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ABSTRACT

Automatically synthesizing dense rewards from natural language descriptions
is a promising paradigm in reinforcement learning (RL), with applications to
sparse reward problems, open-ended exploration, and hierarchical skill design.
Recent works have made promising steps by exploiting the prior knowledge
of large language models (LLMs). However, these approaches suffer from
important limitations: they are either not scalable to problems requiring billions
of environment samples, due to requiring LLM annotations for each observation,
or they require a diverse offline dataset, which may not exist or be impossible
to collect. In this work, we address these limitations through a combination
of algorithmic and systems-level contributions. We propose ONI, a distributed
architecture that simultaneously learns an RL policy and an intrinsic reward
function using LLM feedback. Our approach annotates the agent’s collected
experience via an asynchronous LLM server, which is then distilled into an
intrinsic reward model. We explore a range of algorithmic choices for reward
modeling with varying complexity, including hashing, classification, and ranking
models. By studying their relative tradeoffs, we shed light on questions regarding
intrinsic reward design for sparse reward problems. Our approach achieves
state-of-the-art performance across a range of challenging, sparse reward tasks
from the NetHack Learning Environment in a simple unified process, solely using
the agent’s gathered experience, without requiring external datasets. We make
our code available at URL (coming soon).

1 INTRODUCTION

Reward functions are central to reinforcement learning (RL), and are often assumed to be given
as part of the problem definition (Sutton & Barto, 2018). These functions are written to describe
the task at hand, and often involve tradeoffs between ease of task definition and ease of policy
optimization. For example, assigning a reward of +1 for solving the task and 0 otherwise is simple
to define and accurately reflects the task goal, but is difficult to optimize due to providing zero
gradients almost everywhere.

These difficulties have motivated the use of intrinsic rewards to aid policy optimization (Randlov
& Alstrøm, 1998; Ng et al., 1999; Sorg et al., 2010; Singh et al., 2010). The reward designer can
include additional reward shaping terms to create a denser learning signal, which can reflect task
progress or guide the agent towards intermediate goals. However, designing intrinsic rewards can
be remarkably challenging (Booth et al., 2023; Ibrahim et al., 2024) and places increased demands
on human experts to provide task-specific knowledge.

Recently, several works have been proposed to leverage the vast prior knowledge encoded in large
language models (LLMs) to automate the reward design process, based on a task description in
natural language. They can be broadly categorized into two families:

1. Generating the reward function’s code by LLM. A number of methods have been proposed
to automatically generate executable code that computes the reward directly (Ma et al., 2023; Xie
et al., 2023; Yu et al., 2023; Li et al., 2024). While they have demonstrated success in complex
continuous control tasks, they either require access to environment source code to include in the
prompt, or a detailed description of input parameters and reward function templates. Furthermore,
they are limited to reward functions compactly expressible via code, describing explicit logic; and
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it is unclear how these approaches can easily process high-dimensional state representations such as
images, or semantic features such as natural language.

2. Generating reward values by LLMs. Motif (Klissarov et al., 2023) is a typical example of this
category. It ranks the captions of pairs of observations using an LLM and distills these preferences
into a parametric reward model. Motif does not require access to environment source code nor
numerical state representation, can process semantic input features, and can scale to problems
requiring billions of environment samples. Nevertheless, it also suffers from two important
limitations. First, it requires a diverse, pre-existing dataset of captioned observations which are used
to elicit preferences from the LLM. In many situations, such a dataset might not exist, and collecting
it can increase the sample complexity. More importantly, collecting a diverse dataset often requires
a non-trivial reward function that is feasible to optimize, which is the primary problem we aim to
solve with intrinsic reward functions in the first place. Second, it involves a complex three-stage
process, which sequentially annotates observations using an LLM, trains a reward model, and
finally trains an RL agent. This is still time-consuming, given that the LLM annotation process can
take several days’ worth of GPU hours, and is done prior to training the reward model and RL agent.
Alternatively, Chu et al. (2023) query the LLM to directly label observations as having high or
low reward at each timestep. However, querying an LLM for every observation is computationally
infeasible for many RL applications, which involve millions or billions of observations.

As a consequence, it would be desirable to have an integrated solution that offers:

(1) concurrent and fast online learning of both the intrinsic rewards and the policy that requires no
external data nor auxiliary reward functions,

(2) expressible reward functions that can capture semantic features that are difficult to process with
compact executable code.

In this work, we present ONI, a distributed online intrinsic reward and agent learning system. ONI
assumes access to captions of observations, similar to previous work (Klissarov et al., 2023; Chu
et al., 2023). The captions of collected observations are annotated by an asynchronous LLM server,
and both the policy and intrinsic reward model are simultaneously updated using LLM feedback.
ONI removes the dependency on external datasets beyond the agent’s own experience and enables
large-scale RL training with ease. Such a learning framework allows us to systematically compare
different algorithmic choices for synthesizing LLM feedback. Specifically, we explore three meth-
ods: the first one is retrieval-based and simply hashes the annotations; the second builds a binary
classification model to distill the sentiment labels returned by the LLM; and the third sends pairs of
captions to the LLM server for preference labeling and learns a ranking model, similar to Motif. By
carefully comparing the three proposed algorithms, we provide valuable insights into several impor-
tant questions regarding intrinsic reward design. We demonstrate that ONI is able to match Motif’s
performance across a range of challenging, sparse rewards from the NetHack Learning Environment
(NLE) (Küttler et al., 2020), solely using the agent’s gathered experience in a single, unified process.

2 BACKGROUND

We consider a partially observed Markov decision process (POMDP) setting where the problem is
defined by M = (S,A,O, p0, P,O, r, γ). At each episode, an initial state s0 ∈ S is sampled from
the initial state distribution p0. At each time step t, the agents observes ot ∈ O which is computed
by the emission function O(st), and takes an action at ∈ A. This action causes the environment to
transition to a new state, st+1 ∼ p(st, at). A new observation ot+1 and a reward rt+1 = r(ot+1)
is given to the agent, and the process continues. The goal of the agent is to learn a policy π : O →
∆(A) which maximizes the expected return Eπ [

∑
t γ

trt]. In this work, we additionally assume
each observation ot includes a textual caption ct, which could be empty. For observation spaces
without textual captions, ct could in principle be provided by a captioning model as well.

In many situations, the extrinsic environment reward r is sparse, and the resulting return objective
is challenging to optimize. We therefore consider methods which make use of an auxiliary intrinsic
reward rint and define a composite surrogate reward:

r̄(ot) = r(ot) + β · rint(ot). (1)
A key research question is how to define or learn the intrinsic reward rint. A first option is to
manually define rint based on task-specific goals, for example a measure of the distance between
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Figure 3.1: Overall system diagram of ONI. Our additions to Sample Factory are highlighted in red.
We added an asynchronously executing LLM server and learned reward function, and connect them
back into the main learning process in a way that does not hurt the overall throughput of the policy
and value learning.

the agent’s current state and the goal state. However, handcrafting the intrinsic reward function
can require significant domain knowledge and must be redone for each new task. A second option
is to define rint to measure some notion of observation novelty, which encourages the agent to
systematically explore the environment. This can work well in smaller environments, but fails in
ones that cannot be exhaustively explored in a tractable amount of time. A third class of methods,
which we focus on in this work, leverage LLMs to automatically synthesize rint to reflect prior
knowledge about the task. We discuss all three classes of methods in Section 4.

3 ONLINE INTRINSIC REWARDS

3.1 SYSTEM DESIGN: DISTRIBUTED PPO WITH LLM ANNOTATIONS

This section outlines the system we have built to learn online intrinsic rewards alongside the policy
optimization. The engineering and design here is an important piece of our research, as the rest of
our experimental studies are conducted within this system and influenced by the throughput of its
interacting components.

Our core system illustrated in Figure 3.1 is built on top of the Sample Factory library v1.0 (Petrenko
et al., 2020) and their asynchronous variant of proximal policy optimization (Schulman et al., 2017),
referred to as APPO. APPO operates on a single machine and concurrently runs many environment
instances while asynchronously updating policy and value estimates with the usual PPO rules, and
adequately handles policy staleness and data transfers between these components. Concretely for
NetHack, by running 480 environment instances APPO collects approximately 32k environment
interactions per second on a Tesla A100-80GB GPU with 48 CPUs.

For online reward learning via LLM annotations in this system1, we added 1) an LLM server hosted
on a separate node, 2) an asynchronously running process that passes observation captions to the
LLM server via HTTP request, 3) a hash table that stores the captions and corresponding LLM an-
notations, and 4) and learning code that dynamically updates a reward model that learns on these
annotations. Without being asynchronous, these components have the potential to block the concur-
rent execution and can reduce the throughput of the overall system, because calling into an LLM and
updating the reward model are time-consuming. We added them in a way that retains most of the
throughput (!), approximately 80-95% of the original: the average throughput is 30k environment
interactions per second if we do not train any additional reward model to distill the LLM annota-
tions, and 26k if a classification-based reward model is learned at the same time (see Section 3.2
for the description of those approaches). The throughput of LLM annotation depends on the actual
LLM and prompt we are using. For the reader’s reference, when hosting a LLaMA-3.1-8B server on
a Tesla A100-80GB GPU using the prompt displayed in Appendix B, ONI annotates approximately

1The prior work by Klissarov et al. (2023) in the offline setting was able to connect their intrinsic reward
function into Sample Factory’s APPO implementation with a few lines of code, as it just needed to load the
PyTorch module of the learned reward function.
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810k NetHack captions over the whole training process (2B environment steps, 19-20 hours). The
rest of this section overviews the relevant components and how we have modified them.

Background: APPO’s Distributed Execution and Shared Memory APPO has three main types
of workers:

1. the learner worker that coordinates most of the operations, updates the policy and value models,
and sends the latest policy ID to the other workers so that they can retrieve it;

2. the rollout workers that run copies of the environment, execute actions in them and save the
observations; and

3. the policy workers that query the policy on new states. The policy workers are separate from
the rollout workers so they can efficiently batch across observations.

The workers here are individual processes forked off from a parent process. These all have shared
CPU and GPU memory buffers, and efficiently communicate mostly via Python’s multiprocessing
queues, using pointers to locations in the shared memory. We next describe our new LLM worker,
and how we connect it back into the learner.

Our New Asynchronous LLM Worker and Remote LLM Server This worker has input and
output queues that communicate back with the learner process, which we use so it does not block
the main execution of the system. The LLM worker awaits new observations to label from the input
queue, formats them into prompts, calls into an LLM, and returns the annotations in the output
queue. Additionally, the prompt templates and other LLM options are configured by the LLM
worker. We use an annotation and message format that support all the intrinsic reward labels that we
consider in Section 3.2. As Sample Factory already utilizes most of the free CPU and GPU capacity
of the system, we opted to call into the LLM via an HTTP/REST interface rather than loading it in
this process directly. The communication here adds minimal overhead, and also makes us not need to
coordinate the shared memory of multiple GPUs between the main APPO code and LLM. Alongside
every APPO run, we allocate an unloaded machine with a new instance of VLLM (Kwon et al.,
2023b) to exclusively serve the queries from the RL run. Our system also allows using the same node
for both processes if computational resources allow, which further reduces communication costs.

One important design decision is that the asynchronous LLM server is only able to process a small
percentage of the overall observations encountered 2, because the environment rollout workers have
a much higher throughput than the LLM. An alternative design would be to block the main APPO
components and wait for the LLM to label more messages, but we find it more realistic to continue
running the policy and label messages as the LLM throughput allows. This also creates the problem
of needing to decide on what messages to send to the LLM: the last-in-first-out queue (LIFO), or
some uncertainty-based selection. For this work, we use LIFO for simplicity, but note that it would
be interesting to investigate alternate approaches in future work.

Our Modified Learner Lastly, we connect this new LLM worker back into the main learner, and
dynamically learn a reward model on the annotations obtained from it. To do this, we modified the
two threads of the learner worker:

1. the training thread is the main thread that a) aggregates the new trajectories from the latest
environment interactions; b) decides which new observations to send to the LLM; c) updates the
policy, value, and (now) our intrinsic reward model.

2. The feedback processing thread (in fact, the initial thread of the learner worker) receives the
latest annotations from the LLM worker and updates the dataset (or hash table) that the reward
model is trained on. This thread also initializes the reward model at the beginning.

To prevent overfitting the limited amount of annotations in the early stage of training, the training
thread only continuously updates the reward model after we receive 25k annotations. Before that,
the feedback processing thread run a few updates of the reward model every time we receive new
annotations. Now that we have a flexible way of annotating messages and fitting a reward model on
top of them, we turn to defining the types of intrinsic reward functions.

2often ≤ 0.04% for a LLaMA-3.1-8B instance using a single A100-80GB GPU, or ≤ 0.02% when using a
V100-32GB GPU
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3.2 INTRINSIC REWARD FUNCTIONS

ONI offers flexible algorithmic choices for querying an LLM and distilling its feedback. In this
work, we consider the following three methods.

Retrieval The simplest approach we consider uses binary labeling and retrieval. The LLM is asked
to assign a binary label yi ∈ {0, 1} indicating whether a caption ci is “helpful” or “unhelpful” for
making progress on the task. The learner worker maintains a hash table H to store labeled pairs
(ci, yi), managed by the feedback processing thread. In the training thread, each time the RL agent
receives an observation ot with caption ct, we check if ct ∈ H and the intrinsic reward is defined as:

rint(ot) =

{
H(ct) if ct ∈ H
0 if ct /∈ H (2)

If ct is unlabeled, it is placed into a last-in-first-out (LIFO) queue Q managed by the LLM annotation
process, and then sent to the LLM server. The LLM continuously processes elements ci from Q and
returns their labels yi to the data processing thread of the learner worker, where the pairs (ci, yi) are
added into H. As described in Section 3.1, the training thread and the feedback processing thread
run asynchronously. Therefore, editing the hash table does not slow down policy training. This
retrieval-based approach does not generalize to observations with unlabeled captions. However, the
resulting intrinsic reward is simple and hyperparameter-free, and may work well when the set of
captions belongs to a relatively small set.

Classification The second approach we consider is based on binary labeling together with training
a classification model. Similarly to above, we label observation captions ci with labels yi ∈ {0, 1}
indicating whether they are helpful or unhelpful via LLM. We simultaneously train a binary clas-
sification model to predict yi from oi. More precisely, we model P (y = 1|o) by rintϕ : O → [0, 1],
which is then used to compute the binary intrinsic reward by thresholding it at η:

rint(ot) = I[rintϕ (ot) > η], (3)

where I is the indicator function. We study the impact of η in Section 5.3. Unlike the previous
approach, this method has potential to generalize to observations whose captions are similar, but
not identical, to the captions labeled by the LLM. However, like the previous approach, it will
assign a same reward to observations which are slightly positive (such as finding a few gold pieces
in NetHack) and very positive (finding hundreds of gold pieces or a rare artifact).

Ranking The third approach we consider is based on ranking observations via pairwise classifi-
cation, which is the approach taken by Motif. Here, pairs of observations (o1, o2) are sent to the
LLM, which returns a preference label y ∈ {1, 2,∅} indicating whether o1 or o2 is more desirable
for accomplishing the task, or if they are equivalent. A reward model rintϕ : O → R is trained by
minimizing the negative log-likelihood :

−E(o1,o2,y)∼H

[(
I[y = 1] + 1

2 I[y = ∅]
)
logPϕ(o1 ≻ o2) +

(
I[y = 2] + 1

2 I[y = ∅]
)
logPϕ(o1 ≺ o2)

]
(4)

where we use average log-likelihood when y = ∅3 and use the Bradley-Terry model (Bradley &
Terry, 1952) Pϕ(o1 ≻ o2) = 1−Pϕ(o1 ≺ o2) = exp

(
rintϕ (o1)

)
/
[
exp

(
rintϕ (o1)

)
+exp

(
rintϕ (o2)

)]
.

Motif computes the mean µD, standard deviation σD, and a fixed quantile νD of rintϕ over the offline
dataset of annotations D. During RL training, it normalizes and thresholds rintϕ to give the reward

rintmotif(ot) = I[(rintϕ (ot)− µD)/σD > νD] · (rintϕ (ot)− µD)/σD (5)

For ONI-ranking, applying these steps directly is not possible since the annotation dataset is con-
tinuously changing. We thus replace (µD, σD) by a running mean and standard deviation (µ, σ)
computed over the experience, and replace the quantile νD by a quantile of the standard normal.

4 RELATED WORK

Exploration Based on Novelty Bonuses Learning from sparse or otherwise difficult-to-optimize
reward functions is a long-standing problem in reinforcement learning. There is a large body of

3In the equivalent cross entropy minimization formulation, this amounts to using a uniform target [ 1
2
, 1
2
]

when y = ∅.
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work which defines intrinsic rewards based on novelty bonuses (Schmidhuber, 1991; Kearns &
Singh, 2002; Brafman & Tennenholtz, 2002; Stadie et al., 2015; Bellemare et al., 2016; Pathak
et al., 2017; Burda et al., 2019; Shyam et al., 2019; Raileanu & Rocktäschel, 2020; Ecoffet et al.,
2019; Agarwal et al., 2020; Zhang et al., 2021; Henaff et al., 2022a; Lu et al., 2024). These methods
tend to make minimal assumptions about the task at hand, operate online without requiring external
data, and sometimes come with theoretical guarantees. However, since they are fundamentally
tabula-rasa, they must rediscover much of the structure in the task that might already be encoded
as prior knowledge in an LLM. Therefore, they tend to have difficulty exploring environments of
very high complexity, such as NetHack, in a tractable amount of time (Klissarov et al., 2023).

LLM-aided Reward Design In addition to Motif (Klissarov et al., 2023), several works have
sought to leverage the prior knowledge encoded in LLMs to produce intrinsic rewards. Eureka
(Ma et al., 2023), Auto-MC (Li et al., 2024), L2R (Yu et al., 2023) and Text2Reward (Xie et al.,
2023) all use LLMs to generate executable code which computes intrinsic rewards from the under-
lying environment state, conditioned on a task description. The generated reward function code is
then iteratively improved based on aggregate statistics from agents trained with the current reward.
However, a disadvantage with intrinsic rewards represented as code is that they require access to an
interpretable underlying state representation, and it is unclear how to leverage non-numerical fea-
tures such as those provided by unstructured language captions. The works of Kwon et al. (2023a);
Chu et al. (2023) also successfully used LLMs conditioned on task descriptions to directly generate
binary rewards in an online manner, and did not train a reward model. This was possible due to eval-
uating on environments and tasks which could be solved with a relatively small number of observa-
tions, whereas we consider complex open-ended environments with billions of observations so that
labeling them all with an LLM would be computationally infeasible. Also of note is the work of Wu
et al. (2024), which additionally conditioned LLMs on user manuals to define the intrinsic reward.

Goal-conditioned Reward Design A different approach to reward function design is to define re-
wards as the distance between the agent’s current state and the goal. For example, one line of
work learns a state embedding in a self-supervised manner which converts geodesic distances in the
original space to Euclidean distances in feature space (Wu et al., 2019; Wang et al., 2021; Gomez
et al., 2024). Another line of work of (Fan et al., 2022; Rocamonde et al., 2023; Adeniji et al.,
2023; Kim et al., 2024) leverages pretrained image and text encoders, and defines rewards to be
some measure of similarity between embeddings of visual observations and embeddings of textual
task descriptions. Using a question generation and answering system, Carta et al. (2022) extract
auxiliary objectives from the goal description and construct intrinsic rewards. An interesting com-
bination of goal-conditioned and LLM-aided reward design is the ELLM approach introduced in Du
et al. (2023b), which generates candidate goals and uses the distance in LLM embedding space to
define the reward. This approach shares the limitations of the works of Kwon et al. (2023a); Chu
et al. (2023) discussed in the previous section, in that it requires an LLM call for each agent obser-
vation, which becomes computationally infeasible in high-throughput settings involving billions of
observations. We discuss more works that utilize LLM for RL broadly in Appendix D.

5 EXPERIMENTS

Environment We use the NetHack Learning Environment (NLE) (Küttler et al., 2020) as our
experimental testbed, since it is one of the most challenging open-ended, long horizon and sparse
reward environments available, and was also used as the main environment in the prior work we
compare to. NetHack is a classic dungeon crawling game which presents a number of interesting
challenges for RL agents: it is procedurally generated, requiring generalization; rewards are sparse
for most tasks, requiring exploration; the environment is partially rather than fully observable;
transitions are naturally stochastic; episodes are very long, requiring tens to hundreds of thousands
of steps to win the game; the dynamics are highly complex, involving large numbers monsters,
objects, non-player characters and other entities. Succeeding in the game requires mastering and
balancing diverse behaviors including exploration, resource management, object use, combat,
puzzle solving and skill progression.

Tasks and Metrics We evaluate our agents in two ways: how well they are able to succeed in tasks
which have a (typically sparse) extrinsic reward, and how well they are able to progress in the game
using the intrinsic reward only. For the former, we use one dense reward task and three sparse reward
tasks used in prior work (Küttler et al., 2020; Klissarov et al., 2023), listed below.

6
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1. The Score task treats the in-game score4 as a dense extrinsic reward.
2. The Oracle task requires finding the in-game Oracle character, which resides deep in the

dungeon. The agent receives a reward of 50 if it manages to reach the Oracle, zero otherwise.
3. The StaircaseLvl3 and StaircaseLvl4 tasks requires reaching the third or fourth

level staircase and zero otherwise—this requires exploring multiple levels in order to find
staircases which lead deeper into the dungeon, while fighting or escaping monsters to survive.

Previous work found that the Oracle task can be solved in unexpected ways via reward hacking;
however, this is still a challenging sparse reward problem and we include it for completeness. We
also train agents with the intrinsic reward only and measure the game progress via four metrics:

experience level, dungeon level, gold, and scout (number of unique locations explored).

Removing the extrinsic reward gives us a clearer picture of what the intrinsic rewards are prioritizing.

Methods and Hyperparameters We instantiate ONI with the three reward functions described
in Section 3.2. We name the three approaches ONI-retrieval, ONI-classification and
ONI-ranking, respectively. For policy learning, we use the Chaotic Dwarven GPT5 (CDGPT5)
architecture (Myffili, 2021) used in prior work (Piterbarg et al., 2023; Kurenkov et al., 2023; Klis-
sarov et al., 2023). Architecture details can be found in Appendix A.1. All the methods are trained
with two billion (2 × 109) environment steps. We train ONI-classification with with classifi-
cation threshold η = 0.5, where the intrinsic reward coefficient is β = 0.1 for the Score task and
β = 0.4 for all the other sparse-reward tasks and the reward-free agent. Similarly, ONI-retrieval
uses β = 0.1 for Score and β = 0.5 for the others. ONI-ranking is trained with β = 0.05. Full
details of the training process can be found in Appendix A.2.

LLMs We use the LLaMA-3 herd of models (Dubey et al., 2024) as our LLMs. All prompts are
listed in Appendix B. We initially reran the Motif baseline using the official code5 and compared
the performance of LLaMA-3.1-70B-Instruct and LLaMA-3.1-8B-Instruct (see Appendix C.1).
We did not observe a significant difference in their performance on the Oracle or Score tasks.
Therefore, we use LLaMA-3.1-8B-Instruct in our subsequent experiments to reduce computation.

Baselines We compare to agents trained with extrinsic reward alone, Motif (Klissarov et al., 2023)
, and a variant of the ELLM algorithm (Du et al., 2023a). It is not feasible to directly apply ELLM
to our setting, since it requires an LLM call for each observation, where the total number of calls
scales to the billions in our case. Therefore, we designed a more scalable variant which i) replaces
the LLM embedding with a lightweight bag-of-words embedding 6 using FastText (Bojanowski
et al., 2016), and ii) includes an episodic term in the intrinsic reward, as with Motif and ONI (see
Appendix A.2). We call it ELLM-BoW and include more details in Appendix A.3. We note that
Klissarov et al. (2023) found that other exploration methods based on novelty bonuses such as RND
(Burda et al., 2019), NovelD (Zhang et al., 2021) and E3B (Henaff et al., 2022a) did not improve
over the extrinsic reward baseline on these tasks, hence we do not include them.

5.1 MAIN RESULTS

Task Performance We report the average performance and 95% confidence intervals computed
via standard errors over 5 seeds in Figure 5.1a. The extrinsic reward agent performs reasonably well
on the dense Score task, but completely fails on the others due to reward sparsity. We find that,
despite not requiring any external data, our ONI-classification agent is able to match Motif on
all tasks except Oracle, where it still performs well. We note that Motif requires pre-collecting
data from the Score task even for sparse reward tasks—this assumes access to an additional dense
reward function, which is an often unrealistic assumption. It also incurs additional one billion
(109) environment samples prior to policy training. All of our agents significantly outperform the
extrinsic only baseline on the sparse reward tasks, demonstrating they are able to explore effectively
while synthesizing their intrinsic rewards from online data alone.

4https://nethackwiki.com/wiki/Score
5https://github.com/facebookresearch/motif
6We also tried using Sentence Transformers (SBERT) for generating sentence embeddings, which led to

an approximately 20x throughput drop: 28k vs 1.4k FPS on a Tesla V100-32GB GPU, when the sentence
embeddings can be cached. If we recompute the sentence embedding in the forward pass every time, the
throughput drop is approximately 100x.
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(a) Performance on four different NetHack tasks.
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(b) Game progress of intrinsic rewards only agents.

Figure 5.1: ONI-based methods are able to match or closely track the performance of Motif with-
out using an pre-collected dataset. This includes (a) reward-based and (b) reward-free settings.
Motif’s pre-collected dataset uses privileged information about dense reward functions to solve
sparse-reward or reward-free environments while ONI-methods do not. ELLM-BoW demonstrated
to be a competitive baseline here too.

Despite its simplicity, ONI-retrieval performs surprisingly well, and its performance is often
close to that of ONI-classification. This is likely a consequence of many messages with
positive valence being repeated in the early game of NetHack, such as “You find a hidden passage”
that allows exploring the rest of the level, or “You kill the {monster}!” which leads to experience
gain. ONI-classification, which also predicts binary rewards but is able to generalize to
unseen messages, provides a modest but consistent improvement over ONI-retrieval across all
environments. This suggests that learning a reward model is indeed helpful. We would expect this
gap to increase in settings with added noise or caption diversity, since they increase the likelihood
of observed captions being unique.

We do not observe any significant gains from using ONI-ranking over ONI-classification,
despite it being more conceptually general and able to represent a continuous range of intrinsic
rewards rather than binary values. This may be because our tasks take place at the very earliest
part of the game of NetHack, where only a small fraction of all possible messages are observed,
which would also explain the relatively strong performance of ONI-retrieval. We hypothesize
that more benefits will appear in settings with higher observation diversity.

ELLM-BoW performs surprisingly well on these tasks, closely tracking or matching Motif and ONI
methods. However, in Section 5.2 we highlight a fundamental limitation of ELLM-BoW, namely its
inability to capture complex semantic meaning, whereas ONI is capable thanks to its use of an LLM.
It is worth noting that directly using ELLM-BoW as in Du et al. (2023a) without our episodic bonus
completely fails, see Appendix C.7.

Game Progress of Intrinsic-Reward-Only Agents Results for all methods trained in the reward-
free setting are shown in Figure 5.1b. All of our ONI methods are able to make meaningful progress
across all metrics. Interestingly, different variants appear to prioritize different forms of progress:
ONI-ranking performs best in terms of experience level, whereas ONI-classification per-
forms best according to the other metrics. We include the results of Motif for reference, yet empha-
size it is actually inapplicable in a truly reward-free setup since it assumes access to dense rewards.

5.2 COMPARISONS FOR MORE COMPLEX GOALS

Even though ELLM-BoW performs well in Section 5.1, we have found that it does not capture the
semantic meanings of more complex goal strings due to the simple bag-of-word representation. To
demonstrate this, we train ELLM-BoW and ONI-retrieval for two opposite goals in the extrinsic-
reward-free environment: (Gold) “collect gold but do not kill monsters” vs (Combat) “kill monsters
but do not collect gold”. Figure 5.2 shows that ELLM-BoW produces two agents of nearly identical
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behavior in terms of collected gold and killed monsters. In contrast, ONI-retrieval is able to
distinguish the two goals and produces agents that emphasize either combat engagement or gold
collection, depending on the goal string. See Appendix C.6 for the goal strings for ELLM-BoW and
prompts for ONI-retrieval, respectively.
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(a) ELLM-BoW under 2 different goals
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(b) ONI-classification under 2 different goals

Figure 5.2: (a) ELLM-BoW is not able to understand the semantic meaning of complex goals,
resulting in agents with similar behavior under the combat and the gold goal. (b) ONI-retrieval
can distinguish the goals and the resulting agents focus on different aspects of game progress.

5.3 ABLATION STUDY

ONI-classification: the impact of the classification threshold As described in Section 3.2,
ONI-classification predicts binary rewards by modeling P (yt = 1|ot) and then thresholding
with η. Instead of using binary reward, an alternative design choice is to use real valued reward

rint(ot) = P (yt = 1|ot), (6)

where rint(ot) ∈ [0, 1]. is the output of the reward classifier before thresholding. Figure 5.3 shows
that the performance of ONI-classification on the four NetHack tasks is relatively robust to
this hyperparameter η, and using P (yt = 1|ot) as the reward leads to similar performance. As
the training progresses, our reward model outputs values close to 0 or 17, and we hypothesize this
is the reason why the final performance remains comparable. Moreover, the natural classification
threshold η = 0.5 marginally outperforms the other values in the reward-free setting.
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Figure 5.3: (Top) Performance of ONI-classification is robust to different choices of the
classification threshold η on the four NetHack tasks. (Bottom) η = 0.5 marginally outperform the
other values for training intrinsic-reward-only agents. The result when using P (yt = 1|ot) as reward
(6) is marked with legend oni-classification (no eta).

Performance vs. LLM Annotation Throughput We compared agents trained on the Score and
Oracle tasks using either 1 or 4 Tesla V100-32GB GPUs in the LLM server node. As shown in
Figure 5.4, using 4 GPUs rather than 1 significantly increases the number of annotated observations.
However, we do not find any significant change in performance between the two. This suggests that

7To increase the diversity of the captions in the training dataset, we do not requery the LLM server if a
caption is already annotated before. Therefore, every caption in our dataset only has a single label, resulting in
this phenomenon.
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many of the labelled examples may contain redundant information, which is not useful for updating
the reward model. Designing more sophisticated prioritization schemes, which can select maximally
informative examples to send to the LLM, constitutes an interesting direction for future work.
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Figure 5.4: Performance remains comparable despite doubling LLM annotations, as seen in re-
sults with LLM server utilizing 1 GPU vs. 4 GPUs. The number of annotations received by
ONI-ranking is lower than the other two, as the LLM server analyzes two messages for each
annotation (see the prompts in Appendix B).

Performance When Reducing LLM Annotations Thus far we have been using all LLM an-
notations available. It is also intriguing to check the performance when we limit the volume
of annotations, to simulate more resource-constrained settings. Here we subsample the LLM-
annotated messages with rate 0.1 and 0.01 before sending them back to the hash table. Fig-
ure 5.5 shows that the performance of ONI-retrieval significantly drops with rate 0.01, whereas
ONI-classification remains comparable. This suggests that using a parametric reward model
can help reduce the number of annotations required thanks to its generalization ability.
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Figure 5.5: Performance of ONI-retrieval plunges when the subsampling rate reduces to 0.01,
while performance of ONI-classification is still comparable with the original one.

Impact of Intrinsic Reward Coefficient β For ONI-classification and ONI-retrieval, we
have used different values of β for the Score task and other sparse reward tasks in Section 5.1.
Throughout our experiments, we have found that for these two methods, larger values of β lead to
better performance for the sparse reward tasks, while smaller values of β better balance between
intrinsic and extrinsic rewards for the dense reward Score task. In comparison, ONI-ranking
is relatively robust to this choice, where larger values of β are still slightly favored for the sparse
reward tasks. We include details in Appendix C.3.

6 CONCLUSION

We have introduced ONI, a distributed online intrinsic reward and agent learning system. We
showed that we are able to match the state of the art across a range of challenging sparse reward tasks
from the NetHack Learning Environment, while removing the need for a large pre-collected dataset
or auxiliary dense reward function required by previous work. We explored three different instan-
tiations of our system of varying levels of complexity and generality, and study their tradeoffs. Our
work paves the way for intrinsic reward methods which can learn purely from agent experience, are
not constrained by external dataset size or quality, and can leverage high-performance RL training.
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A EXPERIMENTAL DETAILS

A.1 ARCHITECTURES

Our architectures largely follow those used in Klissarov et al. (2023).

Our policy network uses the Chaotic Dwarven GPT5 architecture originally introduced in Myf-
fili (2021). This architecture combines convolutional layers processing the top-down visible map
centered at the agent with fully-connected layers processing messages and bottom-line statistics
including hit points, experience, hunger level and the like. The convolutional encoder has 3 con-
volutional layers with 32, 64, 128 feature maps respectively, interleaved with exponential linear unit
(ELU) non-linearities (Clevert et al., 2016). Messages and bottom-line statistics are each processed
with 2-layer MLPs with 128 hidden units each. All embeddings are combined, passed through a
single-layer MLP with 512 hidden units, and then passed to a recurrent GRU module (Cho et al.,
2014) with 512 hidden units. Finally, this hidden representation feeds into linear critic and actor
heads.

Our reward model The reward model of ONI-ranking is based on the encoder from Küttler et al.
(2020) that processes both state representation and messages. Messages are processed by a 5-layer
character-level CNN (Zhang et al., 2015) with 64 feature maps at each layer. The first, second and
last layers are interleaved with max-pooling layers with kernel size and stride 3. The output is then
passed through a 3-layer MLP with 128, 256, 512 hidden units at each layer respectively, and ReLU
non-linearities, followed by a scalar output. The reward model of ONI-classification only process
messages, using the same architecture described above.

A.2 HYPERPARAMETERS

Following Klissarov et al. (2023), we scale the environment reward by 0.1 for the Score task and
by 10 for the other sparse reward tasks, and use normalized intrinsic reward

rintnormalized(ot) = rint(ot)/N(ct)
z, (7)

where N(ct) is the number of times the caption ct has been found in one episode. For all our
experiments, we use z = 3.0. This is also called the episodic bonus (Henaff et al., 2022b).

For ONI-classification and ONI-ranking, we train the reward model using the Adam opti-
mizer (Kingma, 2014) with batch size 256. ONI-classification is trained with learning rate
0.0001, classification threshold η = 0.7, β = 0.1 for the Score task and β = 0.4 for the others.
ONI-ranking is trained with 0.00001, β = 0.05 and νN = 1.96 (97.5-th quantile of the standard
normal distribution). ONI-retrieval does not train a reward model, and we use β = 0.1 for the
Score task and β = 0.5 for the others.

Table A.1 shows the APPO hyperparameters which are common to all experiments and Table A.2
includes the hyperparameters for the online LLM annotation.

Hyperparameter Value

Number of Parallel Environment Instances 480
Batch Size 4096
PPO Clip Ratio 0.1
PPO Clip Value 1.0
PPO Epochs 1
Max Gradient Norm 4.0
Value Loss Coefficient 0.5
Exploration Loss entropy

Table A.1: Common APPO hyperparameters across all experiments.
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Hyperparameter Value

LLM Model LLaMA-3.1-8B-Instruct
Temperature 0.1
Max tokens to generate 4096
Annotation Batch Size 100

Table A.2: LLM annotation hyperparameters.

A.3 IMPLEMENTATION DETAILS FOR ELLM-BOW

For any piece of text c, we construct an embedding vector by first applying the FastText tokenizer
(Bojanowski et al., 2016) to the text, separating it into words c = (w1, ..., wm). We then retrieve the
FastText word embeddings x1, ..., xm for each word, and compute their sum embed(c) =

∑m
i=1 xi.

The intrinsic reward is then defined by the cosine distance between the embeddings of the caption
of the current observation and the goal, weighted by an episodic count-based term::

r(ot) =
1

Ne(ct)z
· embed(ct) · embed(g)
∥embed(ct)∥ · ∥embed(g)∥

We include the episodic term for consistency with Motif and ONI. In Section C.7, we ablate this
choice and show that it is essential for good performance.
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B PROMPTS

Here we include all the LLM prompts we use. The system prompt and the prompt for ONI-ranking
are identical to the ones used in Klissarov et al. (2023). We adapted these to produce labels for single
observations for ONI-retrieval and ONI-classification.

System Prompt (used by all methods)

You are a helpful and honest judge of good gameplaying and progress in
the NetHack game. Always answer as helpfully as possible, while being
truthful.

If you don’t know the answer to a question, please don’t share false
information.

Prompt for ONI-retrieval and ONI-classification

Context: I am playing NetHack and I will present you a message from the
gameplay.

Instruction: First, tell me about your knowledge of NetHack. Mention the
goal of NetHack.
Then, write an analysis describing the semantics of each message using
your knowledge of NetHack. Finally, respond by assigning a score to the
message, which measures whether the status represented by the message is
helpful or unhelpful to make some progress towards the goal.
Helpful here does not mean whether it is informative to the player to
make decisions or not, but whether it is helpful for the agent to solve
the game.
I prefer agents that maximize the score in the game, for instance by
killing monsters, collecting gold or going down the stairs in the dungeon
.
For extremely helpful messages, assign a label FOO. For unhelpful,
neutral, and lukewarm messages, assign a label BAR.

Example 1: "You kill the goblin! Welcome to experience level 4"
indicates that the player
has killed a goblin and gained experience. This led to a level up and
increased abilities.
Gaining experience and leveling up are both extremely helpful and this
message should be labelled as FOO.

Example 2: "You hear someone counting money." indicates that the player
is close to a source of gold, as the sound of counting money suggests a
nearby NPC or monster with treasure.
This is also extremely helpful and should be labelled as FOO.

Example 3: "5 gold pieces." indicates you collected 5 gold coins. This is
extremely helpful should be labelled as FOO.

Example 4: "That door is closed." is neutral and should be labelled as
BAR.

Please rate this message: {{"{}"}}

Constraint: Please format your response strictly in this format without
additional explanation:
<knowledge> [your knowledge of NetHack] </knowledge>
<analysis> [your one-sentence analysis of the message] </analysis>
<label> [FOO/BAR] </label>
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Prompt for ONI-ranking

I will present you with two short gameplay descriptions.
First, tell me about your knowledge of NetHack. Mention the goal of
NetHack. Prefer agents that maximize the score in the game, for instance
by killing monsters, collecting gold or going down the stairs in the
dungeon.
Then, write an analysis describing the semantics of each description
strictly using information from the descriptions (which may be empty) and
your knowledge of NetHack.

Provide a comparative analysis based on first princicples.
Finally, respond by explicitly declaring which one is the most likely to
make some progress towards the goal, writing either ("best_description":
1), ("best_description": 2). You could also say ("best_description": None
).

{{
"description_1":
"{}"
}}

{{
"description_2":
"{}"
}}
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C ADDITIONAL RESULTS

C.1 LLAMA-3.1-70B-INSTRUCT VS LLAMA-3.1-8B-INSTRUCT

In Figure C.1, we compare the performance of Motif using two different sized LLMs on Score and
Oracle (LLaMA-3.1-8B-Instruct and LLaMA-3.1-70B-Instruct). Interestingly, we do not observe
a significant difference between the two. This is in contrast to the previous work of (Klissarov et al.,
2023), who found a significant difference between using LLaMA-2-70B-chat and LLaMA-2-7B-
chat. This suggest that the smaller 8B model is sufficient for evaluating messages on these tasks,
hence we use it in our experiments.
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Figure C.1: Performance of Motif using two different LLMs. Curves represent means and shaded
regions represent standard errors over 5 seeds.

C.2 PERFORMANCE VS. LLM THROUGHPUT: TESLA V100 VS TESLA A100 GPU
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Figure C.2: Performance of ONI-classification is comparable when the LLM server uses a
Tesla A100-80GB or V10-32GB GPU.
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C.3 IMPACT OF INTRINSIC REWARD COEFFICIENT β
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Figure C.3: For ONI-retrieval and ONI-classification, sparse reward tasks favor larger
intrinsic reward coefficient β while smaller values of β lead to better results for the dense reward
Score task. For ONI-ranking, we do not observe much difference for the Score task, but the
sparse reward tasks still slightly favors larger β.

C.4 PERFORMANCE WHEN REDUCING LLM ANNOTATIONS

To investigate the effect of reducing the number of LLM annotations, we subsample the LLM an-
notated messages before sending them back to the hash table (see Section 3.2). Figure 5.5 shows
the performance of ONI-retrieval and ONI-classification on Oracle when the subsam-
pling rate is 0.1 and 0.01. ONI-classification is more robust than ONI-retrieval, where its
performance is still on par with the original one even when the subsampling rate reduces to 0.01,
whereas ONI-retrieval’s performance drops significantly.

C.5 ADDITIONAL ABLATIONS

ONI-ranking: the impact of sampling strategy for LLM annotation and reward training Un-
like ONI-classification that uses a LIFO queue to rank captions for LLM annotation, it is more
subtle to design the most effective sampling strategy for ONI-ranking, where we need to construct
pairs of captions to annotate and use for reward model training. Here we study the effect of dedu-
plicating captions before passing them to our pipeline. In either case, we maintain a message list L,
and sample pairs of captions c1, c2 ∼ Uniform(L×L) for annotation. The annotated message pairs
are stored in another list, which is sampled from uniformly when training the reward model. In the
first option, each time the agent encounters a message, we check if it is already stored in L and only
add it if not. This is similar to the approach used in ONI-classification. In the second option,
we simply add all captions encountered by the agent into L, regardless of whether they have already
been seen before. This approach is similar to that taken by the original Motif work, which does not
perform any deduplication of the offline dataset.

Figure C.4 shows the performance and the number of captions stored in the replay buffer for both
schemes. We see that for the deduplicated variant, the number of captions does not grow past a
certain point (approximately 70k unique captions). For the non-deduplicated variant, the number of
captions keeps growing linearly over time. The deduplicated variant fails to learn, which highlights
the important effect which the annotation dataset can have. We hypothesize that the deduplicated
variant may undersample captions that occur frequently in the agent’s experience, for which it is im-
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portant to reliably estimate reward. For example, the blank message occurs very frequently during
policy learning, but is only included in a small fraction of the pairs sent to the LLM for annotation,
since it is sampled with the same probability as the other ∼ 70k other captions. In contrast, the
duplicated variant samples the blank message and other frequent captions with much higher proba-
bility. Still, this remains a simple strategy, and designing more sophisticated sampling mechanisms
(for example, that account for the epistemic uncertainty of the reward model) would be an interesting
direction for future work.
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Figure C.4: Performance and number of captions in the replay buffer for agents trained with and
without message deduplication. Keeping the natural distribution of captions, and not deduplicating,
is important to enable our ranking-based method to learn.

C.6 GOAL STRING AND PROMPTS USED IN SECTION 5.2

For the experiments in Section 5.2, we use the goal strings from (Klissarov et al., 2023) used to
induce different behaviors in agents, such as the Gold Collector, Monster Slayer or Descender.
These goal string explicitly aim to maximize one metric while minimize the others. The default goal
string is the same used in ONI prompts.

C.6.1 PROMPT USED FOR ELLM-BOW

Default Goal

Prefer agents that maximize the score in the game, for instance by
killing monsters, collecting gold or going down the stairs in the dungeon
.

Combat Goal

Prefer agents that engage in combat, for instance by killing monsters.
But never prefer agents that collect ANY gold or that go down the dungeon
.

Gold Goal

Prefer agents that maximize their gold. But never prefer agents that
maximize the score in other ways (e.g., by engaging in combat or killing
monsters) or that go down the dungeon.

C.6.2 PROMPT USED FOR ONI-RETRIEVAL

The prompt used for ONI methods have been modified to reflect the change of goals, which we list
in the next subsection. In addition to the changes of goal description, we use the same examples as
in Appendix B but changed its label.

Combat Goal

Context: I am playing NetHack and I will present you a message from the
gameplay.

Instruction: First, tell me about your knowledge of NetHack. Mention the
goal of NetHack.
Then, write an analysis describing the semantics of each message using
your knowledge of NetHack. Finally, respond by assigning a score to the
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message, which measures whether the status represented by the message is
helpful or unhelpful to make some progress towards the goal.
Helpful here does not mean whether it is informative to the player to
make decisions or not, but whether it is helpful for the agent to solve
the game.
I prefer agents engage in combat, for instance by killing monsters. But
never prefer agents that collect ANY gold or that go down the dungeon.
For extremely helpful messages, assign a label FOO. For unhelpful,
neutral, and lukewarm messages, assign a label BAR.

Example 1: "You kill the goblin! Welcome to experience level 4"
indicates that the player
has killed a goblin and gained experience. This led to a level up and
increased abilities.
Gaining experience and leveling up are both extremely helpful and this
message should be labelled as FOO.

Example 2: "You hear someone counting money." indicates that the player
is close to a source of gold, as the sound of counting money suggests a
nearby NPC or monster with treasure.
This is not helpful and should be labelled as BAR.

Example 3: "5 gold pieces." indicates you collected 5 gold coins. This is
not aligned with our goal and should be labelled as BAR.

Example 4: "That door is closed." is neutral and should be labelled as
BAR.

Please rate this message: {{"{}"}}

Constraint: Please format your response strictly in this format without
additional explanation:
<knowledge> [your knowledge of NetHack] </knowledge>
<analysis> [your one-sentence analysis of the message] </analysis>
<label> [FOO/BAR] </label>

Gold Goal
Context: I am playing NetHack and I will present you a message from the
gameplay.

Instruction: First, tell me about your knowledge of NetHack. Mention the
goal of NetHack.
Then, write an analysis describing the semantics of each message using
your knowledge of NetHack. Finally, respond by assigning a score to the
message, which measures whether the status represented by the message is
helpful or unhelpful to make some progress towards the goal.
Helpful here does not mean whether it is informative to the player to
make decisions or not, but whether it is helpful for the agent to solve
the game.
I prefer agents that maximize their gold. But never prefer agents that
maximize the score in other ways (e.g., by engaging in combat or killing
monsters) or that go down the dungeon.
For extremely helpful messages, assign a label FOO. For unhelpful,
neutral, and lukewarm messages, assign a label BAR.

Example 1: "You kill the goblin! Welcome to experience level 4"
indicates that the player
has killed a goblin and gained experience. This is not aligned with our
goal and should be labelled as BAR.

Example 2: "You hear someone counting money." indicates that the player
is close to a source of gold, as the sound of counting money suggests a
nearby NPC or monster with treasure. This is extremely helpful and should
be labelled as FOO.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Example 3: "5 gold pieces." indicates you collected 5 gold coins. This is
extremely helpful and should be labelled as FOO.

Example 4: "That door is closed." is neutral and should be labelled as
BAR.

Please rate this message: {{"{}"}}

Constraint: Please format your response strictly in this format without
additional explanation:
<knowledge> [your knowledge of NetHack] </knowledge>
<analysis> [your one-sentence analysis of the message] </analysis>
<label> [FOO/BAR] </label>

C.7 EFFECT OF THE EPISODIC TERM FOR ELLM-BOW

Our implementation of ELLM-BoW has included the episodic-count based normalization (7), which
is key to the performance of ELLM-BoW. Figure C.5 shows that directly using ELLM-BoW as in
Du et al. (2023a) ELLM-BoW, without the episodic term, failed to make progress in all three tasks.
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Figure C.5: ELLM-BoW performs well when the intrinsic reward is normalized by an episodic-
count based term as in (7). Without it, the success rate is zero for all the three tasks.

D ADDITIONAL RELATED WORK

LLM for RL Broadly Another way of leveraging the prior knowledge encoded in LLMs for de-
cision making is to use the LLM directly as a policy. This approach has been successfully used
in robotics (Ahn et al., 2022; Driess et al., 2023), as well as open-ended exploration in MineCraft
(Wang et al., 2024). Both settings require the LLM to operate at a higher level of abstraction, by
having it call upon a set of semantically grounded skills which handle the low-level sensorimotor
activity. These are in turn produced by imitation learning on expert trajectories or hardcoded APIs.
Jeurissen et al. (2024) prompt the LLM to choose a predefined skill to play NetHack. The prompts
are constructed to represent past events, current observation, and the task description and hardcoded
available skills are also included. More references on LLMs for decision making can be found in
the survey paper of Cao et al. (2024).
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