a conjecture that according to Arora et al. (2018b), for a non-
overparameterized deep linear network, there are no bad saddles satisfying ∥WN :1(0)−W∗∥F <
σmin(W∗). Thus, ∥WN :1(0)−W∗∥F < σmin(W∗) is indeed a convergence region. However, this
region in general is very small, and can even be empty if σmin(W∗) = 0. For an overparameterized
deep linear network, the GD initialized in the convergence region will force the trajectories away
from all the bad saddles.

Why does the width have to be large? We will discuss overparameterization phenomena in deep
linear networks. For simplicity, we consider a special balanced initialization. First, we know that
∥Wi(t)−Wi(0)∥F = O( 1

N ) (see C(t) through the proof of Lemma D.1), provided η = h nN

βN and
γ = O(αNnN

), where h ∈ (0, 2).

An overparameterized deep linear network around the special balanced initialization is full of global
minimizers, i.e., the trajectory limit (W ∗

1 ,W
∗
2 , · · · ,W ∗

N ) is in theO( 1
N ) neighborhood of the special

balanced initialization (W1(0),W2(0), · · · ,WN (0)). Notably,

σmin(WN−1:2(0)) =

N−1∏
j=2

σmin(Wj(0)) = σmax(WN−1:2(0)) =

N−1∏
j=2

σmax(Wj(0)) = n(N−2)/2,

as well as for any (W1,W2, · · · ,WN ) in the O( 1
N ) neighborhood of any given initialization

(W1(0),W2(0), · · · ,WN (0)), we have (detailed argument can be found in the proof of B(t) in
Lemma D.1):

∥WN−1:2 −WN−1:2(0)∥F ≤
N−2∑
s=1

(
N − 1
s

)
O(

1

N
)s(n(N−2−s)/2) ≤ n(N−2)/2O

(
1√
n

)
.

Thus in terms of landscape, we have

σmin(WN−1:2)

σmin(WN−1:2(0))
≥
σmin(WN−1:2(0))− ∥WN−1:2 −WN−1:2(0)∥F

σmin(WN−1:2(0))
≥ 1−O(

1√
n
), (13)
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which implies that no bad saddle is present in the O( 1
N ) neighborhood of the special balanced

initialization, if the width n is sufficiently large.

In terms of training, we have (see the proof of Lemma D.1),

∥Wi(t)−Wi(0)∥F = O(
1

N
), ∥Wi(0)∥F = n, 2 ≤ i ≤ N − 1,

as well as ∥Wi(t)−Wi(0)∥F

∥Wi(0)∥F
= O( 1

Nn ). Thus for an overparameterized deep linear network, the GD
with an approximate balanced initialization only trains W1 and WN , and the other weight matri-
ces remain almost constant. Here, we provide empirical evidence in appendix G to support the
aforementioned argument.

On the other hand, the sharp rate of convergence depends on the trajectory limit, and when the
minimum width is sufficiently large, the trajectory limit and the initialization are not far away from
each other. For deep linear network with small widths, the result (Ziyin et al., 2022) might shed
light on convergence analysis, because the exact global minimizer can be described for a deep linear
network with L2 regularization.

Numerical Experiments: In appendix H, we will discuss some empirical evidence to support the
main results shown in Section 3. Further, Figure 1 and 2 in appendix H show plots of the logarithm
of loss as a function of number of iterations. When n is small, the trajectories of loss for deep linear
neural networks do not decrease in some iterations. However, when n is large, the loss trajectories
are close to those for the corresponding convex problem.

5 OVERVIEW OF THE PROOFS OF MAIN THEOREMS AND LEMMAS

In this section, we provide an overview of the proofs for all the theorems obtained in the main
results. Since Theorem 3.1 in the main results is a special cases of general theorems with non-
optimal learning rates (see Theorem B.1 and Theorem B.2), we only need to focus on the proofs of
the general theorems (see Theorem B.1, Theorem B.2, Theorem B.3, and Theorem 3.2).

We begin with the convergence region of deep linear neural networks, which is basically the set
of initializations that lead to the convergence of the GD for deep linear neural networks. The pre-
cise definition can be found in appendix D. Lemma 4.1 and Lemma 4.4 (also see Lemma D.1 and
Lemma D.5) prove that this convergence region satisfies the following properties: if the initialization
falls into the convergence region, then

(i) the GD is guaranteed to converge to a global minimizer of the deep linear neural networks,

(ii) the worst-case GD rate of convergence for the deep linear neural networks, which is a
non-convex problem, is almost the same as the corresponding convex problem with a cor-
responding learning rate, and,

(iii) the trajectories of the GD for the deep linear neural networks are arbitrarily close to those
for the corresponding convex problem.

More precisely, Lemma 4.1 (also see Lemma D.1) establishes the convergence region for a de-
terministic initialization, and it demonstrates the first two properties, (i) and (ii). Additionally, in
appendix E and appendix F we also prove that the spectral properties of the products of random
matrices partially reveal that the overparameterization realized by adding the width of each hidden
layer guarantees that the random initialization falls into the convergence region with high probabil-
ity. These results provide a foundation to establish the main linear convergence theorem for random
initialization (see Theorem B.1, B.2, and B.3).

By contrast, Lemma 4.2 (also see Lemma D.3) shows that if the initialization falls into the con-
vergence region, then the update rule for the product of weight matrices in the GD for deep linear
neural networks is more or less given by (2). This result can be used to establish both Lemma 4.4
(also see Lemma D.5), and Theorem 3.2, which is precisely property (iii) of the convergence region
for deterministic and non-deterministic initializations, respectively.

9
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A PROOFS OF BASIC PROPERTIES OF THE SEMI-NORM

Proof of Lemma 2.1. The first property is a direct consequence of the definition of the projection
matrix PX .

Notice that

1

ε
(L(W + ε∆W )− L(W )) =

1

ε
(L(WPX + ε∆WPX)− L(WPX)).

Considering ε→ 0, the definition of the directional derivative implies

⟨∇L(W ),∆W ⟩F = ⟨∇L(WPX),∆WPX⟩F = ⟨∇L(WPX)PX ,∆W ⟩F ,∀∆W ∈ Rny×nx ,

since PX = PT
X . This completes the proof of the second property.

The third property is derived from the condition: orthogonal projection matrix satisfies PX = PT
X =

P 2
X = P 3

X , since

⟨∇L(W ), V ⟩F = ⟨∇L(WPX)PX , V ⟩F
=⟨∇L(WPX)P 2

X , V PX⟩F = ⟨∇L(WPX)PX , V ⟩X = ⟨∇L(W ), V ⟩X .

If we set V = ∇L(W ), then the fourth property is implied by the third property.

For the last property, first recall that ∥W∥X = ∥WPX∥F and PX = X(XTX)†XT . X is of a full
row rank matrix if and only if PX is an identity matrix, which completes the proof.

Proof of Lemma 2.2. Because X is not full row rank, we know that I − PX ̸= 0. There exists W
such that W (I − PX) ̸= 0. Applying the first property in Lemma 2.1, we obtain

L(
1

2
W +

1

2
WPX) = L((

1

2
W +

1

2
WPX)PX) = L(WPX) =

1

2
L(W ) +

1

2
L(WPX),

provided W ̸=WPX .

Hence, L is not strictly convex, which implies that L is not strongly convex.

To prove the second property, it is sufficient to show that g(W ) = L(W ) − α(l)λmin(XXT )
m ∥W∥2X

is convex. Obviously,

g(W ) = L(W )− α(l)

m

m∑
i=1

∥Wxi − yi∥22 +
α(l)

m
(∥WX − Y ∥2F − λmin(X

TX) ∥W∥2X). (14)

L(W ) − α(l)
m

∑m
i=1 ∥Wxi, yi∥2F is convex, because l(·, yi) is strongly convex. The Hessian of

∥WX − Y ∥2F − λmin(W
TW ) ∥WPX∥2F has no negative eigenvalue; thus the second term in (14)

is also convex. This completes the proof.

B EXACT STATEMENTS OF THE MAIN THEOREMS

Definitions of some quantities:

q =

{
1− αη∗(2− η∗α), 0 < η∗ ≤ 2

α+β

1− βη∗(2− η∗β),
2

(α+β) < η∗ <
2
β ,

(15)

12
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Bδ =

(
2 · rank(X)

δ
+ ∥W∗∥2X

)
,

C1 = nNκ
2Bδ

C0

(η0 − η)2/η20
+ lnN,

C2 = nNκ
2BδC0 + lnN,

C3 = nNκ
2Bδ

C0

(η0 − η)2/η20
+ C0 ln(N),

C4 = nNκ
2Bδ

1

(η0 − η)2/η20
,

C5 = nNκ
2BδC0 + C0 ln(N),

C6 = nNκ
2Bδ,

where N denotes the number of distinct elements in the set {n1, · · · , nN−1}, η1 = 2nN

Nβ , and
η0 = 2nN

e2cNβ with c > 0.

Theorem B.1. Given any c > 0, and 0 < δ < 1/2, define η0 = 2nN

e2cNβ , and consider the learning
rate of η < η0. There exists a constant C := C(c), such that if

nmin ≥ C · C1 ·N, (16)

then with probability at least 1− δ over the random Gaussian initialization, we have

EDLN (t) ≤

(
1− 4e−c

η
η0
(1− η

η0
)

κ

)t

EDLN (0).

Theorem B.2. Given any c > 0, and 0 < δ < 1/2, define η0 = 2nN

e2cβN , and consider the learning
rate to be η < η0. There exists a constant C := C(c), such that if

nmin ≥ C · C3, (17)

then with probability at least 1−δ over the random one peak projection and embedding initialization,
we have

EDLN (t) ≤

(
1− 4e−c

η
η0
(1− η

η0
)

κ

)t

EDLN (0).

Specially, if n1 = n2 = · · · = nN−1 = n ≥ min{nN , n0}, then requirement (17) can be replaced
by

n ≥ C · C4. (18)

Remark 7. Assume L(aNWN · · ·W1) = 1
2 ∥aNWN · · ·W1X − Y ∥2F , and n1 = · · · = nN−1 =

n. Then, for Gaussian initialization, our Theorem B.1 leads to Theorem 4.1 in Du & Hu (2019).
Similarly, for orthogonal initialization, our Theorem B.2 leads to Theorem 4.1 of Hu et al. (2020).

Next, we present a version of the theorem related to balanced initialization.

Theorem B.3. Assume n1 = · · · = nN−1 = n. Given any c > 0, and 0 < δ < 1/2, define
η0 = 2nN

e2cβN , and consider the learning rate as η < η0. There exists a constant C := C(c), such
that as long as

n ≥ C · C4. (19)

then with probability at least 1− δ over the special balanced initialization, we have

EDLN (t) ≤

(
1− 4e−c

η
η0
(1− η

η0
)

κ

)t

EDLN (0).
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C INEQUALITIES IN CONVEX OPTIMIZATION

Convex optimization has been studied for about a century. Recall the definitions and basic inequali-
ties for α−strongly convex and β−Lipschitz functions.

Definition C.1. A continues differentiable function f is said to be β− Lipschitz if the gradient ∇f
is β− Lipschitz, that is if for all x, y,

∥∇f(y)−∇f(x)∥ ≤ β ∥y − x∥ , (20)

f is said to be α−strongly convex if for all x, y, we have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ α

2
∥y − x∥2 . (21)

Proposition C.1. If f is α−strongly convex and ∇f is β−Lipschitz with respect to a (semi-)norm,
then α ≤ β and

⟨∇f(x), y − x⟩+ α

2
∥y − x∥2 ≤ f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+ β

2
∥y − x∥2 , (22)

⟨∇f(x)−∇f(y), x− y⟩ ≥ αβ

α+ β
∥x− y∥2 + 1

α+ β
∥∇f(x)−∇f(y)∥2 , (23)

∥∇f(x)−∇f(y)∥ ≥ α ∥x− y∥ , (24)

f(x)− f(y) ≤ ⟨∇f(x), x− y⟩ − 1

2β
∥∇f(x)−∇f(y)∥2 . (25)

Proof of Proposition C.1. We only prove the last inequality.
Let z = y − 1

β (∇f(y)−∇f(x)). Since f is convex β−Lipschitz, we have

f(z)− f(x) ≥ ⟨∇f(x), z − x⟩

and

f(z)− f(y) ≤ ⟨∇f(y), z − y⟩+ β

2
∥z − y∥2 .

Thus,
f(x)− f(y) =f(x)− f(z) + f(z)− f(y)

≤⟨∇f(x), x− z⟩+ ⟨∇f(y), z − y⟩+ β

2
∥z − y∥2

=⟨∇f(x), x− y⟩ − 1

2β
∥∇f(x)−∇f(y)∥2.

Before we prove Lemma D.1, let us first include and prove the following result.

Lemma C.2. 1. Assume L is α−strongly convex, α > 0. Denote a global minimizer of L by W∗.
Then, for any W ,

L(W∗)− L(W ) ≥ − 1

2α
∥∇L(W )∥2X . (26)

2. Assume ∇L is β−Lipschitz, then

L(W∗)− L(W ) ≤ − 1

2β
∥∇L(W )∥2X . (27)

Proof of Lemma C.2. 1. First, we know that ∇L(W∗) = 0. L is α−strongly convex, which implies
the inequality (22) holds. Thus

L(V )− L(W ) ≥ ⟨∇L(W ), V −W ⟩X +
α

2
∥V −W∥2X =: g(V ).

Minimizing both sides in terms of V gives (26).
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Now we focus on minimizing g(V ). Since g(V ) ∈ C1 and the global minimizer exits, we have

∇g(V ∗) = ∇L(W )PX + α(V ∗ −W )PX = 0,

where V ∗ is a global minimizer for g(V ). Thus,

g(V ∗) = − 1

2α
∥∇L(W )∥2X . (28)

2. Applying proposition C.1 to a β−Lipschitz function ∇L, we obtain

L(W∗)− L(W )

≤⟨∇L(W∗),W∗ −W ⟩X − 1

2β
∥∇L(W )−∇L(W∗)∥2X

=− 1

2β
∥∇L(W )∥2X .

D CONVERGENCE REGION

In this section, we evaluate a class of the convergence region for deep linear neural networks with
a deterministic initialization. Define A|R(X) = AXT (XXT )−X = APX , and view A|R(X) as a
linear operator on R(X).

Recall the optimization problem

minimize
W1,··· ,WN

LN (W1, · · ·WN ) :=
1

m

m∑
i=1

l(aNWN :1xi, yi) = L(aNWN :1), (29)

and GD {
Wj(t+ 1) =Wj(t)− η ∂LN

∂Wj
(W1(t), · · · ,WN (t)), j = 1, · · · , N,

where ∂LN

∂Wj
(W1, · · · ,WN ) = aN (WN :j+1)

T∇L(aNWN :1)(Wj−1:1)
T ,

(30)

where the normalization factor aN = 1√
n1n2···nN−1nN

.

The following theorem generalizes the idea from a recent work (Du & Hu, 2019; Hu et al., 2020).

For notational convenience, we denote Wj:i(t) = Wj(t) · · ·Wi(t), Lt = L(aNWN :1(t)), ∇Lt =
∇L(aNWN :1(t)) etc.
Lemma D.1. Assume the initialization simultaneously satisfies the following conditions:

σmax(WN :i+1(0)) ≤ ec1/2(nN−1:i)
1/2, 1 ≤ i ≤ N − 1,

σmin(WN :i+1(0)) ≥ e−c2/2(nN−1:i)
1/2, 1 ≤ i ≤ N − 1,

σmax(Wi−1:1(0)|R(X)) ≤ ec1/2(ni−1:1)
1/2, 2 ≤ i ≤ N,

σmin(Wi−1:1(0)|R(X)) ≥ e−c2/2(ni−1:1)
1/2, 2 ≤ i ≤ N,

∥Wj:i(0)∥ ≤M/2 ·Nθ(
∏

i≤k≤j−1 nk ·max{ni−1, nj})1/2, 1 < i ≤ j < N,

L0 − L(W∗) ≤ βB0 =: B,

(31)

where c1, c2,M are positive constant and θ ≥ 0.
Notice that B0 is a proper upper bound for ∥aNWN :1(0)∥2X + ∥W∗∥2X .

Set the learning rate as η = (1−ε)2nN

e6c1+3c2βN
, where 0 < ε < 1. Define γ = 2e6c1εαN

nN
.

Assume that

nmin ≥ C(c1, c2)M
2κ2B0

ε2
N2θnN . (32)

Then, GD (30) satisfies

Lt − L(W∗) ≤ (1− ηγ)
t
(L0 − L(W∗)), t = 1, 2, · · · .
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Definition D.1. For given c1, c2,M,B0 > 0, and θ ≥ 0, we define the convergence region
R(c1, c2, θ,M,B0) by the set of initialization that satisfies the inequality system (31).

Remark 8. The condition (31) describes the convergence region for initialization and the condition
(32) describes the overparameterization for deep linear neural networks. At this time, it is not
clear how large this convergence region is. Later, we will show that the properly scaled random
initialization with some extra mild overparameterization conditions will fall into this convergence
region with high probability.

Proof of Lemme D.1. To prove Lemma D.1, it suffices to show that the following three properties
hold A(t), B(t), and C(t) for all t = 0, 1, · · · .

1. A(t):

Lt − L(W∗) ≤ (1− ηγ)
t
(L0 − L(W∗)).

2. B(t): 

σmax(WN :i+1(t)) ≤ ec1(nN−1:i)
1/2, 1 ≤ i ≤ N − 1,

σmin(WN :i+1(t)) ≥ e−c2(nN−1:i)
1/2, 1 ≤ i ≤ N − 1,

σmax(Wi−1:1(t)|R(X)) ≤ ec1(ni−1:1)
1/2, 2 ≤ i ≤ N,

σmin(Wi−1:1(t)|R(X)) ≥ e−c2(ni−1:1)
1/2, 2 ≤ i ≤ N,

∥Wj:i(t)∥ ≤M ·Nθ( 1
nmin

∏
i−1≤k≤j nk)

1/2, 1 < i ≤ j < N.

3. C(t):

∥Wi(t)−Wi(0)∥F ≤ 2e2c1
√
2βB

√
nNγ

=: R, 1 ≤ i ≤ N.

Using simultaneous induction, the proof of Lemma D.1 is divided into the following three claims.

Claim 1. A(0), · · · ,A(t),B(0), · · · ,B(t) =⇒ C(t+ 1).

Claim 2. C(t) =⇒ B(t), if nmin ≥ C(c1,c2)M
2κ2B0

ε2 N2θnN , where C(c1, c2) is a positive constant
only depend on c1, c2.

Claim 3. A(t),B(t) =⇒ A(t + 1), if nmin ≥ C(c1, c2)M
2B0N

2θnN , where C(c1, c2) is a
positive constant only depend on c1, c2.

Proof of Claim 1. As a consequence of Lemma C.2 and Lemma 2.1, and A(s), s ≤ t, we have

∥∇L(aNWN :1(s))∥2F = ∥∇Ls −∇L(W∗PX)∥2X
≤2β[Ls − L(W∗)]

≤2β (1− ηγ)
s
B.

(33)

From A(0), · · · ,A(t),B(0), · · · ,B(t), we have for any 0 ≤ s ≤ t,∥∥∥∥ ∂L∂Wi
(s)

∥∥∥∥
F

≤ aN ∥WN :i+1(s)∥ ∥∇L(aNWN :1(s))∥F
∥∥Wi−1:1(s)|R(X)

∥∥
≤ e2c1

√
nN

∥∇L(aNWN :1(s))∥F

≤ e2c1
√
nN

√
2β (1− ηγ)

s
B.

(34)
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Then,

∥Wi(t+ 1)−Wi(0)∥F ≤
t∑

s=0

∥Wi(s+ 1)−Wi(s)∥F

=

t∑
s=0

∥∥∥∥η ∂L∂Wi
(s)

∥∥∥∥
F

≤ η
e2c1
√
nN

√
2βB

t∑
s=0

(1− ηγ)s/2

≤ η
e2c1
√
nN

√
2βB

t∑
s=0

(1− ηγ/2)s

≤ 2e2c1
√
2βB

√
nNγ

= R.

This proves C(t+ 1).

Proof of Claim 2. Let δi = Wi(t)−Wi(0), 1 ≤ i ≤ N . Using C(t), we have ∥δi∥F ≤ R, 1 ≤ i ≤
N . Set ε1 = e−c1/2 min{ec1 − ec1/2, e−c2/2 − e−c2 , 1/2}.
It is suffices to show that

∥WN :i(t)−WN :i(0)∥ ≤ ec1/2ε1(nN−1nN−1 · · ·ni−1)
1/2, 1 < i ≤ N, (35)∥∥(Wi:1(t)−Wi:1(0))|R(X)

∥∥ ≤ ec1/2ε1(n1n2 · · ·ni−1)
1/2, 1 ≤ i < N, (36)

and

∥Wj:i(t)−Wj:i(0)∥ ≤M/2 ·Nθ

 1

nmin

∏
i−1≤k≤j

nk

1/2

, 1 < i ≤ j < N, (37)

because σmin(A+B) ≥ σmin(A)−σmax(B) = σmin(A)−∥B∥ and σmax(A+B) ≤ σmax(A)+
σmax(B) = ∥A∥+ ∥B∥ (e.g. see Theorem 1.3 in Chafaı et al. (2009)).
Case 1. We first prove (37).
For 1 ≤ i < j ≤ N , we can write Wj:i(t) = (Wj(0) + δj) · · · (Wi(0) + δi).
Expanding the above product, each term has the form:

Wj:(ks+1)(0) · δks
·W(ks−1):(ks−1+1)(0) · δks−1

· · · δk1
·W(k1−1):i(0), (38)

where i ≤ k1 < · · · < ks ≤ j are positions at which perturbation terms δkl
are taken out.

Notice that the convergence region assumption (31) implies that for any 1 < i ≤ j < N ,

∥Wj:i(0)∥ ≤M/2 ·Nθ

 ∏
i≤k≤j−1

nk ·max{ni−1, nj}

1/2

≤M ·Nθ

(∏
i−1≤k≤j nk

nmin

)1/2

.

(39)
WLOG, assume M ≥ 1. If i = j + 1, then

∥Wj:i(0)∥ = ∥I∥ ≤M ·Nθ(nj/nmin)
1/2.

Assuming i > 1, j < N , and applying inequality (39) as well as the following inequality
j−i+1∑
s=1

(
j − i+ 1

s

)
xs = (1 + x)j−i+1 − 1 ≤ (1 + x)N − 1,∀x ≥ 0,

we obtain
∥Wj:i(t)−Wj:i(0)∥

≤
j−i+1∑
s=1

(
j − i+ 1

s

)
Rs(M ·Nθ)s+1n

−s/2
min (ni−1 · · ·nj/nmin)

1/2

≤M ·Nθ(ni−1 · · ·nj/nmin)
1/2[(1 +R ·M ·Nθ/

√
nmin)

N − 1]

≤ε1M ·Nθ(ni−1 · · ·nj/nmin)
1/2.
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The last line holds due to the following reasons: there exists absolute constant A1, A2 > 0 such that

(1 + x)N − 1 ≤ A2xN,

if x ≥ 0, N ≥ 1, and xN ≤ A1. Since there exists positive constant C(c1, c2), which only depends
on c1, c2, such that when

nmin ≥ C(c1, c2)M
2κ2B0

ε2
N2θnN (40)

we can have
R ·M ·Nθ+1/

√
nmin ≤ A1,

as well as

[(1 +R ·M ·Nθ/
√
nmin)

N − 1] ≤ A2 ·M ·R ·Nθ+1/
√
nmin ≤ ε1 = ε1(c1, c2).

Case 2. The proof of (35) is similar. Set j = N , we can save the factor M · Nθ from previous
calculation, which means

∥WN :i(t)−WN :i(0)∥

≤ec1/2
N−i+1∑
s=1

(
N − i+ 1

s

)
Rs(M ·Nθ)sn

−s/2
min (ni−1 · · ·nN−1)

1/2

≤ec1/2(ni−1 · · ·nN−1)
1/2[(1 +R ·M ·Nθ/

√
nmin)

N − 1]

≤ec1/2ε1(ni−1 · · ·nN−1)
1/2, i ≥ 2,

where the last line is implied by equation (40).
Case 3. Similarly, we have∥∥Wj:1(t)|R(X) −Wj:1(0)|R(X)

∥∥
≤ec1/2

j∑
s=1

(
j
s

)
Rs(M ·Nθ)sn

−s/2
min (n1 · · ·nj)1/2

≤ec1/2(n1 · · ·nj)1/2[(1 +R ·M ·Nθ/
√
nmin)

N − 1]

≤ec1/2ε1(n1 · · ·nj)1/2, j ≤ N − 1

This proves B(t).

Proof of Claim 3. GD (7) implies

WN :1(t+ 1)

=

(
WN (t)− η

∂LN

∂WN
(t)

)(
WN−1(t)− η

∂LN

∂WN−1
(t)

)
· · ·
(
W1(t)− η

∂LN

∂W1
(t)

)
=WN :1(t)− η · aN

N∑
i=1

WN :i+1(t)W
T
N :i+1(t)∇L(aNWN :1(t))(Wi−1:1(t))

T (Wi−1:1(t)) + E(t),

where E(t) contains all the high-order terms (those with η2 or higher). We define a linear operator

P (t)[A] = a2N

N∑
i=1

WN :i+1(t)W
T
N :i+1(t)(APX)(Wi−1:1(t)|R(X))

TWi−1:1(t)|R(X), (41)

for any A ∈ RnN×n0 .

Now we have

aNWN :1(t+ 1) = aNWN :1(t)− η · P (t)[∇L(aNWN :1(t)PX)] + aNE(t). (42)

Easy to check that P (t)[·] is a sum of positive semidefinite linear operator.

The following proposition describes the eigenvalues of the linear operator P (t)[·].
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Proposition D.2. Let S1, S2 be symmetric matrices. Suppose S1 = UΛ1U
T , S2 = V Λ2V

T ,
where U = [u1, u2, · · · , um], and V = [v1, v2, · · · , vn] are orthogonal matrices, and Λ1 =
diag(λ1, λ2, · · · , λm) and Λ2 = diag(µ1, µ2, · · · , µn) are diagonal matrices. Then, the linear
operator L(A) := S1AS2 is orthogonally diagonalizable, and L(Aij) = λiµjAij , where λiµj

represent all the eigenvalues corresponding to their eigenvectors Aij = uiv
T
j .

Applying this proposition and the assumption B(t), we obtain the upper bound and lower bound for
the maximum and minimum eigenvalues of the positive definite operator P (t), respectively,

λmax(P (t)) ≤ a2N

N∑
i=1

σ2
max(Wi−1:1(t)|R(X)) · σ2

max(WN :i+1(t)) ≤
N

nN
e2c1 ,

and

λmin(P (t)) ≥ a2N

N∑
i=1

σ2
min(Wi−1:1(t)|R(X)) · σ2

min(WN :i+1(t)) ≥
N

nN
e−2c2 . (43)

In conclusion, we have

λmax(P (t)) ≤
N

nN
e2c1 , and λmin(P (t)) ≥

N

nN
e−2c2 . (44)

With a learning rate of η = ηε =
(1−ε)2nN

e6c1+3c2βN
, 0 < ε < 1, we have

Lt+1 − Lt

≤ ⟨∇Lt,−ηP (t)[∇Lt]⟩X + ⟨∇Lt, aNE(t)⟩X +
β

2
∥ηP (t)[∇Lt]− aNE(t)∥2X

= ⟨∇Lt,−ηP (t)[∇Lt]⟩+
β

2
η2 ∥P (t)[∇Lt]∥2X + F (t)

≤ −
(
ηλmin(P (t))−

β

2
η2λ2max(P (t))

)
∥∇Lt∥2X + F (t)

≤ −e−2c2
N

nN
η

(
1− e4c1+2c2

β

2
η
N

nN

)
∥∇Lt∥2X + F (t),

(45)

where

F (t) = ⟨∇Lt, aNE(t)⟩X +
β

2
∥ηP (t)[∇Lt]− aNE(t)∥2X − β

2
η2 ∥P (t)[∇Lt]∥2X .

We claim that F (t) is sufficiently small, such that

Lt+1 − Lt

≤ −e−2c2
N

nN
η

(
1− e4c1+2c2

β

2
η
N

nN

)
∥∇Lt∥2X + F (t)

≤ −e−3c2
N

nN
η

(
1− e6c1+3c2

β

2
η
N

nN

)
∥∇Lt∥2X

= −e−6(c1+c2)
2ε(1− ε)

β
∥∇Lt∥2X .

(46)

Assuming this claim for the moment, we complete the proof. Combining (26) and (46), we have{
Lt+1 − Lt ≤ −e−6(c1+c2) 2ε(1−ε)

β ∥∇Lt∥2X ,

L(W∗)− Lt ≥ − 1
2α ∥∇Lt∥2X ,

which implies

Lt+1 − L(W∗) ≤
(
1− e−6(c1+c2)

4ε(1− ε)

κ

)
(Lt − L(W∗)), (47)
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that is

Lt − L(W∗) ≤
(
1− e−6(c1+c2)

4ε(1− ε)

κ

)t

(L0 − L(W∗)) = (1− ηγ)
t
(L0 − L(W∗)). (48)

While estimating F (t), we observe that

|F (t)|

≤ ∥∇Lt∥X ∥aNE(t)∥X +
β

2
(2ηλmax(P (t)) ∥∇Lt∥X ∥aNE(t)∥X + ∥aNE(t)∥2X)

= : I1 + I2.

From (34), we have∥∥∥∥ ∂L∂Wi
(t)

∥∥∥∥
F

≤ e2c1
√
nN

∥∇L(aNWN :1(t))∥F =
e2c1
√
nN

∥∇L(aNWN :1(t))∥X =: K.

Expanding the product

WN :1(t+ 1) =

(
WN (t)− η

∂LN

∂WN
(t)

)(
WN−1(t)− η

∂LN

∂WN−1
(t)

)
· · ·
(
W1(t)− η

∂LN

∂W1
(t)

)
,

each term has the form:

∆ =WN :(ks+1)(t) · η
∂L

∂Wks

(t) ·W(ks−1):(ks−1+1)(t) · η
∂L

∂Wks−1

(t) · · · η ∂L
Wk1

(t) ·W(k1−1):1(t),

where 1 ≤ k1 < k2 < · · · < ks ≤ N .

As a direct consequence of inequality B(t) and inequality (39), we obtain

∥∆∥X = ∥∆PX∥F ≤ 1

aN
√
nN

e2c1(ηK)s
(
M ·Nθ

√
nmin

)s−1

,

Recall that E(t) contains all high-order terms (those with η2 or higher) in the expansion of the
product. Thus, E(t) can be expressed as follows:

N∑
s=2

∑
1≤k1<k2<···<ks≤N

WN :(ks+1)(t)·η
∂L

∂Wks

(t)·W(ks−1):(ks−1+1)(t)·η
∂L

∂Wks−1

(t) · · · η ∂L
Wk1

(t)·W(k1−1):1(t).

Set ξ = min{(e−2c2 − e−3c2)/e4c1+1, 14 (e
6c1 − e4c1)/e6c1+1, 12 (e

6c1 − e4c1)1/2/e4c1+1, 1}.

Recall the inequality
(
N
s

)
≤ (eN)s. Thus, we have

aN ∥E(t)∥X

≤ 1
√
nN

e2c1
N∑
s=2

(
N
s

)
(ηK)s

(
M ·Nθ

√
nmin

)s−1

≤ 1
√
nN

(
M ·Nθ

√
nmin

)−1

e2c1
N∑
s=2

(eN)s(ηK)s
(
M ·Nθ

√
nmin

)s

≤ 1
√
nN

e2c1(ηeKN)
ηeKM ·Nθ+1/

√
nmin

1− ηeKM ·Nθ+1/
√
nmin

≤ξ N
nN

η · e4c1+1 ∥∇L(aNWN :1(t))∥X ( if ηeKM ·Nθ+1/
√
nmin < ξ/(1 + ξ))

=ξ · e4c1+1

(
η
N

nN

)
∥∇L(aNWN :1(t))∥X .

(49)

Using (33) and the upper bound of η, we know that there exists constant C(c1, c2), such that

nmin ≥ C(c1, c2)M
2 ·B0N

2θnN ,
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and

ηeKM ·Nθ+1/
√
nmin ≤

2
√
2M · e1+2c1

√
B0N

θ√nN√
nmin

=
1

C ′(c1, c2)
≤ ξ

2
≤ ξ

1 + ξ
.

Using (49), we have

I1 ≤ ξ · e4c1+1

(
η
N

nN

)
∥∇Lt∥2X ≤ (e−2c2 − e−3c2)

(
η
N

nN

)
∥∇Lt∥2X , (50)

and

I2

≤β
2

(
2ξ · e6c1+1

(
η2
N2

n2N

)
∥∇Lt∥2X + ξ2 · e8c1+2

(
η2
N2

n2N

)
∥∇Lt∥2X

)
≤(e6c1 − e4c1)

β

2
η2
N2

n2N
∥∇Lt∥2X .

Thus, (46) valid.
This proves A(t).

As a direct consequence of the proof of Lemma D.1, we can obtain the following lemma.
Lemma D.3. Assume all assumptions in Lemma D.1 hold. For any τ > 0, we can choose new
constants c1, c2 as well as C := C(c1, c2) such that the overparameterization assumption (32) in
Lemma D.1 hold and

∥R(t)∥X ≤ τ ∥aNWN :1(t)−W∗∥X , (51)

where

aNWN :1(t+ 1) = aNWN :1(t)−
N

nN
η∇L(aNWN :1(t)) +R(t).

Proof of Lemma D.3. Due to (33), (42), (44), (49), and lemma C.2, we have

∥R(t)∥X =

∥∥∥∥aNE(t) + η

(
N

nN
∇Lt − P (t)[∇Lt]

)∥∥∥∥
X

≤∥aNE(t)∥X + ηmax

{
λmax(P (t))−

N

nN
,
N

nN
− λmin(P (t))

}
∥∇Lt∥X

≤(C ′ · ξ +max{e2c1 − 1, 1− e−2c2}) · η N
nN

· ∥∇Lt∥X

≤
2
√
2β(Lt − L(W∗))

e6c1+3c2 · β
· (C ′ · ξ +max{e2c1 − 1, 1− e−2c2}).

Because Lt−L(W∗) is non-increasing in t, and C ′ is a constant that depends only on c1, c2, we can
choose a sufficiently small positive c1, c2 and ξ, which depends on τ , such that

∥R(t)∥X ≤ τ

√
2β(Lt − L(W∗))

β
≤ τ ∥aNWN :1(t)−W∗∥X .

Lemma D.4. Assume τ ∈ [0, 1). Consider a discrete dynamical system V (t) such that,

V (t+ 1) = V (t)− η∗∇L(V (t)) +R(t),

where ∥R(t)∥X ≤ τ ∥V (t)−W∗∥X . If η∗ ≤ 2/β, we have

∥V (t)−W∗∥2X ≤ (q + 7τ)t ∥V (0)−W∗∥2X ,

where q is defined in (15).
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Proof of Lemma D.4. Set ∆(t) = V (t)−W∗ and τ ′ = τ ∥∆(t)∥X . Notice that

∆(t+ 1) = ∆(t)− η∗(∇L(V (t))−∇L(W∗)) +R(t),

and

∥∆(t+ 1)∥2X
≤η2∗ ∥∇L(V (t))−∇L(W∗)∥2X − 2η∗⟨∆(t),∇L(V (t))−∇L(W∗)⟩X
+ ∥∆(t)∥2X + (2 ∥∆(t)∥X + 2η∗ ∥∇L(V (t))−∇L(W∗)∥X + τ ′)τ ′.

By inequality (23),

∥∆(t+ 1)∥2X
≤∥∆(t)∥2X − 2η∗⟨∆(t),∇L(V (t))−∇L(W∗)⟩X
+ η2∗ ∥∇L(V (t))−∇L(W∗)∥2X + 7τ ∥∆(t)∥2X

=(1 + 7τ) ∥∆(t)∥2X − 2η∗⟨∆(t),∇L(V (t))−∇L(W∗)⟩X
+ η2∗ ∥∇L(V (t))−∇L(W∗)∥2X

≤(1 + 7τ) ∥∆(t)∥2X − 2η∗
αβ

α+ β
∥∆(t)∥2X

+

(
η2∗ −

2η∗
α+ β

)
∥∇L(V (t))−∇L(W∗)∥2X .

Case 1: 2
α+β < η∗ <

2
β .

In this case, we have

∥∆(t+ 1)∥2X

≤(1 + 7τ) ∥∆(t)∥2X − 2η∗
αβ

α+ β
∥∆(t)∥2X +

(
η2∗ −

2η∗
α+ β

)
∥∇L(V (t))−∇L(W∗)∥2X

≤(1 + 7τ) ∥∆(t)∥2X − 2η∗
αβ

α+ β
∥∆(t)∥2X +

(
η2∗ −

2η∗
α+ β

)
β2 ∥∆(t)∥2X

≤ (1 + 7τ − βη∗(2− η∗β)) ∥∆(t)∥2X
=(q + 7τ) ∥∆(t)∥2X .

Case 2: 0 < η∗ ≤ 2
α+β .

Similarly, we have

∥∆(t+ 1)∥2X ≤ (1 + 7τ − αη∗(2− η∗α)) ∥∆(t)∥2X = (q + 7τ) ∥∆(t)∥2X .

In both cases, we have ∥∆(t+ 1)∥2X ≤ (q + 7τ) ∥∆(t)∥2X .

Thus, ∥∆(t)∥2X ≤ (q + 7τ)t ∥∆(0)∥2X .

Next, we will show that the trajectories of the GD (30) for deep linear neural networks (29) are close
to those of GD (2) for the corresponding convex problem (1).

Lemma D.5. Consider the GD for the deep linear neural networks (30) with learning rate η < η1
for aNWN :1(t), t = 0, 1, · · · , and the GD (2) with learning rate η∗ = N

nN
η for W (t), t = 0, 1, · · · .

Assume C(c1, c2) exists in Lemma D.1 for any c1, c2 > 0. For any τ ∈ (0, 1), η < η1 (η1 defined in
B), we can choose c1, c2 > 0 and the constant C = C(c1, c2) = C ′(τ, η/η1), such that inequality
(51) holds, given initialization condition (31), and overparameterization condition

nmin ≥ CM2κ2B0N
2θnN . (52)
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Furthermore, we have

∥aNWN :1(t)−W (t)∥2X ≤ D(τ, q, t) ∥aNWN :1(0)−W∗∥2X , (53a)

|EDLN (t)− E(t)| ≤ β

(
qt/2

√
D(τ, q, t) +

1

2
D(τ, q, t)

)
∥aNWN :1(0)−W∗∥2X , (53b)

EDLN (t) ≤ 3β(q + τ)t ∥aNWN :1(0)−W∗∥2X , (53c)

where D(τ, q, t) = min
{

τ
1−q , 2(q + τ)t

}
, with q defined in (15).

Proof of Lemma D.5. Using Lemma D.3, we obtain that for any τ ∈ (0, 1) and η < η1, we can
find sufficiently small positive constants c1, c2, which only depend on τ, η/η1, and constant C =
C(c1, c2) = C ′′(τ, η/η1) mentioned in Lemma D.3, such that

η =
(1− ε)2nN
e6c1+3c2βN

,

where 0 < ε < 1, as well as

V (t+ 1) = V (t)− η∗∇L(V (t)) +R(t),

where V (t) = aNWN :1(t), η∗ = N
nN
η, and ∥R(t)∥X ≤ τ ′ = τ ∥V (t)−W∗∥X .

Notice that θ0 := η/η1 = 1−ε
e6c1+3c2

and η/η0 = 1− ε, where η0 = 2nN

e6c1+3c2βN
.

For the right hand side of inequality (32), we have

C(c1, c2)M
2κ2B0

ε2
N2θnN =

C ′′(τ, η/η1)M
2κ2B0

ε2
N2θnN .

To show that inequality (32) is equivalent to inequality (52), it suffices to show that ε only depend
on τ, η/η1. Notice that

ε = 1− η/η0 = 1− θ0e
6c1+3c2 ,

and c1, c2 only depend on τ and η/η1, which implies ε only depend on τ, η/η1.

Now, we will prove the three inequalities in (53).

Recall GD (2) for W (t). Define ∆(t) = V (t)−W (t) = aNWN :1(t)−W (t). Notice that

∆(t+ 1) = ∆(t)− η∗(∇L(V (t))−∇L(W (t))) +R(t),

and

∥∆(t+ 1)∥2X
≤η2∗ ∥∇L(V (t))−∇L(W (t))∥2X − 2η∗⟨∆(t),∇L(V (t))−∇L(W (t))⟩X
+ ∥∆(t)∥2X + (2 ∥∆(t)∥X + 2η∗ ∥∇L(V (t))−∇L(W (t))∥X + τ ′)τ ′.

Let lt = 2 ∥∆(t)∥X + 2η∗ ∥∇L(V (t))−∇L(W (t))∥X + τ ′.

Now, we aim to find an upper bound for lt.

Applying lemma C.2 with the assumption 0 < η∗ = N
nN
η < 2

β , we know that

lt ≤ (6 ∥∆(t)∥X + τ ′) ≤ 7(∥W (t)−W∗∥X + ∥V (t)−W∗∥X). (54)

Thus

ltτ
′ ≤ 7τ ∥V (t)−W∗∥X (∥V (t)−W∗∥X + ∥W (t)−W∗∥X) =: Utτ.
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By inequality (23),

∥∆(t+ 1)∥2X
≤∥∆(t)∥2X − 2η∗⟨∆(t),∇L(V (t))−∇L(W (t))⟩X
+ η2∗ ∥∇L(V (t))−∇L(W (t))∥2X + Utτ

= ∥∆(t)∥2X − 2η∗⟨V (t)−W (t),∇L(V (t))−∇L(W (t))⟩X
+ η2∗ ∥∇L(V (t))−∇L(W (t))∥2X + Utτ

≤∥∆(t)∥2X − 2η∗
αβ

α+ β
∥∆(t)∥2X

+

(
η2∗ −

2η∗
α+ β

)
∥∇L(V (t))−∇L(W (t))∥2X + Utτ.

Case 1: 2
α+β < η∗ <

2
β .

In this case, we have
∥∆(t+ 1)∥2X

≤∥∆(t)∥2X − 2η∗
αβ

α+ β
∥∆(t)∥2X +

(
η2∗ −

2η∗
α+ β

)
∥∇L(V (t))−∇L(W (t))∥2X + Utτ

≤∥∆(t)∥2X − 2η∗
αβ

α+ β
∥∆(t)∥2X +

(
η2∗ −

2η∗
α+ β

)
β2 ∥∆(t)∥2X + Utτ

≤ (1− βη∗(2− η∗β)) ∥∆(t)∥2X + Utτ

= : q ∥∆(t)∥2X + Utτ.

Case 2: 0 < η∗ ≤ 2
α+β .

Similarly, we have

∥∆(t+ 1)∥2X ≤ (1− αη∗(2− η∗α)) ∥∆(t)∥2X + Utτ =: q ∥∆(t)∥2X + Utτ. (55)
In both cases, we have 0 < q < 1.

First of all, since Ut ≤ U0 and ∥∆(0)∥X = 0, we obtain that

∥∆(t)∥2X ≤ U0τ

1− q
+ qt

(
∥∆(0)∥2X − U0τ

1− q

)
≤ U0τ

1− q
≤ 14τ

1− q
∥V (0)−W∗∥2X .

Applying Lemma D.4 for V (t) and W (t), we obtain ∥V (t)−W∗∥2X ≤ (1 + ε)tqt ∥V (0)−W∗∥2X
and ∥W (t)−W∗∥2X ≤ qt ∥W (0)−W∗∥2X , respectively. Thus,

|L(W (t))− L(aNWN :1(t))|

≤|⟨∇L(W (t)),∆(t)⟩X |+ β

2
∥∆(t)∥2X

≤β ∥W (t)−W∗∥X · ∥∆(t)∥X +
β

2
∥∆(t)∥2X

≤β
(
qt/2

√
14τ

1− q
+

7τ

1− q

)
∥V (0)−W∗∥2X .

Generally speaking, (55) implies

∥∆(t)∥2X ≤ τ

t−1∑
j=0

qt−1−jUj .

We have

∥∆(t)∥2X ≤ 14τ

t−1∑
j=0

(q + 7τ)jqt−1−j ∥V (0)−W∗∥2X

≤ 2(q + 7τ)t
(
1−

( q

q + 7τ

)t) ∥V (0)−W∗∥2X
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Thus, we have

∥aNWN :1(t)−W (t)∥2X ≤ min

{
14τ

1− q
, 2(q + 7τ)t

}
∥V (0)−W∗∥2X ,

as well as
|L(W (t))− L(aNWN :1(t))|

≤β ∥W (t)−W∗∥X · ∥∆(t)∥X +
β

2
∥∆(t)∥2X

≤β

(√
min

{
14τ

1− q
, 2(q + 7τ)t

}
· qt/2 + 1

2
min

{
14τ

1− q
, 2(q + 7τ)t

})
∥V (0)−W∗∥2X .

By triangle inequality as well as L(W (t))− L(W∗) ≤ β
2 q

t ∥V (0)−W∗∥2X , we have

|L(aNWN :1(t))− L(W∗)| ≤ 3β(q + 7τ)t ∥V (0)−W∗∥2X .

Without loss of generality, we replace all 14τ and 7τ by τ , which completes the proof.

E GAUSSIAN INITIALIZATION FALL INTO THE CONVERGENCE REGION

In this section, we first establish some spectral properties of the products of random Gaussian matri-
ces. The spectral properties lead to the conclusion: overparameterization guarantees that the random
initialization will fall into the convergence region with high probability.
Gaussian initialization:
Denote by N(0, 1) the standard Gaussian distribution, and χ2

k the chi square distribution with k
degrees of freedom. Let Sd−1 = {x ∈ Rd; ∥x∥2 = 1} be the unit sphere in Rd.
The scaling factor aN = 1√

n1n2···nN
ensures that the networks at initialization preserves the norm

of every input in expectation.
Lemma E.1. For any x ∈ Rn0 , the Gaussian initialization satisfies

E
[
∥aNWN :1(0)x∥22

]
= ∥x∥22 .

Proof of Lemma E.1. For random matrix A ∈ Rni×ni−1 with i.i.d N(0, 1) entries and any vector

0 ̸= v ∈ Rni−1 , the distribution of ∥Av∥2
2

∥v∥2
2

is χn2
i
. We rewrite

∥WN :1(0)x∥22 / ∥x∥
2
2 = ZNZN−1 · · ·Z1,

where Zi = ∥Wi:1(0)x∥2 / ∥Wi−1:1(0)x∥2.
Then we know that the distribution of random variable Z1 ∼ χ2

n1
, and conditional distribution of

random variables Zi|(Z1, · · · , Zi−1) ∼ χ2
ni
(1 < i ≤ N). Thus, Z1, · · · , Zni

are independent. By
the law of iterated expectations, we have

E[∥WN :1(0)x∥22/ ∥x∥
2
2] =

N∏
j=1

nj .

Define ∆1 =
∑N−1

j=1 1/nj . Now, we introduce a new notation Ω
(

1
∆1

)
, which means that there

exists k > 0, such that Ω
(

1
∆1

)
≥ k

∆1
.

Lemma E.2. Consider real random matrix Aj ∈ Rnj×nj−1 , 1 ≤ j ≤ q with i.i.d N(0, 1) entries
and any vector 0 ̸= x ∈ Rn1 .
Define ∆1(q) =

∑q
j=1

1
nj

and nmin = min1≤j≤q nj . Then

P(∥AqAq−1 · · ·A1x∥22 / ∥x∥
2
2 > ecn1 · · ·nq) ≤ exp

{
− c2

8∆1(q)

}
=: f1(c),∀c > 0. (56)
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When 0 < c ≤ 3 ln 2, ∆1(q) ≤ c/(12 ln 2), we have

P(∥AqAq−1 · · ·A1x∥22 / ∥x∥
2
2 < e−cn1 · · ·nq) ≤ exp

{
− c2

36 ln(2)∆1(q)

}
=: f2(c). (57)

Hence, for any x ∈ Sn0−1 with probability at least 1− e
−Ω( 1

∆1(q)
), we have

e−c2/2(n1 · · ·nq)1/2 ≤ ∥Aq · · ·A1x∥2 ≤ ec1/2(n1 · · ·nq)1/2,

when 0 < c2 ≤ 3 ln 2, ∆1(q) ≤ c2/(12 ln 2).

Proof of Lemma E.2. For random matrix Ai ∈ Rni×ni−1 with i.i.d N(0, 1) entries and any vector

0 ̸= v ∈ Rni−1 , the random variable ∥Aiv∥2
2

∥v∥2
2

is distributed as χ2
ni

. We rewrite

∥Aq · · ·A1x∥22 / ∥x∥
2
2 = ZqZq−1 · · ·Z1,

where Zi = ∥Ai:1x∥2 / ∥Ai−1:1x∥2. We have Z1 ∼ χ2
n1

, Zi|(Z1, · · · , Zi−1) ∼ χ2
ni
(1 < i ≤ q).

Recall the moments of Z ∼ χ2
m:

E[Zλ] =
2λΓ(m2 + λ)

Γ(m2 )
,∀λ > −m

2
.

Now, we aim to find the Chernoff type bound.

Case 1: We define ratio of Gamma function

R(x, λ) =
Γ(x+ λ)

Γ(x)
, λ > 0, x > 0.

In Jameson (2013), we have

R(x, λ) ≤ x(x+ λ)λ−1 ≤ (x+ λ)λ, λ > 0, x > 0. (58)

Fixed c > 0, for any λ > 0 we have

P(Zq · · ·Z1 > ecn1 · · ·nq) ≤ P((Zq · · ·Z1)
λ > eλc(n1 · · ·nq)λ)

≤ e−λc(n1 · · ·nq)−λE[(Zq · · ·Z1)
λ] (Markov inequality)

= exp{−λ(c+ ln(n1 · · ·nq))}
q∏

j=1

2λR(nj/2, λ) (Law of total expectation)

≤ exp{−λ(c+ ln(n1 · · ·nq)) + qλ ln 2 +

q∑
j=1

λ ln(
nj
2

+ λ)}(Inequality (58))

= exp{−λc+ λ

q∑
j=1

ln(1 +
2λ

nj
)}

≤ exp{−λc+ 2λ2
q∑

j=1

1

nj
}.

Define constant ∆1(q) =
∑q

j=1
1
nj

. Set λ = c
4∆1(q)

, we obtain (56).

Case 2: Let nmin = min1≤j≤q nj .

P(Zq · · ·Z1 < e−cn1 · · ·nq) ≤ P((Zq · · ·Z1)
λ > e−λc(n1 · · ·nq)λ)

≤ exp{λ(c− ln(n1 · · ·nq)) + qλ ln 2 +

q∑
j=1

lnR(
nj
2
, λ)}.
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Define

f(λ) = λ(c− ln(n1 · · ·nq)) + qλ ln 2 +

q∑
j=1

lnR(
nj
2
, λ),−nmin

2
< λ ≤ 0.

Notice that f(0) = 0. Define digamma function,

ψ(x) =
d

dx
ln(Γ(x)) =

Γ′(x)

Γ(x)
.

Qi et al. (2006) proved the following sharp inequality of digamma function,

ln(x+
1

2
)− 1

x
< ψ(x) < ln(x+ e−γ)− 1

x
, x > 0,

where γ is the Euler-Mascheroni constant, and e−γ ≈ 0.561459.
Thus,

f ′(λ) = c+

q∑
j=1

[
− ln(

nj
2
) + ψ(

nj
2

+ λ)
]
≥ c+

q∑
j=1

ln(1 +
λ+ 1/2

nj/2
)−

q∑
j=1

1

nj/2 + λ
.

Since ln(1 + x) is concave, we have

ln(1 + x) ≥ 2 ln(2)x, x ∈ [−1/2, 0].

If −nmin

4 ≤ λ ≤ 0, then

f(λ) = f(0)−
∫ 0

λ

f ′(x)dx

≤ cλ+

∫ λ

0

 q∑
j=1

ln(1 +
x+ 1/2

nj/2
)−

q∑
j=1

1

nj/2 + x

 dx
= cλ+

q∑
j=1

[
λ ln(1 +

λ+ 1/2

nj/2
) + (nj/2 + 1/2) ln(1 +

λ

nj/2 + 1/2
)− λ− ln(1 +

λ

nj/2
)

]

≤ cλ+

q∑
j=1

(λ− 1) ln(1 +
λ

nj/2
)

≤ cλ+ 4 ln(2)λ(λ− 1)∆1(q).

Assume 0 < c ≤ 3 ln 2. Let A = 12 ln 2, and λ∗ = − c
A∆1(q)

. Since nmin∆1(q) ≥ 1, we have
λ∗ ≥ −nmin/4.
Assume ∆1(q) ≤ c/(12 ln 2).
Thus

f(λ∗) ≤ − c2

A∆1(q)
+ 4 ln 2

c2

A∆1(q)

(
∆1(q)

c
+

1

A

)
≤ − c2

36 ln(2)∆1(q)
. (59)

Thus, we obtain (57).

Lemma E.3. There exists a positive constant C(c1, c2) which only depends on c1, c2, such that if

nN∆1 ≤ C(c1, c2), then for any fixed 1 < i ≤ N , with probability at least 1 − exp
{
−Ω

(
1
∆1

)}
we have

σmax(WN :i(0)) ≤ ec1(ni−1ni · · ·nN−1)
1/2, (60)

and
σmin(WN :i(0)) ≥ e−c2(ni−1ni · · ·nN−1)

1/2. (61)

Proof of Lemma E.3. Let A =WT
N :i(0). We know that

σmax(A) = ∥A∥ = sup
v∈SnN−1

∥Av∥2
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and
σmin(A) = inf

v∈SnN−1
∥Av∥2 .

Applying lemma E.2, we know that with probability at least 1− exp
{
−Ω

(
1
∆1

)}
,

∥Av∥2 / ∥v∥2 ∈ [e−c2/2P, ec1/2P ],

where P = (ni−1 · · ·nN−1)
1/2.

Set ϕ = min{1− e−c1/2, (e−c2/2 − e−c2)/(e−c2/2 + ec1)}. Take a ϕ-net Nϕ for SnN−1 with size
|Nϕ| ≤ (3/ϕ)nN . Notice that with this size we can actually cover the unit ball, not only the unit
sphere.
Thus, with probability at least 1− |Nϕ| exp

{
−Ω

(
1
∆1

)}
, for all u ∈ Nϕ simultaneously we have

∥Au∥2 / ∥u∥2 ∈ [e−c2/2P, ec1/2P ].

Fixed v ∈ SnN−1, there exists u ∈ Nϕ such that ∥u− v∥2 ≤ ϕ. WLOG, we assume 1 − ϕ ≤
∥u∥2 ≤ 1. We obtain

∥Av∥2 ≤ ∥Au∥2 + ∥A(u− v)∥2 ≤ ec1/2P + ϕ ∥A∥ .

Taking supereme over ∥v∥2 = 1, we obtain

σmax(A) = ∥A∥ ≤ ec1/2

1− ϕ
P ≤ ec1P.

For the lower bound, we have

∥Av∥2 ≥ ∥Au∥2 −∥A(u− v)∥2 ≥ e−c2/2P ∥u∥− ϕ ∥A∥ ≥
[
(1− ϕ)e−c2/2 − ϕec1

]
P ≥ e−c2P.

Taking the infimum over ∥v∥2 = 1, we get

σmin(A) ≥ e−c2P.

The conclusions hold with probability at least

1− |Nϕ| exp
{
−Ω

(
1

∆1

)}
≥1− exp{nN ln(3/ϕ)} exp

{
−Ω

(
1

∆1

)}
≥1− exp

{
−Ω

(
1

∆1

)}
,

since nN∆1 ≤ C(c1, c2).

Lemma E.4. There exists a positive constant C(c1, c2) which only depends on c1, c2, such
that if rank(X)∆1 ≤ C(c1, c2), then for any fixed 1 ≤ j < N , with probability at least

1− exp{−Ω
(

1
∆1

)
} we have

σmax(Wj:1(0)|R(X)) ≤ ec1(n1n2 · · ·nj)1/2, (62)

and
σmin(Wj:1(0)|R(X)) ≥ e−c2(n1n2 · · ·nj)1/2. (63)

Proof of Lemma E.4. The proof is similar to that of previous lemma. The only difference is that now
we consider the ϕ−net to cover the unit sphere in R(X)∩Rn0 , with dimR(X)∩Rn0 = rank(X),
where R(X) represents the column space of X .
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Lemma E.5. Set C = nmax/nmin <∞, θ = 1/2. Assume Ω(1/∆1) ≥ k
∆1

, where 0 < k < 1 is a
constant and ∆1 satisfies 

∆1 ≤ min
{

k
5 ln(6) ,

k
5 ln(5 ln(6)e/k)

}
∆1 ln(C) ≤ min

{
k

5 ln(5 ln(6)e/k) ,
k
5

}
∆1 ln(N

2θ) ≤ k/5.

Given 1 < i ≤ j < N , with probability at least 1− 2e−k/(5∆1) = 1− e−Ω(1/∆1) we have

∥Wj:i(0)∥ ≤Mk

√
CNθ(ni · · ·nj−1 ·max{ni−1, nj})1/2,

where Mk is a positive constant that only depends on k.

Proof of Lemma E.5. WLOG, assume ni−1 ≤ nj . Let A = Wj:i(0). From lemma E.2, we know
that fixed v ∈ Sni−1−1, with probability at least 1−e−Ω(1/∆1) we have ∥Av∥2 ≤ 4/3(ni · · ·nj)1/2.
.
Take a small constant c = kN2θ

5 ln(6)∆1ni−1
≥ k

5 ln(6)C . Let v1, · · · , vni−1
be an orthonormal basis

for Rni−1 . Partition the index set {1, 2, · · · , vni−1
} = S1 ∪ S2 ∪ · · · ∪ S⌈N2θ/c⌉, where |Sl| ≤

⌈cni−1/N
2θ⌉ for each 1 ≤ l ≤ ⌈N2θ/c⌉.

The following discussion is similar to the proof of lemma E.3, hence we omit some details. For each
l, taking a 1/2− net Nl for the set VSl

= {v ∈ Sni−1−1; v ∈ span{vi; i ∈ Sl}}, we can get

∥Au∥2 ≤ 4(ni · · ·nj)1/2, u ∈ VSl
,

with probability at least

1− |Nl|e−k/∆1 ≥ 1− exp{−k/∆1 + (cni−1/N + 1) ln 6} ≥ 1− e−3k/(5∆1),

since ∆1 ≤ k
5 ln(6) .

Therefore, for any v ∈ Rni−1 , we can write it as the sum v =
∑

l alvl, where αl ∈ R and vl ∈ VSl

for each l. We also know that ∥v∥22 =
∑

l≥1 |αl|2.
Then we have

∥Av∥2 ≤
∑
l

|αl| ∥Avl∥2 ≤ 4(ni · · ·nj)1/2
√
⌈N2θ/c⌉

∑
l

|al|2 ≤Mk

√
CNθ(ni · · ·nj)1/2 ∥v∥2 .

Thus,
∥A∥ ≤Mk

√
CNθ(ni · · ·nj)1/2.

Notice that when C ≤ e, ∆1 ≤ k
5 ln(5 ln(6)e/k) ≤

k
5 ln(5 ln(6)·C/k) , and when C > e, we have

∆1 ln(C) ≤ min

{
k

5 ln(5 ln(6)e/k)
, k/5

}
≤ k ln(C)

5 ln(5 ln(6) · C/k)
.

The success probability is at least

1− ⌈N2θ/c⌉ · e−3k/(5∆1)

≥1− exp

{
ln

(
5 ln(6) · C

k

)
+ ln(N2θ)− 3k/(5∆1)

}
− e−3k/(5∆1)

≥1− 2e−k/(5∆1),

since

∆1 ≤ k

5 ln (5 ln(6) · C/k)
and ∆1 ln(N

2θ) ≤ k/5.
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Proof of Lemma 2.3. Set r = rank(X), and u1, · · · , ur be an orthonormal basis of the column
space of X .

Then, PX =
∑r

i=1 uiu
T
i .

Notice that

∥anWN :1(0)∥2X = ∥anWN :1(0)PX∥2F =

r∑
i=1

∥anWN :1(0)ui∥22 .

By assumption, we have

E ∥anWN :1(0)∥2X = E
r∑

i=1

∥anWN :1(0)ui∥22 = r.

The Markov inequality implies

P(∥anWN :1(0)∥2X ≥ 2r

δ
) ≤ δ

2
.

Therefore, we can bound the initial loss value as

L0 − L(W∗) ≤ ⟨∇L(W∗), aNWN :1(0)X −W∗⟩+
β

2
∥aNWN :1(0)−W∗∥2X

=
β

2
∥aNWN :1(0)−W∗∥2X

≤ β(∥aNWN :1(0)∥2X + ∥W∗∥2X)

≤ β(
2r

δ
+ ∥W∗∥2X),

with probability at least 1− δ/2.

Proof of Theorem B.1. The requirement on size {n1, n2, · · · , nN−1, N} in (16) ensures that
lemma E.3, E.4, E.5, 2.3, and D.1 hold.
WLOG, we set c1 = c/6, c2 = c/3, M = 2Mk

√
C0, B0 = Bδ, and η =: (1−ε)2nN

e2cβN , then with
probability at least

1−N2e−Ω(1/∆1) − δ/2 ≥ 1− δ, since ∆1 ≤ 1

C(c)
min

{
1

lnN
,

1

ln(1/δ)

}
,

the random initialization satisfies the initialization assumption (31) and the overparameterization
assumption (32). By applying Lemma D.1, we complete the proof.

F ORTHOGONAL INITIALIZATION FALL INTO THE CONVERGENCE REGION

The following are some basic facts for random projection and embedding. Most of the following
properties can be found in Eaton (1989).

Proposition F.1.

1. A is a random embedding if and only if AT is a random projection.

2. If A is a square matrix, then random projection, random embedding and random orthogo-
nal matrix are equivalent.

3. The uniform distribution on the group is a left and right invariant probability measure:
that is, if A is a random orthogonal matrix, then A,UA,AU are all random orthogonal
matrices, where U is a non-random orthogonal matrix.
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4. Assume X is a n × q(q ≤ n) random matrix whose entries are i.i.d. N(0, 1) random
variables. Then A := X(XTX)−1/2 is a random embedding, since ATA = Iq and the
distribution of A is left invariant, which means that A and UA have the same distribution,
where U is a non-random orthogonal matrix.

5. If A is a uniform distribution over an orthogonal group of order n and A is partitioned as
A = (A1, A2), where A1 is n× q and A2 is n× (n− q), then AT

1 and AT
2 are both random

orthogonal matrix.

6. The columns of uniform distribution over the orthogonal group of order n, and

(ξ1, · · · , ξn)√
ξ21 + ξ22 + · · ·+ ξ2n

have the same distribution, where ξ1, · · · , ξn are i.i.d. N(0, 1) random variables.

7. Assume A = An×p, n ≤ p is a random orthogonal projection. For any v ∈ Sp−1, ∥Av∥22
and (

∑n
i=1 ξ

2
i )/(

∑p
j=1 ξ

2
j ) are both following beta distribution with α = n/2, β = (p −

n)/2, where ξ1, · · · , ξn are i.i.d. N(0, 1) random variables.
Remark 9. There are several ways to construct the random matrix A = (aij)q×n, q ≤ n, which
is uniformly distributed over rectangular matrices with AAT = c2Iq, c > 0. Let On be uniformly
distributed over a real orthogonal group of order n, and On is partitioned as On = (AT

1 , A
T
2 )

T ,
where A1 is q × n. Assume X = (xij)q×n, and xij are independent standard normal random
variables. Then, A, cA1, and c(XXT )−1/2X have the same distribution.
Lemma F.2. For any x ∈ Rn0 , the one peak random projection and embedding initiation satisfies

E
[
∥aNWN :1(0)x∥22

]
= ∥x∥22 .

Proof. Let D = Wp:1(0)/
√
n1n2 · · ·np. Then D is an embedding matrix. Thus, ∥Dx∥22 = ∥x∥22.

Let Ai =Wi:p+1(0)/
√
npnp+1 · · ·ni−1, where i ≥ p+ 1, and Ap = I .

Set Bi = ∥AiDx∥22 / ∥Ai−1Dx∥22, i ≥ p+ 1. Then, Bi follows beta distribution B(ni/2, (ni−1 −
ni)/2) given Bi−1, Bi−2, · · · , Bp+1, i ≥ p+ 1. If ni = ni−1, then Bi|(Bi−1, Bi−2, · · · , Bp+1) =
1, a.s.

If B ∼ B(a, b), then the expectation is given by the following equation,

EB =
a

a+ b
.

Thus, by the law of total expectation, we have
nN
np

E ∥aNWN :1(0)x∥22 = E ∥ANDx∥22 = EBNBN−1 · · ·Bp+1 ∥Dx∥22 =
nN
np

∥x∥22 .

This completes the proof.

Next, we introduce sub-Gaussian random variables, associated with bounds on how a random
variables deviate their expected value.

Definition F.1. A random variableX with finite mean µ = EX is sub-Gaussian if there is a positive
number σ such that:

E[exp(λ(X − µ))] ≤ exp

(
λ2σ2

2

)
for all λ ∈ R (64)

Such a constant σ2 is called a proxy variance, and we say that X is σ2-sub-Gaussian, and we write
X ∼ SG(σ2).
Example F.1. Normal distribution N(µ, σ2) of course is σ2 sub-Gaussian.
For beta distribution, Elder (2016) showed thatB(a, b) is 1

4(a+b)+2 -sub-Gaussian and later, Marchal
& Arbel (2017) concluded 1

4(a+b+1) -sub-Gaussian.
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The Hoeffding bound for random variable X with a mean µ and sub-Gaussian parameter σ is given
by,

P [|X − µ| ≥ t] ≤ 2 exp

{
− t2

2σ2

}
,∀t ≥ 0. (65)

Simply applying the Chernoff bound for B(a, b), we obtain the following lemma.
Lemma F.3. Assume a random variable B distributed as a beta distribution B(a, b) with two posi-
tive shape parameters a and b. Then,

P(
∣∣∣∣B − a

a+ b

∣∣∣∣ ≥ y) ≤ 2 exp
{
−2(a+ b)y2

}
, y ≥ 0.

Hence,

P
(∣∣∣∣B − a

a+ b

∣∣∣∣ ≤ ε
a

a+ b

)
≥ 1− exp{−Ω(a2/(a+ b))},

where Ω(·) only depend on ε.
For the upper tail, we can obtain a better bound,

P
(
B ≥ (1 + ε)

a

a+ b

)
≤ exp {−(ε− ln(ε+ 1))a} . (66)

Proof of Lemma F.3. We only need to prove the third inequality. Assume random variable B ∼
B(a, b). Set v = a+ b, (1 + t)av ≤ y < 1, t > 0, and r > 0.
We are going to estimate the Chernoff bound for B, which is

P(B ≥ y) ≤ e−(ry−lnEerB) =: e−Ir(y).

The moment generating function of B is given by

EerB = 1 +

∞∑
k=1

a(a+ 1) · · · (a+ k − 1)

v(v + 1) · · · (v + k − 1)

rk

k!
≤ 1 +

∞∑
k=1

a(a+ 1) · · · (a+ k − 1)

vk
rk

k!
, r > 0.

Recall that the Maclaurin series of (1− r/v)−a over (−v, v), is given by equation

(1− r/v)−a = 1 +

∞∑
k=1

a(a+ 1) · · · (a+ k − 1)

vk
rk

k!
.

Thus,
Ir(y) = ry − lnEerB ≥ ry + a ln(1− r/v).

Set r = v − a/y ∈ (0, v). We obtain

P(B ≥ y) ≤ exp{−(vy − a+ a ln(a/(vy)))} =: exp{−vy · g(a/(vy))}, (1 + t)
a

v
≤ y < 1

where g(x) = 1 − x + x ln(x), x = a/(vy) ∈ (0, 1/(1 + t)]. Notice that g(1) = 0 and g′(x) =
ln(x) < 0 over x ∈ (0, 1).
We know that

g(x) ≥ g(1/(1 + t)) =
t− ln(1 + t)

t+ 1
, t > 0.

Thus,

P(B ≥ y) ≤ exp

{
−vy · t− ln(1 + t)

t+ 1

}
= exp {−(t− ln(1 + t))a} , y = (1 + t)

a

v
< 1.

Set y = (1 + ε) a
a+b . We obtain the inequality (66).

Remark 10. It is trivial to check

∥Wj:i(0)∥ = (nini+1 · · ·nj)1/2, 1 ≤ i ≤ j ≤ p,

∥Wj:i(0)∥ = (ni−1ni · · ·nj−1)
1/2, p+ 1 ≤ i ≤ j ≤ N,

∥Wj:i(0)∥ ≤ (nini+1 · · ·nj−1)
1/2(np)

1/2

≤
(
nmax

nmin

)1/2

(nini+1 · · ·nj−1 ·max{ni−1, nj})1/2, 1 ≤ i < p < j ≤ N, (i, j) ̸= (1, N).
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Remark 11. As a special case, if n1 = n2 = · · · = nN−1 = n, we know that ∥Wj:i(0)∥ =

(ni−1ni · · ·nN−1)
1/2 = n(N−i+1)/2.

Lemma F.4. Assume np/min{n1, nN−1} ≤ C0 < ∞. Set ε > 0. Let C(ε) represent the constant
depend only on ε. If n1/C0 ≥ C(ε)nN , then with probability at least 1− e−Ω(n1/C0)

σmax(WN :i(0)) ≤ (1 + ε)(ni−1ni · · ·nN−1)
1/2, 2 ≤ i ≤ p

σmin(WN :i(0)) ≥ (1− ε)(ni−1ni · · ·nN−1)
1/2, 2 ≤ i ≤ p.

Similarly, if nN−1/C0 ≥ C(ε)rank(X), then with probability at least 1− e−Ω(nN−1/C0)

σmax(Wj:1(0)|R(X)) ≤ (1 + ε)(n1n2 · · ·nj)1/2, p+ 1 ≤ j ≤ N

σmin(Wj:1(0)|R(X)) ≥ (1− ε)(n1n2 · · ·nj)1/2, p+ 1 ≤ j ≤ N.

Proof of Lemma F.4. Let D = (nN−1nN−2 · · ·np)−1/2WT
N :p+1(0) and

Ai = (npnp−1 · · ·ni)−1/2WT
p:i(0). Assume v ∈ SnN−1. Easy to see that Ai is a product of random

orthogonal projection and D is a random embedding.
Let e1 = (1, 0, 0, · · · , 0)T ∈ Rnp . There exists orthogonal matrix T such that TDv = e1, ∥e1∥2 =
∥TDv∥2 = ∥v∥2 = 1.
Since random orthogonal projection are right invariant, we have

P(∥AiDv∥2 ≥ y) = E
[
E
(
I{∥AiTT e1∥2≥y}

∣∣∣D)] = E
[
E
(
I{∥Aie1∥2≥y}

∣∣D)] = P(∥Aie1∥2 ≥ y).

This proves that ∥AiDv∥22 and ∥Aie1∥22 have the same distribution.

Claim: If v ̸= 0, then ∥AiDv∥22 / ∥v∥
2
2 =

∥∥(nini+1 · · ·n2p · · ·nN−1)
−1/2WT

N :iv
∥∥2
2
/ ∥v∥22 follows

beta distribution B(ni−1/2, (np − ni−1)/2).
Define Bp = ∥Ape1∥22, Bi = ∥Aie1∥22 / ∥Ai+1e1∥22, i = p− 1, p− 2, · · · , 1.
Then Bp ∼ B(np−1/2, (np − np−1)/2), Bp−1|Bp ∼ B(np−2/2, (np−1 − np−2)/2), · · · ,
Bi|(Bp, · · · , Bi+1) ∼ B(ni−1/2, (ni − ni−1)/2).
If ni+1 = ni, we know that Bi|(Bp, · · · , Bi+1) = 1, a.s.
If B ∼ B(a, b), then the moments are given by the following equations,

EB =
a

a+ b
, and EBk =

a

a+ b

a+ 1

a+ b+ 1
· · · a+ k − 1

a+ b+ k − 1
. (67)

By the law of total expectation, we have

EBiBi+1 · · ·Bp =
ni−1

ni

ni
ni+1

· · · np−1

np
=
ni−1

np
,

as well as

E(BiBi+1 · · ·Bp)
k =

ni−1/2

np/2

ni−1/2 + 1

np/2 + 1
· · · ni−1/2 + k − 1

np/2 + k − 1
.

Notice that all the integer moments ofBiBi+1 · · ·Bp match those ofB(ni−1/2, (np−ni−1)/2). We
can verify that beta distribution satisfies Carleman’s condition, which implies that BiBi+1 · · ·Bp ∼
B(ni−1/2, (np − ni−1)/2).
Thus, ∥AiDv∥22 / ∥v∥

2
2 ∼ B(ni−1/2, (np − ni−1)/2), which proves the claim.

With probability at least 1− exp{−Ω(n1/C0)}, we have

(1− ε)2
ni−1

np
≤ ∥ADv∥22 ≤ (1 + ε)2

ni−1

np
, ∥v∥2 = 1.

Using the ϕ−net technique, which has been already used to prove lemma E.3, we know that

σmin(AD) ≥ (1− ε)

(
ni−1

np

)1/2

,

and

σmax(AD) ≤ (1 + ε)

(
ni−1

np

)1/2

,
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with probability at least 1−exp{nN ln(3/ϕ(ε))} exp{−Ω(n1/C0)} ≥ 1−exp{−Ω(n1/C0), since
n1/C0 ≥ C(ε)nN , for 2 ≤ i ≤ p.
Hence, with probability at least 1− e−Ω(n1/C0), we have

σmin(WN :i(0)) ≥ (1− ε) (ni−1 · · ·nN−1)
1/2

,

and
σmax(WN :i(0)) ≤ (1 + ε) (ni−1 · · ·nN−1)

1/2
.

The other part of the proof is similar to that of lemma E.4, so we omit it.

Proof of Theorem B.2 . Set c > 0, c1 = c/6, c2 = c/3. In lemma F.4, we can pick a ε > 0, such
that 1 + ε ≤ ec1/2 and 1− ε ≥ e−c2/2. Set M = 2

√
C0, θ = 0, B0 = Bδ , and η = (1−ε)2nN

e2cβN .
The requirement on size {n1, n2, · · · , nN−1, N} in (17) make sure that the remark 10, lemma F.4,
lemma 2.3, and lemma D.1 all hold.
Notice that even though we need the conclusions in lemma F.4 to hold simultaneously for 2 ≤ i ≤ p,
p + 1 ≤ j ≤ N , it suffices to apply lemma F.4 over i ∈ I and j ∈ J , such that {ni; i ∈ I} and
{nj ; j ∈ I} both have distinct values. Since |I| ≤ N and |J | ≤ N , with probability at least

1− 2Ne−Ω(nmin/C0) − δ/2 ≥ 1− δ,

the one peak random orthogonal projection and embedding initialization satisfies the initialization
assumption (31) and the overparameterization assumption (32).

Under the assumption n1 = n2 = · · · = nN−1, we can use remark 11 to replace lemma F.4. Thus,
with probability at least 1− δ/2 ≥ 1− δ, (31) holds. By applying lemma 2.3 and D.1, we complete
the proof.

Proof of Theorem B.3. Let WN (0) =
√
nUN [Iny

, 0]V T
N , · · · ,Wi(0) =

√
nUiInV

T
i , 2 ≤ i ≤ N −

1, and W1(0) =
√
nU1[Inx , 0]

TV T
1 . Now, we want to verify (31). By a simple calculation, we have

σmax(WN :i+1(0)) = σmin(WN :i+1(0)) = n(N−i)/2, 1 ≤ i ≤ N − 1,

σmax(Wi−1:1(0)|R(X)) = σmax(Wi−1:1(0)|R(X)) = n(i−1)/2, 2 ≤ i ≤ N,

∥Wj:i(0)∥ = n(j−i+1)/2, 1 < i ≤ j < N.

(68)

Notice that for any 1 ≤ p ≤ m

∥aNWN :1(0)x∥22 =
n

nN

∥∥UN [Iny
, 0]V T

N UN [Inx
, 0]TV T

1 x
∥∥2
2
=

n

nN

∥∥UN [Iny
, 0]V T

N x
′∥∥2

2
,

where x′ = UN [Inx
, 0]TV T

1 x, ∥x∥2 = ∥x′∥2.
Since the distribution of UN [Iny

, 0]V T
N is right invariant under multiplying orthogonal matrices, we

have ∥∥UN [Iny
, 0]V T

N x
′∥∥2

2
/ ∥x∥22 ∼ B(

ny
2
,
n− ny

2
).

Thus,
E
[
∥aNWN :1(0)x∥22

]
= ∥x∥22 .

Applying lemma 2.3, we have

L0 − L(W∗) ≤ β

(
2 · rank(X)

δ
+ ∥W∗∥2X

)
,

with probability at least 1− δ/2.

By applying Lemma D.1 with c > 0, c1 = c/6, c2 = c/3, θ = 0, we complete the proof.

Proof of Theorem 3.1. Theorem 3.1 is a special case of Theorem B.1 and Theorem B.2. Hence, we
omit the proof.
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Proof of Theorem 3.2. In Theorem B.1, B.2, and B.3, we proved that for given constant c1, c2 > 0
and 0 < ε, δ/2 < 1/2 as well as a learning rate η, there exists a constant C = C(c1, c2) such that
all three kinds of random initializations will fall into the convergence region with probability at least
1− δ. By applying Lemma 2.3, we complete the proof.

G TABLES

In this section, we provide some empirical evidences to support the argument expressed in Sec-
tion 4:Why do bad saddles not affect GD for overparameterized deep linear neural networks?
Consider the following procedures for tables of ∥Wi(t)−Wi(0)∥F

∥Wi(0)∥F
:

a) We consider X ∈ R128×1000, and W∗ ∈ R10×128 and set Y =W∗X+ ε, where the entries
in X and ε are drawn i.i.d. from N(0, 1).

b) We consider the loss function 1
2 ∥aNWN :1X − Y ∥2F .

c) For the given deep linear networks, we apply the orthogonal initializations, which are de-
noted as Wj(0), 1 ≤ j ≤ N .

d) We set the learning rate as η = nN

N ·∥X∥2 for the deep linear neural networks.

e) We prepare the tables for ∥Wi(t)−Wi(0)∥F

∥Wi(0)∥F
.

Let n1 = n2 = n3 = 2000, N = 4. Assume W∗ are drawn i.i.d. from N(0, 25). We obtain the
following table:

i = 1 i = 2 i = 3 i = 4
t = 1 0.05161 0.00826 0.00826 0.18464
t = 2 0.08779 0.01389 0.01389 0.31396
t = 3 0.11335 0.01781 0.01779 0.40435
t = 4 0.12109 0.01894 0.01889 0.42920
t = 5 0.12527 0.01956 0.01948 0.44282
t = 6 0.12611 0.01967 0.01958 0.44476
t = 7 0.12755 0.01988 0.01978 0.44955
t = 8 0.12745 0.01986 0.01975 0.44876
t = 9 0.12819 0.01997 0.01987 0.45136
t = 10 0.12793 0.01992 0.01982 0.45018

Let n1 = n2 = 10000, N = 2. Assume W∗ are drawn i.i.d. from N(0, 4). We obtain the following
table:

i = 1 i = 2 i = 3
t = 1 0.02708 0.00153 0.04844
t = 2 0.04319 0.00244 0.07727
t = 3 0.05296 0.00299 0.09474
t = 4 0.05888 0.00333 0.10533
t = 5 0.06248 0.00353 0.11176
t = 6 0.06468 0.00365 0.11569
t = 7 0.06603 0.00373 0.11811
t = 8 0.06688 0.00377 0.11962
t = 9 0.06741 0.00380 0.12057
t = 10 0.06775 0.00382 0.12117
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Let n1 = n2 = 4000, N = 2. Assume W∗ are drawn i.i.d. from N(0, 1). We obtain the following
table:

i = 1 i = 2 i = 3
t = 1 0.01622 0.00290 0.05802
t = 2 0.02684 0.00480 0.09601
t = 3 0.03411 0.00609 0.12202
t = 4 0.03919 0.00700 0.14018
t = 5 0.04280 0.00764 0.15306
t = 6 0.04539 0.00810 0.16232
t = 7 0.04729 0.00844 0.16908
t = 8 0.04869 0.00868 0.17408
t = 9 0.04974 0.00887 0.17782
t = 10 0.05054 0.00901 0.18066

Let n1 = n2 = 8000, N = 2. Assume W∗ are drawn i.i.d. from N(0, 1). We obtain the following
table:

i = 1 i = 2 i = 3
t = 1 0.01173 0.00148 0.04195
t = 2 0.01944 0.00246 0.06955
t = 3 0.02470 0.00312 0.08838
t = 4 0.02838 0.00358 0.10151
t = 5 0.03098 0.00391 0.11083
t = 6 0.03287 0.00415 0.11758
t = 7 0.03426 0.00432 0.12253
t = 8 0.03530 0.00445 0.12624
t = 9 0.03608 0.00455 0.12904
t = 10 0.03668 0.00463 0.13118

Let n1 = n2 = 12000, N = 2. Assume W∗ are drawn i.i.d. from N(0, 1). We obtain the following
table:

i = 1 i = 2 i = 3
t = 1 0.00965 0.00099 0.03453
t = 2 0.01597 0.00164 0.05712
t = 3 0.02025 0.00208 0.07244
t = 4 0.02323 0.00239 0.08310
t = 5 0.02535 0.00261 0.09069
t = 6 0.02690 0.00277 0.09621
t = 7 0.02804 0.00289 0.10029
t = 8 0.02890 0.00297 0.10336
t = 9 0.02955 0.00304 0.10570
t = 10 0.03006 0.00309 0.10750

Let n1 = n2 = 20000, N = 2. Assume W∗ are drawn i.i.d. from N(0, 1). We obtain the following
table:

i = 1 i = 2 i = 3
t = 1 0.00713 0.00057 0.02551
t = 2 0.01181 0.00095 0.04225
t = 3 0.01499 0.00121 0.05362
t = 4 0.01720 0.00138 0.06154
t = 5 0.01878 0.00151 0.06720
t = 6 0.01994 0.00161 0.07132
t = 7 0.02079 0.00168 0.07438
t = 8 0.02144 0.00173 0.07668
t = 9 0.02193 0.00177 0.07844
t = 10 0.02231 0.00179 0.07981

H FIGURES

In this section, we provide some empirical evidences to support the results in Section 4: Numerical
Experiments. We will show how the trajectories of the non-convex deep linear neural networks are
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related to a convex optimization problem for GD under different initialization schemes. Consider
the following procedures for plots of the logarithm of loss as a function of number of iterations:

a) We choose X ∈ R128×1000 and W∗ ∈ R10×128 and set Y = W∗X + ε, where the entries
in X , W∗ and ε are drawn i.i.d. from N(0, 1).

b) We consider the loss function 1
2 ∥aNWN :1X − Y ∥2F .

c) For the given linear networks, we apply the Gaussian initialization and one peak random
orthogonal projection and embedding initialization, which are denoted as Wj(0), 1 ≤ j ≤
N .

d) For the convex optimization problem (1), we set the initialization to be W (0) =
aNWN (0) · · ·W1(0).

e) We set the learning rates as η = nN

N ·∥X∥2 and η∗ = N
nN
η for the deep linear neural networks

and convex problem, respectively.
f) We draw the loss function through 25 iterations.
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Figure 1: Plot of Loss as a function of number of iterations with n1 = n2 = n3 = 128 (First), 200
(Second), 2000 (Third) for Gaussian initialization, respectively.
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Figure 2: Plot of Loss as a function of number of iterations with n1 = n2 = n3 = 128 (First), 200
(Second), 5000 (Third) for Orthogonal initialization, respectively.
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