
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMBINING ANALYTICAL SMOOTHING WITH
SURROGATE LOSSES FOR IMPROVED
DECISION-FOCUSED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Many combinatorial optimization problems (COPs) in routing, scheduling, and
assignment involve parameters such as price or travel time that must be predicted
from data; so-called predict-then-optimize (PtO) problems. Decision-focused
learning (DFL) is a family of successful end-to-end techniques for PtO that trains
machine learning models to minimize the error of the downstream optimization
problems. This requires solving the COP for each training instance with the pre-
dicted parameters and computing the derivative of the solution with respect to the
predicted parameters—tasks that become computationally prohibitive for large
COPs. When the COP is an integer linear program (ILP), a recent work, DYS-Net,
applies Davis-Yin splitting (DYS) to solve and differentiate through quadratically
regularized ILP. While this fully neural approach significantly accelerates training,
it has only been evaluated on datasets where true cost parameters are unobserved,
limiting its comparability to state-of-the-art techniques. In this work, we experi-
mentally demonstrate that minimizing empirical regret using DYS-Net results in
suboptimal regret on test data compared to state-of-the-art DFL methods across
three different COPs. We attribute this to the plateau effect: regret remains constant
over regions of the parameter space, with sharp changes occurring only at transi-
tion points resulting in low gradient values over much of the space when regret
is minimized. We illustrate how minimizing a noise contrastive surrogate loss
avoids this problem. Through extensive experiments, we show that minimizing this
surrogate loss allows DYS-Net to achieve test regret levels that are comparable to
or lower than the state-of-the-art methods. Moreover, by achieving state-of-the-art
regret levels with significantly reduced training times, our approach represents
a substantial advance in DFL research, particularly in improving its scalability
towards large-scale PtO problems.

1 INTRODUCTION

Many decision-making problems in real-world can be cast as optimization problems. Some parameters
of these optimization problems are often unknown due to uncertainty or the anticipation of future
events. As prediction of these parameters is crucial for making high-quality decisions, leveraging
contextual information is important at prediction time. The availability of historical data, combined
with the rapid growth of predictive machine learning (ML), has fueled increasing interest in data-
driven contextual optimization (Sadana et al., 2025).

When the goal is to predict parameters (such as cost or travel time) of an optimization problem,
such problems can be viewed as “predict-then-optimize”(PtO) problems, including two key steps—
the prediction of the unknown parameters and the subsequent optimization using those predicted
parameters. Prediction-focused learning is the approach to tackle PtO problems by treating the
prediction step independent of the optimization step, based on the assumption that increasing accuracy
of predictions would lead to good quality decisions. However, in practice, ML models fail to achieve
100% accuracy, and in the presence of prediction errors, such a prediction-focused approach fails
to consider how the error in predictions impacts the solution to the optimization problem. This fact
motivates the research in decision-focused learning (DFL), as surveyed by Mandi et al. (2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

DFL trains ML models to predict the uncertain parameters by directly minimizing the task loss,
which reflects the quality of the solutions made using the predicted parameters. Gradient-based DFL
entails computing the derivative of the optimization problem’s solution with respect to the predicted
parameters. However, for combinatorial optimization problems (COPs), this derivative is almost
always zero because slight parameter changes typically do not alter the solution, except at certain
transition points where the derivative does not exist.

In this paper, we focus on predicting parameters of COPs, where the predicted parameters appear
linearly in the objective function. Previous works in DFL use two broad categories of approaches
for such problems: (a) turning the COP into a differentiable mapping by smoothing the optimization
to a convex optimization problem (Wilder et al., 2019; Mandi & Guns, 2020), and then minimizing
the task loss, and (b) using surrogate loss functions (Elmachtoub & Grigas, 2022; Mulamba et al.,
2021; Mandi et al., 2022), for which gradients or subgradients exist. Both approaches require solving
the (smoothed) COP for each training instance with the predicted cost parameter and computing
the derivative of the COP solution with respect to the predicted parameter. This poses significant
scalability challenges, especially for large-scale COPs.

To improve the scalability of DFL, McKenzie et al. (2024) recently developed a fast, fully differ-
entiable neural optimization layer, DYS-Net, for integer linear programs (ILPs). DYS-Net can be
viewed within the first category of DFL approaches, as it incorporates neural smoothing of the LP.
As DYS-Net can be implemented entirely as a neural network, it significantly accelerates training.
However, McKenzie et al. (2024) consider datasets where true cost parameters are unobserved,
whereas in most PtO benchmark problems, as in (Tang & Khalil, 2023), it is assumed that the true
parameters are observed. Consequently, DYS-Net has not been compared to state-of-the-art DFL
techniques.

In this work, we consider the task of minimizing the empirical regret of the training set using DYS-Net
in datasets, where the true cost parameters are observed. We argue that this would result in low
gradient values over much of the space as regret remains constant over regions of the parameter space,
with sharp changes occurring only at transition points. To address this, we propose to minimize the
surrogate losses, even though it is possible to minimize regret directly by differentiating through the
smoothed optimization problem. We justify the advantage of using a surrogate loss by comparing the
pattern of the gradient landscape with respect to regret and the surrogate loss. In this way, this paper
combines the two approaches of DFL. Minimizing the surrogate losses using DYS-Net allows us to
accelerate DFL with regret lower than or equal to state-of-the-art DFL techniques.

In summary, this paper makes the following contributions:

• We show that although ‘smoothing’ makes the optimization problem differentiable, the
gradient remains zero over most of the parameter space due to the plateau effect.

• To address the plateau effect which occurs even after smoothing, we combine the two
families of DFL approaches by minimizing a surrogate loss post-smoothing.

• We empirically demonstrate that for smoothing approaches, minimizing surrogate losses
results in lower regret on test data than minimizing the regret.

• We show that by minimizing the surrogate loss using DYS-Net achieves regret comparable
to existing state-of-the-art methods while reducing training time by up to five-fold.

2 PREDICT-THEN-OPTIMIZE PROBLEM DESCRIPTION

In PtO problems, decisions are made by solving COPs. In this work, we focus on COPs with linear
objectives and the prediction of objective function parameters. These COPs can be formulated as
LPs or integer LPs (ILPs), both of which have extensive practical applications. Any LP can be
transformed in the following standard LP form:

v⋆(y) = argmin
v

y⊤v s.t. Av = b; v ≥ 0 (1)

where v ∈ RK is a decision variable and v⋆(y) is the optimal solution for a given cost parameter
y ∈ RK . ILPs differ from LPs in that the decision variables v are restricted to integer values. For
brevity, we use F to denote the feasible space. So, for the standard LP formulation, F = {v ∈
RK |Av = b ;v ≥ 0}. Unless it is explicitly stated otherwise, v⋆ will denote v⋆(y).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

To account for uncertainty in the decision-making, PtO problems comprise two steps—the prediction
of the unknown parameters and solving the optimization problem using the predicted parameters.
We consider PtO formulation, where the vector of cost parameters y is not known prior to solving.
Instead, a list of contextual information ϕ, correlated with y is available for predicting y. In PtO
problems, an ML modelMω (with trainable parameters ω) is trained to map ϕ → y using past
observation pairs {(ϕi,yi)}Ni=1. Given their success in predictive tasks, neural networks have become
the preferred choice for the predictive modeling task in PtO problems.

A straightforward approach to the PtO problem is to train Mω to generate accurate parameter
predictions ŷ =Mω(ϕ) by minimizing the prediction errors with respect to ground-truth y. Previous
works (Wilder et al., 2019; Elmachtoub & Grigas, 2022; Mandi et al., 2020) justify why such a
prediction-focused approach produces suboptimal performance. By contrast, in decision-focused
learning (DFL), the ML model is directly trained to optimize the task loss, the quality of the resulting
decisions. When only the parameters in the objective function are predicted, the task loss of interest is
typically regret, which measures the suboptimality of a decision resulting from prediction errors. The
regret for making the decisions v under the true realization y can be expressed in the following form:

Regret(v,y) = y⊤v − y⊤v⋆(y) (2)

In PtO problems, one can consider other task losses (Appendix H), such as squared decision errors
(SqDE) between v⋆(y) and v⋆(ŷ), i.e., SqDE = ||v⋆(y)− v⋆(ŷ)||2.

3 DECISION-FOCUSED LEARNING FOR COMBINATORIAL OPTIMIZATION

The DFL approach trainsMω to directly minimize 1
N

∑N
i=1 Regret(v

∗(Mω(ϕi)),yi), the empirical
risk minimization counterpart of E[Regret(v∗(Mω(ϕ)),y)] since the true distribution is unknown.
This minimization of regret in gradient descent-based learning requires backpropagation through the
COP, which involves computing the derivative of v⋆(ŷ) with respect to ŷ =Mω(ϕ). While dv⋆(ŷ)

dŷ

can be computed for convex optimization problems through implicit differentiation (Agrawal et al.,
2019; Amos & Kolter, 2017), it is more challenging when the optimization problem is combinatorial.
This is because when the parameters of a COP change, the solution either remains unchanged or
shifts abruptly, meaning the derivatives are almost always zero and undefined at abrupt changes.

Broadly there are two approaches of implementing DFL for COPs: (a) smoothing the COP to a
smooth convex optimization problem and (b) using a surrogate loss that is differentiable. For a
detailed discussion on how existing DFL techniques tackle this challenge, we refer readers to the
survey paper by Mandi et al. (2024).

3.1 DIFFERENTIABLE OPTIMIZATION BY SMOOTHING OF COMBINATORIAL OPTIMIZATION

To address this, methodologies in this category modify the optimization problem by smoothing and
then analytically differentiate the ‘smoothed’ optimization problem. (Readers may refer to Appendix
I for detailed explanation.) In this work, we focus on optimization problems with linear objective
functions such as LPs and ILPs. For LPs, Wilder et al. (2019) propose transforming the LPs into
‘smoothed’ quadratic programs (QPs) by augmenting the objective function with the square of the
Euclidean norm of the decision variables in the following form:

min
v

ŷ⊤v + µ∥v∥22 s.t. Av = b ;v ≥ 0 (3)

where µ ≥ 0 is the smoothing parameter, controlling the strength of smoothing. After smoothing, the
solution is not restricted to being at a vertex of the LP polyhedron. In the ‘smoothed’ problem, unlike
the original LP, the solution do not change abruptly. The solution either may not change or change
smoothly with the change of the cost vector, as illustrated in Figure 1b. Consequently, v⋆(ŷ) becomes
differentiable with respect to ŷ. The QP smoothing approach has been applied in various DFL works
(Ferber et al., 2020; 2023; McKenzie et al., 2024). Mandi & Guns (2020) consider another form of
smoothing by adding logarithm barrier term into the LP. When the underlying optimization problem
is an ILP, smoothing of the LP, resulting from the continuous relaxation of the ILP is carried out.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) LP Solutions (b) Solutions to the QP smoothing

Figure 1: Schematic diagram showing the effect of QP smoothing. (a) LP solutions and the corre-
sponding isocost line for four cost vectors. The green, cyan and red cost vectors result in the same
solution, the top vertex, highlighting that a slight rotation of the isocost lines may not alter the LP
solution. However, if the isocost lines rotate too much, for example, the violet line, the solution
suddenly shifts to a different vertex. (b) The isocost lines change after applying QP smoothing, and
the solution is no longer restricted to a vertex. For example, the red vector results in a smooth change
in the solution. However, even with smoothing, some cost vectors, like the cyan and green, may still
share the same solution.

3.2 SURROGATE LOSSES FOR DFL

Surrogate loss functions are used for training in DFL because they are crafted to have non-zero
(sub)gradients everywhere while also directly correlating with the task loss—as regret decreases,
surrogate loss functions decrease as well. We focus on two surrogate losses, used widely in DFL.

3.2.1 SMART PREDICT THEN OPTIMIZE(SPO)

The SPO+ loss (Elmachtoub & Grigas, 2022), a convex upper bound of Regret(v⋆(ŷ),y), is one of
the first and most widely used surrogate losses for linear objective optimization problems.

Regret(v⋆(ŷ),y) = y⊤v⋆(ŷ)− y⊤v⋆ = y⊤v⋆(ŷ)− 2ŷ⊤v⋆(ŷ) + 2ŷ⊤v⋆(ŷ)− y⊤v⋆

≤ max
v′∈F
{y⊤v′ − 2ŷ⊤v′}+ 2ŷ⊤v⋆(ŷ)− y⊤v⋆ ≤ max

v′∈F
{y⊤v′ − 2ŷ⊤v′}+ 2ŷ⊤v⋆ − y⊤v⋆︸ ︷︷ ︸

LSPO+ (v⋆(ŷ),y)

Instead of minimizing Regret , they propose to minimize this convex upperbound, which is called
LSPO+(v⋆(ŷ),y) loss. It can be expressed in the following form:

LSPO+(v⋆(ŷ),y) = max
v′∈F
{2ŷ⊤v⋆ − y⊤v⋆ − (2ŷ − y)⊤v′} = (2ŷ − y)⊤v⋆ − min

v′∈F
{(2ŷ − y)⊤v′}

= (2ŷ − y)⊤v⋆ − (2ŷ − y)⊤v⋆(2ŷ − y) (4)
They also propose the following sub-gradient for gradient-based training using any solver of choice:

∇LSPO+ = 2(v⋆ − v⋆(2ŷ − y)) (5)

3.2.2 CONTRASTIVE LOSS

Mulamba et al. (2021) propose a surrogate loss based on noise-contrastive estimation (NCE) (Gutmann
& Hyvärinen, 2012). The loss is derived by considering the log-likelihood ratio between v⋆ and other
feasible points v′. By maximizing this likelihood, they propose to minimize the following NCE loss:

LNCE(v
⋆(ŷ),y) = max

v′∈F
{ŷ⊤v⋆ − ŷ⊤v′} = ŷ⊤v⋆ − min

v′∈F
{ŷ⊤v′} = ŷ⊤v⋆ − ŷ⊤v⋆(ŷ) (6)

Note that LNCE is similar to LSPO+ , except that in LNCE , 2ŷ − y is replaced with ŷ. This
introduces a shortcoming in LNCE . The minimum of LNCE , which is zero, can be achieved either
when v⋆(ŷ) = v⋆ or by predicting ŷ = 0. To prevent minimizing LNCE by predicting ŷ = 0,
Mulamba et al. (2021) further modify LNCE to derive the self-contrastive estimation (SCE) loss:

LSCE(v
⋆(ŷ),y) = (ŷ−y)⊤v⋆−(ŷ−y)⊤v⋆(ŷ) = ŷ⊤v⋆−ŷ⊤v⋆(ŷ)+y⊤v⋆(ŷ)−y⊤v⋆(y) (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Proposition 1. LSCE(v
⋆(ŷ),y) has the following properties (proof is given in Appendix A):

1. LSCE(v
⋆(ŷ),y) ≥ 0

2. When the set of optimal solutions is a singleton
LSCE(v

⋆(ŷ),y) = 0 =⇒ Regret(v⋆(ŷ),y) = 0;
Regret(v⋆(ŷ),y) = 0 =⇒ LSCE(v

⋆(ŷ),y) = 0.

We also show generalization bounds for SCE loss in Appendix J.

When LSCE is minimized using a blackbox optimization solver, the gradient would be:

∇LSCE
= v⋆ − v⋆(ŷ) (8)

3.3 ADDRESSING THE SCALABILITY OF DFL

Implementing DFL entails a significant computational burden, as it requires solving and differentiating
the COP or the ‘smoothed’ COP for each training instance in every epoch using predicted parameters.
Mulamba et al. (2021) address the scalability issue by using solution caching instead of repeatedly
solving the optimization problem. Tang & Khalil (2024) avoid solving the COP during training using
an approach, called CaVE, by minimizing the angle between the predicted cost vector and the ‘normal
cone’ of the true optimal solution, While such approaches aim to avoid solving the COP to improve
scalability, a faster and more scalable implementation of the optimization problem is another research
direction, which has been receiving increasing attention recently. Research in this area is tangential
to the learning-to-optimize paradigm (Bengio et al., 2021; Kotary et al., 2021), which trains an ML
model to output COP solutions directly from the parameters.

In order to find a heuristic solution to a COP using ML, graph neural networks emerge as a key
building block (Khalil et al., 2022; Cappart et al., 2023). However, for quadratically regularized
LPs, a recent work by McKenzie et al. (2024) demonstrate that a simple feedforward neural network
can be used to obtain a heuristic solution. Their technique, called DYS-Net, is based on a three-
operator splitting technique (Davis & Yin, 2017) to compute the solution. Next, we will provide a
brief overview of DYS-Net, as we aim to train by minimizing a surrogate loss using DYS-Net for
accelerating DFL.

DYS-Net for LPs. The principle of DYS-Net emerges from projected gradient descent (Duchi
et al., 2008). Projected gradient descent differs from standard gradient descent in that after each
iteration, the current predictions are projected into the feasible space if they are not in the feasible
space. However, projecting into the feasible space of a combinatorial optimization problem is itself
an expensive operation. If we consider standard form LPs, the feasible space can be expressed as:

F ≡ F1 ∩ F2 where F1
.
= {Av = b} and F2

.
= {v ≥ 0}.

Although projecting an infeasible solution v directly into F is not a trivial operation, projecting into
F1 and F2 separately are much simpler tasks. Projecting into F1 takes the following form:

PF1(v)
.
= v −A†(Av − b)

where A† is the pseudo inverse of A. Projecting into F2 takes the following form:

PF2
(v)

.
= max{0,v}

where max operates element-wise. Cristian et al. (2023) propose an iterative approach, continuously
alternating between PF1

and PF2
. In contrast, DYS-Net introduces the following fixed point iteration

algorithm based on a three-operator splitting method.

vk+1 = vk − PF2
(vk) + PF1

(
(2− αµ)PF2

(vk)− vk − αy
)

(DYS)

which converges to v⋆(y) as k →∞. In practice, we use a finite number of iterations k in a single
forward pass to get an approximation of v⋆(y). Note that all operations in Eq. DYS can be expressed
as matrix operations and can be implemented using neural networks, which has the potential for
greater scalability and reduced training time by leveraging recent advancements in GPU hardware.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We denote the solution obtained in this method as DYS (y). In practice, Eq. DYS would be iterated
for a finite number of steps and the resulting solution will be a close approximation to the true optimal
outcome. One can view DYS-Net as differentiable optimization by ‘neural smoothing’. In case of
ILPs, the LP after relaxation is considered. McKenzie et al. (2024) accelerate DF using DYS-Net by
minimizing SqDE . In this work, we will propose training by minimizing LSCE or LSPO+ between
after replacing v⋆(ŷ) with DYS (ŷ) as shown in the next section.

4 MINIMIZING SURROGATE LOSS WITH A SMOOTHED SOLVER

Since smoothing converts the non-smooth COP into a smooth differentiable optimization problem,
one could compute and differentiate regret using the smoothed problem. Existing works in DFL
minimize the empirical regret of the smoothed problem expecting this would reduce the expected
regret in unseen instances, aligning with the empirical risk minimization paradigm in ML. However,
a close inspection of how the incorporation of smoothing changes the gradient landscape reveals a
shortcoming in this approach.

The introduction of smoothing ensures that the solution transitions smoothly, rather than abruptly,
near the original COP’s transition points. However, the solution of the smoothed optimization remains
unchanged, or changes very slowly, in regions where the COP’s solution is constant, provided that
the smoothing strength is kept low as illustrated in Figure 1b. So in this region, dv⋆(ŷ)

dŷ is nearly zero.
When regret is minimized, the derivative of it with respect to the ŷ takes the following form:

∂v⋆(y)

∂y

∣∣∣
y=ŷ

y (9)

where ∂v⋆(y)
∂y

∣∣∣
y=ŷ

is computed by considering the smoothed optimization problem. As we illustrated

above, smoothing addresses the non-differentiability at the transition points, but the derivative dv⋆(ŷ)
dŷ

still remains zero far from these points. Hence, the derivative in Eq. 9 remains zero. This would also
be true if SqDE is considered as the training loss. In this case, the derivative would be:

∂v⋆(y)

∂y

∣∣∣
y=ŷ

(v⋆(ŷ)− v⋆) (10)

In both Eq. 10 and Eq. 9, the derivative turns zero due to ∂v⋆(y)
∂y

∣∣∣
y=ŷ

becoming zero. Consequently,

training by gradient descent would fail to change ŷ despite ŷ resulting non-zero regret.

To prevent the derivative from vanishing far from the transition points, in this paper, we argue in
favour of minimizing a surrogate loss instead. For instance, when LSPO+ is minimized, the derivative
of the loss with respect to the ŷ takes the following form:

2(v⋆ − v⋆(2ŷ − y)) + 2
∂v⋆(y)

∂y

∣∣∣
y=2ŷ−y

(y − 2ŷ) (11)

Similarly if LSCE is minimized after smoothing, the resulting derivative would be:

(v⋆ − v⋆(ŷ)) +
∂v⋆(y)

∂y

∣∣∣
y=ŷ

(y − ŷ) (12)

The way Eq. 12 differs from Eq. 9 is the term (v⋆ − v⋆(ŷ)) and the multiplier of ∂v⋆(y)
∂y

∣∣∣
y=ŷ

is

(y − ŷ) instead of y. The term (v⋆ − v⋆(ŷ)) prevents dL
dŷ going to zero even when dv⋆(ŷ)

dŷ ≈ 0.

Note that if we minimize LSCE or LSPO+ using a blackbox optimization solver, ∂v⋆(y)
∂y cannot be

computed and only the first part of the derivative would be used. So, in this case, Eq. 11 and Eq. 12
would reduce to Eq. 5 and Eq. 8 respectively.

In principle, both LSCE or LSPO+ can be minimized using a ‘smoothed’ solver. However, there is an
important distinction to note. LSCE is non-convex in ŷ whereas LSPO+ is convex. On the other hand,
LSPO+ can be non-zero even when regret is zero (see Appendix C), whereas Proposition 1 shows
that LSCE is zero whenever regret is zero. As smoothing can potentially improve its performance by

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

eliminating the sharp transitions in LSCE as per Proposition 1, and LSCE is closely related to regret,
minimizing LSCE after smoothing may be a promising approach, provided that smoothing does not
significantly alter the solution. We will empirically investigate whether LSCE or LSPO+ fits well
with a smoothed solver.

A deep dive into the gradient landscape. To convince readers that the solution of the smoothed
optimization remains unchanged, we will demonstrate how the gradient landscape changes after
QP smoothing with a simple illustration. For this, we consider the following one-dimensional
optimization problem:

min
v

yv s.t. 0 ≤ v ≤ 1 (13)

where y ∈ R is the parameter to be predicted. Note that the solution of this problem is: v⋆(y) = 1 if
y < 0 and v⋆(y) = 0 if y > 0. When y = 0 any value in the interval [0,1] is an optimal solution.

Figure 2: The numerical illustration demon-
strates that while smoothing removes abrupt
changes in the solution and makes the regret
continuous, the solution often remains flat
across most regions, resulting in a zero gra-
dient, not suitable for training. In contrast,
LSCE (with or without smoothing) provides
a more responsive landscape: when regret is
non-zero, LSCE ensures non-zero gradient.

Let us assume that the true value of y is 4 and hence
v⋆(y) = 0. The red line in Figure 2 shows how the
value of regret changes as ŷ changes. The regret is 4
when ŷ ≤ 0 and 0 when ŷ > 0. The regret changes
abruptly at the point ŷ = 0. After augmenting the
objective with the quadratic smoothing term µ

2 v
2 with

µ > 0 , the solution of the smoothed problem is:

v⋆(y) =

0; when y > 0

− y
µ ; when − µ < y ≤ 0

1; when y ≤ −µ

This makes the derivative non-zero in the interval
−µ ≤ y ≤ 0. However, it is still zero when y < −µ.
Hence, if ŷ < −µ, the derivative of regret is 0, even
if regret is non-zero. Consequently, the predictions
cannot be changed by gradient descent despite regret
being zero. The regret with the smoothed problem is
shown by the blue line in Figure 2 for µ = 6. The
strength of smoothing can be increased by assigning
µ to a high value. However, if µ ≫ |y|, v⋆(y) ≈ 0
almost everywhere. On the other hand, LSCE with
and without smoothing are plotted with green and
violet colors, respectively. In both cases, LSCE is
strictly decreasing for ŷ < 0. This ensures a non-zero
derivative, suitable for guiding ŷ towards the positive

half-space if ŷ < 0. Minimizing regret generates a zero gradient, preventing effective gradient-based
learning, as explained with an example in Appendix D. Moreover, we have performed computational
experiments in Appendix B on larger optimization problems to show that the zero-gradient problem
persists in optimization problems with a large number of parameters and decision variables.

5 EXPERIMENTAL EVALUATION

In order to demonstrate the advantage of using LSCE as the training loss, we report experiments on
three well-established DFL benchmark problems.

Multi-Dimensional Knapsack (KP). The objective of the knapsack problem is to select a subset of
items with the highest total value, subject to a capacity constraint. The weights of the items and the
knapsack’s capacity are known, but the values of the items are unknown. Therefore, the prediction
task is to predict the value of each item using features.

Shortest path on a grid (SP). The goal of this optimization problem is to find the path, with lowest
cost on a k × k grid, starting from the southwest node and ending at the northeast node of the grid
(Elmachtoub & Grigas, 2022). The cost of each edge is unknown and should be predicted before

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Experiment with DYS-Net in relatively smaller KP, SP and TSP instances (from left to
right). SPOC

+ minimizes LSPO+ using Gurobi solvers. When ‘DYS’ appears as a superscript of a
loss, it indicates that the loss is computed and minimized using DYS-Net.

solving the problem. The true relation between the features and the costs are non-linear, but linear
model is used for predictions.

Travelling salesperson problem (TSP). Given a set of nodes, the goal is to find the tour, with the
lowest cost, that visits every node exactly once. As before, the costs are related to the features in a
non-linear manner, but a linear predictive model is used for prediction.

We use PyEPO (Tang & Khalil, 2023) to generate the training, validation and test instances for the SP,
KP and TSP problems. In all three problems, the true relation between the features and the costs
are non-linear, but linear model is used for predictions. We experiment with polynomial degree
parameter and noise half-width parameter being 6 and 0.5, respectively. The predictive models are
implemented using PyTorch (Paszke et al., 2019) and Gurobipy (Gurobi Optimization, 2021) is used
as a combinatorial solver to obtain the optimal solution. For evaluation, we always use Gurobipy. For
all the experiments, We repeat each experiment five times and report normalized relative regret on
test data, calculated as follows:

1

Ntest

Ntest∑
i=1

y⊤
i (v

⋆(ŷi)− v⋆
i)

y⊤
i v

⋆
i

. (14)

We use the implementation of DYS-NET by McKenzie et al. (2024). The experiments were executed
on a computer with an Intel(R) Core(TM) i7-13800H processor using 32 Gb of RAM.

5.1 EXPERIMENT WITH DYS-NET

RQ1: Are surrogate losses better suited for DYS-Net? In the first set of experiments, we want to
investigate whether minimizing the surrogate losses result in regret lower than minimizing Regret and
SqDE . For this set of experiments, we consider relatively small-sized COPs. We use three approaches
as benchmarks: A prediction-focused approach, MSE, which minimizes the MSE loss between y
and ŷ; a DFL implementation of perturbed Fenchel-Young (PFY) (Berthet et al., 2020) loss; and
another DFL approach, which minimizes LSPO+ by solving the COPs. We show the normalized
regret across five runs in Figure 3. It is clearly evident across all problems that minimizing LSCE and
LSPO+ results in lower regret than minimizing Regret and SqDE . This set of experiments highlight
the advantage of minimizing surrogate losses with DYS-Net.

RQ2: Does DYS-Net accelerates DFL? We present the result for larger problem instances of KP,
SP and TSP in Figure 4. In the upper and lower panels, we compare normalized relative test regret
and training time of one epoch, respectively. For these experiments, we did not report regret of PFY,
because its performance is same as SPOC

+ . Moreover, we did not consider minimizing Regret and
SqDE with DYS-Net, because previous experiments reveal they produce higher regret. As, training
time is the primary focus, we include the DFL approaches, which are focused on that: CaVE and
minimizing LSPO+ with solution-caching.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Experiment with DYS-Net in relatively larger KP, SP and TSP instances (from left to right).
SPOp=5%

+ minimizes LSPO+ using using a solution cache, with psolve = 5%. CaV E minimizes
the the negative of cosine similarity between ŷ and the optimal cone.

In terms of test regret, in all the KP and TSP instances, LSCE with DYS-Net, SCEDY S , matches
the regret of the SPOC

+ approach with significant reduction in training time. For the shortest path
instances up to grid-size of 25, SCEDY S , produces regret comparable to SPOC

+ ; however, regret
increases for grid-size of 30.

In summary, SCEDY S yields regret similar to SPOC
+ , while significantly reducing runtime. The

advantage becomes more pronounced with larger problem sizes; for instance, in the 11-node TSP,
DYS-Net is 5 times faster than SPO, which solves an ILP. Notably, these results were achieved
without GPU training, suggesting that even greater runtime reductions are possible with GPU usage.

The solution-caching approach, SPOp=5%
+ , is faster than DYS-Net especially in the TSP instances.

With respect to test regret, SPOp=5%
+ performs poorer than SCEDY S in the TSP instances, however

for other instances its regret comparable to SCEDY S . We have also tested against SCEp=5%, which
performs slightly worse (see Figure 9 in Appendix F.)

Comparison against CaVE. CaVE performs well for TSPs in terms of regret and time but struggles
with other problems. For TSPs, the relatively small number of active constraints makes the method
efficient. However, for SP problems, the exponential growth in active constraints causes memory
overhead issues, as all active constraints are stored in memory. For instance, a 10-node TSP has 100
active constraints, while a 10-node SP has 200. Due to memory overhead, we cannot run CaVE on
the 30-grid SP instance. Thus, we can say CaVE is suitable for TSPs, but not generalizable to all
optimization problems. Moreover, another shortcoming of CaVE is visible in the KP problem, where
it fails in terms of both quality and scalability. This is because their method relies on identifying
active constraints, but the capacity constraint in the integer knapsack problem is often not active. This
leads to incorrect identification of the normal cone resulting in poor performance of CaVE in the
knapsack problem (see Appendix M for further explanation).

RQ3: Evaluation on larger TSP instances. In the next set of experiments, we aim to compare
SCEDY S against CaVE and SPOp=5%

+ on even larger TSP instances. One advantage of CaVE
is that it uses the DFJ formulation, whereas DYS-Net relies on the MTZ formulation, as the latter
requires specifying the full problem. Since the MTZ formulation is weaker than the DFJ formulation
(Öncan et al., 2009; Langevin et al., 1990), we adapted DYS-Net by drawing inspiration from CaVE.
Specifically, like CaVE, we first identify and collect the active constraints for all instances before
starting DFL training. Instead of considering the true ILP representing the original TSP, we consider
an ILP constructed only from these active constraints. Then, rather than solving the quadratically
relaxed LP of the original TSP, we solve the relaxed LP derived from the ILP of the active constraints
using DYS-Net. It is important to note that this adaptation results in a different ILP for each instance,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Experiment with DYS-Net in larger TSP instances.

as the active constraints corresponding to the true solution vary across instances. This adaptation of
is denoted by SCE(A)DY S (where A indicates active constraints).

In Figure 5, we consider TSP instances with 15, 20 and 25 nodes. For these larger problem instances,
we cannot complete training of SPOC

+ . We focus exclusively on TSP instances because, among
the three optimization problems considered it is the most difficult and time-consuming to solve.
First, we point out that the training time of SCE(A)DY S is significantly lower than SCEDY S .
because it solves a smaller problem. Secondly, as problem size increases, DYS-Net demonstrates
better scalability than SCEp=5% and SPOp=5%

+ since solving the optimization problem even for
5% of the training instances becomes significantly time-intensive. The reason for the discrepancy
between SCEp=5% and SPOp=5%

+ is explained in Appendix G. CaVE, on the other hand, is proved
to be faster than both SCEDY S and SCE(A)DY S , although SCE(A)DY S reduces the gap quite
significantly. Moreover, SCE(A)DY S yields lower regret than CaVE.

Summary. We first demonstrated that minimizing LSCE and LSPO+ achieves lower regret than
directly minimizing Regret and SqDE using DYS-Net. Notably, Table 3 in the Appendix O confirms
that this result also holds for other smoothed differentiable solvers, such as Cvxpylayer. Next, we
have shown that the test regret of SCEDY S is comparable to PFY and SPOC

+ , while SCEDY S

requires significantly reduced training time. In terms of training time, CaVE is faster than SCEDY S

for the TSP problems. Moreover, inspired by CaVE, we adapted SCEDY S requiring solving a
smaller ILP. Although this new approach is not faster than CaVE, it results in lower regret. Lastly,
while CaVE has a lower training time than SCE(A)DY S and SCEDY S , we found that it performs
poorly on other problems. In contrast, SCEDY S is a scalable DFL approach and it is applicable to a
broad class of ILPs.

6 CONCLUSION

In this paper, we experiment with the recently proposed DYS-Net, a fast neural solver for LPs. By
minimizing Regret or SqDE , DYS-Net cannot attain regret as low as existing DFL techniques, such
as SPO and PFY. So, we challenge the conventional DFL approach of directly minimizing empirical
regret when a smoothing operation is applied to make the optimization problem differentiable. Instead,
we recommend minimizing a surrogate loss, such as LSCE and justify this by comparing the pattern
of the gradient landscape concerning regret and the surrogate loss. By doing so, we effectively merge
the two families of approaches in DFL. Our experimental evaluations show that for most problems
minimizing LSCE using DYS-Net produces regret as low as the state-of-the-art SPO method, with a
clear advantage in runtime up to five-fold.

Future work includes applying this approach to real-world large-scale applications with full GPU
training. Furthermore, new fully neural smoothing approaches or better surrogate losses can also
benefit from this joint approach. While used here for linear objective functions, future work can
investigate the joint applicability of both smoothing and surrogates for non-linear optimization too.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in neural information processing systems, 32,
2019.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
A methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2020.07.063.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable pertubed optimizers. Advances in neural information processing
systems, 33:9508–9519, 2020.

Mathieu Blondel, André FT Martins, and Vlad Niculae. Learning with fenchel-young losses. J. Mach.
Learn. Res., 21(35):1–69, 2020.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1–61, 2023.

Rares Cristian, Pavithra Harsha, Georgia Perakis, Brian L Quanz, and Ioannis Spantidakis. End-to-
end learning for optimization via constraint-enforcing approximators. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 7253–7260, 2023.

Damek Davis and Wotao Yin. A three-operator splitting scheme and its optimization applications.
Set-valued and variational analysis, 25:829–858, 2017.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto
the l1-ball for learning in high dimensions. In Proceedings of the 25th International Conference
on Machine Learning, ICML ’08, pp. 272–279, New York, NY, USA, 2008. Association for
Computing Machinery. ISBN 9781605582054. doi: 10.1145/1390156.1390191.

Othman El Balghiti, Adam N Elmachtoub, Paul Grigas, and Ambuj Tewari. Generalization bounds
in the predict-then-optimize framework. Advances in neural information processing systems, 32,
2019.

Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science, 68(1):
9–26, 2022.

Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program as
a layer. Proceedings of the AAAI Conference on Artificial Intelligence, 34(02):1504–1511, Apr.
2020.

Aaron Ferber, Emily Griffin, Bistra Dilkina, Burcu Keskin, and ML Gore. Predicting wildlife
trafficking routes with differentiable shortest paths. In Proceedings of the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 20th International Conference,
CPAIOR 2023, 2023.

LLC Gurobi Optimization. Gurobi optimizer reference manual. http://www.gurobi.com,
2021.

Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized statistical
models, with applications to natural image statistics. The journal of machine learning research, 13
(1):307–361, 2012.

11

http://www.gurobi.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Elias B. Khalil, Christopher Morris, and Andrea Lodi. MIP-GNN: A data-driven framework for
guiding combinatorial solvers. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022,
The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, pp. 10219–10227. AAAI Press, 2022.

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end constrained
optimization learning: A survey. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, pp. 4475–4482. ijcai.org, 2021.

André Langevin, François Soumis, and Jacques Desrosiers. Classification of travelling salesman
problem formulations. Operations Research Letters, 9(2):127–132, 1990.

Jayanta Mandi and Tias Guns. Interior point solving for lp-based prediction+optimisation. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 7272–7282, 2020.

Jayanta Mandi, Emir Demirović, Peter J. Stuckey, and Tias Guns. Smart predict-and-optimize for
hard combinatorial optimization problems. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(02):1603–1610, Apr. 2020.

Jayanta Mandi, Víctor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns. Decision-focused
learning: Through the lens of learning to rank. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
14935–14947. PMLR, 17–23 Jul 2022.

Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns, and
Ferdinando Fioretto. Decision-focused learning: Foundations, state of the art, benchmark and
future opportunities. Journal of Artificial Intelligence Research, 80:1623–1701, 2024.

Daniel McKenzie, Howard Heaton, and Samy Wu Fung. Differentiating through integer linear
programs with quadratic regularization and davis-yin splitting. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=
H8IaxrANWl.

Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey,
and Tias Guns. Contrastive losses and solution caching for predict-and-optimize. In Zhi-Hua
Zhou (ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, pp. 2833–2840. International Joint Conferences on Artificial Intelligence Organization,
8 2021. doi: 10.24963/ijcai.2021/390. Main Track.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: Backpropagating through
discrete exponential family distributions. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34,
pp. 14567–14579. Curran Associates, Inc., 2021.

Temel Öncan, I Kuban Altınel, and Gilbert Laporte. A comparative analysis of several asymmetric
traveling salesman problem formulations. Computers & Operations Research, 36(3):637–654,
2009.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differenti-
ation of blackbox combinatorial solvers. In International Conference on Learning Representations,
2020.

12

https://openreview.net/forum?id=H8IaxrANWl
https://openreview.net/forum?id=H8IaxrANWl

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Utsav Sadana, Abhilash Chenreddy, Erick Delage, Alexandre Forel, Emma Frejinger, and Thibaut
Vidal. A survey of contextual optimization methods for decision-making under uncertainty.
European Journal of Operational Research, 320(2):271–289, 2025. ISSN 0377-2217. doi:
https://doi.org/10.1016/j.ejor.2024.03.020.

Subham Sekhar Sahoo, Anselm Paulus, Marin Vlastelica, Vít Musil, Volodymyr Kuleshov, and Georg
Martius. Backpropagation through combinatorial algorithms: Identity with projection works. In
The Eleventh International Conference on Learning Representations, 2023.

Bo Tang and Elias B. Khalil. Pyepo: A pytorch-based end-to-end predict-then-optimize library for
linear and integer programming, 2023.

Bo Tang and Elias B. Khalil. Cave: A cone-aligned approach for fast predict-then-optimize with
binary linear programs. In Bistra Dilkina (ed.), Integration of Constraint Programming, Artificial
Intelligence, and Operations Research - 21st International Conference, CPAIOR 2024, Uppsala,
Sweden, May 28-31, 2024, Proceedings, Part II, volume 14743 of Lecture Notes in Computer
Science, pp. 193–210. Springer, 2024.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, pp. 1658–1665. AAAI Press, 2019.

A PROOF OF PROPOSITION 1

Proof. 1. Following the definition of LSCE ,

LSCE(v
⋆(ŷ),y) = (ŷ − y)⊤v⋆(y)− (ŷ − y)⊤v⋆(ŷ)

= ŷ⊤(v⋆(y)− v⋆(ŷ)) + y⊤(v⋆(ŷ)− v⋆(y))

ŷ⊤(v⋆(y) − v⋆(ŷ)) ≥ 0, because v⋆(ŷ) is the optimal solution to ŷ. In a similar way,
y⊤(v⋆(ŷ)− v⋆(y)) ≥ 0. Hence, LSCE(v

⋆(ŷ),y) ≥ 0.

2. We will prove the claim by contradiction. Assume that LSCE(v
⋆(ŷ),y) = 0 but

Regret(v⋆(ŷ),y) = y⊤(v⋆(ŷ) − v⋆(y)) > 0 . This is possible if v⋆(ŷ) ̸= v⋆(y).
As the solution to ŷ is different from v⋆(y), the singleton assumption implies that
∃v′ ∈ F \ {v⋆(y)} : ŷ⊤v′ < ŷ⊤v⋆(y). In this case, we have:

ŷ⊤v⋆(y)− ŷ⊤v′ > 0

⇒ (ŷ⊤v⋆(y)− ŷ⊤v′) + (y⊤v′ − y⊤v⋆(y)) > (y⊤v′ − y⊤v⋆(y)) ≥ 0

⇒ (ŷ − y)⊤v⋆ − (ŷ − y)⊤v⋆(ŷ) > 0

In the second line, y⊤v′ − y⊤v⋆(y) is added in both sides and this term is nonnegative as
v⋆(y) is the optimal solution to y. This implies LSCE(v

⋆(ŷ),y) > 0 and we arrive at a
contradiction. Thus we prove that LSCE(v

⋆(ŷ),y) = 0 =⇒ Regret(v⋆(ŷ),y) = 0.

Next, assume Regret(v⋆(ŷ),y) = 0. This implies that y⊤v⋆(ŷ) = y⊤v⋆(y). This can
only be true if v⋆(ŷ) = v⋆(y) because of the singleton assumption. Hence,LSCE(v

⋆(ŷ),y)
= (ŷ − y)⊤(v⋆(y)− v⋆(ŷ)) = 0.

B COMPUTATIONAL EXPERIMENTS DEMONSTRATING ZERO GRADIENT

In Section 4, we made the case for minimizing surrogate loss such as LSCE instead of Regret . Our
main argument is for a relatively low value of smoothing parameter µ, Regret will have zero gradient.
However, LSCE will not have this problem. We provided two illustrations considering small-scale
optimization problems. In this case, we justify this with higher-dimensional optimization problems.
We consider Top-1 selection problem with different number of items M .

max
v∈{0,1}

y⊤v s.t. v⊤1 ≤ 1 (15)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

M

µ 5 10 20 40 80 100

0.100 0.000 0.000 0.000 0.000 0.000 0.000
0.500 0.000 0.000 0.000 0.000 0.000 0.000
0.990 0.000 0.000 0.000 0.000 0.000 0.001
1.050 0.089 0.089 0.089 0.089 0.089 0.089
1.500 0.465 0.466 0.465 0.465 0.465 0.464
2.000 0.622 0.622 0.622 0.622 0.622 0.622
5.000 1.165 1.165 1.165 1.165 1.165 1.165

Table 1: We tabulate average Manhattan distance between the solution of the ‘smoothed’ problem
and the solution of the original problem for different values of M and µ.

y = [y1, . . . , yM] ∈ RM is the vector denoting value of all the items and v = [v1, . . . , vM] is the
vector decision variables. To replicate the setup of a PtO problem, we solve the optimization problem
with ŷ. Let us assume yi, ŷi ≥ 0.

Before, solving the problem with simulation, we will show one interesting aspect of this problem.
Note that when µ > 0, the following relaxed optimization problem is solved:

max
v

y⊤v − µ

2
||v||2 s.t. v⊤1 ≤ 1; v ≥ 0 (16)

We point out that the solution to the unconstrained optimization problem is v⋆i = yi

µ > 0.

The augmented Lagrangian of Equation 16 is

L = y⊤v − µ

2
||v||2 + λ(1− v⊤1) + σ⊤v (17)

where λ and σ = [σ1, . . . , σM] are dual variables. By differentiating L with respect to vi, we obtain
one condition of optimality, which is the following:

yi − µvi − λ+ σi = 0 =⇒ vi =
yi − λ+ σi

µ
(18)

Without any loss of generality, let y(1) ≥ y(2) ≥ . . . y(M). (In the d) As, solution to the constrained
optimization problem is vi > 0, y(1) will definitely be greater than zero. Hence, σi = 0 because of
strict complementarity. So, we can write v(1) − v(k) = y(1)−y(k)−σ(k)

µ . As, v(1) − v(k) ≤ 1, we can
write:

y(1) − y(k) − σ(k)

µ
≤ 1 =⇒ µ ≥ y(1) − y(k) − σ(k) (19)

So,

y(1) − y(k) > µ =⇒ σ(k) > 0 =⇒ y(k) = 0 (20)

This suggest that if y(k) < y(1) − µ, only v(1) = 1 and all other decision variables will be zero in the
optimal solution.

To generate the ground truth y, we randomly select M integers without replacement from the set
1, . . . ,M . The predicted costs, ŷ, are generated by considering a different sample from the same
set. As a result, y and ŷ contain the same numbers but in different permutations. It is important to
note that all elements in both vectors are positive integer values. We compute the solution to the
optimization problem for y and ŷ. We solve the optimization problem with ŷ using a ‘smoothed’
optimization layer—CvxpyLayer. in order to compare the gradients of Regret and LSCE . We
compute the gradients of both the losses for multiple values of M and µ. For each configuration of
M and µ, we run 20 simulations.

Note that y(1) > y(2) > . . . y(M) because of the way we created the dataset. Moreover, as all
values in ŷ and y are integer, Equation 20 suggests if µ < 1, the solution to the relaxed problem

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 6: Results of Computational Simulation

(equation 16) will be binary. So, the discussion in Section 4 suggests that slight change of the cost
parameter would not change the solution and hence the zero gradient problem would appear while
differentiating Regret .

In Figure 6, we plotted the average absolute values of the gradients of the two losses— LSCE and
Regret . As we hypothesized the gradient turns zero whenever Regret is minimized with µ < 1. It is
true that for µ > 1, Regret have non-zero gradient. However, higher values of µ turns solution to the
‘smoothed’ problem very different from the solution to the original problem. We show this in Table 1
by displaying the average Manhattan distance between solutions of the true and ‘smoothed’ problem
for same ŷ.

We also highlight that, for the same values of µ, the average Manhattan distances remain same across
different M . Examining the results of the simulations, we observed that the solution to the smoothed
problem is fractional. For example, when µ = 2, the solution includes two non-zero values— 0.77
and 0.23. Typically, the value 0.77 appears in the position corresponding to the highest value in ŷ,
i.e., where there is a 1 in solution vector. As a result, the Manhattan distance becomes (1-0.77)+0.23
= 0.46. Interestingly, these values remain unchanged across different values of M . Therefore, the
Manhattan distance remains constant as long as µ does not change.

C COMPARISON BETWEEN LSPO+ AND LSCE

The SPO+ loss, LSPO+(v⋆(ŷ),y), proposed by Elmachtoub & Grigas (2022) is a convex function
of ŷ. However, the LSCE loss proposed by Mulamba et al. (2021) is non-convex with respect to ŷ.
Note that,

LSCE(v
⋆(ŷ),y) = ŷ⊤(v⋆(y)− v⋆(ŷ)) + y⊤(v⋆(ŷ)− v⋆(y))

We can easily show the convexity of LSCE with a numerical example. Let us consider the example
introduced in Equation 13. In Figure 7, we plot LSCE and LSPO+ for different values of ŷ. To make
this plot, we use an exact solver, not the ‘smoothed’ solver. Note that, LSCE includes a jump when
the solution of ŷ switches from 1 to 0. However, this is not the case for LSPO+ . More specifically,
3
4LSCE(2, y) +

1
4LSCE(−2, y) > LSCE(

3
4 (2) +

1
4 (−2), y) = LSCE(1, y), which violates the

definition of a convex function.

We also point out that LSPO+ is can be non-zero, even if regret is zero. Note in Figure 7, for ŷ ∈ (0, 2)
regret is zero, but LSPO+ is not. However, you can see LSCE is zero if regret is zero (also proved in
Proposition 1).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 7: A numerical illustration to show LSCE is not convex, but LSPO+ is.

Figure 8: Progression of predictions by epochs when the smoothed regret and SCE are used as
training losses.

D DEMONSTRATION OF LEARNING WITH LSCE VERSUS REGRET

We further illustrate this with a simple fractional knapsack problem, which is an LP. Let us consider
that we have two items and space for only one item. This can be formulated as a minimization
problem:

min −y1v1 − y2v2 s.t. v1 + v2 ≤ 1; v1, v2 ≥ 0

Let us assume the true values of y1 and y2 are (0.8, 0.4). The corresponding solution is (v1, v2) =
(1, 0). The grey region in Figure 8 corresponds to any predictions satisfying ŷ1 > ŷ2. Such predictions
will induce the true solution, resulting in zero regret. Further assume that the initial predictions are
(ŷ1, ŷ2) = (0.1, 0.01). We show the progression of predictions by epochs when regret and SCE are
used as training loss, using the smoothed optimization problem with blue and green lines, respectively
in Figure 8. The predictions does not change with training epochs when regret is used as the loss
because the derivatives of regret with respect to ŷ1 and ŷ2 are zero. On the other hand, when LSCE

is used as the loss, (ŷ1, ŷ2) gradually move from the white region to the grey region, eventually
resulting in zero regret. Note that increasing the strength of smoothing may provide non-zero gradient
across the space. But this will entirely alter the optimization problem’s solution. For instance, in this
knapsack example, high values of µ would make both v1 and v2 close to zero.

E MINIMIZING LSPO+ USING DYS-NET

In Table 3, we show that minimizing LSCE results in lower regret compared to minimizing LSPO+

using CvxpyLayer. Since both CvxpyLayer and DYS-Net are differentiable ‘smoothed’ layers, we
would expect similar results with DYS-Net. For this reason, we included only LSCE in Figure 3. To
ensure completeness, we added the results of minimizing LSPO+ with DYS-Net in Figure ??. As we
hypothesized, this leads to higher average regret compared to minimizing LSCE .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 9: Comparison between DYS-Net and solution caching and CaVE.

F COMPARISON AGAINST SOLUTION CACHING

To reduce the long training time of DFL, Mulamba et al. (2021) propose the idea of solution caching.
Instead of finding the optimal solution to ŷ or ((2ŷ − y) for LSPO+), Mulamba et al. (2021) suggest
returning a heuristic solution by selecting the optimal one from a finite-dimensional ‘cache.’ They
initialize the cache with all existing solutions in the training data. Furthermore, during training, they
randomly solve for p% of the training instances. Note that if, solve ratio, p = 100%, this strategy
becomes equivalent to solving the combinatorial problem for every instance. Conversely, if p = 0%,
no additional problem-solving is required during training.

We compare the performance of DYS-Net with solution caching in Figure 9. SPOp=10%
+ denotes

the case where LSPO+ is minimized with a solve ratio of 10%. Similarly, SPOp=5%
+ and SPOp=0%

+

correspond to solve ratios of 5% and 0%, respectively. Similarly, SCEp=5% stands for minimizing
LSCE with p = 5%. Note that while solution caching approach, Equation 5 and Equation 8 are used
for backpropagating LSPO+ and LSCE respectively.

It is evident in Figure 9 that p = 0% results in higher regret for LSPO+ . However, the regret is much
lower for p being 5% and 10%. Nevertheless, we point out minimizing LSCE with DYS-Net results
in lower regret. This is particularly prominent for the TSP instances. In terms of training efficiency,
solution caching has lower training time for these instances.

G COMPARATIVE ANALYSIS IN LARGER TSP INSTANCES

In Figure 3, we compared TSP instances till 11 nodes. This is due to the fact that for larger
TSP instances, we cannot complete training of SPOcombinatorial

+ and SCEcvxpy. In Figure 10,
we consider TSP instances with 15, 20 and 25 nodes. We focus exclusively on TSP instances
because, among the three optimization problems considered, because it is the most difficult and time
consuming to solve. We have excluded SPOcombinatorial

+ and SCEcvxpy and included SPOp=5%
+

and SCEp=5%.

We first draw the reader’s attention to the observation that SPOp=5%
+ requires more training time

compared to SCEp=5%. This discrepancy arises because, in SPOp=5%
+ , the optimization problem is

solved for 2ŷ − y. Solving for 2ŷ − y is more challenging and time-consuming compared to solving
for ŷ, as done in SCEp=5%. This is due to the difference in scale between the true cost (y) and the
predicted cost (ŷ) We point that this pattern is also visible in Figure 9. The computational burden
of SPOp=5%

+ becomes especially pronounced for the larger problem instances. For these instances,
solving the optimization problem with 2ŷ − y often results in timeouts, meaning Gurobi returns an
approximate solution instead of the exact one. This is the reason why SPOp=5%

+ exhibits relatively
higher regret than SCEp=5% for these problems.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 10: Comparative analysis on larger TSP instances.

ϕ Mω ŷ
Combinatorial
Optimization

Optimal
Decisions

Figure 11: Schematic diagram of a predict-then-optimize (PtO) problem.

In contrast, for SCEp=5%, timeouts never occurred, and it exhibits lower training times compared
to SPOp=5%

+ . For TSP with 15 nodes, SCEp=5% outperforms DYS-Net in terms of training time.
However, as problem size increases, DYS-Net demonstrates better scalability, whereas solving the
optimization problem even for 5% of the training instances becomes significantly time-intensive in
SCEp=5%.

In terms of regret, DYS-Net demonstrates a significant advantage with much lower regret compared
to other methods. This underscores the advantage of minimizing LSCE using DYS-Net, as it not only
delivers lower regret but also scales more effectively for larger problems.

H PREDICT-THEN-OPTIMIZE PROBLEM DESCRIPTION

We consider predicting parameters in the objective function of an LP. These kinds of problems can
be framed as predict-then-optimize (PtO) problems consisting of a prediction stage followed by an
optimization stage, as illustrated in Figure 11. In the prediction stage, an ML model Mω (with
trainable parameters ω) is used to predict unknown parameters using features, ϕ, that are correlated
to the parameter. During the optimization stage, the problem is solved with the predicted parameters.
An offline dataset of past observations is available for trainingMω .

It is important to distinguish datasets based on whether the true parameters, y, are observed and
included in the dataset. In some applications, the true parameters, y, may not be directly observable,
and only the solutions, v⋆(y), are observed. While v⋆(y) can be computed if y is known, the reverse
is not true, since solving the inverse optimization problem is a separate research area.

Whether y is observed or not is important because in order to compute Regret (equation 2), we need
the true parameter y. Most of the benchmarks in PtO problems assume that y is observed in the past
observation. In this case the training data can be expressed as {(ϕi,yi,v

⋆(yi))}Ni=1 and the empirical
regret, 1

N

∑N
i=1 Regret(v

∗(Mω(ϕi)),yi), can be computed. In most PtO benchmark problems it is
assumed that the true y is observed in the training data (Mandi et al., 2024; Tang & Khalil, 2023).
However, if the true cost y is not observed in the training data, empirical regret cannot be computed.
Instead, some other loss must be considered. For instance, McKenzie et al. (2024) consider squared
decision errors (SqDE) between v⋆(y) and v⋆(ŷ), i.e., SqDE = ||v⋆(y)− v⋆(ŷ)||2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 1 Gradient-descent with Smoothing

1: Initialize ω.
2: for each epoch do
3: for each instance (ϕ,y,v⋆(y)) do
4: ŷ =Mω(ϕ)
5: Obtain v⋆(ŷ) by solving a ‘smoothed’ optimization
6: Regret(v,y) = y⊤v⋆(ŷ)− y⊤v⋆(y)

7: ω ← ω − αdRegret(v,y)
dŷ

dŷ
dω

8: end for
9: end for

Algorithm 2 Gradient-descent with Surrogate Losses

1: for each epoch do
2: for each instance (ϕ,y,v⋆(y)) do
3: ŷ =Mω(ϕ)
4: Compute ỹ
5: Obtain v⋆(ỹ) by solving the original optimization
6: Compute the surrogate loss L and∇
7: ω ← ω − α∇ dŷ

dω
8: end for
9: end for

Algorithm 3 Gradient-descent when Surrogate Losses are minimized using Smoothed Solver

1: for each epoch do
2: for each instance (ϕ,y,v⋆(y)) do
3: ŷ =Mω(ϕ)
4: Compute ỹ
5: Obtain v⋆(ỹ) by solving a ‘smoothed’ optimization
6: Compute the surrogate loss L
7: ω ← ω − αdL

dŷ
dŷ
dω

8: end for
9: end for

I DIFFERENT APPROACHES TO DECISION-FOCUSED LEARNING

In PtO problems, the empirical regret can be calculated if the cost, y, is observed in the training
instances. However, just because it can be calculated does not mean it can be minimized using
gradient descent. Figure 12 illustrates the impact of integrating the optimization block into the
training loop of neural networks. The key challenge is that to directly minimize Regret , it must be
backpropagated through the optimization problem. However, for a combinatorial problem v⋆(ŷ)

does not change smoothly with ŷ, so the gradient, dv⋆(ŷ)
dŷ , is either zero or does not exist.

Differentiable Optimization by Smoothing. ‘Differentiable Optimization by Smoothing’ is one
approach to to circumvent this challenge. The aim of differentiable optimization is to represent an
optimization problem as a differentiable mapping from its parameters to its solution. Since for a COP,
this mapping is not differentiable, one prominent research direction in DFL involves smoothing the
combinatorial optimization problem into a differentiable optimization problem. We particularly focus
on smoothing by regularization. There exists another from of smoothing—smoothing by perturbation,
as proposed by Pogančić et al. (2020); Blondel et al. (2020); Niepert et al. (2021); Sahoo et al. (2023).
In this work, we focus on optimization problems with linear objective functions such as LPs and ILPs.
For an LP, the solution will always lie in one of the vertices of the LP simplex. So, the LP solution
remains unchanged as long as the cost vector changes while staying within the corresponding normal

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

ϕ v⋆(ŷ) = argminv ŷ⊤v
s.t. Av = b; v ≥ 0

Regret(v⋆(ŷ),y)

(ϕ,y,v⋆(y))

ŷ v⋆(ŷ)

dRegret
dŷ

dRegret
dv⋆(ŷ)

Training Data

dv⋆(ŷ)
dŷ

Figure 12: Decision-focused learning training loop.

cone (Boyd & Vandenberghe, 2004). However, the solution will suddenly switch to a different vertex
if the cost vector slightly moves outside the normal cone, as illustrated in Figure 1a. Because the
solution abruptly jumps between the vertices, the LP solution is not a differentiable function of the
cost vector.

As explained in Section 3.1, approaches under this category replace the original optimization problem
with a ‘smoothed’ version of the optimization problem, in which the solution can be expressed as
a differentiable mapping of the parameter. For instance, if the original problem is an LP, it can be
replaced with a QP by adding a quadratic regularizer to the objective of the LP. In this QP, the solution,
v⋆(y), can be represented as a differentiable function of the parameter y. When the problem is an
ILP, first LP, resulting from continuous relaxation is considered and then it is smoothed by adding
quadratic regularizer. Algorithm 1 explains this approach. DYS-Net (McKenzie et al., 2024) provides
an approximate solution to the quadratically regularized LP problem, where the computations are
designed to be executed as standard neural network operations, enabling back-propagation through
it. To summarize, approaches in this category follow the training loop in Figure 12 but only after
‘smoothing’ the optimization problem.

Surrogate Losses for DFL. The primary goal of DFL is to minimize Regret . However, as explained
earlier, Regret cannot be minimized directly due to its non-differentiability. Techniques involving
surrogate losses aim to address this challenge by identifying suitable surrogate loss functions and
computing gradients or subgradients of these surrogate losses for optimization. Figure 13 depicts
the training loop of DFL using surrogate loss functions. In this approach, Regret(v⋆(ŷ),y) is not
explicitly computed. Instead, after predicting ŷ, a new cost vector ỹ is generated based on ŷ and
y, and the optimization problem is solved using this ỹ. Subsequently, a surrogate loss is computed,
using v⋆(ỹ) and v⋆(y), and its gradient,∇ (shown in pink) , is used for backpropagation. We have
explained this in terms of pseudocode using Algorithm 2. For example, in the case of LSPO+ ,
ỹ = 2ŷ − y. As shown in Equation 4 LSPO+ = (2ŷ − y)⊤v⋆(y)− (2ŷ − y)⊤v⋆(2ŷ − y) Then
the gradient used for backpropagation is ∇ = 2(v⋆(y) − v⋆(2ŷ − y)). On the other hand, in the
case of LSCE , ỹ = ŷ and LSCE = ŷ⊤(v⋆(y) − v⋆(ŷ)) + y⊤(v⋆(ŷ) − v⋆(y)). So, in this case,
the gradient for backpropagation is∇ = (v⋆(y)− v⋆(ŷ)).

Combining Surrogate Losses with Differentiable Optimization. The core idea proposed in
this paper is to combine these two approaches. Specifically, the original optimization problem in
Figure 13 is replaced with a smoothed version, allowing direct backpropagation through the
smoothed problem instead of using ∇. We emphasis that this changes the gradient of the surrogate
losses. Instead of Equation 5 and Equation 8, Equation 11 Equation 12 will be used in this case for
backprogating LSPO+ and LSCE respectively. We explain this in Algorithm 3.

J GENERALIZATION BOUNDS FOR NCE LOSS

We show generalization bounds for SCE loss similar to the bounds shown for true regret by El Balghiti
et al. (2019). For notational brevity, we first define SCE in terms of the predicted and true parameters,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

ϕ

v⋆(ỹ) = argminv ỹ⊤v
s.t. Av = b; v ≥ 0

ỹ

∇

(ϕ,y,v⋆(y))

ŷ

Training Data

backpropgating∇

Figure 13: Decision-focused learning using surrogate loss functions.

i.e.,
lSCE(ŷ,y) = LSCE(v

⋆(ŷ),y) = (ŷ − y)⊤(v⋆ − v⋆(ŷ))

where ŷ =M(ϕ) is the predicted cost using the predcitive modelM. We can also define

RSCE(M) = E[lSCE(M(ϕ), y)] and R̂SCE(M) =
1

N

N∑
i=1

lSCE(M(ϕi), yi)

as the true and empirical risk for a given sample {(ϕi,yi)}Ni=1 for SCE loss, respectively.

In order to show generalization bounds for SCE loss, we need to define the Rademacher complexity of
a set of functionsH with lSCE . The sample Rademacher complexity for a given sample {(ϕi,yi)}Ni=1
is given by

R̂N
SCE(H) = Eσ

[
sup
M∈H

1

N

N∑
i=1

σilSCE(M(ϕi),yi)

]
where σ1, σ2, . . . , σN are i.i.d. random variables with P(σi = 1) = 1/2 and P(σi = −1) = 1/2 for
i = 1, 2, . . . , N . The expected Rademacher complexity is defined as RN

SCE(H) = E[R̂N
SCE(H)]

where the expectation is with respect to the i.i.d. samples of size N from the true distribution.

Assume that the set of all feasible solutions F = {v : Av = b; v ≥ 0} is bounded, i.e., there
exists D such that D = maxv,v′∈F∥v − v′∥. Also assume that the set of all cost vectors is Y such
that Y ⊆ {y : ∥y∥ ≤ 1}. Note that, since we consider linear objective functions, this assumption is
not restrictive, as y′ with ∥y′∥ > 1 can be replaced by y = y′/∥y′∥ without changing the optimal
solution and ensuring ∥y∥ = 1.

The following proposition shows the generalization bound for SCE loss.
Proposition 2. Let H be a set of functions from the set of all features to {y : ∥y∥ ≤ 1}. Then for
any δ > 0,

RSCE(M)− R̂SCE(M) ≤ 2RN
SCE(H) + 2D

√
log(1/δ)

2N
(21)

holds for allM ∈ H with probability at least 1 − δ for the sample {(ϕi,yi)}Ni=1 from the joint
distribution of features and parameters. If M̂n is a minimizer of the emprical risk R̂SCE , then the
inequality

RSCE(M̂n)− min
M∈H

RSCE(M) ≤ 2RN
SCE(H) + 4D

√
log(2/δ)

2N
(22)

also holds probability at least 1− δ.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. The SCE loss is bounded for all y,y′ ∈ Y since lSCE(ŷ,y) = (ŷ − y)⊤(v⋆ − v⋆(ŷ)) ≤
∥ŷ − y∥∥v⋆ − v⋆(ŷ)∥ ≤ 2D where the first inequality is due to Cauchy–Schwarz and the second
inequality is due to our assumptions on the hypothesis class and the feasible region. Then, inequality
21 follows directly from the classical generalization bound as shown in Bartlett & Mendelson (2002).

The extension of inequality 21 to inequality 22 is shown in the proof of Corollary 1 in El Balghiti
et al. (2019) using Hoeffding’s inequality.

K DETAILED DESCRIPTION OF THE EXPERIMENTAL SETUP

In this section, we first describe the optimization problems along with their formulations, followed by
details of the data generation process and the ML models.

K.1 DESCRIPTION OF THE OPTIMIZATION PROBLEMS

Shortest Path Problem. It is a shortest path problem on a k × k grid, with the objective of going
from the southwest corner of the grid to the northeast corner where the edges can go either north or
east. This grid consists of k2 nodes and 2 × k × (k − 1) edges. Let, yij is the cost of going from
node i to node j and the decision variable vij takes the value 1 if and only if the edge from node i to
node j is traversed. Then, the shortest path problem from going to node s to node t can be formulated
as an LP problem in the following form:

min
vij

∑
(i,j)∈E

yijvij (23a)

s.t.

∑
(i,j)∈E

vij −
∑

(k,i)∈E

vki =

1 if i = s

−1 if i = t

0 otherwise
(23b)

vij ∈ R+ (23c)

Knapsack Problem. In a knapsack problem the goal of the optimization problem is to choose a
maximal value subset from a given set of items, subject to some capacity constraints. Let the set
contains Nitems number of items and the value of each item is yi. The solution must satisfy capacity
constraints in multiple dimensions. Let Cj is the capacity in dimension j and w(i,j) is the weight of
item i in dimension j. This optimization can be modeled as an integer linear programming (ILP)m as
follows:

min
vi

Nitems∑
i=1

(−yi)vi (24a)

s.t.
Nitems∑
i=1

w(i,j)vi ≤ Cj ; ∀j (24b)

vi ∈ {0, 1} (24c)

The Top-K selection can be viewed as a special case of the knapsack problem. In the Top-K, there is
only one dimension and the weight of each item is 1 and the capacity, C = K.

Traveling Salesperson Problem. Given a topological graph of Nnodes , the objective of the traveling
salesperson problem (TSP) is to find the shortest possible tour that visits every node exactly once.
We formulate the TSP as an mixed integer linear programming (MILP) following the Miller-Tucker-
Zemlin (MTZ) formulation so that we can solve the relaxed LP, with quadratic reglarizer, using
DYS-Net. Let, yij is the cost of going from node i to node j and the decision variable vij takes the
value 1 if and only if the salesperson traverse from node i to node j. Then the MTZ formulation is

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

the following:

min
vij

Nnodes∑
i=1

Nnodes∑
j=1

yijvij (25a)

s.t.
Nnodes∑
j=1

vij = 1 ∀i (25b)

Nnodes∑
i=1

vij = 1 ∀j (25c)

uj − ui ≥ 1 +Nnodes(vij − 1); 2 ≤ i, j ≤ Nnodes (25d)

vij ∈ {0, 1}, ui ∈ R+ (25e)

Note, for other techniques we can solve the TSP using Dantzig–Fulkerson–Johnson (DFJ) formulation,
which is faster.

K.2 DESCRIPTION OF THE DATA GENERATION PROCESS

We use PyEPO library (Tang & Khalil, 2023) to generate training, validation and test datasets. Each
dataset consists of {(ϕi,yi)}Ni=1, which are generated synthetically. The feature vectors are sampled
from a multivariate Gaussian distribution with zero mean and unit variance, i.e., ϕi ∼ N(0, Ip),
where p is the dimension of ϕi. To generate the cost vector, first a matrix B ∈ RK×p is generated,
which represents the true underlying model, unknown to the modeler. Each element in the cost vector
yi,j is then generated according to the following formula:

yij =

[
1

3.5Deg

(
1
√
p

(
Bϕi

)
+ 3

)Deg

+ 1

]
ξji (26)

The Deg is ‘model misspecification’ parameter. This is because a linear model is used as a predictive
model in the experiment and a higher value of Deg indicates the predictive model deviates more from
the true underlying model and larger the prediction errors. ξji is a multiplicative noise term sampled
randomly from the uniform distribution ξji ∼ U [1− w, 1 + w]. w is a noise-half width parameter,
which is less than 1. Higher values of w indicate a greater degree of noise perturbation. We set Deg
to 6 and w to 0.5 in all our experiments.

L IMPLEMENTATION OF DYS

We adopt the implementation by McKenzie et al. (2024) to implement DYS-Net 1. DYS-Net includes
a few hyperparameters: µ, controls the strength of smoothing; scaling parameter α ∈ (0, 2/µ);
number of time Equation DYS is iterated. (For detailed explanations of these parameters, please refer
to the original papers.) In practice, we set µ ≈ 0 and the number of iterations to 200. Each iteration
is implemented as a multi-layer perceptron (MLP), making the implementation computationally
efficient. We tune the parameter α on a validation set. We also tried slowly decreasing α across the
iterations. However, reduction of α has little effect on the result. Notably, this implementation does
not require pretraining, as DYS-Net contains trainable parameters.

Ablation Analysis. We present how the performance of DYS-Net varies with different hyperparam-
eter settings in Table 2. The results reported are based on the test set. However, we do not evaluate
performance across varying values of α and µ, as these were determined through hyperparameter tun-
ing on the validation set. We observe, setting the values of µ low works well for most problems. We
choose α from the set {0.001, 0.01, 0.1}. This setup has proven effective across different problems.

1https://github.com/mines-opt-ml/fpo-dys

23

https://github.com/mines-opt-ml/fpo-dys

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Model α µ Normalized relative regret
Average Sd

SCEDY S 0.1 0.001 0.075 0.016
SCEDY S 0.01 0.001 0.088 0.014
SCEDY S 0.01 1. 0.104 0.014
SCEDY S 0.01 10. 0.119 0.021
SCEDY S 1. 0.001 0.190 0.044

Table 2: Ablation of SCEDY S on TSP-8 problem instances.

Figure 14: A numerical illustration to show why the Cave approach fails in the Knapsack problems.

M SHORTCOMING OF CAVE ON THE KNAPSACK PROBLEM

Consider the two-dimensional knapsack example in Figure 14. The capacity constraint is given as
3v1 + 3v2 ≤ 5 . If the objective vector y lies within the union of the yellow and red cones, then
the feasible solution (1,0) is optimal for the problem with the integrality constraint. So, the true
normal cone is the union of the yellow and red cones. Note that the constraint 3v1 + 3v2 ≤ 5 is not
active, although it plays a key role in choosing the solution; in the absence of this constraint, the
solution would be (1, 1). In this case, the only active constraints are v1 = 1 and v2 = 0. As the CaVE
approach stores only these two constraints, the yellow cone is considered as the optimality cone. This
example shows that the mismatch between the cone of optimality of the integer knapsack and its
relaxation can be non-trivial (the red cone in Figure 14). This attributes to the poor performance of
the CaVE approach in the Knapsack problem.

N LEARNING CURVES

Figure 15, Figure 16 and 17 illustrate how the regret on the validation dataset evolves for different
losses as training progresses for the KP, SP and TSP problem instances when the DYS-Net is used
as a solver. It shows that in general, training with LSCE results in lower regret than training with
Regret or SqDE .

O ADDITIONAL EXPERIMENTS

O.1 REGRET VS. SURROGATE LOSS WITH QP SMOOTHING

We use CvxpyLayer (Agrawal et al., 2019) to solve and differentiate through the smooth optimization
problem after adding the quadratic regularizer. The column MSE corresponds to ML models trained

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 15: Progression of Training for the 3 KP problems.

Figure 16: Progression of Training for the 3 SP problems.

Figure 17: Progression of Training for the 3 TSP problems.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 3: Normalized relative regret on test data for four optimization problems. We mention the
number of resources, the size of the grid, the number of items and the number of nodes for the Top-K,
shortest path, knapsack and TSP problems respectively in the parenthesis.

Combinatorial CvxpyLayer

MSE PFY LSPO+ LSCE Regret LSPO+ LSCE

Top-K (50) 1.614
±0.874

0.051
±0.006

0.051
±0.006

0.051
±0.006

0.246
±0.439

0.051
±0.006

0.051
±0.006

Top-K (80) 1.622
±0.896

0.018
±0.001

0.018
±0.001

0.018
±0.001

0.419
±0.896

0.018
±0.001

0.018
±0.001

Top-K (100) 1.623
±0.9

0.013
±0.001

0.013
±0.001

0.013
±0.001

0.214
±0.45

0.013
±0.001

0.013
±0.001

SP (5 × 5) 0.45
±0.124

0.328
±0.037

0.302
±0.042

0.431
±0.06

0.339
±0.035

0.303
±0.044

0.303
±0.032

SP (8 × 8) 0.539
±0.064

0.425
±0.048

0.447
±0.038

0.632
±0.082

0.486
±0.041

0.454
±0.031

0.445
±0.036

SP (10 × 10) 0.492
±0.113

0.462
±0.118

0.443
±0.103

0.626
±0.165

0.745
±0.174

0.442
±0.105

0.424
±0.111

KP (10) 0.129
±0.051

0.098
±0.049

0.101
±0.034

0.163
±0.009

0.197
±0.047

0.11
±0.032

0.104
±0.044

KP (20) 0.174
±0.037

0.128
±0.035

0.134
±0.037

0.16
±0.035

0.222
±0.075

0.139
±0.027

0.129
±0.029

KP (40) 0.176
±0.019

0.149
±0.011

0.142
±0.008

0.17
±0.011

0.217
±0.025

0.153
±0.008

0.146
±0.009

TSP (5) 0.101
±0.036

0.079
±0.032

0.067
±0.028

0.152
±0.05

0.095
±0.029

0.078
±0.027

0.073
±0.026

TSP (6) 0.111
±0.021

0.06
±0.015

0.059
±0.014

0.161
±0.071

0.069
±0.009

0.081
±0.01

0.059
±0.006

TSP (8) 0.12
±0.008

0.072
±0.011

0.071
±0.013

0.117
±0.021

0.081
±0.01

0.095
±0.011

0.065
±0.012

with the MSE loss between y and ŷ. As this approach does not consider the optimization problem
during training, we anticipate it would have higher regret than the DFL approaches. Implementation
of perturbed Fenchel-Young (PFY) (Berthet et al., 2020), LSPO+ and LSCE using combinatorial
solvers serve as three DFL benchmarks. We choose LSPO+ and PFY, as they are best performing
DFL methods across various optimization problems (Mandi et al., 2024; Tang & Khalil, 2023).
When LSPO+ and LSCE are minimized using combinatorial solvers, Eq. 5 and Eq. 8 are used for
gradient backpropagation. The three columns under CvxpyLayer show regret when the losses are
backpropagated through the smoothed QP problem using CvxpyLayer. Regret appears only under
CvxpyLayer, because it can only be minimized after QP smoothing. This paper is the first to test the
last two approaches, which combine differential smoothing and surrogate losses.

For the Top-K problem, all DFL approaches have exact same regret. We explain this behaviour in
the appendix. Next, we highlight that in all cases, minimizing LSPO+ or LSCE results in lower test
regret than minimizing Regret using CvxpyLayer, which corroborates the main proposal we made
in this paper. Across all experiments, we observe that minimizing LSCE using CvxpyLayer yields
regret similar to LSPO+ and PFY, which use combinatorial solvers. This shows that minimizing
LSCE using CvxpyLayer can compete with the state-of-the-art in DFL. Moreover, LSPO+ produce

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 18: Relationship between yn and ϕn in the Top-K experiment.

lower regret, when a combinatorial solver is used, whereas LSCE performs better with CvxpyLayer.
This opens up an interesting side observation— Eq. 5 (LSPO+) provide a better subgradient than
Eq. 8 (LSCE). However, when one can differentiate through the optimization, LSCE (Eq. 12) has a
better gradient than LSPO+ (Eq. 11).

O.2 EXPLANATION OF THE TOP-K DATASET

In the Top-K experiments, the relationship between yn and ϕn is illustrated in Figure 18. All DFL
models learn a mapping with a positive slope. As a result, each model selects the Top-1 element as
the one with the highest value of ϕn, leading to identical accuracy across all DFL models. In contrast,
models trained with MSE loss fail to learn a positive slope, resulting in significantly higher regret.

27

	Introduction
	Predict-then-Optimize Problem Description
	Decision-Focused Learning for Combinatorial Optimization
	Differentiable Optimization by Smoothing of Combinatorial Optimization
	Surrogate Losses for DFL
	Smart Predict then Optimize(SPO)
	Contrastive Loss

	Addressing the Scalability of DFL

	Minimizing Surrogate Loss with a Smoothed Solver
	Experimental Evaluation
	Experiment with DYS-Net

	Conclusion
	Proof of Proposition 1
	Computational Experiments Demonstrating Zero Gradient
	Comparison between LSPO+ and LSCE
	Demonstration of Learning with LSCE versus Regret
	Minimizing LSPO+ using DYS-Net
	Comparison against Solution Caching
	Comparative Analysis in Larger TSP Instances
	Predict-then-Optimize Problem Description
	Different Approaches to Decision-Focused Learning
	Generalization Bounds for NCE Loss
	Detailed Description of The Experimental Setup
	Description of the Optimization Problems
	Description of the Data Generation Process

	Implementation of DYS
	Shortcoming of Cave on the Knapsack Problem
	Learning Curves
	Additional Experiments
	Regret vs. Surrogate Loss with QP Smoothing
	Explanation of the Top-K Dataset

