Under review as a conference paper at ICLR 2025

COMBINING ANALYTICAL SMOOTHING WITH
SURROGATE LOSSES FOR IMPROVED
DECISION-FOCUSED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Many combinatorial optimization problems (COPs) in routing, scheduling, and
assignment involve parameters such as price or travel time that must be predicted
from data; so-called predict-then-optimize (PtO) problems. Decision-focused
learning (DFL) is a family of successful end-to-end techniques for PtO that trains
machine learning models to minimize the error of the downstream optimization
problems. This requires solving the COP for each training instance with the pre-
dicted parameters and computing the derivative of the solution with respect to the
predicted parameters—tasks that become computationally prohibitive for large
COPs. When the COP is an integer linear program (ILP), a recent work, DY S-Net,
applies Davis-Yin splitting (DYS) to solve and differentiate through quadratically
regularized ILP. While this fully neural approach significantly accelerates training,
it has only been evaluated on datasets where true cost parameters are unobserved,
limiting its comparability to state-of-the-art techniques. In this work, we experi-
mentally demonstrate that minimizing empirical regret using DY S-Net results in
suboptimal regret on test data compared to state-of-the-art DFL methods across
three different COPs. We attribute this to the plateau effect: regret remains constant
over regions of the parameter space, with sharp changes occurring only at transi-
tion points resulting in low gradient values over much of the space when regret
is minimized. We illustrate how minimizing a noise contrastive surrogate loss
avoids this problem. Through extensive experiments, we show that minimizing this
surrogate loss allows DY S-Net to achieve test regret levels that are comparable to
or lower than the state-of-the-art methods. Moreover, by achieving state-of-the-art
regret levels with significantly reduced training times, our approach represents
a substantial advance in DFL research, particularly in improving its scalability
towards large-scale PtO problems.

1 INTRODUCTION

Many decision-making problems in real-world can be cast as optimization problems. Some parameters
of these optimization problems are often unknown due to uncertainty or the anticipation of future
events. As prediction of these parameters is crucial for making high-quality decisions, leveraging
contextual information is important at prediction time. The availability of historical data, combined
with the rapid growth of predictive machine learning (ML), has fueled increasing interest in data-
driven contextual optimization (Sadana et al., 2025)).

When the goal is to predict parameters (such as cost or travel time) of an optimization problem,
such problems can be viewed as “predict-then-optimize”(PtO) problems, including two key steps
the prediction of the unknown parameters and the subsequent optimization using those predicted
parameters. Prediction-focused learning is the approach to tackle PtO problems by treating the
prediction step independent of the optimization step, based on the assumption that increasing accuracy
of predictions would lead to good quality decisions. However, in practice, ML models fail to achieve
100% accuracy, and in the presence of prediction errors, such a prediction-focused approach fails
to consider how the error in predictions impacts the solution to the optimization problem. This fact
motivates the research in decision-focused learning (DFL), as surveyed by |Mandi et al.|(2024)).

Under review as a conference paper at ICLR 2025

DFL trains ML models to predict the uncertain parameters by directly minimizing the task loss,
which reflects the quality of the solutions made using the predicted parameters. Gradient-based DFL
entails computing the derivative of the optimization problem’s solution with respect to the predicted
parameters. However, for combinatorial optimization problems (COPs), this derivative is almost
always zero because slight parameter changes typically do not alter the solution, except at certain
transition points where the derivative does not exist.

In this paper, we focus on predicting parameters of COPs, where the predicted parameters appear
linearly in the objective function. Previous works in DFL use two broad categories of approaches
for such problems: (a) turning the COP into a differentiable mapping by smoothing the optimization
to a convex optimization problem (Wilder et al.||2019; Mandi & Guns| 2020), and then minimizing
the task loss, and (b) using surrogate loss functions (Elmachtoub & Grigas} |2022; Mulamba et al.,
2021} Mandi et al.|[2022)), for which gradients or subgradients exist. Both approaches require solving
the (smoothed) COP for each training instance with the predicted cost parameter and computing
the derivative of the COP solution with respect to the predicted parameter. This poses significant
scalability challenges, especially for large-scale COPs.

To improve the scalability of DFL, McKenzie et al.| (2024) recently developed a fast, fully differ-
entiable neural optimization layer, DY S-Net, for integer linear programs (ILPs). DYS-Net can be
viewed within the first category of DFL approaches, as it incorporates neural smoothing of the LP.
As DYS-Net can be implemented entirely as a neural network, it significantly accelerates training.
However, [McKenzie et al.| (2024)) consider datasets where true cost parameters are unobserved,
whereas in most PtO benchmark problems, as in (Tang & Khalill [2023)), it is assumed that the true
parameters are observed. Consequently, DYS-Net has not been compared to state-of-the-art DFL.
techniques.

In this work, we consider the task of minimizing the empirical regret of the training set using DY S-Net
in datasets, where the true cost parameters are observed. We argue that this would result in low
gradient values over much of the space as regret remains constant over regions of the parameter space,
with sharp changes occurring only at transition points. To address this, we propose to minimize the
surrogate losses, even though it is possible to minimize regret directly by differentiating through the
smoothed optimization problem. We justify the advantage of using a surrogate loss by comparing the
pattern of the gradient landscape with respect to regret and the surrogate loss. In this way, this paper
combines the two approaches of DFL. Minimizing the surrogate losses using DY S-Net allows us to
accelerate DFL with regret lower than or equal to state-of-the-art DFL techniques.

In summary, this paper makes the following contributions:

* We show that although ‘smoothing’ makes the optimization problem differentiable, the
gradient remains zero over most of the parameter space due to the plateau effect.

* To address the plateau effect which occurs even after smoothing, we combine the two
families of DFL approaches by minimizing a surrogate loss post-smoothing.

* We empirically demonstrate that for smoothing approaches, minimizing surrogate losses
results in lower regret on test data than minimizing the regret.

* We show that by minimizing the surrogate loss using DYS-Net achieves regret comparable
to existing state-of-the-art methods while reducing training time by up to five-fold.

2 PREDICT-THEN-OPTIMIZE PROBLEM DESCRIPTION

In PtO problems, decisions are made by solving COPs. In this work, we focus on COPs with linear
objectives and the prediction of objective function parameters. These COPs can be formulated as
LPs or integer LPs (ILPs), both of which have extensive practical applications. Any LP can be
transformed in the following standard LP form:

v*(y) =argminy v st. Av=b; v>0 (1)

where v € R¥ is a decision variable and v*(y) is the optimal solution for a given cost parameter
y € R ILPs differ from LPs in that the decision variables v are restricted to integer values. For
brevity, we use JF to denote the feasible space. So, for the standard LP formulation, F = {v €
R%|Av = b ;v > 0}. Unless it is explicitly stated otherwise, v* will denote v*(y).

Under review as a conference paper at ICLR 2025

To account for uncertainty in the decision-making, PtO problems comprise two steps—the prediction
of the unknown parameters and solving the optimization problem using the predicted parameters.
We consider PtO formulation, where the vector of cost parameters ¥ is not known prior to solving.
Instead, a list of contextual information ¢, correlated with y is available for predicting y. In PtO
problems, an ML model M, (with trainable parameters w) is trained to map ¢ — y using past
observation pairs {(¢;, y;)} ;. Given their success in predictive tasks, neural networks have become
the preferred choice for the predictive modeling task in PtO problems.

A straightforward approach to the PtO problem is to train M, to generate accurate parameter
predictions § = M, (¢) by minimizing the prediction errors with respect to ground-truth y. Previous
works (Wilder et al.| 2019} [EImachtoub & Grigas| [2022; Mandi et al., [2020) justify why such a
prediction-focused approach produces suboptimal performance. By contrast, in decision-focused
learning (DFL), the ML model is directly trained to optimize the task loss, the quality of the resulting
decisions. When only the parameters in the objective function are predicted, the task loss of interest is
typically regret, which measures the suboptimality of a decision resulting from prediction errors. The
regret for making the decisions v under the true realization y can be expressed in the following form:

Regret(v,y) =y v —y v*(y) 2

In PtO problems, one can consider other task losses (Appendix [H)), such as squared decision errors
(SqDE) between v*(y) and v*(§), i.e., S¢DE = ||v*(y) — v*(9)]|>.

3 DECISION-FOCUSED LEARNING FOR COMBINATORIAL OPTIMIZATION

The DFL approach trains M, to directly minimize +; Zi\;l Regret(v*(My(¢:)), yi), the empirical
risk minimization counterpart of E[Regret(v* (M, (¢)), y)] since the true distribution is unknown.
This minimization of regret in gradient descent-based learning requires backpropagation through the
COP, which involves computing the derivative of v*(§) with respect to § = M, (¢). While %éy)
can be computed for convex optimization problems through implicit differentiation (Agrawal et al.|
2019; Amos & Kolter} 2017), it is more challenging when the optimization problem is combinatorial.
This is because when the parameters of a COP change, the solution either remains unchanged or
shifts abruptly, meaning the derivatives are almost always zero and undefined at abrupt changes.

Broadly there are two approaches of implementing DFL for COPs: (a) smoothing the COP to a
smooth convex optimization problem and (b) using a surrogate loss that is differentiable. For a
detailed discussion on how existing DFL techniques tackle this challenge, we refer readers to the
survey paper by Mandi et al.| (2024).

3.1 DIFFERENTIABLE OPTIMIZATION BY SMOOTHING OF COMBINATORIAL OPTIMIZATION

To address this, methodologies in this category modify the optimization problem by smoothing and
then analytically differentiate the ‘smoothed’ optimization problem. (Readers may refer to Appendix
[for detailed explanation.) In this work, we focus on optimization problems with linear objective
functions such as LPs and ILPs. For LPs, [Wilder et al.| (2019) propose transforming the LPs into
‘smoothed’ quadratic programs (QPs) by augmenting the objective function with the square of the
Euclidean norm of the decision variables in the following form:

ming v + pllv|3 st. Av=b;v>0 3)

where 1 > 0 is the smoothing parameter, controlling the strength of smoothing. After smoothing, the
solution is not restricted to being at a vertex of the LP polyhedron. In the ‘smoothed’ problem, unlike
the original LP, the solution do not change abruptly. The solution either may not change or change
smoothly with the change of the cost vector, as illustrated in Figure Consequently, v*(§) becomes
differentiable with respect to §j. The QP smoothing approach has been applied in various DFL works
(Ferber et al., [2020; 2023 McKenzie et al.,[2024). Mandi & Guns|(2020) consider another form of
smoothing by adding logarithm barrier term into the LP. When the underlying optimization problem
is an ILP, smoothing of the LP, resulting from the continuous relaxation of the ILP is carried out.

Under review as a conference paper at ICLR 2025

\ N
\ N N N =
\ p: ./
L& (A /;V
A ~ 07N
. Ry
A g
VAR \
/ /
(a) LP Solutions (b) Solutions to the QP smoothing

Figure 1: Schematic diagram showing the effect of QP smoothing. (a) LP solutions and the corre-
sponding isocost line for four cost vectors. The green, cyan and red cost vectors result in the same
solution, the top vertex, highlighting that a slight rotation of the isocost lines may not alter the LP
solution. However, if the isocost lines rotate too much, for example, the violet line, the solution
suddenly shifts to a different vertex. (b) The isocost lines change after applying QP smoothing, and
the solution is no longer restricted to a vertex. For example, the red vector results in a smooth change
in the solution. However, even with smoothing, some cost vectors, like the cyan and green, may still
share the same solution.

3.2 SURROGATE LOSSES FOR DFL

Surrogate loss functions are used for training in DFL because they are crafted to have non-zero
(sub)gradients everywhere while also directly correlating with the task loss—as regret decreases,
surrogate loss functions decrease as well. We focus on two surrogate losses, used widely in DFL.

3.2.1 SMART PREDICT THEN OPTIMIZE(SPO)

The SPO+ loss (Elmachtoub & Grigas, 2022), a convex upper bound of Regret(v*(§),y), is one of
the first and most widely used surrogate losses for linear objective optimization problems.
Regret(v*(§),y) =y v* () —y v" =y v"(§) — 2§ 0" (§) + 29 0" () —y "

S ma;c_{yT'v’ _ ZgT,U/} + ZgT’U*(’g) _ yT’U* S ma;g{yT'u' _ ngvl} =+ 27)T’U* _ yT’U*
v'e v'e

L"spoJr ('U* ('g)’ y)
Instead of minimizing Regret, they propose to minimize this convex upperbound, which is called
Lspo+(v*(F),y) loss. It can be expressed in the following form:

Lspo+(v*(9),y) = g}gjg{?fv* —y'v' = (29 -y) v} =29 —y) v* — min {29 -y) v’}

v'eF
=20-y) v - (29 -y) v (25 -y @)
They also propose the following sub-gradient for gradient-based training using any solver of choice:
Vi =2(0" —v*(29 —y)) (5)

3.2.2 CONTRASTIVE LOSS

Mulamba et al.[(2021) propose a surrogate loss based on noise-contrastive estimation (NCE) (Gutmann
& Hyvirinen, 2012). The loss is derived by considering the log-likelihood ratio between v* and other
feasible points v’. By maximizing this likelihood, they propose to minimize the following NCE loss:

Lnep(v'(§),y) = max {§To* = § o'} =§ o — min {§To'} =g v" —§Tv*(G) (©)

Note that Lyc g is similar to Lgpo+, except that in Lycg, 29 — y is replaced with g. This
introduces a shortcoming in £ y¢g. The minimum of £ ¢ g, which is zero, can be achieved either
when v*(§) = v* or by predicting § = 0. To prevent minimizing £Lxycg by predicting § = 0,
Mulamba et al.[(2021)) further modify £ ¢ g to derive the self-contrastive estimation (SCE) loss:

Lsce(v*(@),y) = (G-y) v —(G-y) v (@G =9 v ~g v (@) +y v (G -y v (y) D

Under review as a conference paper at ICLR 2025

Proposition 1. Lscg(v*(§),y) has the following properties (proof is given in Appendix @)
>

1. Lscr(v*(9),y) >0

2. When the set of optimal solutions is a singleton
Lsor@'(8).y) =0 = Regret(v*(9).y) = 0;
Regret(v*(9),y) =0 = Lscr(v*(§),y) = 0.

We also show generalization bounds for SCE loss in Appendix [J]

When Lsc g is minimized using a blackbox optimization solver, the gradient would be:

V/JSCE =v" - ’U*(’g) (8)

3.3 ADDRESSING THE SCALABILITY OF DFL

Implementing DFL entails a significant computational burden, as it requires solving and differentiating
the COP or the ‘smoothed” COP for each training instance in every epoch using predicted parameters.
Mulamba et al.| (202 1)) address the scalability issue by using solution caching instead of repeatedly
solving the optimization problem. [Tang & Khalil| (2024) avoid solving the COP during training using
an approach, called CaVE, by minimizing the angle between the predicted cost vector and the ‘normal
cone’ of the true optimal solution, While such approaches aim to avoid solving the COP to improve
scalability, a faster and more scalable implementation of the optimization problem is another research
direction, which has been receiving increasing attention recently. Research in this area is tangential
to the learning-to-optimize paradigm (Bengio et al., 2021} |Kotary et al.l 2021}, which trains an ML
model to output COP solutions directly from the parameters.

In order to find a heuristic solution to a COP using ML, graph neural networks emerge as a key
building block (Khalil et al., 2022} |Cappart et al.l [2023)). However, for quadratically regularized
LPs, a recent work by McKenzie et al.| (2024)) demonstrate that a simple feedforward neural network
can be used to obtain a heuristic solution. Their technique, called DYS-Net, is based on a three-
operator splitting technique (Davis & Yin, 2017) to compute the solution. Next, we will provide a
brief overview of DYS-Net, as we aim to train by minimizing a surrogate loss using DY S-Net for
accelerating DFL.

DYS-Net for LPs. The principle of DYS-Net emerges from projected gradient descent (Duchi
et al., 2008). Projected gradient descent differs from standard gradient descent in that after each
iteration, the current predictions are projected into the feasible space if they are not in the feasible
space. However, projecting into the feasible space of a combinatorial optimization problem is itself
an expensive operation. If we consider standard form LPs, the feasible space can be expressed as:

F = F1 N Fy where F; = {Av = b} and F, = {v > 0}.

Although projecting an infeasible solution v directly into J is not a trivial operation, projecting into
F1 and F, separately are much simpler tasks. Projecting into F; takes the following form:

Pr (v) =v — AT(Av —b)
where Al is the pseudo inverse of A. Projecting into F takes the following form:
Pr,(v) = max{0, v}

where max operates element-wise. |Cristian et al.| (2023)) propose an iterative approach, continuously
alternating between Pr, and Pz, . In contrast, DY S-Net introduces the following fixed point iteration
algorithm based on a three-operator splitting method.

Vg1 = v — Pr,(vg) + Pr, ((2 — ap)Pr,(vg) — v, — ay) (DYS)

which converges to v*(y) as k — oo. In practice, we use a finite number of iterations k in a single
forward pass to get an approximation of v*(y). Note that all operations in Eq. can be expressed
as matrix operations and can be implemented using neural networks, which has the potential for
greater scalability and reduced training time by leveraging recent advancements in GPU hardware.

Under review as a conference paper at ICLR 2025

We denote the solution obtained in this method as DY'S(y). In practice, Eq. would be iterated
for a finite number of steps and the resulting solution will be a close approximation to the true optimal
outcome. One can view DY S-Net as differentiable optimization by ‘neural smoothing’. In case of
ILPs, the LP after relaxation is considered. [McKenzie et al.|(2024)) accelerate DF using DYS-Net by
minimizing S¢DFE. In this work, we will propose training by minimizing Lscr or Lgpo+ between
after replacing v* (¢) with DYS(§) as shown in the next section.

4 MINIMIZING SURROGATE LOSS WITH A SMOOTHED SOLVER

Since smoothing converts the non-smooth COP into a smooth differentiable optimization problem,
one could compute and differentiate regret using the smoothed problem. Existing works in DFL
minimize the empirical regret of the smoothed problem expecting this would reduce the expected
regret in unseen instances, aligning with the empirical risk minimization paradigm in ML. However,
a close inspection of how the incorporation of smoothing changes the gradient landscape reveals a
shortcoming in this approach.

The introduction of smoothing ensures that the solution transitions smoothly, rather than abruptly,
near the original COP’s transition points. However, the solution of the smoothed optimization remains
unchanged, or changes very slowly, in regions where the COP’s solution is constant, provided that

the smoothing strength is kept low as illustrated in Figure So in this region, [h’Tﬁlm is nearly zero.

When regret is minimized, the derivative of it with respect to the ¢ takes the following form:

ov*(y
)y ©
Y ly=3
where a”(; (y) _ is computed by considering the smoothed optimization problem. As we illustrated

y=9
above, smoothing addresses the non-differentiability at the transition points, but the derivative dngy)

still remains zero far from these points. Hence, the derivative in Eq. |§|remains zero. This would also
be true if SqDFE is considered as the training loss. In this case, the derivative would be:

ov*(y)
0y ly=9

(v*(g) —v") (10)

In both Eq.[10|and Eq. 9} the derivative turns zero due to W‘ becoming zero. Consequently,
Y ly=g
training by gradient descent would fail to change ¢ despite ¢ resulting non-zero regret.

To prevent the derivative from vanishing far from the transition points, in this paper, we argue in
favour of minimizing a surrogate loss instead. For instance, when £ gpo+ is minimized, the derivative
of the loss with respect to the ¢ takes the following form:

ov*(y) ‘
0y ly=29—y

2(v* —v (29 —y)) +2 (y —29) (1)

Similarly if Lgc g is minimized after smoothing, the resulting derivative would be:

Ov*(y) ’
* X (g — 12
v @)+ 5| -9 (12
The way Eq. [12|differs from Eq. H is the term (v* — v*(¢)) and the multiplier of %;y) s
y=9
(y — 9) instead of y. The term (v* — v*(§)) prevents % going to zero even when dngy) ~ 0.

Note that if we minimize Lscg or Lgpo+ using a blackbox optimization solver, ‘%T(y) cannot be

computed and only the first part of the derivative would be used. So, in this case, Eq.[IT]and Eq.[12]
would reduce to Eq.[5]and Eq. [§]respectively.

In principle, both Lgc g or Lgpo+ can be minimized using a ‘smoothed’ solver. However, there is an
important distinction to note. Lg¢ g is non-convex in § whereas L gpo+ is convex. On the other hand,
Lspo+ can be non-zero even when regret is zero (see Appendix [C), whereas Proposition 1 shows
that Lsc g is zero whenever regret is zero. As smoothing can potentially improve its performance by

Under review as a conference paper at ICLR 2025

eliminating the sharp transitions in Lgc g as per Proposition 1, and Lgop is closely related to regret,
minimizing Lgc g after smoothing may be a promising approach, provided that smoothing does not
significantly alter the solution. We will empirically investigate whether Lsc g or Lgpo+ fits well
with a smoothed solver.

A deep dive into the gradient landscape. To convince readers that the solution of the smoothed
optimization remains unchanged, we will demonstrate how the gradient landscape changes after
QP smoothing with a simple illustration. For this, we consider the following one-dimensional
optimization problem:

minyv s.t.0<ov <1 (13)

where y € R is the parameter to be predicted. Note that the solution of this problem is: v*(y) = 1 if
y < 0and v*(y) = 0if y > 0. When y = 0 any value in the interval [0,1] is an optimal solution.

Let us assume that the true value of y is 4 and hence
v*(y) = 0. The red line in Figure[2]shows how the

value of regret changes as §j changes. The regret is 4

I T 2m°°z:ej :Eimt when § < 0 and 0 when § > 0. The regret changes
© N T T abruptly at the point §y = 0. After augmenting the
10 \\\. —— Regret objective with the quadratic smoothing term %vQ with
w8 _ >0, the solution of the smoothed problem is:
s \\ o 0; wheny >0
' S v*(y) = —%; when —p<y<0
! \\ 1; wheny < —p
[

-10 -8 -6 -4 -2 [2 4

predicted Cost parameter This makes the derivative non-zero in the interval

—u <y < 0. However, it is still zero when y < —p.
Hence, if § < —pu, the derivative of regret is 0, even
if regret is non-zero. Consequently, the predictions
cannot be changed by gradient descent despite regret
being zero. The regret with the smoothed problem is
shown by the blue line in Figure 2] for i = 6. The
strength of smoothing can be increased by assigning
4 to a high value. However, if p > |y|, v*(y) =~ 0
almost everywhere. On the other hand, Lgc g with
and without smoothing are plotted with green and
violet colors, respectively. In both cases, Lscp is
strictly decreasing for ¢ < 0. This ensures a non-zero
derivative, suitable for guiding ¢ towards the positive
half-space if § < 0. Minimizing regret generates a zero gradient, preventing effective gradient-based
learning, as explained with an example in Appendix [D] Moreover, we have performed computational
experiments in Appendix [BJon larger optimization problems to show that the zero-gradient problem
persists in optimization problems with a large number of parameters and decision variables.

Figure 2: The numerical illustration demon-
strates that while smoothing removes abrupt
changes in the solution and makes the regret
continuous, the solution often remains flat
across most regions, resulting in a zero gra-
dient, not suitable for training. In contrast,
Lsc g (with or without smoothing) provides
a more responsive landscape: when regret is
non-zero, Lgc g ensures non-zero gradient.

5 EXPERIMENTAL EVALUATION

In order to demonstrate the advantage of using Lgc g as the training loss, we report experiments on
three well-established DFL benchmark problems.

Multi-Dimensional Knapsack (KP). The objective of the knapsack problem is to select a subset of
items with the highest total value, subject to a capacity constraint. The weights of the items and the
knapsack’s capacity are known, but the values of the items are unknown. Therefore, the prediction
task is to predict the value of each item using features.

Shortest path on a grid (SP). The goal of this optimization problem is to find the path, with lowest
coston a k x k grid, starting from the southwest node and ending at the northeast node of the grid
(Elmachtoub & Grigas, 2022)). The cost of each edge is unknown and should be predicted before

Under review as a conference paper at ICLR 2025

0.25

=
n
s
=)
~

=3
o

0.20

2
ES
s
n
o
o
w

i

W
2
ES

Test Regret
Test Regret
°©

o
o
Test Regret

e
s
1+~

o o
[N

o o

o i

& o

2
o

0.0-
50 60 70 5

8
Number of items Gridsize

0.00 -

10

5

8

6
Number of nodes

=— Regret’™ mmm SqDEP™> mEm SPODS(new) ®XX SCEP'S(new) mmm SPO{ mEE PFY HEE MSE

Figure 3: Experiment with DY S-Net in relatively smaller KP, SP and TSP instances (from left to
right). S POJC; minimizes £gppo+ using Gurobi solvers. When ‘DYS’ appears as a superscript of a
loss, it indicates that the loss is computed and minimized using DY S-Net.

solving the problem. The true relation between the features and the costs are non-linear, but linear
model is used for predictions.

Travelling salesperson problem (TSP). Given a set of nodes, the goal is to find the tour, with the
lowest cost, that visits every node exactly once. As before, the costs are related to the features in a
non-linear manner, but a linear predictive model is used for prediction.

We use PyEPO (Tang & Khalil,[2023) to generate the training, validation and test instances for the SP,
KP and TSP problems. In all three problems, the true relation between the features and the costs
are non-linear, but linear model is used for predictions. We experiment with polynomial degree
parameter and noise half-width parameter being 6 and 0.5, respectively. The predictive models are
implemented using PyTorch (Paszke et al.,2019) and Gurobipy (Gurobi Optimization, [2021) is used
as a combinatorial solver to obtain the optimal solution. For evaluation, we always use Gurobipy. For
all the experiments, We repeat each experiment five times and report normalized relative regret on
test data, calculated as follows:

Niest N
1 Y (0" () —)
Ntest i=1 yiT’U-*

We use the implementation of DYS-NET by [McKenzie et al| (2024). The experiments were executed
on a computer with an Intel(R) Core(TM) i7-13800H processor using 32 Gb of RAM.

(14)

5.1 EXPERIMENT WITH DYS-NET

RQ1: Are surrogate losses better suited for DYS-Net? In the first set of experiments, we want to
investigate whether minimizing the surrogate losses result in regret lower than minimizing Regret and
SqDE. For this set of experiments, we consider relatively small-sized COPs. We use three approaches
as benchmarks: A prediction-focused approach, M S E, which minimizes the MSE loss between y
and 9; a DFL implementation of perturbed Fenchel-Young (PFY) (Berthet et al., [2020) loss; and
another DFL approach, which minimizes Lgpo+ by solving the COPs. We show the normalized
regret across five runs in Figure[3] It is clearly evident across all problems that minimizing £s¢c i and
Lspo+ results in lower regret than minimizing Regret and SgDE. This set of experiments highlight
the advantage of minimizing surrogate losses with DYS-Net.

RQ2: Does DYS-Net accelerates DFL.? We present the result for larger problem instances of KP,
SP and TSP in Figure[d} In the upper and lower panels, we compare normalized relative test regret
and training time of one epoch, respectively. For these experiments, we did not report regret of PFY,
because its performance is same as SPOE. Moreover, we did not consider minimizing Regret and
SqDE with DYS-Net, because previous experiments reveal they produce higher regret. As, training
time is the primary focus, we include the DFL approaches, which are focused on that: CaVE and
minimizing £ gpp+ with solution-caching.

Under review as a conference paper at ICLR 2025

o
El

0.20

I

IS
S
[
wn

o
~

=)

S

[N}
o o
o i
v}

Test Regret
o
N

Test Regret
Test Regret

o
o
o
o
o
2
53

100 160 200 240 20 25 9 10 11
Number of items Gridsize Number of nodes

mEE SPOP=5% mmm CaVE BEBX SPOY"S(new) @R SCEC"(new) mmm SPOS mmm MSE

N
S

-
=

Time (sec.)
o =N w F
Time (sec.)
S

Time (sec.)

=]

100 160 200 240 20 25 10 11
Number of items Gridsize Number of nodes

Figure 4: Experiment with DY S-Net in relatively larger KP, SP and TSP instances (from left to right).

SPOﬂ:E’% minimizes Lgpo+ using using a solution cache, with psope = 5%. CaV E minimizes
the the negative of cosine similarity between ¢ and the optimal cone.

In terms of test regret, in all the KP and TSP instances, Lgcz with DYS-Net, SCEPY S, matches
the regret of the S POE approach with significant reduction in training time. For the shortest path

instances up to grid-size of 25, SCEPY S, produces regret comparable to S POE; however, regret
increases for grid-size of 30.

In summary, SCEPYS yields regret similar to SPO¢, while significantly reducing runtime. The

advantage becomes more pronounced with larger problem sizes; for instance, in the 11-node TSP,
DYS-Net is 5 times faster than SPO, which solves an ILP. Notably, these results were achieved
without GPU training, suggesting that even greater runtime reductions are possible with GPU usage.

The solution-caching approach, S POi:E’%, is faster than DYS-Net especially in the TSP instances.

With respect to test regret, SPOT5% performs poorer than SC EPY S in the TSP instances, however

for other instances its regret comparable to SCEPY 5. We have also tested against SC EP=5% which
performs slightly worse (see Figure[9]in Appendix [F])

Comparison against CaVE. CaVE performs well for TSPs in terms of regret and time but struggles
with other problems. For TSPs, the relatively small number of active constraints makes the method
efficient. However, for SP problems, the exponential growth in active constraints causes memory
overhead issues, as all active constraints are stored in memory. For instance, a 10-node TSP has 100
active constraints, while a 10-node SP has 200. Due to memory overhead, we cannot run CaVE on
the 30-grid SP instance. Thus, we can say CaVE is suitable for TSPs, but not generalizable to all
optimization problems. Moreover, another shortcoming of CaVE is visible in the KP problem, where
it fails in terms of both quality and scalability. This is because their method relies on identifying
active constraints, but the capacity constraint in the integer knapsack problem is often not active. This
leads to incorrect identification of the normal cone resulting in poor performance of CaVE in the
knapsack problem (see Appendix [M]for further explanation).

RQ3: Evaluation on larger TSP instances. In the next set of experiments, we aim to compare

SCEPY?S against CaVE and S POf_:S% on even larger TSP instances. One advantage of CaVE
is that it uses the DFJ formulation, whereas DY S-Net relies on the MTZ formulation, as the latter
requlres specifying the full problem. Since the MTZ formulation is weaker than the DFJ formulation
(Oncan et al., 2009 |;|Langevin et al.,|1990), we adapted DYS-Net by drawing inspiration from CaVE.
Spe01ﬁcally, like CaVE, we first identify and collect the active constraints for all instances before
starting DFL training. Instead of considering the true ILP representing the original TSP, we consider
an ILP constructed only from these active constraints. Then, rather than solving the quadratically
relaxed LP of the original TSP, we solve the relaxed LP derived from the ILP of the active constraints
using DYS-Net. It is important to note that this adaptation results in a different ILP for each instance,

Under review as a conference paper at ICLR 2025

Test Regret

20 25 50 15 20 25 50
Number of nodes Number of nodes

B MSE mEE SPORTS% e SCEP=5% @M CaVE @K SCED"S(new) ¥ SCE(A)P"S(new)

Figure 5: Experiment with DY S-Net in larger TSP instances.

as the active constraints corresponding to the true solution vary across instances. This adaptation of
is denoted by SC E(A)PYS (where A indicates active constraints).

In Figure[5] we consider TSP instances with 15, 20 and 25 nodes. For these larger problem instances,
we cannot complete training of .S POE. We focus exclusively on TSP instances because, among
the three optimization problems considered it is the most difficult and time-consuming to solve.
First, we point out that the training time of SCE(A)PY* is significantly lower than SCEPYS,
because it solves a smaller problem. Secondly, as problem size increases, DYS-Net demonstrates

better scalability than SC EP=5% and S POﬁ_:S% since solving the optimization problem even for
5% of the training instances becomes significantly time-intensive. The reason for the discrepancy
between SC EP=5% and SPOTM is explained in Appendix CaVE, on the other hand, is proved

to be faster than both SCEPYS and SCE(A)PY S, although SCE(A)PYS reduces the gap quite
significantly. Moreover, SC E(A)PY* yields lower regret than CaVE.

Summary. We first demonstrated that minimizing Lsc g and Lgpo+ achieves lower regret than
directly minimizing Regret and Sq¢DE using DYS-Net. Notably, Table 3]in the Appendix [O] confirms
that this result also holds for other smoothed differentiable solvers, such as Cvxpylayer. Next, we
have shown that the test regret of SCEPYS is comparable to PFY and SPOY, while SCEPYS
requires significantly reduced training time. In terms of training time, CaVE is faster than SCEPY
for the TSP problems. Moreover, inspired by CaVE, we adapted SCEPY S requiring solving a
smaller ILP. Although this new approach is not faster than CaVE, it results in lower regret. Lastly,
while CaVE has a lower training time than SCE(A)PYS and SCEPY, we found that it performs
poorly on other problems. In contrast, SC EPY ¥ is a scalable DFL approach and it is applicable to a
broad class of ILPs.

6 CONCLUSION

In this paper, we experiment with the recently proposed DY S-Net, a fast neural solver for LPs. By
minimizing Regret or S¢DE, DYS-Net cannot attain regret as low as existing DFL techniques, such
as SPO and PFY. So, we challenge the conventional DFL approach of directly minimizing empirical
regret when a smoothing operation is applied to make the optimization problem differentiable. Instead,
we recommend minimizing a surrogate loss, such as Lsc g and justify this by comparing the pattern
of the gradient landscape concerning regret and the surrogate loss. By doing so, we effectively merge
the two families of approaches in DFL. Our experimental evaluations show that for most problems
minimizing Lgc g using DYS-Net produces regret as low as the state-of-the-art SPO method, with a
clear advantage in runtime up to five-fold.

Future work includes applying this approach to real-world large-scale applications with full GPU
training. Furthermore, new fully neural smoothing approaches or better surrogate losses can also
benefit from this joint approach. While used here for linear objective functions, future work can
investigate the joint applicability of both smoothing and surrogates for non-linear optimization too.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in neural information processing systems, 32,

2019.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136-145. PMLR, 2017.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463-482, 2002.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
A methodological tour d’horizon. European Journal of Operational Research, 290(2):405-421,
2021. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2020.07.063.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable pertubed optimizers. Advances in neural information processing
systems, 33:9508-9519, 2020.

Mathieu Blondel, André FT Martins, and Vlad Niculae. Learning with fenchel-young losses. J. Mach.
Learn. Res., 21(35):1-69, 2020.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovié. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1-61, 2023.

Rares Cristian, Pavithra Harsha, Georgia Perakis, Brian L Quanz, and Ioannis Spantidakis. End-to-
end learning for optimization via constraint-enforcing approximators. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 7253-7260, 2023.

Damek Davis and Wotao Yin. A three-operator splitting scheme and its optimization applications.
Set-valued and variational analysis, 25:829-858, 2017.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto
the 11-ball for learning in high dimensions. In Proceedings of the 25th International Conference
on Machine Learning, ICML ’08, pp. 272-279, New York, NY, USA, 2008. Association for
Computing Machinery. ISBN 9781605582054. doi: 10.1145/1390156.1390191.

Othman El Balghiti, Adam N Elmachtoub, Paul Grigas, and Ambuj Tewari. Generalization bounds
in the predict-then-optimize framework. Advances in neural information processing systems, 32,
2019.

Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science, 68(1):
9-26, 2022.

Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program as
a layer. Proceedings of the AAAI Conference on Artificial Intelligence, 34(02):1504—1511, Apr.
2020.

Aaron Ferber, Emily Griffin, Bistra Dilkina, Burcu Keskin, and ML Gore. Predicting wildlife
trafficking routes with differentiable shortest paths. In Proceedings of the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 20th International Conference,
CPAIOR 2023, 2023.

LLC Gurobi Optimization. Gurobi optimizer reference manual. http://www.gurobi.com,
2021.

Michael U Gutmann and Aapo Hyvérinen. Noise-contrastive estimation of unnormalized statistical

models, with applications to natural image statistics. The journal of machine learning research, 13
(1):307-361, 2012.

11

http://www.gurobi.com

Under review as a conference paper at ICLR 2025

Elias B. Khalil, Christopher Morris, and Andrea Lodi. MIP-GNN: A data-driven framework for
guiding combinatorial solvers. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022,
The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, pp. 10219-10227. AAAI Press, 2022.

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end constrained
optimization learning: A survey. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, pp. 4475-4482. ijcai.org, 2021.

André Langevin, Francois Soumis, and Jacques Desrosiers. Classification of travelling salesman
problem formulations. Operations Research Letters, 9(2):127-132, 1990.

Jayanta Mandi and Tias Guns. Interior point solving for Ip-based prediction+optimisation. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 7272-7282, 2020.

Jayanta Mandi, Emir Demirovi¢, Peter J. Stuckey, and Tias Guns. Smart predict-and-optimize for
hard combinatorial optimization problems. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(02):1603-1610, Apr. 2020.

Jayanta Mandi, Victor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns. Decision-focused
learning: Through the lens of learning to rank. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
14935-14947. PMLR, 17-23 Jul 2022.

Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns, and
Ferdinando Fioretto. Decision-focused learning: Foundations, state of the art, benchmark and
future opportunities. Journal of Artificial Intelligence Research, 80:1623-1701, 2024.

Daniel McKenzie, Howard Heaton, and Samy Wu Fung. Differentiating through integer linear
programs with quadratic regularization and davis-yin splitting. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=
H8TaxrANWIL.

Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey,
and Tias Guns. Contrastive losses and solution caching for predict-and-optimize. In Zhi-Hua
Zhou (ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, pp. 2833-2840. International Joint Conferences on Artificial Intelligence Organization,
82021. doi: 10.24963/ijcai.2021/390. Main Track.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: Backpropagating through
discrete exponential family distributions. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34,
pp. 14567-14579. Curran Associates, Inc., 2021.

Temel Oncan, I Kuban Altinel, and Gilbert Laporte. A comparative analysis of several asymmetric
traveling salesman problem formulations. Computers & Operations Research, 36(3):637-654,
2009.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Marin Vlastelica Pogancié, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differenti-

ation of blackbox combinatorial solvers. In International Conference on Learning Representations,
2020.

12

https://openreview.net/forum?id=H8IaxrANWl
https://openreview.net/forum?id=H8IaxrANWl

Under review as a conference paper at ICLR 2025

Utsav Sadana, Abhilash Chenreddy, Erick Delage, Alexandre Forel, Emma Frejinger, and Thibaut
Vidal. A survey of contextual optimization methods for decision-making under uncertainty.
European Journal of Operational Research, 320(2):271-289, 2025. ISSN 0377-2217. doi:
https://doi.org/10.1016/j.ejor.2024.03.020.

Subham Sekhar Sahoo, Anselm Paulus, Marin Vlastelica, Vit Musil, Volodymyr Kuleshov, and Georg
Martius. Backpropagation through combinatorial algorithms: Identity with projection works. In
The Eleventh International Conference on Learning Representations, 2023.

Bo Tang and Elias B. Khalil. Pyepo: A pytorch-based end-to-end predict-then-optimize library for
linear and integer programming, 2023.

Bo Tang and Elias B. Khalil. Cave: A cone-aligned approach for fast predict-then-optimize with
binary linear programs. In Bistra Dilkina (ed.), Integration of Constraint Programming, Artificial
Intelligence, and Operations Research - 21st International Conference, CPAIOR 2024, Uppsala,
Sweden, May 28-31, 2024, Proceedings, Part II, volume 14743 of Lecture Notes in Computer
Science, pp. 193-210. Springer, 2024.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, pp. 1658—1665. AAAI Press, 2019.

A PROOF OF PROPOSITION 1

Proof. 1. Following the definition of Lsc g,
Lsop(v™(9),y) =@ —y) v (y) — (§—y) v ()
) —

=3 (v (y) v (@) +y (v (@) - v*(y))

9" (v*(y) — v*(§)) > 0, because v*(§) is the optimal solution to . In a similar way,
y' (v*(§) — v*(y)) = 0. Hence, Lscr(v*(§),y) > 0.

2. We will prove the claim by contradiction. Assume that Lsop(v*(§),y) = 0 but
Regret(v*(9),y) = yT(v*(g) — v*(y)) > 0. This is possible if v*(§) # v*(y).
As the solution to ¢ is dlfferent from v*(y), the singleton assumption 1mphes that
v’ € F\ {v*(y)}: §"v' < § v*(y). In this case, we have:

g (y) -~ g7 >0
= (@ v (y) — g)+ (y v —y v () > (y v —y v (y) =0
=@ -y v = (G -y) v (@) >0
In the second line, y " v’ — y " v*(y) is added in both sides and this term is nonnegative as

v*(y) is the optimal solution to y. This implies Lscg(v*(§),y) > 0 and we arrive at a
contradiction. Thus we prove that Lsog(v*(§),y) =0 = Regret(v*(g),y) = 0.

9),y) = 0. This implies that y "v*(§) = y v*(y). This can
(y)because of the singleton assumptlon Hence, Lscr(v*(§),y)

Next, assume Regret(v* (g
9)) =

onlybetruelfv (g)—'u

*(
=G -y (v (y) —v*(

O

B COMPUTATIONAL EXPERIMENTS DEMONSTRATING ZERO GRADIENT

In Section] we made the case for minimizing surrogate loss such as £g¢ g instead of Regret. Our
main argument is for a relatively low value of smoothing parameter u, Regret will have zero gradient.
However, Lsc g will not have this problem. We provided two illustrations considering small-scale
optimization problems. In this case, we justify this with higher-dimensional optimization problems.
We consider Top-1 selection problem with different number of items M.

max y vstov 1<1 (15)
ve{0,1}

13

Under review as a conference paper at ICLR 2025

7 5 10 20 40 80 100

0.100 0.000 0.000 0.000 0.000 0.000 0.000
0.500 0.000 0.000 0.000 0.000 0.000 0.000
0.990 0.000 0.000 0.000 0.000 0.000 0.001
1.050 0.089 0.089 0.089 0.089 0.089 0.089
1.500 0.465 0466 0465 0465 0.465 0.464
2.000 0.622 0.622 0.622 0.622 0.622 0.622
5.000 1.165 1.165 1.165 1.165 1.165 1.165

Table 1: We tabulate average Manhattan distance between the solution of the ‘smoothed’ problem
and the solution of the original problem for different values of M and p.

Yy = [y1,...,ym) € RM is the vector denoting value of all the items and v = [vy, ..., vy/] is the
vector decision variables. To replicate the setup of a PtO problem, we solve the optimization problem
with g. Let us assume y;, 4; > 0.

Before, solving the problem with simulation, we will show one interesting aspect of this problem.
Note that when p > 0, the following relaxed optimization problem is solved:

mgmxyTv - gHvH2 stv'1<1; v>0 (16)
We point out that the solution to the unconstrained optimization problem is v} = % > 0.
The augmented Lagrangian of Equation[16]is
L:yTU—g|\v||2+)\(1—vT1)+a'Tv (17)
where A and o = [0y, ..., 0] are dual variables. By differentiating I with respect to v;, we obtain
one condition of optimality, which is the following:
yi—uvi—)\+ai:O:>vi:W (18)

Without any loss of generality, let y*) > 4 > .. 4™ _(In the d) As, solution to the constrained
optimization problem is v; > 0, y(*) will definitely be greater than zero. Hence, o; = 0 because of

)) . (1) _y (k) _ (k)
strict complementarity. So, we can write v(!) — v(%) = % As, v — p(*) < 1, we can
write:

So,

This suggest that if y*) < y(1) — 11, only v(*) = 1 and all other decision variables will be zero in the
optimal solution.

To generate the ground truth y, we randomly select M integers without replacement from the set
1,..., M. The predicted costs, g, are generated by considering a different sample from the same
set. As aresult, ¥y and ¢ contain the same numbers but in different permutations. It is important to
note that all elements in both vectors are positive integer values. We compute the solution to the
optimization problem for y and §. We solve the optimization problem with ¢ using a ‘smoothed’
optimization layer—CvxpyLayer. in order to compare the gradients of Regret and Lgcp. We
compute the gradients of both the losses for multiple values of M and u. For each configuration of
M and p, we run 20 simulations.

Note that) > y(2) > . 4(M) because of the way we created the dataset. Moreover, as all
values in ¢ and y are integer, Equation [20| suggests if © < 1, the solution to the relaxed problem

14

Under review as a conference paper at ICLR 2025

M=5 M=10 M=20

,_.
o

o

o

0.41

o
=

0.2 1

=
N
Gradient Value

Gradient Value
o ;
w

Gradient Value

. 0.0-
01 05 099 105 15 20 350 01 05 099 1.05 15 20 5.0 01 05 099 105 15 20 50

u u u

o
o
o
o

B o I Regret

M=40 M=80 M=100

506 506 5
o o T 0.4
> > >
B B 5 0.2 1
E 0.2 E 0.2 E
G} G} [G]

0.0 0.0 0.0-

0.1 05 099 105 15 20 50 01 05 099 105 15 20 50 01 05 099 105 15 20 50
H H u

Figure 6: Results of Computational Simulation

(equation [T6) will be binary. So, the discussion in Section] suggests that slight change of the cost
parameter would not change the solution and hence the zero gradient problem would appear while
differentiating Regret.

In Figure@ we plotted the average absolute values of the gradients of the two losses— Lsc g and
Regret. As we hypothesized the gradient turns zero whenever Regret is minimized with p < 1. Itis
true that for 4 > 1, Regret have non-zero gradient. However, higher values of j turns solution to the
‘smoothed’ problem very different from the solution to the original problem. We show this in Table[T]
by displaying the average Manhattan distance between solutions of the true and ‘smoothed’ problem
for same .

We also highlight that, for the same values of y, the average Manhattan distances remain same across
different M. Examining the results of the simulations, we observed that the solution to the smoothed
problem is fractional. For example, when p = 2, the solution includes two non-zero values— 0.77
and 0.23. Typically, the value 0.77 appears in the position corresponding to the highest value in g,
i.e., where there is a 1 in solution vector. As a result, the Manhattan distance becomes (1-0.77)+0.23
= 0.46. Interestingly, these values remain unchanged across different values of M. Therefore, the
Manhattan distance remains constant as long as x does not change.

C COMPARISON BETWEEN Lgpn+ AND Lgop

The SPO+ loss, Lgpo+ (v*(§), y), proposed by Elmachtoub & Grigas|(2022) is a convex function
of . However, the Lgc g loss proposed by [Mulamba et al.|(2021) is non-convex with respect to .
Note that,

Lscp(v*(9),y) =9 (v"(y) —v" (@) +y (v () — v (y))

We can easily show the convexity of £Lsc g with a numerical example. Let us consider the example
introduced in Equation 13} In Figure[7] we plot Lsc g and Lgpo+ for different values of §. To make
this plot, we use an exact solver, not the ‘smoothed’ solver. Note that, Lsc g includes a jump when
the solution of ¢ switches from 1 to 0. However, this is not the case for Lgpo+. More specifically,
1Lscr(2,y) + 1Lscr(=2.y) > Lscr(3(2) + 1(=2),y) = Lscr(l,y), which violates the
definition of a convex function.

We also point out that £gp 5+ is can be non-zero, even if regret is zero. Note in Figurem forg € (0,2)
regret is zero, but Lgpo+ is not. However, you can see Lsc g is zero if regret is zero (also proved in
Proposition 1).

15

Under review as a conference paper at ICLR 2025

25
---- SPO+
" AN —— SCE

o —— Regret

15 AN

Loss
/

10 ~o RN

-0 -8 -6 -4 -2 0 2 4
Predicted Cost parameter y

Figure 7: A numerical illustration to show Lgcg is not convex, but Lgpo+ is.

Demonstration with a Small Knapsack Problem

0.25 —e— Smoothed Regret

- x= Smoothed SCE

o I o
i = N
1) a 15

Value of Item 2

=3
o
@

0.00

0.00 0.05 0.10 0.15 0.20 0.25
Value of Iltem 1

Figure 8: Progression of predictions by epochs when the smoothed regret and SCE are used as
training losses.

D DEMONSTRATION OF LEARNING WITH Lgcr VERSUS REGRET

We further illustrate this with a simple fractional knapsack problem, which is an LP. Let us consider
that we have two items and space for only one item. This can be formulated as a minimization
problem:

min —yiv; —Y2v2 st v +v2 <15 wy,v2 >0

Let us assume the true values of y; and ys are (0.8, 0.4). The corresponding solution is (vy,vs) =
(1,0). The grey region in Figurecorresponds to any predictions satisfying g1 > 2. Such predictions
will induce the true solution, resulting in zero regret. Further assume that the initial predictions are
(91, 92) = (0.1,0.01). We show the progression of predictions by epochs when regret and SCE are
used as training loss, using the smoothed optimization problem with blue and green lines, respectively
in Figure[§] The predictions does not change with training epochs when regret is used as the loss
because the derivatives of regret with respect to 9; and g are zero. On the other hand, when Lsc g
is used as the loss, (41, y2) gradually move from the white region to the grey region, eventually
resulting in zero regret. Note that increasing the strength of smoothing may provide non-zero gradient
across the space. But this will entirely alter the optimization problem’s solution. For instance, in this
knapsack example, high values of ;1 would make both v, and vs close to zero.

E MINIMIZING Lgpp+ USING DYS-NET

In Table 3] we show that minimizing £g¢ g results in lower regret compared to minimizing £gpo+
using CvxpyLayer. Since both CvxpyLayer and DYS-Net are differentiable ‘smoothed’ layers, we
would expect similar results with DYS-Net. For this reason, we included only Lsc g in Figure 3] To
ensure completeness, we added the results of minimizing £gpo+ with DYS-Net in Figure ??. As we
hypothesized, this leads to higher average regret compared to minimizing Lscp.

16

Under review as a conference paper at ICLR 2025

-
=}

=
n

Test Regret

o
o

60 70 100 160 200 240 15 20 25 30 ' 9 10 11
Number of items Gridsize Number of nodes

mm VSE mmm SPORT% SCEP=3% mmm CaVE %X SCEP"(new)

Time (sec

60 70 100 160 200 240 15 20 25 30 ' 9 10 11
Number of items Gridsize Number of nodes

Figure 9: Comparison between DYS-Net and solution caching and CaVE.

F COMPARISON AGAINST SOLUTION CACHING

To reduce the long training time of DFL, [Mulamba et al.|(2021)) propose the idea of solution caching.
Instead of finding the optimal solution to g or ((2g — y) for Lgpo+), Mulamba et al.| (2021) suggest
returning a heuristic solution by selecting the optimal one from a finite-dimensional ‘cache.” They
initialize the cache with all existing solutions in the training data. Furthermore, during training, they
randomly solve for p% of the training instances. Note that if, solve ratio, p = 100%, this strategy
becomes equivalent to solving the combinatorial problem for every instance. Conversely, if p = 0%,
no additional problem-solving is required during training.

We compare the performance of DYS-Net with solution caching in Figure El SPO{’;IO% denotes
the case where £ gpp+ is minimized with a solve ratio of 10%. Similarly, SPOf_:5% and S POQ’_:O%

correspond to solve ratios of 5% and 0%, respectively. Similarly, SC' EP=>% stands for minimizing
Lscr with p = 5%. Note that while solution caching approach, Equation [5|and Equation 3| are used
for backpropagating Lgpo+ and Lsc g respectively.

It is evident in Figure |§| that p = 0% results in higher regret for £gpo+. However, the regret is much
lower for p being 5% and 10%. Nevertheless, we point out minimizing £gc g with DYS-Net results
in lower regret. This is particularly prominent for the TSP instances. In terms of training efficiency,
solution caching has lower training time for these instances.

G COMPARATIVE ANALYSIS IN LARGER TSP INSTANCES

In Figure 3] we compared TSP instances till 11 nodes. This is due to the fact that for larger
TSP instances, we cannot complete training of SPOj‘)mbmc‘tO”al and SCE°"®PY, In Figure
we consider TSP instances with 15, 20 and 25 nodes. We focus exclusively on TSP instances
because, among the three optimization problems considered, because it is the most difficult and time
consuming to solve. We have excluded S POSo™binatorial and SC E*PY and included S PO%="%
and SCEP=5%,

We first draw the reader’s attention to the observation that S PO}j_:E’% requires more training time

compared to SC EP=5%_ This discrepancy arises because, in SPOT5%, the optimization problem is

solved for 29 — y. Solving for 2¢ — y is more challenging and time-consuming compared to solving
for 4, as done in .S CEP=5%_ This is due to the difference in scale between the true cost (y) and the
predicted cost (§) We point that this pattern is also visible in Figure[9] The computational burden
of S POiZS% becomes especially pronounced for the larger problem instances. For these instances,
solving the optimization problem with 2¢ — y often results in timeouts, meaning Gurobi returns an

approximate solution instead of the exact one. This is the reason why SPOﬁ:5% exhibits relatively

higher regret than SC EP=5% for these problems.

17

Under review as a conference paper at ICLR 2025

Test Regret
Time (sec.)
8

15 20 25 50 15 20 25 50
Number of nodes Number of nodes

B MSE EEE SPOP=5% @ SCEP=% @@ CaVE ®X® SCEP™(new) @ SCE(A)°">(new)

Figure 10: Comparative analysis on larger TSP instances.

o M . Combinatorial Optimal
w Y Optimization Decisions

Figure 11: Schematic diagram of a predict-then-optimize (PtO) problem.

In contrast, for SC EP=5% timeouts never occurred, and it exhibits lower training times compared
— R0

to SPOﬁ_M . For TSP with 15 nodes, SCEP=5% outperforms DYS-Net in terms of training time.

However, as problem size increases, DY S-Net demonstrates better scalability, whereas solving the

optimization problem even for 5% of the training instances becomes significantly time-intensive in
SCEP=5%,

In terms of regret, DYS-Net demonstrates a significant advantage with much lower regret compared
to other methods. This underscores the advantage of minimizing Lgc g using DYS-Net, as it not only
delivers lower regret but also scales more effectively for larger problems.

H PREDICT-THEN-OPTIMIZE PROBLEM DESCRIPTION

We consider predicting parameters in the objective function of an LP. These kinds of problems can
be framed as predict-then-optimize (PtO) problems consisting of a prediction stage followed by an
optimization stage, as illustrated in Figure [T1] In the prediction stage, an ML model M,, (with
trainable parameters w) is used to predict unknown parameters using features, ¢, that are correlated
to the parameter. During the optimization stage, the problem is solved with the predicted parameters.
An offline dataset of past observations is available for training M,,.

It is important to distinguish datasets based on whether the true parameters, y, are observed and
included in the dataset. In some applications, the true parameters, y, may not be directly observable,
and only the solutions, v*(y), are observed. While v*(y) can be computed if y is known, the reverse
is not true, since solving the inverse optimization problem is a separate research area.

Whether y is observed or not is important because in order to compute Regret (equation [2), we need
the true parameter y. Most of the benchmarks in PtO problems assume that y is observed in the past
observation. In this case the training data can be expressed as {(¢;, y;, v*(y;))} Y, and the empirical
regret, < Zf\il Regret(v*(My(:)), ¥i), can be computed. In most PtO benchmark problems it is
assumed that the true y is observed in the training data (Mandi et al., [2024; Tang & Khalil, |2023)).
However, if the true cost y is not observed in the training data, empirical regret cannot be computed.
Instead, some other loss must be considered. For instance, McKenzie et al.|(2024) consider squared
decision errors (SqDE) between v*(y) and v*(§), i.e., S¢DE = ||v*(y) — v*(9)||?.

18

Under review as a conference paper at ICLR 2025

Algorithm 1 Gradient-descent with Smoothing

1: Initialize w.
2: for each epoch do
3: for each instance (¢, y, v*(y)) do

4: g =My(d)

5: Obtain v*(g) by solving a ‘smoothed’ optimization
6 Regret(v,y) =y v*(3) -y v*(y)

7. dRegret(v,y) di

8: end for

9: end for

Algorithm 2 Gradient-descent with Surrogate Losses

1: for each epoch do
2: for each instance (¢, y, v*(y)) do

3: g = My(®)

4: Compute y

5: Obtain v*(y) by solving the original optimization
6: Compute the surrogate loss £ and V

7: w—w—aV jﬁ

8: end for

9: end for

Algorithm 3 Gradient-descent when Surrogate Losses are minimized using Smoothed Solver

1: for each epoch do

2: for each instance (¢, y,v*(y)) do

3 y= Mw(¢)

4 Compute y

5: Obtain v*(g) by solving a ‘smoothed’ optimization
6 Compute the surrogate loss £

7

8

9:

_ 4L dg
w — w de,g dw
end for

end for

I DIFFERENT APPROACHES TO DECISION-FOCUSED LEARNING

In PtO problems, the empirical regret can be calculated if the cost, y, is observed in the training
instances. However, just because it can be calculated does not mean it can be minimized using
gradient descent. Figure [12]illustrates the impact of integrating the optimization block into the
training loop of neural networks. The key challenge is that to directly minimize Regret, it must be
backpropagated through the optimization problem. However, for a combinatorial problem v*(§)

does not change smoothly with 4, so the gradient, dv 3 5"7) , 1s either zero or does not exist.

Differentiable Optimization by Smoothing. ‘Differentiable Optimization by Smoothing’ is one
approach to to circumvent this challenge. The aim of differentiable optimization is to represent an
optimization problem as a differentiable mapping from its parameters to its solution. Since for a COP,
this mapping is not differentiable, one prominent research direction in DFL involves smoothing the
combinatorial optimization problem into a differentiable optimization problem. We particularly focus
on smoothing by regularization. There exists another from of smoothing—smoothing by perturbation,
as proposed by |Pogancic et al.|(2020); Blondel et al.| (2020); [Niepert et al.| (2021)); Sahoo et al.| (2023]).
In this work, we focus on optimization problems with linear objective functions such as LPs and ILPs.
For an LP, the solution will always lie in one of the vertices of the LP simplex. So, the LP solution
remains unchanged as long as the cost vector changes while staying within the corresponding normal

19

Under review as a conference paper at ICLR 2025

¢ d v*s(.g);vaig]rgr;ins gT(;U v*(§) > Regret(v*(9),y)]
dRegret " dRegret
g dv*(9) T (5)
SR L SO
(0,9, v"(y))

Training Data

Figure 12: Decision-focused learning training loop.

cone (Boyd & Vandenberghe, 2004). However, the solution will suddenly switch to a different vertex
if the cost vector slightly moves outside the normal cone, as illustrated in Figure Because the
solution abruptly jumps between the vertices, the LP solution is not a differentiable function of the
cost vector.

As explained in Section [3.1] approaches under this category replace the original optimization problem
with a ‘smoothed’ version of the optimization problem, in which the solution can be expressed as
a differentiable mapping of the parameter. For instance, if the original problem is an LP, it can be
replaced with a QP by adding a quadratic regularizer to the objective of the LP. In this QP, the solution,
v*(y), can be represented as a differentiable function of the parameter y. When the problem is an
ILP, first LP, resulting from continuous relaxation is considered and then it is smoothed by adding
quadratic regularizer. Algorithm [T|explains this approach. DYS-Net (McKenzie et al.,[2024) provides
an approximate solution to the quadratically regularized LP problem, where the computations are
designed to be executed as standard neural network operations, enabling back-propagation through
it. To summarize, approaches in this category follow the training loop in Figure[I2]but only after
‘smoothing’ the optimization problem.

Surrogate Losses for DFL. The primary goal of DFL is to minimize Regret. However, as explained
earlier, Regret cannot be minimized directly due to its non-differentiability. Techniques involving
surrogate losses aim to address this challenge by identifying suitable surrogate loss functions and
computing gradients or subgradients of these surrogate losses for optimization. Figure [I3]depicts
the training loop of DFL using surrogate loss functions. In this approach, Regret(v*(g),y) is not
explicitly computed. Instead, after predicting ¢, a new cost vector y is generated based on ¢ and
vy, and the optimization problem is solved using this . Subsequently, a surrogate loss is computed,
using v*(g) and v*(y), and its gradient,V (shown in pink) , is used for backpropagation. We have
explamed this in terms of pseudocode using Algorlthm lr For example in the case of Lgpo+,

= 29 — y. As shown in Equat10n£5p0+ = (29 — (29 — y) "v* (29 — y) Then
the gradient used for backpropagation is V = 2(v*(y) — (2y y)) On the other hand, in the
case of Lscp, § = 9 and Lscr = 9 (v*(y) — v*(9)) + y " (v*(§) — v*(y)). So, in this case,
the gradient for backpropagation is V = (v*(y) — v*(9)).

Combining Surrogate Losses with Differentiable Optimization. The core idea proposed in
this paper is to combine these two approaches. Specifically, the original optimization problem in
Figure [I3]is replaced with a smoothed version, allowing direct backpropagation through the
smoothed problem instead of using V. We emphasis that this changes the gradient of the surrogate
losses. Instead of Equation [5]and Equation [§] Equation [IT|Equation [T2] will be used in this case for
backprogating £gpo+ and Lsc g respectively. We explain this in Algorithm 3]

J GENERALIZATION BOUNDS FOR NCE LoOSs

We show generalization bounds for SCE loss similar to the bounds shown for true regret by El Balghiti
et al. (2019). For notational brevity, we first define SCE in terms of the predicted and true parameters,

20

Under review as a conference paper at ICLR 2025

- v*(g) = arg min,, g v
v st. Av=b; v>0

backpropgating V

Training Data

Figure 13: Decision-focused learning using surrogate loss functions.

ie.,
lscr(9,y) = Lscp(v*(9),y) = (§ —y) (v" —v*(§))
where § = M (¢) is the predicted cost using the predcitive model M. We can also define

N
Rscp(M) = Ellsos(M(@),)] and Rsos(M) = + 3 lscn(M(6). 1)

as the true and empirical risk for a given sample {(¢;, y;)} . ; for SCE loss, respectively.

In order to show generalization bounds for SCE loss, we need to define the Rademacher complexity of
a set of functions H with lsc . The sample Rademacher complexity for a given sample {(¢p;, y;)} ¥,
is given by

Riop(H) =Eo | sup — Z oilsce(M(bi), yi)
men N
where 01,09, ...,0 are i.i.d. random variables w1th P(o; =1) =1/2 and P(o; = —1) = 1/2 for

i =1,2,...,N. The expected Rademacher complexity is defined as RY. (H) = E[iﬁjsvc g(H)]
where the expectation is with respect to the i.i.d. samples of size N from the true distribution.

Assume that the set of all feasible solutions F = {v : Av = b; v > 0} is bounded, i.e., there
exists D such that D = max, o c7||v — v’||. Also assume that the set of all cost vectors is) such
that Y C {y : |ly|| < 1}. Note that, since we consider linear objective functions, this assumption is
not restrictive, as ¢y’ with ||y’|| > 1 can be replaced by y = y’/||y’|| without changing the optimal
solution and ensuring |ly|| = 1.

The following proposition shows the generalization bound for SCE loss.
Proposition 2. Let H be a set of functions from the set of all features to {y : ||y|| < 1}. Then for
any § > 0,

log(1/9)

RSCE(M) —]/%SCE(M) < Q%gCE(IH) + 2D N

(21)
holds for all M € H with probability at least 1 — § for the sample {(¢p:, y;) }}¥ S from the joint

distribution of features and parameters. If /\/ln is a minimizer of the emprical risk RSC &, then the
inequality

log(2/4)

o (22)

RSCE(M\n) — Ar}llégl{ Rscp(M) < 2R{op(H) + 4D

also holds probability at least 1 — §.

21

Under review as a conference paper at ICLR 2025

Proof. The SCE loss is bounded for all y,y’ € Y since lscr(§,y) = (§ —y) " (v —v*(9)) <
lg — yllllv* — v*(9)|| < 2D where the first inequality is due to Cauchy—Schwarz and the second
inequality is due to our assumptions on the hypothesis class and the feasible region. Then, inequality
@] follows directly from the classical generalization bound as shown in Bartlett & Mendelson| (2002).

The extension of inequality 2] to inequality [22]is shown in the proof of Corollary 1 in [EI Balghiti
et al. (2019) using Hoeffding’s inequality. O

K DETAILED DESCRIPTION OF THE EXPERIMENTAL SETUP

In this section, we first describe the optimization problems along with their formulations, followed by
details of the data generation process and the ML models.

K.1 DESCRIPTION OF THE OPTIMIZATION PROBLEMS

Shortest Path Problem. It is a shortest path problem on a k x k grid, with the objective of going
from the southwest corner of the grid to the northeast corner where the edges can go either north or
east. This grid consists of k? nodes and 2 x k x (k — 1) edges. Let, y;; is the cost of going from
node 7 to node j and the decision variable v;; takes the value 1 if and only if the edge from node 7 to
node j is traversed. Then, the shortest path problem from going to node s to node ¢ can be formulated
as an LP problem in the following form:

min A% 23
ni Z YijVij (23a)

(i.9)€€
S.t.

1 if i=s
S ovij— > vw={-1 ifi=t (23b)
(i,j)€E (ki)eE 0 otherwise
Vij € RT (230)

Knapsack Problem. In a knapsack problem the goal of the optimization problem is to choose a
maximal value subset from a given set of items, subject to some capacity constraints. Let the set
contains Vems number of items and the value of each item is ;. The solution must satisfy capacity
constraints in multiple dimensions. Let Cj is the capacity in dimension j and wy; ;) is the weight of
item ¢ in dimension j. This optimization can be modeled as an integer linear programming (ILP)m as
follows:

Nitems
min Z (—yi)vs (24a)
K]
S.t.
Nitems
> wivi <Cj i Vi (24b)
=1
v; € {0,1} (24c¢)

The Top-K selection can be viewed as a special case of the knapsack problem. In the Top-K, there is
only one dimension and the weight of each item is 1 and the capacity, C' = K.

Traveling Salesperson Problem. Given a topological graph of N, 4.5, the objective of the traveling
salesperson problem (TSP) is to find the shortest possible tour that visits every node exactly once.
We formulate the TSP as an mixed integer linear programming (MILP) following the Miller-Tucker-
Zemlin (MTZ) formulation so that we can solve the relaxed LP, with quadratic reglarizer, using
DYS-Net. Let, y;; is the cost of going from node ¢ to node j and the decision variable v;; takes the
value 1 if and only if the salesperson traverse from node i to node j. Then the MTZ formulation is

22

Under review as a conference paper at ICLR 2025

the following:

Nnodes Nnodes
min E E YijVij (253)
Vij

i=1 j=1
S.t.
Nyodes
> vy =1Vi (25b)
j=1
Niodes
> vy =1V (25¢)
=1
Uj — Uy >1+ Nnodes(vij - 1); 2<4,5 < Nyodes (25d)
vij € {0,1}, u; € RT (25e)

Note, for other techniques we can solve the TSP using Dantzig—Fulkerson—Johnson (DFJ) formulation,
which is faster.

K.2 DESCRIPTION OF THE DATA GENERATION PROCESS

We use PyEPO library (Tang & Khalil, 2023) to generate training, validation and test datasets. Each
dataset consists of {(¢;,y;)}i-, which are generated synthetically. The feature vectors are sampled
from a multivariate Gaussian distribution with zero mean and unit variance, i.e., ¢; ~ N(0, Ip),
where p is the dimension of ¢;. To generate the cost vector, first a matrix B € R¥*? is generated,
which represents the true underlying model, unknown to the modeler. Each element in the cost vector
¥i,; is then generated according to the following formula:

1 1 Deg)
I DR , J
Yij = [3.5,)%, (7 (Bo:) + 3) + 1} ¢ (26)
The Deg is ‘model misspecification’ parameter. This is because a linear model is used as a predictive
model in the experiment and a higher value of Deg indicates the predictive model deviates more from

the true underlying model and larger the prediction errors. 55 is a multiplicative noise term sampled

randomly from the uniform distribution &/ ~ U[1 — w, 1 4+ w]. w is a noise-half width parameter,
which is less than 1. Higher values of w indicate a greater degree of noise perturbation. We set Deg
to 6 and w to 0.5 in all our experiments.

L IMPLEMENTATION OF DYS

We adopt the implementation by McKenzie et al.[(2024) to implement DYS-Net[H DY S-Net includes
a few hyperparameters: i, controls the strength of smoothing; scaling parameter o € (0,2/p);
number of time Equation[DYS]is iterated. (For detailed explanations of these parameters, please refer
to the original papers.) In practice, we set i ~ 0 and the number of iterations to 200. Each iteration
is implemented as a multi-layer perceptron (MLP), making the implementation computationally
efficient. We tune the parameter « on a validation set. We also tried slowly decreasing « across the
iterations. However, reduction of « has little effect on the result. Notably, this implementation does
not require pretraining, as DYS-Net contains trainable parameters.

Ablation Analysis. We present how the performance of DYS-Net varies with different hyperparam-
eter settings in Table[2] The results reported are based on the test set. However, we do not evaluate
performance across varying values of «v and p, as these were determined through hyperparameter tun-
ing on the validation set. We observe, setting the values of u low works well for most problems. We
choose « from the set {0.001,0.01, 0.1}. This setup has proven effective across different problems.

"https://github.com/mines-opt-ml/fpo-dys

23

https://github.com/mines-opt-ml/fpo-dys

Under review as a conference paper at ICLR 2025

Model a i Normalized relative regret
Average Sd

SCEPYS 0.1 0.001 0.075 0.016
SCEPYS 0.01 0.001 0.088 0.014
SCEPYS 001 1. 0.104 0.014
SCEPYS 0.01 10. 0.119 0.021
SCEPYS 1. 0.001 0.190 0.044

Table 2: Ablation of SC EPY*S on TSP-8 problem instances.

124

10

084

0.6+

0.4

024

0.0

Figure 14: A numerical illustration to show why the Cave approach fails in the Knapsack problems.

M SHORTCOMING OF CAVE ON THE KNAPSACK PROBLEM

Consider the two-dimensional knapsack example in Figure[T4] The capacity constraint is given as
3vy; + 3vy < 5. If the objective vector y lies within the union of the yellow and red cones, then
the feasible solution (1,0) is optimal for the problem with the integrality constraint. So, the true
normal cone is the union of the yellow and red cones. Note that the constraint 3v; 4+ 3ve < 5 is not
active, although it plays a key role in choosing the solution; in the absence of this constraint, the
solution would be (1, 1). In this case, the only active constraints are v, = 1 and vo = 0. As the CaVE
approach stores only these two constraints, the yellow cone is considered as the optimality cone. This
example shows that the mismatch between the cone of optimality of the integer knapsack and its
relaxation can be non-trivial (the red cone in Figure[T4). This attributes to the poor performance of
the CaVE approach in the Knapsack problem.

N LEARNING CURVES

Figure 5] Figure[I6]and[I7]illustrate how the regret on the validation dataset evolves for different
losses as training progresses for the KP, SP and TSP problem instances when the DY S-Net is used
as a solver. It shows that in general, training with Lgc g results in lower regret than training with
Regret or SqDE.

O ADDITIONAL EXPERIMENTS

O.1 REGRET VS. SURROGATE L0OSS WITH QP SMOOTHING

We use CvxpyLayer (Agrawal et al.,2019) to solve and differentiate through the smooth optimization
problem after adding the quadratic regularizer. The column M S E corresponds to ML models trained

24

Under review as a conference paper at ICLR 2025

KP with 50 Items

KP with 60 Items

KP with 70 Items

1.4
124 12
| 1.2
104 1.0
= o8 » L 104
2 089 2 0.81 L
o =] 908
() () a
X 0.6 06 -4
0.6
0.4 0.4
0.4
0.2 1 0.24
T T T T T T T T T T T T T T 0.2+~ T T T T T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
Epochs Epochs Epochs
B SCEPYS(new) RegretP’s mmm SqDEP'S
Figure 15: Progression of Training for the 3 KP problems.
KP with 50 Items KP with 60 Items KP with 70 Items
1.4
124 12
\ 1.2
104 1.0
- - - 1.0+
@ 038 @ 0.8+ S
S o 0.8+
() () a
X 0.6 06 -4
0.6
0.4 0.4
0.4
0.2 1 0.24
T T T T T T T T T T T T T T 0.2+~ T T T T T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
Epochs Epochs Epochs
B SCEPYS(new) RegretP’s mmm SqDEP'S
Figure 16: Progression of Training for the 3 SP problems.
KP with 50 Items KP with 60 Items KP with 70 Items
1.4
124 1.2
| 1.2
104 1.0
- - - 1.0+
@ 087 2 0.81 S
S o 0.8+
() () a
X 0.6 06 -4
0.6
0.4 0.4
0.4
0.24 0.2
- T T - T T - - - - T T - T 0.2 - - - - T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
Epochs Epochs Epochs
B SCEPYS(new) RegretP’s mmm SqDEP'S

Figure 17: Progression of Training for the 3 TSP problems.

25

Under review as a conference paper at ICLR 2025

Table 3: Normalized relative regret on test data for four optimization problems. We mention the
number of resources, the size of the grid, the number of items and the number of nodes for the Top-K,
shortest path, knapsack and TSP problems respectively in the parenthesis.

Combinatorial CvxpyLayer
MSE PFY Lspo+ LscE ‘ Regret Lgpo+ LscE
TopK(s0) 04 0051 0051 0.051 0246 0051 0.051
op- +0.874 +0.006 +0.006 +0.006 | 40439 =+0.006 -0.006
TopK(s0) 1622 0018 0018 0.018 0419 0018 0.018
op- +0.896 +0.001 +0.001 +0.001 | +0.896 =+0.001 =£0.001
TooK (100, 1623 0013 0013 0.013 0214 0013 0013
op-K00) 159 10001 +0.001 +0.001 +£0.45 +0.001 +0.001
SP(S x5 045 0328 0302 0.431 0339 0303 0.303
GX3) 10124 40037 20042 +0.06 +0.035 +0.044 +0.032
Spxs 0939 0425 0447 0.632 0486 0454 0.445
+£0.064 +0.048 +0.038 +0.082 | 4+0.041 +0.031 -0.036
P10« 10y 0492 0462 0443 0.626 0.745 0442 0424
() 10113 40118 40103 40165 | 40174 40.105 +0.111
KP (10) 0129 0.098 0101 0.163 0197 011 0.104
+£0.051 +0.040 40.034 +0.009 | 4+0.047 +£0.032 -+0.044
KP 20) 0174 0128 0134 0.16 0222 0.139 0.129
+0.037 +0.035 40.037 +0.035 | 4+0.075 +£0.027 -+0.029
KP (40) 0176 0.149 0142 0.17 0217 0.153 0.146
+0.019 +0.011 40.008 =+0.011 | 40.025 =+0.008 =0.009
TSP 5) 0101 0.079 0.067 0.152 0095 0.078 0.073
+0.036 +0.032 +0.028 +0.05 +£0.029 +0.027 40.026
TSP (6 0.111 0.06 0059 0.161 0.069 0.081 0.059
©) 10021 40015 40014 40071 | 40009 £0.01 +0.006
TSP 8) 0.12 0072 0071 0.117 0081 0.095 0.065
+£0.008 +0.011 40.013 =+0.021 +£0.01 +0.011 +0.012

with the MSE loss between y and §. As this approach does not consider the optimization problem
during training, we anticipate it would have higher regret than the DFL approaches. Implementation
of perturbed Fenchel-Young (PFY) (Berthet et al.| [2020), Lgpo+ and Lgc g using combinatorial
solvers serve as three DFL benchmarks. We choose Lgpo+ and PFY, as they are best performing
DFL methods across various optimization problems (Mandi et all 2024; [Tang & Khalil, 2023).
When Lgpo+ and Lgc i are minimized using combinatorial solvers, Eq. [5|and Eq. [8] are used for
gradient backpropagation. The three columns under CvxpyLayer show regret when the losses are
backpropagated through the smoothed QP problem using CvxpyLayer. Regret appears only under
CvxpyLayer, because it can only be minimized after QP smoothing. This paper is the first to test the
last two approaches, which combine differential smoothing and surrogate losses.

For the Top-K problem, all DFL approaches have exact same regret. We explain this behaviour in
the appendix. Next, we highlight that in all cases, minimizing Lgpo+ or Lsc g results in lower test
regret than minimizing Regret using CvxpyLayer, which corroborates the main proposal we made
in this paper. Across all experiments, we observe that minimizing £sc g using CvxpyLayer yields
regret similar to Lgpp+ and PFY, which use combinatorial solvers. This shows that minimizing
Lsc g using CvxpyLayer can compete with the state-of-the-art in DFL. Moreover, Lgpo+ produce

26

Under review as a conference paper at ICLR 2025

X x o£

X

1 =

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

®n

Figure 18: Relationship between y,, and ¢,, in the Top-K experiment.

lower regret, when a combinatorial solver is used, whereas Lgc g performs better with CvxpyLayer.
This opens up an interesting side observation— Eq.[5|(Lspo+) provide a better subgradient than
Eq.|8|(Lscg). However, when one can differentiate through the optimization, Lscg (Eq. @) has a
better gradient than Lgpo+ (Eq.[I]).

0.2 EXPLANATION OF THE TOP-K DATASET

In the Top-K experiments, the relationship between y,, and ¢, is illustrated in Figure All DFL.
models learn a mapping with a positive slope. As a result, each model selects the Top-1 element as
the one with the highest value of ¢,,, leading to identical accuracy across all DFL models. In contrast,
models trained with MSE loss fail to learn a positive slope, resulting in significantly higher regret.

27

	Introduction
	Predict-then-Optimize Problem Description
	Decision-Focused Learning for Combinatorial Optimization
	Differentiable Optimization by Smoothing of Combinatorial Optimization
	Surrogate Losses for DFL
	Smart Predict then Optimize(SPO)
	Contrastive Loss

	Addressing the Scalability of DFL

	Minimizing Surrogate Loss with a Smoothed Solver
	Experimental Evaluation
	Experiment with DYS-Net

	Conclusion
	Proof of Proposition 1
	Computational Experiments Demonstrating Zero Gradient
	Comparison between LSPO+ and LSCE
	Demonstration of Learning with LSCE versus Regret
	Minimizing LSPO+ using DYS-Net
	Comparison against Solution Caching
	Comparative Analysis in Larger TSP Instances
	Predict-then-Optimize Problem Description
	Different Approaches to Decision-Focused Learning
	Generalization Bounds for NCE Loss
	Detailed Description of The Experimental Setup
	Description of the Optimization Problems
	Description of the Data Generation Process

	Implementation of DYS
	Shortcoming of Cave on the Knapsack Problem
	Learning Curves
	Additional Experiments
	Regret vs. Surrogate Loss with QP Smoothing
	Explanation of the Top-K Dataset

