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ABSTRACT

Deep Reinforcement Learning methods are sample inefficient when exploring the
environment from scratch. In this work, we introduce an approach of knowledge
transfer using the value function combined with curriculum learning, which aims
to leverage the learning process by transferring knowledge among progressively in-
creasing task complexity. Our main contribution is demonstrating the effectiveness
of this approach by modifying the degrees of freedom of the target task, breaking it
down into simpler sub-tasks, and leveraging learning by transferring the knowledge
along the curriculum steps. We empirically demonstrate the broad possibilities of
modifying the degrees of freedom of the target task to leverage learning in classical
Reinforcement Learning problems and a real-world control task.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) (Mnih et al., 2013; 2015), which leverages the scalability of
Reinforcement Learning (RL) by combining it with Deep Learning, has demonstrated remarkable
success in diverse applications ranging from games (Vinyals et al., 2019; Wurman et al., 2022) to
control scenarios (Wei et al., 2017; Yang et al., 2018; Degrave et al., 2022). Nonetheless, DRL
encounters challenges in sample efficiency when exploring environments from scratch. These
challenges arise from various factors, including the lack of reward signals in environments with
sparse and delayed feedback (Bellemare et al., 2016), the expansive exploration space driven by the
high-dimensionality of state-action pairs, and the complexity in trading off competing objectives,
each may demand a diverse skill set to be accomplished (Mataric, 1994; Hayes et al., 2022).

Organizing and structuring the learning process can significantly enhance sample efficiency, reducing
the need for exhaustive exploration across the state space. Curriculum Learning (CL) (Elman,
1993; Bengio et al., 2009; Narvekar et al., 2020) draws inspiration from educational curricula by
gradually introducing increasingly complex tasks. Though formulating a curriculum of tasks presents
challenges and might demand domain-specific knowledge and control over the environment, it can
result in resource efficiency as easier tasks facilitate faster convergence. Additionally, this method
can strengthen robustness and enhance generalization by systematically encompassing various data
distribution aspects in a meaningful sequence rather than arbitrary sampling (Schaul et al., 2016;
Soviany et al., 2021).

In the context of RL, the challenges posed by tasks can be eased by adjusting their degrees of
freedom (Narvekar et al., 2016). This entails modifying factors like the state-action space, reward
structure, episode length, and the initial state distribution. For example, converting a continuous
action space into a discrete one can facilitate exploration (Farquhar et al., 2020), and aligning
actions with specific objectives can expedite task completion (Wang et al., 2023). In scenarios where
positive outcomes are only observed upon reaching the goal, linking intermediate actions to their final
result becomes challenging. This issue can be mitigated by changing the initial states of episodes,
bringing the agent closer to the target states (Dai et al., 2021), or shaping rewards to observe positive
outcomes (Ng et al., 1999; Andrychowicz et al., 2017). As such, a policy proficient at a simpler
source task has the potential to harness its acquired knowledge to facilitate the learning of a complex
target task.

This work introduces an approach for knowledge transfer across tasks with progressive complexity
structured within a curriculum framework. While CL can speed up the learning process by breaking
down a target task into simpler subtasks through adjustments in its degree of freedom, transfer
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learning leverages the learning by transferring knowledge acquired in an easier task to harness the
learning to a target task. Our method employs the value function, which encodes granular information
about task execution, and utilizes the softmax function to facilitate the interleaving of actions between
source and target policies. By interleaving actions from source and target policies, the latter can
play actions from its estimations, an essential mechanism for self-correction Ostrovski et al. (2021).
Furthermore, the method allows the expansion of the artificial neural network architecture (ANN)
to accommodate an eventual growth in the search space without requiring mappings from different
state-action spaces.

Transfer Learning has been an active research topic in RL (Zhu et al., 2020), taking many forms,
such as using logged data from an expert policy (Hussein et al., 2017; Levine et al., 2020) to more
high-level knowledge, such as partial policies Sutton et al. (1999). Closely related to our work,
in (Taylor et al., 2007), the authors proposed Transfer via inter-task mapping (TVITM), which
employed the value function to transfer between tasks with different state and action spaces. Our
method differs from previous ones by transferring knowledge without reusing artificial neural network
(ANN) weights or demanding state/action mappings for different tasks, allowing the search space
to grow organically. We empirically evaluate this approach in classical environments sourced from
OpenAI Gym (Brockman et al., 2016) and a control task of pump scheduling for water distribution
networks (Donâncio et al., 2022). The outcomes highlight the benefits of this strategy in certain
domains, yielding policies with better asymptotic performance compared to policies learned from
scratch through conventional exploration techniques.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

We adopt the framework of episodic Markov Decision Processes (MDPs) (Sutton and Barto, 2018)
to model learning tasks, defined as (S,A,P, r, γ, T , µ) where S represents the state space, A the
action space, P : S ×A → dist(S′) the transition probability, r : S ×A →R the reward function,
γ ∈ [0, 1] the discount factor, T the horizon length, and µ the initial state distribution. The objective of
an agent is to learn a policy π(s|a) which maps the state space to the action distribution aiming to max-
imize returns r(π) = Es∼P,a∼π

∑T
t=0 γ

tr(st, at). This work is independent of the particular value
function-based learning algorithm, and for simplicity, we assume Deep Q-Networks (DQN) Mnih
et al. (2013), which update the policy π represented by the set of weights θ by minimizing the loss δ:

δi(θ) = Es,a,s′,r∼D[r(s, a) + γmaxa′Qθ−(s′, a′)−Qθ(s, a)]
2. (1)

In the RL framework, an agent interacts with the environment starting from a state s0 ∼ µ and
at each timestep t = 0, 1, 2, ..., T , takes an action a ∈ A given a state s ∈ S, receiving a reward
r(s, a) ∈ R, and transitioning to a new state s′ ∈ S. DQN achieved remarkable performance by
storing these experiences < s, a, r, s′ > in the replay memory D (Lin, 1992) and shuffling them to
break their correlation. Furthermore, it also employs a target network with weights θ− to estimate
future returns. The target network usually updates at frequency λ by copying the learning weights θ,
a critical component to enhance the stability of the learning process.

2.2 DEGREES OF FREEDOM OF A TARGET TASK

CL hierarchically arranges tasks based on complexity levels. In the context of RL, this can be
achieved by breaking down a target task into more straightforward source tasks by modifying the
degrees of freedom of the former (Narvekar et al., 2016). In (Zhu et al., 2020), the authors shed light
on various domain differences that can exist between the source task Ms and the target task Mt.

The state-space S: the state-space can be modified by constraining it to filter out irrelevant informa-
tion, focusing on critical aspects. On the contrary, it can also be augmented, enriching the agent’s
observation by providing additional information about the environment;

The action-space A: the action-space can be constrained to its subspace to reduce the task complexity,
for instance, focusing on a meaningful subset of actions for a given subtask;
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The reward function R: the reward signals can be manipulated to enhance the learning process for
some tasks. That is particularly useful in scenarios with sparse and binary rewards. For example,
shaping the reward considering the distance to some goal can speed up the observation of positive
outcomes;

Transition dynamics P: the dynamics of the interactions can be affected by, for example, the
distinct physical properties between the source task and the target task, thus altering the probability
distribution of reaching a state s′ by applying a given action a on the state s;

The initial state distribution µ: source and target tasks can have different initial state distributions.
In this way, the agent could have more chances to experience meaningful outcomes early in the
learning process;

The trajectories length T : the task length can differ between source and target tasks, allowing the
agent to interact longer with the environment, quickly reaching states that are rare to observe with the
standard task length.

3 RELATED WORK

Curriculum Learning (CL) (Elman, 1993; Bengio et al., 2009) systematically organizes the learning
process by initially presenting "easier" tasks and gradually increasing the difficulty as the agent’s
proficiency in these tasks improves. This approach is grounded in the belief that arranging tasks
in a meaningful sequence, instead of random sampling, enhances learning effectiveness (Soviany
et al., 2021). This spans from manual curriculum design to semi- or fully automated methods. Recent
advancements in CL have showcased its efficacy in DRL, improving sample efficiency and enhancing
generalization (Portelas et al., 2020). Various strategies can be employed to induce a curriculum,
including prioritizing meaningful experiences (Schaul et al., 2016), shaping the reward to provide
more reward signals (Ng et al., 1999; Andrychowicz et al., 2017), or exploring unknown states in the
environment (Subramanian et al., 2016; Bellemare et al., 2016; Tang et al., 2017; Pathak et al., 2019).
Generative Adversarial Networks (GANs) based approaches have recently attained attention due to
their capacity to generate curricula automatically. These techniques can entail goal sampling based on
the agent’s skill level (Sharma et al., 2021), augment reward signals for the learning agent (Campero
et al., 2021), or follow a teacher-student goal sampling paradigm (Florensa et al., 2018). Closer to
our approach, in (Farquhar et al., 2020; Wang et al., 2023), the authors propose a curriculum to break
down a complex task by reducing its action space. That can be achieved, for example, by discretizing
a continuous action space, leading to a smaller search space and facilitating exploration.

While CL focuses on structuring and organizing the learning process, knowledge transfer, also
known as transfer learning (Taylor and Stone, 2009), aims to leverage knowledge acquired from prior
tasks, resulting in resource savings compared to starting from scratch. Transfer learning in RL is an
active research area (Zhu et al., 2020), with various forms such as utilizing logged data (Hussein
et al., 2017; Hester et al., 2018; Levine et al., 2020), employing a teacher to interleave rollouts with
the student policy Dai et al. (2021), using the value function (Taylor et al., 2007), or transferring
partial policies (e.g. options) (Sutton et al., 1999; Jinnai et al., 2020). Additionally, agents can have
their capabilities enhanced by incrementally expanding the ANN architecture as they tackle new
tasks (Rusu et al., 2016b; Yoon et al., 2018), enabling adaptation to novel challenges while retaining
previously acquired knowledge (Khetarpal et al., 2022; Abel et al., 2023). Policy distillation-based
approaches (Hinton et al., 2014; Rusu et al., 2016a; Teh et al., 2017; Berseth et al., 2018; Czarnecki
et al., 2018; Ghosh et al., 2018) can be considered implicit curriculum combined with a transfer
learning method that results in a compressed model capable of handling multiple tasks (Guillet
et al., 2022). Our work stands apart from previous approaches by modifying the degrees of freedom
of the target task and employing the value function for knowledge transfer. In a related context,
Self-Imitation via Reduction (SIR) (Li et al., 2021) proposes a compositional approach to solving
RL tasks. Their idea involves learning a reduced task and using self-imitation learning to transfer
knowledge to the target task.
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4 METHOD

This work employs the value function to transfer learning between increasingly complex tasks. The
process involves modifying the degrees of freedom within a target task to create one or more easier
source tasks, which are subsequently sampled based on their complexity. To structure and organize
the learning process, we assume the existence of a curriculum generation method that defines these
tasks and establishes a sequential hierarchy of complexity for sampling. Once the tasks are defined
and their complexity order established, we employ a transfer learning method that relies on the
softmax function. This method utilizes the Q-estimations derived from both the source task (Ms)
and the target task (Mt) while introducing a temperature parameter τ to control the entropy between
source and target policies when selecting actions. As the curriculum steps unfold, a target task Mti
becomes the source task Msi+1

for the subsequential step until convergence to a final target task
Mtn .

Curriculum Exploration Transfer Transfer + CL

Figure 1: Knowledge transfer steps through a curriculum

4.1 KNOWLEDGE TRANSFER METHOD

We introduce two variations of the knowledge transfer methods tailored to the degrees of freedom
between tasks Ms and Mt, specifically regarding their action space A. In the first scenario, we
consider unnormalized Q-estimations, denoted as QMs from task Ms and QMt from task Mt,
where both tasks share an identical action space. When selecting an action during the learning process
of the target task, we employ the softmax function having as input the maximum output values from
both QMs and QMt . The application of softmax results in a probability distribution, which guides
the selection of the action with the highest value from the respective Q-estimation:

softmax({max(QMs ),max(QMt )} =
e{max(QMs ),max(QMt )}\τ

emax(QMs )\τ + emax(QMt )\τ

action a =

{
argmax(QMs ), with probability softmaxQMs

argmax(QMt), with probability softmaxQMt

Figure 1 provides an overview of our knowledge transfer approach. Initially, a target task Mt into K
source subtasks Ms, which are sampled based on complexity. For the sake of simplicity, we focus
on one pair of < Ms,Mt > at a time, although we can use a set of source policies {πsi}Ki=1 to
leverage the learning to a target policy πt. In the first curriculum step, where no source policy is
available, we employ an exploration strategy, such as ϵ-greedy, to learn a policy πs0 . We use this
policy πs0 to interleave actions with a target policy learning how to perform the subsequent task
Mt0

1. To transfer knowledge between two policies, a softmax function is employed, combining
Q-estimations from source max(QMs) and target max(QMt) tasks. Once the state space between
the tasks can be different, we need a function sMs(ϕ) = h(sMt(ϕ)) which contracts or expands the
current observations sMt

(ϕ) to match the previously learned state space by πs.

1It’s noteworthy that we can use Ms1 and Mt0 interchangeably
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In the following, a policy that has mastered a target task Mti becomes the source task Msi+1
for the

subsequent target task Mti+1
, and this process continues until we have unfold all the curriculum steps,

ultimately converging to a final target task Mtn . As the complexity of the learning tasks increases,
and the search space between two curriculum steps may expand, a necessity arises to augment the
artificial neural network (ANN) architecture to accommodate the knowledge requirements. This
expansion ensures that the network can effectively absorb and apply the additional knowledge required
to master the more intricate tasks.

However, we may have a set of tasks learned simultaneously for a single curriculum step. For that, our
second case considers a set of policies {πsj}Kj=1 transferring knowledge to a target policy πt being the
action space A(Msj ) ̸= A(Msl ̸=j

) and A(Ms1) ∪ A(Ms2) ∪ ... ∪ A(MsK ) = A(Mt). In other
words, the action spaces of two source tasks can be different, but the set of source tasks has the same
action spaces as the target task, such that A(Msj}Kj=1) = A(Mt). Thus, Q-estimations for overlap-
ping actions are averaged, while those for distinct actions are combined to obtain QMs . Finally, we
select actions using the probability distribution outputted by the softmax({max(QMs ),max(QMt )}).
By employing the value function, which estimates the quality of state-action pairs, we can transfer
low-level information, which carries out more granular information regarding how to perform a
task Taylor et al. (2007). However, the value function can be biased, leading to overestimation
when learning passively. By interleaving actions sample from QMs and QMt allows the target task
policy to explore its underlying estimations, an essential mechanism for self-correcting (van Hasselt
et al., 2016; Ostrovski et al., 2021). Finally, the temperature parameter τ can lead to distinct entropy
between the policies πMs and πMt during the transfer learning process. In the following section, we
delve into the impact of reward function normalization on this entropy.

4.2 THE REWARD NORMALIZATION MATTERS

Figure 2: Q-values distribution
from source Ms and target Mt

tasks.

The normalization of the reward function depends on the task.
Typically, the scale varies using a normalization [0, 1], where
the policy tries to maximize the cumulative rewards, and [−1, 1],
where the goal is to minimize negative outcomes and maximize
positive ones. In some tasks, normalizing the reward using neg-
ative values can be valuable to facilitate interpretation by the
learning algorithm, highlighting penalized actions. However, if
most of the rewards observed during an episode’s rollout are nega-
tives, the Q-estimations for this task would also inherently output
negative values.

Since our approach relies on the magnitude of the value function
to sample actions, the normalization scale directly impacts the
entropy between source and target policy. As illustrated in Fig-
ure 2, a source policy that mostly observes negative rewards, even
though it performs the task well, has lower Q-estimations than a
target policy started with random weights without any training.

Thus, most actions in the early training come from this suboptimal target policy, hampering the
overall transfer learning performance. To mitigate this problem, we propose to combine estimates
QMs and QMt when updating estimates of the former while learning a target task by modifying the
Equation 1:

δi = Es,a,s′,r∼D[r(s, a) + γmaxa′(αQMt(s′, a′) + βQMs(s′, a′))−QMt(s, a)]2.

Thus, when predicting Q-values for the future state, the estimates from the source and target tasks are
combined such that Q(s′, a′) = αQMt(s′, a′) + βQMs(s′, a′), being α + β = 1 and α > β = 1.
This linear combination leverages the knowledge transfer process since the QMt estimations have a
dependency with values QMs , which can be seen as a form of reward shaping.
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5 EXPERIMENTS

5.1 ENVIRONMENTS

To demonstrate the effectiveness of our approach, we conducted experiments on classical reinforce-
ment learning (RL) problems sourced from the OpenAI Gym library (Brockman et al., 2016) as well
as a real-world control task centered on optimizing pump scheduling within a water distribution
system (Donâncio et al., 2022). In the following, we outline the specific adjustments made to the
degrees of freedom for each task, with further comprehensive details about the environments available
in section A:

Mountain Car: to facilitate the learning of the source task, we adjust the degree of freedom regarding
the transition probability P by manipulating the task’s physical properties concerning friction. This
modification enables the agent to achieve higher speeds rapidly. Additionally, we extended the
episode length T from 200 to 5000 timesteps to facilitate exploration. During the exploration, the
probability ϵ of taking random actions is gradually reduced from 1 to 0.01, decaying every time the
goal is reached.

Taxi Cab: in our approach to the Taxi Cab environment, we introduce a reward shaping mechanism
that rewards the agent with +10 for passengers’ successful pickup and drop-off during the source
task. Furthermore, we introduce a bonus to the reward at each timestep, considering the grid distance
required to achieve these subgoals. The exploration parameter ϵ gradually decreases using a decay
factor considering the number of episodes, initially set at 1 and eventually reaching 0.2.

Frozen Lake: In the Frozen Lake scenario, our approach begins by initiating the source task with a
modified initial state that situates the agent closer to the goal state. Also, mirroring the Mountain Car
strategy, we implement an ϵ-greedy decay schedule that reduces the exploration rate ϵ each time the
agent successfully reaches the goal. As ϵ decreases and eventually falls below a predefined threshold,
we transition back to utilizing the standard initial state while continuing to learn the source task.

Pump Scheduling: The reward function proposed for pump scheduling encapsulates three subgoals:
(i) diminishing electricity consumption of pump operation; (ii) the maintenance of safe water tank
levels; and (iii) discouraging frequent pump switches (ON/OFF) while distributing their usage. The
task involves managing four distinct pumps with varying supply capacities and electricity consumption
profiles. Moreover, a tank with a 10m length is used for water storage. To tackle this problem, we
devise a curriculum-based approach divided into three sequential steps. Initially, we train individual
policies, focusing on controlling a single pump with a reduced state space, limited to observations
related to tank levels. Subsequently, we transfer the acquired knowledge to the subsequent task,
which introduces observations related to pump operation, including running time and switches. The
final step entails combining these distinct individual policies into a comprehensive one capable of
managing all four pumps while incorporating observations about their operation.

Our objective in proposing these curricula is to establish a proof-of-concept that focuses not on
identifying the one with the highest learning enhancement but rather on demonstrating the efficacy of
transfer learning by modifying various aspects of a target task’s degrees of freedom.

5.2 RESULTS

In Figure 3, we present the results obtained from experiments conducted using OpenAI’s scenarios.
The depicted outcomes illustrate the average, maximum, and minimum returns across 10 runs for
policies trained on the source task (π0) with modified degrees of freedom, policies tackling the
target task from scratch (πϵ) employing ϵ-greedy exploration, and policies addressing the target task
via transfer learning (π1) while varying the temperature parameter τ . Notably, the MDP employed
throughout each curriculum step for learning and evaluation remains largely consistent, except for
the reward function, which aligns with those of the target task to establish a grounded comparison.

Our outcomes when learning from scratch in the Mountain Car scenario align with findings reported
in (Farquhar et al., 2020). Specifically, the use of ϵ-greedy exploration in the Mountain Car task
often struggles to achieve the goal due to the limited exposure to positive outcomes. However, our
curriculum-based approach significantly enhances the learning process for the source task, as evident
in Figure 3(a). Subsequently, the transfer learning process retrieves that performance being the
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discrepancy in cumulative returns due to different physical settings between the source and target
task.

As depicted in Figure 3(b), our curriculum approach applied to the Taxi Cab problem demonstrates
limited learning enhancement for the source task. We attributed this to the intrinsic exploration
challenges posed by the task itself. Consequently, when transitioning from this suboptimal policy
obtained in the source task, the transfer learning method fails to surpass the performance achieved
through exploration from scratch. It’s worth noting that we don’t view this outcome as a limitation of
our approach but rather as an indicator of the importance of well-designed source tasks to expedite
the learning process.

The results for the Frozen Lake scenario are depicted in Figure 3(c), showing an "dip" in performance
in the range between 750∼1250 episodes resulting from the modification in the initial state during
the source task learning. However, after a few subsequent episodes, the agent could once again attain
the goal, starting from a state identical to that of the target task. Remarkably, our knowledge transfer
approach once more effectively leverages the target task’s learning process, resulting in superior
performance compared to the target task learned from scratch utilizing ϵ-greedy exploration.

(a) Mountain Car (b) Taxi Cab (c) Frozen Lake

Figure 3: OpenAI Gym results

Figure 4: Pump scheduling re-
sults

In Figure 4, we compare the results for the pump scheduling
problem with policies learned using ϵ-greedy exploration with
an ANN architecture identical to the curriculum’s final step. We
split the three-year dataset regarding water consumption into
two years for the learning process and one for policy evaluation.
This water consumption data serves as input at each timestep
for the water distribution simulator once other states’ features
are fully transition-dependent. To address fairness regarding
samples, we divide the training in "batches" once our curriculum
approach learns four individual policies during Task 1 (M1)
and Task 2 (M2). As such, each batch of policies with action
space A = {NOP,NP#} has a single episode, while for ϵ-greedy
and Task 3 (M3) contains four episodes. We employ a reset
mechanism for each episode rollout, having the initial tank levels
defined by the logged data, matching the water consumption at
t0. Finally, ϵ decays from 1 → 0.1 with a discount factor of 0.95

for M1 and 0.85 for ϵ-greedy exploration.

The results display the average, maximum, and minimum returns for policy performance after updates
using each batch. We have observed that policies that control single pumps (Task 1 and 2) demonstrate
better jumpstart performance and lower variance than the full action space learned through ϵ-greedy.
Additionally, although a full-action space (Task 3) policy achieved a lower average return than some
single-pump policies, which could be explained by the reduced search space, it holds the highest peak
for maximum return. Finally, for Task 3, our approach attained a maximum average return peak with
lower variance than a policy learned from scratch through exploration.
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5.3 ABLATION ANALYSES OF Q-WEIGHTED COMBINATION

We performed an ablation study to assess the effectiveness of the Q-weighted sum in composing
Q(s′, a′). We employ a single source policy π∗

0 that exhibited the highest cumulative reward over the
learning process of Ms to transfer learning to target policies, one employing the Q-weighted sum
(red line) and the other without (blue line). Furthermore, we set fixed values for α = 0.7 and β = 0.3
to assess the method’s robustness across all scenarios. Lastly, the black dashed line (π1) works as a
baseline representing the maximum average peak observed in the previous experiment employing the
same temperature value τ , transferring using any source policy π0.

(a) Mountain Car (b) Taxi Cab (c) Frozen Lake

Figure 5: Ablation analyses of Q-weighted sum.

The results in Figure 5 show that the Q-weighted sum can be the cornerstone to effective knowledge
transfer in scenarios such as Mountain Car, where most observed rewards are negative. Indeed, our
transfer learning strategy can work in two manifolds: interleaving actions from source and target
policies while shaping the reward by transferring Q-estimations. In addition, the source policy’s
performance can substantially impact leveraging the learning process. As seen in the results for the
Frozen Lake (see Figure 5(c), our approach could retrieve the optimality of the source policy π∗

0
which its final step has the same settings as the target task, in very few episodes.

6 CONCLUSIONS

This work introduces a knowledge transfer approach to effectively leverage the learning process for
solving challenging reinforcement learning tasks. The fundamental idea revolves around knowledge
transfer through a curriculum of tasks that systematically increase in complexity. We assume a
curricula generator method responsible for reducing target task complexity by manipulating its
degrees of freedom and hierarchically organizing the derivated simpler sub-task(s). As the curriculum
steps unfold, we incorporate the softmax function with a parameter τ , which employs the value
function for knowledge transfer across these tasks. Given that our approach relies on the magnitude of
value function estimations for action selection, we also present a solution to address the challenge of
reward range normalization. We conduct extensive evaluations across various classical reinforcement
learning environments and control tasks to empirically validate our approach. These experiments
serve as a proof-of-concept by modifying the degrees of freedom in different target tasks, and
our results provide compelling evidence of the effectiveness of our approach across four distinct
environments.
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APPENDIX

A FURTHER ENVIRONMENTS DESCRIPTIONS

In this section, we provide a comprehensive overview of each stage within the curricula that were
designed to assess the effectiveness of our knowledge transfer approach.

(a) Mountain Car

R

Y

G

B

(b) Taxi Cab
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(c) Frozen Lake
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shortage

(d) Pump Scheduling

Figure 6: Environments.

A.1 MOUNTAIN CAR

The Mountain Car scenario Moore (1990) presents a challenging task where the agent must navigate a
valley to reach the "top of the right hill" (see Figure 6(a)). With discrete actions for acceleration (right,
none, left), the agent faces limited positive reward observations and the need to balance accelerations
to gain momentum toward reaching the goal. Each episode typically lasts for 200 timesteps.

In this scenario, the absence of positive rewards leads to challenges in achieving optimal performance,
and their lack during early exploration phases may result in convergence to suboptimal actions. To
address this, we propose breaking down the task through a curriculum. Initially, the agent learns
the task with a modified friction force, enabling faster speed gain. Moreover, we extend the episode
duration by removing the reset mechanism until policy updates, allowing continuous interaction with
the environment for up to 5000 timesteps. Using this strategy, we aim to leverage knowledge acquired
in the modified setting to improve performance when transitioning to the standard task with original
physics and episode length.

A.2 TAXI CAB

The Taxi Cab scenario (Dietterich, 2000) involves picking up and dropping off passengers at specified
locations R, Y, G, B in Figure 6(b). The agent navigates a grid environment with actions (north, south,
west, east, pickup, dropoff) while avoiding internal walls (purple lines). For each illegal pickup or
dropoff action, the agent receives a negative reward of -10; otherwise, a positive reward of +20 if the
passenger is delivered to the correct location. The agent also gets a -1 penalty for any state-action
pair that does not overlap previous rewards. During the exploration, we allow the agent to perform up
to 100 actions while evaluating up to 25.

A significant learning challenge arises due to the delayed positive rewards, which only occur after
successful dropoffs. Consequently, the agent may struggle to grasp the importance of passenger
pickups. To address this issue, we propose a curriculum where the source task uses a modified
reward function, receiving a positive reward of +10 for picking up a passenger and an additional
+10 for successfully dropping off the passenger at the correct location. Furthermore, to guide the
agent efficiently, we introduce a reward bonus based on the distance d to the current goal (pickup
or dropoff). For cardinal direction actions (north, south, west, east), the reward is determined by
r = −1 + 1/(d+ 1). This modification allows the agent to recognize the significance of passenger
pickups as part of the task, while the reward bonus based on distance aids navigation toward each
subtask. Subsequently, we transfer the learned policy with modified rewards to a policy learning task
using the standard reward function.
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A.3 FROZEN LAKE

The Frozen Lake scenario involves guiding the agent from the starting point (S) in the top left corner
of a grid to the ending point (G) on the right bottom corner, avoiding falling in holes (H). Each
movement action (north, south, west, east) yields a 0 reward while reaching the objective provides a
+1 reward. The challenge lies in the absence of positive reward, necessitating the agent to explore
and discover a sequence of actions that lead to successful goal-reaching while avoiding premature
episode endings caused by falling into holes.

We introduce a curriculum where we initially learn a source task by penalizing premature episode
endings through a negative reward of -1 for landing in a hole (H). Additionally, we implement a
modification to the initial state, relocating the agent from the top left corner (S) to a more centrally
situated state (S), as illustrated in Figure 6(c). As the agent observes positive rewards upon reaching
the goal, the likelihood ϵ for random actions diminishes over time. We use the standard initial state
once the ϵ value becomes ≤ 0.36 while still learning the source task. Subsequently, we transfer the
acquired knowledge to a target task featuring the standard initial state configuration. By manipulating
the initial state, we aim to bring the agent closer to the goal state, reducing the need for exploration
by facilitating the observation of positive rewards.

A.4 PUMP SCHEDULING

In (Donâncio et al., 2022), the authors introduce the pump scheduling scenario and its representation
as a Partially Observable MDP (POMDP). This control optimization problem relies on minimizing
the energy consumption of a set of pumps while meeting the safety constraints of water reservoirs. In
this scenario, four pumps (NP1 to NP4) pump water into the system. These pumps have different
sizes and electricity consumption. Moreover, a tank with a 10m length is used for water storage with
constraints depicted in Figure 6(d). The proposed reward function for the pump scheduling scenario
is given by:

rt = −e(−1/kWt) −B ∗ ψ + log(1/(P + ω)),

where the term −e(−1/kWt) penalizes the electricity consumption (kW ) associated with the operation
of pumps {(NP#)}4#=1 at timestep t. Secondly, B ∗ ψ penalizes the agent when the tank levels fail to
meet safety constraints. Specifically, safety operation necessitates maintaining the tank’s water level
at a minimum of 3m. The term log(1/(P +ω)) aims to lead to an action distribution and avoid pump
switches once it decreases the asset’s lifetime. Here, P is a non-markovian feature representing the
cumulative time the current action has been applied to the system throughout the episode. Lastly, the
variable ω is a penalty for action switches, encouraging the maintenance of more continuous pump
operation.

To trade off these sub-goals, the agent needs to obtain information about the environment through
states/observations s ∈ S defined by the following set of features ϕ, where:

• T is the tank level at some timestep t;

• O is the sensor’s data regarding water consumption for some timestep t;

• Γ is time of day;

• X is the last action performed;

• P is the cumulative time that the current action has been performed along the episode;

Once an observation is triggered, the agent has to decide between choosing (or keeping) one of the
pumps running or turning (or keeping) it off. At each timestep, only one of the pumps can be running,
or none of them (NOP). Thus, the action space is such that A = {NP1, NP2, NP3, NP4, NOP}.

Our approach to addressing the pump scheduling problem follows an incremental strategy, introducing
sub-goals one by one, progressively expanding the source task to encompass the target task. To
achieve this, we first establish a task where a set of policies is individually trained to control a single
pump while meeting the tank level constraints. In this initial task M1, the observation space is
defined as S = ϕ(T,O), while the action space consists of A = {NOP,NP#}.
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Once the task M1 is mastered, we transfer the knowledge to the target task M2, where observations
extend to the full state representation st = ϕ(Tt, Ot,Γt, Xt, Pt). The next step involves combining
these source tasks from M2 into a final target task. To achieve this, we average the Q-values for each
NOP action once each policy maps its estimation. We then combine the estimations for each action
using different pumps, resulting in the estimation QMs :

QMs = {avg(Q(s,NOP)), Q(s,NP1), Q(s,NP2), Q(s,NP3), Q(s,NP4)},

Finally, the softmax using QMs and QMt is used to output actions while learning the last curriculum
step M3. This enables the agent to effectively leverage the knowledge acquired from the policies
controlling individual pumps to address the complete pump scheduling problem. Along with these
curriculum steps, the network architecture is adapted to accommodate the increase in task complexity,
as shown in the implementation and training details B.

B IMPLEMENTATION AND TRAINING DETAILS

B.1 LEARNING ALGORITHM

We employ Double DQN (DDQN) (van Hasselt et al., 2016) as a learning algorithm in this work.
DDQN mitigates the overestimation problem for under-represented state-action pairs by selecting the
action using the current Q-estimations but updates it using the target net θ− values:

δi(θ) = Es,a,s′,r∼D

[
r(s, a) + γQθ−

(
s′, argmax

a′
Qθ(s

′, a′)
)
−Qθ(s, a)

]2
. (2)

Thus, we employ the linear combination Qθ− = αQMt

θ− + βQMs

θ using learning weights θ− from
the task Mt and consolidate ones θ from the task Ms, to update the estimations QMt .

B.2 ANN ARCHITECURE

Mountain Car: The neural network architecture for this task consists of dense layers (64, 64) with
ReLU activation functions. The training utilizes an Adam optimizer with a learning rate α of 0.001, a
minibatch size of 64, target network updates every 100 samples and a discount factor γ of 0.99.

Taxi Cab: For the Taxi Cab problem, the neural network architecture includes an embedding layer
followed by dense layers (50, 50, 50) using ReLU activation functions. Training employs an Adam
optimizer with a learning rate α of 0.001, a minibatch size of 32, target network updates every 500
samples, and a discount factor γ of 0.99.

Frozen Lake: In the case of Frozen Lake, the neural network architecture features an embedding
layer followed by dense layers (128, 64) with ReLU activation functions. The training process uses
an Adam optimizer with a learning rate α of 0.001, a minibatch size of 64, target network updates
every 100 samples and a discount factor γ of 0.99.

Pump Scheduling: The ANN architecture in the pump scheduling task varies in size across different
curriculum steps. The architecture consists of layers (LSTM, Dense, Dense), and all dense layers
have the ReLU activation function. The same architecture is employed for the policy learned using
ϵ-greedy from scratch and the task M3. The training uses an Adam optimizer with a learning rate
α of 0.00025, a minibatch size of 32, target network updates every 300 samples, L2 regularization
(dense layers) of 0.000001, ϵ-greedy policy interpolation ranging from 1 to 0.1, and a discount factor
γ of 0.99. The expansion of the ANN architecture’s hidden nodes for each task is illustrated in
Table 1.
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Actions A Task M1 Task M2 Task M3

(NOP, NP1) (25, 25, 25) (75, 75, 75) –
(NOP, NP2) (25, 25, 25) (75, 75, 75) –
(NOP, NP3) (50, 50, 50) (75, 75, 75) –
(NOP, NP4) (75, 75, 75) (75, 75, 75) –
Full action space – – (125, 125, 125)

Table 1: ANN architecture progress for the pump scheduling problem
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