

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MOTE: MIXTURE OF TERNARY EXPERTS FOR MEMORY-EFFICIENT LARGE MULTIMODAL MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large multimodal Mixture-of-Experts (MoEs) effectively scale the model size to boost performance while maintaining fixed active parameters. However, previous works primarily utilized full-precision experts during sparse up-cycling. Despite they show superior performance on end tasks, the large amount of experts introduces higher memory footprint, which poses significant challenges for the deployment on edge devices. In this work, we propose **MoTE**, a scalable and memory-efficient approach to train **Mixture-of-Ternary-Experts** models from dense checkpoint. Instead of training fewer high-precision experts, we propose to train more low-precision experts during up-cycling. Specifically, we use the pre-trained FFN as a shared expert and train ternary routed experts with parameters in $\{-1, 0, 1\}$. Extensive experiments show that our approach has promising scaling trend along model size. MoTE achieves comparable performance to full-precision baseline MoE-LLaVA while offering lower memory footprint. Furthermore, our approach is compatible with post-training quantization methods and the advantage further amplifies when memory-constraint goes lower. Given the same amount of expert memory footprint of 3.4GB and combined with post-training quantization, MoTE outperforms MoE-LLaVA by a gain of 4.3% average accuracy on end tasks, demonstrating its effectiveness and potential for memory-constrained devices.¹

1 INTRODUCTION

Large Multimodal Models (LMMs) (Abdin et al., 2024; McKinzie et al., 2024; Zhang et al., 2024a; Wang et al., 2024d; Chen et al., 2024b; Bai et al., 2025) have achieved remarkable performance across a wide range of downstream tasks, including visual question answering and autonomous computer agents. However, as model size increases, the rising inference cost presents significant challenges for deploying LMMs efficiently. To address this, Mixture-of-Experts (MoE) (Lepikhin et al., 2021; Fedus et al., 2022; DeepSeek-AI et al., 2024) introduces a mechanism that maintains a large pool of experts while activating only a subset for each input, thereby improving computational efficiency. Although MoE models significantly reduce FLOPs, they generally have a higher memory footprint, making deployment on edge devices challenging. For example, when training multimodal MoE up-cycled from Qwen2.5-3B, **if all feed-forward network (FFN) layers are replaced with MoE layers containing 16 experts, the resulting model's non-embedding memory footprint will increase from 5.2GB to 73.2GB**. This limitation is particularly pronounced for consumer-grade GPUs, which often have constrained memory capacities.

Model quantization is a promising approach to reducing the memory footprint of LMMs while maintaining comparable performance. Most mainstream quantization methods (Frantar et al., 2022; Lin et al., 2024b; Chee et al., 2024; Tseng et al., 2024b) aim to compress the bit-width of a pre-trained, full-precision model. Although these methods have a low training cost, they suffer from significant performance degradation when the bit-width is reduced below 4-bit. Recent studies (Ma et al., 2024; Kaushal et al., 2024; Zhu et al., 2024) have demonstrated promising scaling trends for ternary pre-training in Large Language Models (LLMs). At sufficiently large model sizes, ternary models can achieve accuracy comparable to full-precision models on downstream tasks while maintaining the same pre-training cost. Furthermore, they have much lower inference costs in terms of memory, latency, and energy consumption (Wang et al., 2024b). However, since these models have only been

¹We will release the code and model weights for reproducibility.

054 trained on billions of tokens, a substantial performance gap remains between open-sourced ternary
 055 models and full-precision dense models. As a result, directly training MoE models initialized from
 056 these under-trained models leads to weak performance on end tasks.

057 In this work, we introduce **MoTE**, a scalable and memory-efficient architecture designed to train
 058 **Mixture-of-Ternary Experts** model from a pre-trained, full-precision dense checkpoint in multimodal
 059 tuning. Our approach addresses the inefficiency of multimodal MoE models in terms of memory
 060 footprint. Prior works (Lin et al., 2024a; Li et al., 2025) primarily replace the FFN layer in dense
 061 checkpoints with an MoE layer, initializing the experts using the pre-trained FFN. However, we
 062 observed that in ternary training, replacing the FFN layer leads to significant performance degradation,
 063 as weight ternarization disrupts the pre-trained FFN. To mitigate this, we retain the FFN from the
 064 dense checkpoint as a shared expert activated for all inputs. During up-cycling, the layers inherited
 065 from the dense model remain frozen, while only the ternary MoE layers are trainable.

066 We first conduct strict and controlled experiments to evaluate the proposed approach against full-
 067 precision up-cycling MoE-LLaVA (Lin et al., 2024a) across various model scales on a wide range of
 068 image understanding tasks. Our results show that ternary up-cycling exhibits surprising effectiveness
 069 as model size scales. As the size of the up-cycled dense checkpoint increases, the performance gap
 070 between MoTE and MoE-LLaVA narrows, eventually reaching comparable performance at scales
 071 larger than 1.5 billion parameters. Additionally, MoTE is compatible with post-training quantization
 072 techniques (Frantar et al., 2022). Given the same expert memory footprint and combined with
 073 post-training quantization, MoTE outperforms full-precision MoE-LLaVA at both 1.5B and 3B model
 074 sizes. This advantage becomes even more pronounced as memory constraints tighten. Specifically,
 075 under an expert memory budget of 3.4GB, our approach achieves a 4.3% improvement in average
 076 accuracy on downstream task. These results demonstrate that given the same amount of total memory
 077 footprint and active parameter counts, training with a larger number of low-precision experts yields
 078 better performance than using fewer high-precision experts.

079 2 RELATED WORK

080 **Mixture of Experts.** LMMs demonstrate superior performance across various tasks as model size
 081 and training data scale increase. MoE models (Lepikhin et al., 2021; Fedus et al., 2022; Muennighoff
 082 et al., 2024) maintain a large pool of experts but activate only a subset for each token, enabling
 083 improved performance at the same FLOPs budget. Komatsuzaki et al. (2023) introduced sparse
 084 up-cycling to reduce the training costs of MoE models by initializing them from dense checkpoints.
 085 Lin et al. (2024a) explored the up-cycling of LMMs in the context of multimodal training, while
 086 Shu et al. (2024) proposed a progressive knowledge transfer strategy to train small-scale multimodal
 087 MoEs from dense models. A straightforward way to improve the memory efficiency of MoE models
 088 is to train smaller experts or LoRAs (Luo et al., 2024; Wang et al., 2024a). However, since the expert
 089 size typically differs from that of the pre-trained FFN, dense checkpoints cannot be directly reused,
 090 leading to degraded performance compared with sparse up-cycled MoEs. While prior studies have
 091 mainly focused on reducing parameter counts during up-cycling, our work explores an alternative
 092 direction, i.e., up-cycling with reduced bit-width.

093 **Model Quantization.** Quantization is a promising approach to reducing the memory footprint of
 094 LMMs while maintaining competitive performance, which can be categorized into two types based
 095 on the stage at which it is applied: post-training (Dettmers et al., 2022; Frantar et al., 2022; Lin
 096 et al., 2024b; Tseng et al., 2024b) and pre-training quantization (Wang et al., 2025; Peng et al., 2023).
 097 Post-training quantization compresses high-precision pre-trained models after training. Due to its
 098 lower cost, it is widely adopted for mainstream large-scale models. GPTQ (Frantar et al., 2022)
 099 and AWQ (Lin et al., 2024b) reduce the bit-width to 4 bits while incurring minimal degradation.
 100 QuIP# (Tseng et al., 2024a) builds on QuIP (Chee et al., 2024) by improving incoherence processing
 101 and applying vector quantization to incoherent weights. With additional fine-tuning, QuIP# achieves
 102 state-of-the-art performance in 2-bit models. However, when the bit-width is reduced below 4-bit,
 103 these methods all suffer from significant performance degradation compared to BF16 baselines. In
 104 contrast, pre-training quantization integrates quantization into the training process, requiring models
 105 to be trained from scratch, which results in better performance. Recent Ma et al. (2024) showed that
 106 ternary LLMs match the performance of full-precision counterpart starting from 3B parameter counts.
 107 Frantar & Alistarh (2024) quantized a 1.6 trillion parameter Switch Transformer to sub 1-bit precision.

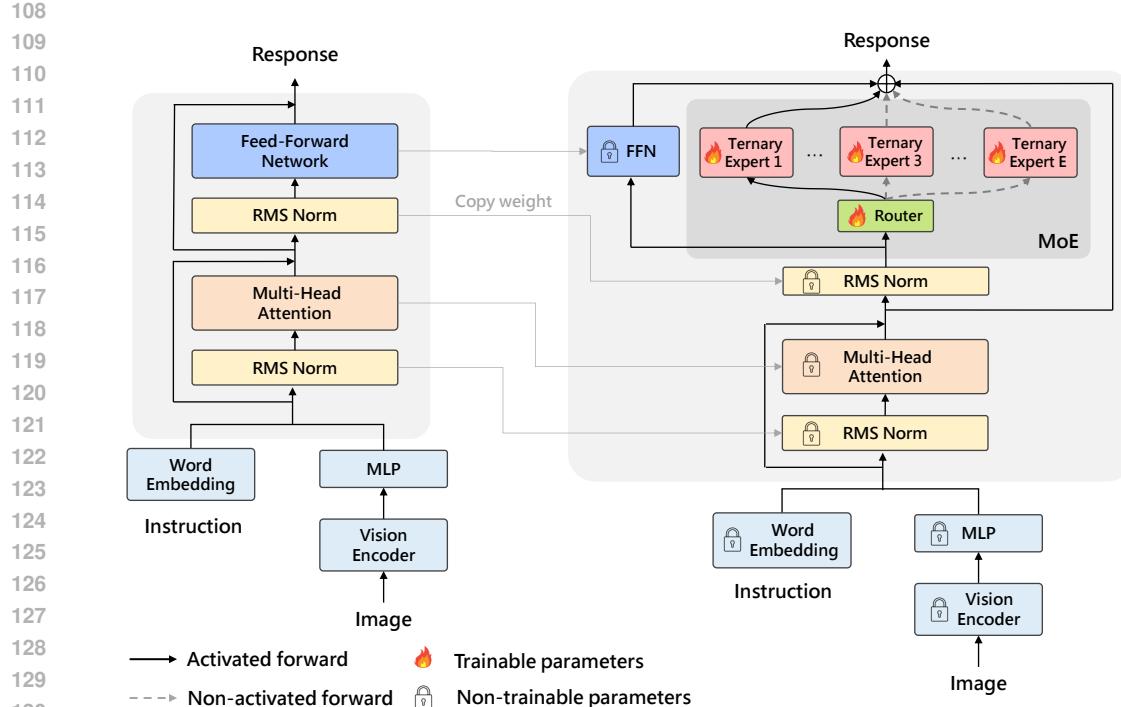


Figure 1: The overview of MoTE. We retain the pre-trained full-precision FFN as a shared expert and add a top-1 activated MoE layer with ternary experts. All experts and attention layers are initialized from the dense checkpoint.

Li et al. (2024b) proposed to quantize the experts with a mixed precision recipe and introduced a novel data-driven techniques for optimizing bit allocation.

3 MOTE: MIXTURE-OF-TERNARY-EXPERTS

3.1 ARCHITECTURE

We illustrate the architecture of MoTE in Figure 1. Previous studies (Komatsuzaki et al., 2023; Lin et al., 2024a) expanded a dense model into an MoE model by directly replacing the FFN layer with an MoE layer, where each expert is initialized from the dense FFN to accelerate convergence. However, as shown in Table 6, we found that directly replacing the FFN with an MoE in ternary up-cycling leads to significant performance degradation. We hypothesize that this occurs because the FFN encodes a substantial amount of factual knowledge acquired during pre-training (Geva et al., 2021; Dai et al., 2022), and weight ternarization severely disrupts pre-trained information. To mitigate this issue, we retain the FFN module from the dense model as a shared expert, ensuring it is activated for every token. Specifically, the forward computation of the l -th layer of MoTE can be formulated as:

$$x_l^a = x_{l-1} + \text{MSA}(\text{LN}(x_{l-1})) \quad (1)$$

$$x_l = x_l^a + \text{MoE}(\text{LN}(x_l^a)) + \text{FFN}(\text{LN}(x_l^a)) \quad (2)$$

where MSA and LN stands for multi-head self-attention and layer normalization, respectively. As illustrated in Figure 1, we initialize the FFN, MSA and MoE layers from the dense model. We implement the MoE mechanism following the GShard (Lepikhin et al., 2021), with each expert modeled as a Gated Linear Unit (GLU) (Shazeer, 2020). An MoE layer which consists of E ternary experts $\text{FFN}_1^T \dots \text{FFN}_E^T$ satisfies that:

$$\text{MoE}(x) = \sum_{i=1}^E \mathcal{P}(x)_i \cdot \text{FFN}_i^T(x), \quad \mathcal{P}(x)_i = \frac{e^{f(x)_i}}{\sum_{j=1}^E e^{f(x)_j}} \quad (3)$$

162 where $f(x)$ is the gating logits produced by the router. We leave the projection in router as BF16,
 163 since it only accounts for very small portion of total memory footprint. The forward computation of
 164 the i -th ternary expert $\text{FFN}_i^T(x)$ satisfies that:
 165

$$\text{FFN}_i^T(x) = Q_w(W_{\text{down}}^T)Q_a(h) \quad (4)$$

$$h = Q_w(W_{\text{up}}^T)Q_a(x) \otimes \sigma[Q_w(W_{\text{gate}}^T)Q_a(x)] \quad (5)$$

169 σ is SiLU function. We apply *absmean* quantizer and *per-token absmax* quantizer for weight and
 170 activation quantization in expert’s linear layers following BitNet (Ma et al., 2024). Specifically, the
 171 quantization can be formulated as:

$$Q_w(W) = \alpha \cdot \text{RoundClip}\left(\frac{W}{\alpha}, -1, 1\right), \quad (6)$$

$$Q_a(x) = \frac{\beta}{127} \cdot \text{RoundClip}\left(\frac{127x}{\beta}, -128, 127\right) \quad (7)$$

$$\alpha = \frac{1}{nm} \|W\|_1, \quad \beta = \|x\|_\infty \quad (8)$$

$$\text{RoundClip}(x, a, b) = \max(a, \min(b, \text{round}(x))) \quad (9)$$

180 The weight $W \in \mathcal{R}^{m \times n}$ is quantized into ternary values, i.e., $\{-1, 0, 1\}$. The activations x are
 181 per-token quantized into 8-bit integers, i.e., $[-128, 127]$. The output of ternary linear layer Y is
 182 $Q_w(W)Q_a(x)$. During inference, we use the kernel from BitBlas (Wang et al., 2024c) to save
 183 the memory footprint and accelerate the inference. Despite ternary values results in 1.58-bit, i.e.,
 184 $\log 3 / \log 2$, BitBlas still stores and processes ternary weight in INT2 format since current GPUs are
 185 still based on binary system.

187 3.2 TRAINING RECIPE

189 Following MoE-LLaVA (Lin et al., 2024a), the training of MoTE consists of three stages. In Stage
 190 I, we train a two-layer MLP connector to align the visual encoder and LLM. As for Stage II, we
 191 fine-tune the LLM and connector using more complex vision-language instruction data. In Stage III,
 192 we expand the dense model from Stage II to an MoE model with ternary experts. The visual encoder
 193 is frozen through the training process. As presented in Figure 1, during up-cycling, only ternary MoE
 194 layers are trainable, and the shared expert and MSA layers are frozen.

195 We adopt quantization-aware training for MoTE. The weights and activations are quantized into
 196 ternary and INT8 values on-the-fly. Since many operations in the quantization are no-differentiable,
 197 we deploy straight-through estimator (Bengio et al., 2013) for gradient approximation. The gradients
 198 are directly by-passing through non-differentiable functions, i.e., $\frac{\partial \mathcal{L}}{\partial W} = \frac{\partial \mathcal{L}}{\partial Q(W)}$ and $\frac{\partial \mathcal{L}}{\partial X} = \frac{\partial \mathcal{L}}{\partial Q(X)}$.
 199 The gradients and optimizer states are retained as full-precision.

201 3.3 TRAINING OBJECTIVES

202 The training objective of MoTE $\mathcal{L}_{\text{total}}$ requires the minimization of both the loss of specific multimodal
 203 tasks \mathcal{L}_{LM} and an auxiliary load balancing loss $\mathcal{L}_{\text{balance}}$.

205 **Language modeling loss.** The auto-regressive language modeling loss \mathcal{L}_{LM} is widely adopted in
 206 the training of LMMs. Specifically, let \mathcal{V} and \mathcal{T} denote sequences of visual tokens and textual tokens,
 207 respectively. \mathcal{T} can be divided as the instruction part \mathcal{T}_{ins} and the response part \mathcal{T}_{ans} . The language
 208 modeling loss is calculated as:
 209

$$\mathcal{L}_{\text{LM}} = - \sum_{\text{token}_i \in \mathcal{T}_{\text{ans}}} \log \Pr(\mathcal{Y}^i | \mathcal{V}, \mathcal{T}^{[:i-1]}) \quad (10)$$

212 where \mathcal{Y} is the model’s output. We only calculate the loss on the response part.

214 **Load balancing loss.** To ease the expert load imbalance problem in MoE, we adopt an auxiliary
 215 loss following Switch Transformers (Fedus et al., 2022). Given a batch of training tokens \mathbf{X} , the

216 balancing loss can be formulated as:
 217

$$218 \quad \mathcal{L}_{\text{balance}} = \frac{E}{|\mathbf{X}|} \sum_{i=1}^E \sum_{x \in \mathbf{X}} t_i \cdot \mathcal{P}(x)_i \quad (11)$$

$$219$$

$$220$$

221 where $|\mathbf{X}|$ is the number of training tokens in \mathbf{X} , $\mathcal{P}(x)_i$ is the routing logits depicted in Equation 3,
 222 t_i is the number of tokens routed to the i -th expert.

223 Above all, the training objective of MoTE is:
 224

$$225 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{LM}} + \gamma \cdot \mathcal{L}_{\text{balance}} \quad (12)$$

$$226$$

$$227$$

228 where γ is a coefficient for load balancing.

229 4 EXPERIMENTS

$$230$$

231 4.1 SETUP

$$232$$

233 **Model settings.** We select MoE-
 234 LLaVA (Lin et al., 2024a) as the
 235 baseline. It adopts a similar three-stage
 236 MoE training recipe and utilizes full-
 237 precision experts. Since MoE-LLaVA
 238 activates the top-2 experts, and our
 239 model includes a shared expert, we
 240 use top-1 gating in MoTE to ensure
 241 a fair comparison in terms of FLOPs.
 242 All MoE layers consist of four routed
 243 experts. We adopt SigLIP-L (Zhai
 244 et al., 2023) as the vision encoder and
 245 the instruct-version of Qwen2.5-series
 246 model (Yang et al., 2024) as the base
 247 LLM. The connector is a two-layer MLP
 248 with GELU activation. Table 1 presents
 249 the active and total parameter counts in
 250 the training of MoTE and MoE-LLaVA across different model sizes. The expert memory footprint
 251 includes contributions from both shared and routed experts.

$$252$$

$$253$$

$$254$$

$$255$$

$$256$$

$$257$$

$$258$$

Table 1: The active/total parameter counts and expert memory of MoTE and MoE-LLaVA in various model sizes.

Method	# Active/Total Params			Expert Memory ↓
	Stage I	Stage II	Stage III	
<i>0.5B Model Up-cycling</i>				
MoE-LLaVA	1B	1B	1.3B/1.8B	2.3GB (2.55×)
MoTE			1.3B/2.1B	0.9GB (1.00×)
<i>1.5B Model Up-cycling</i>				
MoE-LLaVA	2B	2B	3.1B/5.4B	8.6GB (2.69×)
MoTE			3.1B/6.6B	3.2GB (1.00×)
<i>3B Model Up-cycling</i>				
MoE-LLaVA	3.4B	3.4B	5.9B/10.8B	18.1GB (2.66×)
MoTE			5.9B/13.2B	6.8GB (1.00×)

259 The active and total parameter counts in
 260 the training of MoTE and MoE-LLaVA across different model sizes. The expert memory footprint
 261 includes contributions from both shared and routed experts.

$$262$$

$$263$$

$$264$$

$$265$$

$$266$$

$$267$$

$$268$$

$$269$$

270 **Implementation details.** We adopt expert parallelism for efficient training of MoE models. The
 271 coefficient γ for load balancing loss is set as 0.01. The value is recommended by Fedus et al. (2022) to
 272 ensure auxiliary loss not to overwhelm the primary language modeling objective. All experiments are
 273 conducted on 16 NVIDIA A100 cards with 40GB memory. Due to the limited computation resources,
 274 we do not perform dynamic resolution processing for the images, since it leads to extremely long
 275 training sequence. The length of the total sequence is set as 2048 tokens, and the visual input includes
 276 729 tokens. More hyper-parameters can be found in Appendix A.

$$277$$

$$278$$

$$279$$

$$280$$

$$281$$

$$282$$

$$283$$

$$284$$

$$285$$

$$286$$

$$287$$

$$288$$

$$289$$

$$290$$

$$291$$

$$292$$

$$293$$

$$294$$

$$295$$

$$296$$

$$297$$

$$298$$

$$299$$

$$300$$

$$301$$

$$302$$

$$303$$

$$304$$

$$305$$

$$306$$

$$307$$

$$308$$

$$309$$

$$310$$

$$311$$

$$312$$

$$313$$

$$314$$

$$315$$

$$316$$

$$317$$

$$318$$

$$319$$

$$320$$

$$321$$

$$322$$

$$323$$

$$324$$

$$325$$

$$326$$

$$327$$

$$328$$

$$329$$

$$330$$

$$331$$

$$332$$

$$333$$

$$334$$

$$335$$

$$336$$

$$337$$

$$338$$

$$339$$

$$340$$

$$341$$

$$342$$

$$343$$

$$344$$

$$345$$

$$346$$

$$347$$

$$348$$

$$349$$

$$350$$

$$351$$

$$352$$

$$353$$

$$354$$

$$355$$

$$356$$

$$357$$

$$358$$

$$359$$

$$360$$

$$361$$

$$362$$

$$363$$

$$364$$

$$365$$

$$366$$

$$367$$

$$368$$

$$369$$

$$370$$

$$371$$

$$372$$

$$373$$

$$374$$

$$375$$

$$376$$

$$377$$

$$378$$

$$379$$

$$380$$

$$381$$

$$382$$

$$383$$

$$384$$

$$385$$

$$386$$

$$387$$

$$388$$

$$389$$

$$390$$

$$391$$

$$392$$

$$393$$

$$394$$

$$395$$

$$396$$

$$397$$

$$398$$

$$399$$

$$400$$

$$401$$

$$402$$

$$403$$

$$404$$

$$405$$

$$406$$

$$407$$

$$408$$

$$409$$

$$410$$

$$411$$

$$412$$

$$413$$

$$414$$

$$415$$

$$416$$

$$417$$

$$418$$

$$419$$

$$420$$

$$421$$

$$422$$

$$423$$

$$424$$

$$425$$

$$426$$

$$427$$

$$428$$

$$429$$

$$430$$

$$431$$

$$432$$

$$433$$

$$434$$

$$435$$

$$436$$

$$437$$

$$438$$

$$439$$

$$440$$

$$441$$

$$442$$

$$443$$

$$444$$

$$445$$

$$446$$

$$447$$

$$448$$

$$449$$

$$450$$

$$451$$

$$452$$

$$453$$

$$454$$

$$455$$

$$456$$

$$457$$

$$458$$

$$459$$

$$460$$

$$461$$

$$462$$

$$463$$

$$464$$

$$465$$

$$466$$

$$467$$

$$468$$

$$469$$

$$470$$

$$471$$

$$472$$

$$473$$

$$474$$

$$475$$

$$476$$

$$477$$

$$478$$

$$479$$

$$480$$

$$481$$

$$482$$

$$483$$

$$484$$

$$485$$

$$486$$

$$487$$

$$488$$

$$489$$

$$490$$

$$491$$

$$492$$

$$493$$

$$494$$

$$495$$

$$496$$

$$497$$

$$498$$

$$499$$

$$500$$

$$501$$

$$502$$

$$503$$

$$504$$

$$505$$

$$506$$

$$507$$

$$508$$

$$509$$

$$510$$

$$511$$

$$512$$

$$513$$

$$514$$

$$515$$

$$516$$

$$517$$

$$518$$

$$519$$

$$520$$

$$521$$

$$522$$

$$523$$

$$524$$

$$525$$

$$526$$

$$527$$

$$528$$

$$529$$

$$530$$

$$531$$

$$532$$

$$533$$

$$534$$

$$535$$

$$536$$

$$537$$

$$538$$

$$539$$

$$540$$

$$541$$

$$542$$

$$543$$

$$544$$

$$545$$

$$546$$

$$547$$

$$548$$

$$549$$

$$550$$

$$551$$

$$552$$

$$553$$

$$554$$

$$555$$

$$556$$

$$557$$

$$558$$

$$559$$

$$560$$

$$561$$

$$562$$

$$563$$

$$564$$

$$565$$

$$566$$

$$567$$

$$568$$

$$569$$

$$570$$

$$571$$

$$572$$

$$573$$

$$574$$

$$575$$

$$576$$

$$577$$

$$578$$

$$579$$

$$580$$

$$581$$

$$582$$

$$583$$

$$584$$

$$585$$

$$586$$

$$587$$

$$588$$

$$589$$

$$590$$

$$591$$

$$592$$

$$593$$

$$594$$

$$595$$

$$596$$

$$597$$

$$598$$

$$599$$

$$600$$

$$601$$

$$602$$

$$603$$

$$604$$

$$605$$

$$606$$

$$607$$

$$608$$

$$609$$

$$610$$

$$611$$

$$612$$

$$613$$

$$614$$

$$615$$

$$616$$

$$617$$

$$618$$

$$619$$

$$620$$

$$621$$

$$622$$

$$623$$

$$624$$

$$625$$

$$626$$

$$627$$

$$628$$

$$629$$

$$630$$

$$631$$

$$632$$

$$633$$

$$634$$

$$635$$

$$636$$

$$637$$

$$638$$

$$639$$

$$640$$

$$641$$

$$642$$

$$643$$

$$644$$

$$645$$

$$646$$

$$647$$

$$648$$

$$649$$

$$650$$

$$651$$

$$652$$

$$653$$

$$654$$

$$655$$

$$656$$

$$657$$

$$658$$

$$659$$

$$660$$

$$661$$

$$662$$

$$663$$

$$664$$

$$665$$

$$666$$

$$667$$

$$668$$

$$669$$

$$670$$

$$671$$

$$672$$

$$673$$

$$674$$

$$675$$

$$676$$

$$677$$

$$678$$

$$679$$

$$680$$

$$681$$

$$682$$

$$683$$

$$684$$

$$685$$

$$686$$

$$687$$

$$688$$

$$689$$

$$690$$

$$691$$

$$692$$

$$693$$

$$694$$

$$695$$

$$696$$

$$697$$

$$698$$

$$699$$

$$700$$

$$701$$

$$702$$

$$703$$

$$704$$

$$705$$

$$706$$

$$707$$

$$708$$

$$709$$

$$710$$

$$711$$

$$712$$

$$713$$

$$714$$

$$715$$

$$716$$

$$717$$

$$718$$

$$719$$

$$720$$

$$721$$

$$722$$

$$723$$

$$724$$

$$725$$

$$726$$

$$727$$

$$728$$

$$729$$

$$730$$

$$731$$

$$732$$

$$733$$

$$734$$

$$735$$

$$736$$

$$737$$

$$738$$

$$739$$

$$740$$

$$741$$

$$742$$

$$743$$

$$744$$

$$745$$

$$746$$

$$747$$

$$748$$

$$749$$

$$750$$

$$751$$

$$752$$

$$753$$

$$754$$

$$755$$

$$756$$

$$757$$

$$758$$

$$759$$

$$760$$

$$761$$

$$762$$

$$763$$

$$764$$

$$765$$

$$766$$

$$767$$

$$768$$

$$769$$

$$770$$

$$771$$

$$772$$

$$773$$

$$774$$

$$775$$

$$776$$

$$777$$

$$778$$

$$779$$

$$780$$

$$781$$

$$782$$

$$783$$

$$784$$

$$785$$

$$786$$

$$787$$

$$788$$

$$789$$

$$790$$

$$791$$

$$792$$

$$793$$

$$794$$

$$795$$

$$796$$

$$797$$

$$798$$

$$799$$

$$800$$

$$801$$

$$802$$

$$803$$

$$804$$

$$805$$

$$806$$

$$807$$

$$808$$

$$809$$

$$810$$

$$811$$

$$812$$

$$813$$

$$814$$

$$815$$

$$816$$

$$817$$

$$818$$

$$819$$

$$820$$

$$821$$

$$822$$

$$823$$

$$824$$

$$825$$

$$826$$

$$827$$

$$828$$

$$829$$

$$830$$

$$831$$

$$832$$

$$833$$

$$834$$

$$835$$

$$836$$

$$837$$

$$838$$

$$839$$

$$840$$

$$841$$

$$842$$

$$843$$

$$844$$

$$845$$

$$846$$

$$847$$

$$848$$

$$849$$

$$850$$

$$851$$

$$852$$

$$853$$

$$854$$

$$855$$

$$856$$

$$857$$

$$858$$

$$859$$

$$860$$

$$861$$

$$862$$

$$863$$

$$864$$

$$865$$

$$866$$

$$867$$

$$868$$

$$869$$

$$870$$

$$871$$

$$872$$

$$873$$

$$874$$

$$875$$

$$876$$

$$877$$

$$878$$

$$879$$

$$880$$

$$881$$

$$882$$

$$883$$

$$884$$

$$885$$

$$886$$

$$887$$

$$888$$

$$889$$

$$890$$

$$891$$

$$892$$

$$893$$

$$894$$

$$895$$

$$896$$

$$897$$

$$898$$

$$899$$

$$900$$

$$901$$

$$902$$

$$903$$

$$904$$

$$905$$

$$906$$

$$907$$

$$908$$

$$909$$

$$910$$

$$911$$

$$912$$

$$913$$

$$914$$

$$915$$

$$916$$

$$917$$

$$918$$

$$919$$

$$920$$

$$921$$

$$922$$

$$923$$

$$924$$

$$925$$

$$926$$

$$927$$

$$928$$

$$929$$

$$930$$

$$931$$

$$932$$

$$933$$

$$934$$

$$935$$

$$936$$

$$937$$

$$938$$

$$939$$

$$940$$

$$941$$

$$942$$

$$943$$

$$944$$

$$945$$

$$946$$

$$947$$

$$948$$

$$949$$

$$950$$

$$951$$

$$952$$

$$953$$

$$954$$

$$955$$

$$956$$

$$957$$

$$958$$

$$959$$

$$960$$

$$961$$

$$962$$

$$963$$

$$964$$

$$965$$

$$966$$

$$967$$

$$968$$

$$969$$

$$970$$

$$971$$

$$972$$

$$973$$

$$974$$

$$975$$

$$976$$

$$977$$

$$978$$

$$979$$

$$980$$

$$981$$

$$982$$

$$983$$

$$984$$

$$985$$

$$986$$

$$987$$

$$988$$

$$989$$

$$990$$

$$991$$

$$992$$

$$993$$

$$994$$

$$995$$

$$996$$

$$997$$

$$998$$

$$999$$

$$1000$$

270 Table 2: The results of MoTE and MoE-LLaVA on image understanding tasks in different model
 271 sizes. All models utilize the same base LLM, vision encoder and training dataset to ensure a fair
 272 comparison.

Method	MMMU (val)	MathV (testmini)	MMB (en test)	MMS (test)	Seed ²⁺ (test)	AI2D (test)	ChartQA (test)	InfoVQA (val)	DocVQA (val)	Avg.
<i>0.5B Model Up-cycling</i>										
MoE-LLaVA	35.4	35.4	57.3	39.5	43.3	57.4	56.0	25.8	49.3	44.4
MoTE	34.2	35.2	57.6	37.9	44.8	55.2	54.9	25.2	49.7	43.8
△ compare to MoE-LLaVA	-1.2	-0.2	+0.3	-1.6	+1.5	-2.2	-1.1	-0.6	+0.4	-0.6
<i>1.5B Model Up-cycling</i>										
MoE-LLaVA	41.2	41.7	68.4	45.0	52.9	67.8	59.4	31.8	55.1	51.5
MoTE	42.6	44.8	70.0	46.4	54.8	68.7	61.3	32.5	57.4	53.2
△ compare to MoE-LLaVA	+1.4	+3.1	+1.6	+1.4	+1.9	+0.9	+1.9	+0.7	+2.3	+1.7
<i>3B Model Up-cycling</i>										
MoE-LLaVA	42.3	48.6	75.4	45.5	56.2	73.5	65.0	35.1	60.1	55.7
MoTE	43.4	52.3	74.5	48.2	57.5	73.9	67.6	36.7	61.3	57.3
△ compare to MoE-LLaVA	+1.1	+3.7	-0.9	+2.7	+1.3	+0.4	+2.6	+1.6	+1.2	+1.6

285 Table 3: The results of MoTE and MoE-LLaVA given the same amount of expert memory in 1.5B
 286 and 3B model size. Both of them are combined with post-training quantization (PTQ). The expert
 287 memory footprint includes contributions from both shared and routed experts.

Method	Expert Memory↓	MMMU↑ (val)	MMB↑ (en test)	Seed ²⁺ ↑ (test)	AI2D↑ (test)	DocVQA↑ (val)	Avg.↑
<i>1.5B Model Up-cycling</i>							
MoE-LLaVA + PTQ	2.2GB	41.1	68.0	53.1	67.3	55.0	56.9
MoTE + PTQ	2.2GB	42.7	70.1	54.4	68.2	57.4	58.6
MoE-LLaVA + PTQ	1.6GB	36.0	60.3	49.8	62.6	50.0	51.7
MoTE + PTQ	1.6GB	40.3	69.3	55.2	67.8	57.1	57.9
<i>3B Model Up-cycling</i>							
MoE-LLaVA + PTQ	4.5GB	42.2	75.3	55.4	72.3	59.4	60.9
MoTE + PTQ	4.5GB	43.2	74.8	57.0	73.3	60.9	61.8
MoE-LLaVA + PTQ	3.4GB	37.7	69.7	52.2	67.5	56.8	56.8
MoTE + PTQ	3.4GB	42.8	71.9	56.9	73.0	60.9	61.1

301 302 4.2 MAIN RESULTS

303
304 We compared the performance of ternary up-cycling MoTE to MoE-LLaVA across different model
 305 sizes on various multimodal tasks. As shown in Table 2, MoTE underperformed full-precision
 306 up-cycling MoE-LLaVA when converting a 0.5B dense model to an MoE model. However, the
 307 performance gap between MoTE and MoE-LLaVA narrows as the parameter counts of the dense
 308 model increases. Similar phenomena are also reported by the low-bit pre-training of LLMs (Ma
 309 et al., 2024; Kaushal et al., 2024), which suggests promising trends of scaling model size for ternary
 310 MoEs.

311 As the model size scales to 1.5B parameters, due to larger total parameter counts, MoTE surpasses
 312 MoE-LLaVA across various image understanding tasks, achieving an average accuracy improvement
 313 of 1.7% with the same FLOPs. This demonstrates the effectiveness of our proposed method. Moreover,
 314 since the expert weights in MoTE are trained to adapt to ternary values, despite it has larger total
 315 parameter counts, the ternary MoE layer can be losslessly compressed to low-bit after training,
 316 significantly reducing the memory footprint caused by the ensemble of experts. As shown in Table 1,
 317 at the 3B model size, MoTE’s expert memory is only 6.8GB — just 38% of MoE-LLaVA’s 18.1GB.
 318

319 4.3 COMPATIBILITY WITH POST-TRAINING QUANTIZATION

320
321 Despite the MoE layers of our model contain ternary experts, there still leaves a shared expert in
 322 full-precision in each layer. These shared experts can be quantized into low-bit using post-training
 323 quantization methods. We apply GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2024b) at various
 bit-widths and report the best results given the same expert memory footprint. We use 512 samples

324
325
326
327
328 Table 4: The results of MoTE and the other methods in similar model size on general VQA and
329 multimodal reasoning tasks.
330
331
332
333
334

Model	Training Tokens	MMMU (val)	MMB (en test)	Seed (image)	MMS (test)	MMV (test)	MathV (testmini)	Avg.↑
<i>Dense Model</i>								
MM1.5-1B (Zhang et al., 2024a)	>200B	35.8	-	70.2	-	37.4	37.2	-
MM1.5-3B (Zhang et al., 2024a)	>200B	37.1	-	72.4	-	41.0	44.4	-
MiniCPM-V2-3B (Yao et al., 2024)	-	38.2	69.1	-	41.7	-	38.7	-
TinyLLaVA-3B (Zhou et al., 2024)	4B	39.9	-	-	-	34.8	-	-
Phi-3-Vision-4B (Abdin et al., 2024)	>0.8T	40.4	73.9	71.8	47.9	45.4	44.5	54.0
Qwen2-VL-2B (Wang et al., 2024d)	>1.4T	41.1	74.9	72.1	48.0	49.5	43.0	54.8
<i>Sparse Model</i>								
MoE-LLaVA (Lin et al., 2024a)	4B	33.9	52.6	64.8	32.5	32.3	25.6	40.3
MolmoE-1B (Deitke et al., 2024)	1.5B	34.9	63.6	68.7	43.3	38.5	34.0	47.2
LLaVA-MoD-2B (Shu et al., 2024)	10B	-	68.9	-	-	-	-	-
MM1-3B-MoE (McKinzie et al., 2024)	>400B	38.6	70.8	69.4	-	42.2	32.6	-
MM1-7B-MoE (McKinzie et al., 2024)	>400B	40.9	72.7	70.9	-	45.2	40.9	-
MM1.5-1B-MoE (Zhang et al., 2024a)	>200B	41.2	-	71.4	-	39.8	42.9	-
MoTE-1.5B (ours)	21.6B	40.4	75.0	72.5	50.2	52.6	49.8	56.8
w/o initialize experts from FFN	21.6B	41.8	75.0	71.3	48.1	48.6	48.2	55.5

342
343 Table 5: Ablations on the precision of routed experts in MoTE.
344

Precision of Routed Expert	MMMU (val)	MMB (en test)	AI2D (test)	ChartQA (test)	Seed ²⁺ (test)	MMS (test)	Avg.↑
1-bit	40.3	69.5	67.6	60.2	53.9	43.1	55.7
1.58-bit	42.6	70.0	68.7	61.3	54.8	46.4	57.3

351 with the length of 2048 tokens from Stage III’s data as the calibration set. For MoE-LLaVA, all
352 full-precision experts are quantized, resulting in expert memory footprints of 2.2GB and 4.5GB under
353 INT4 quantization for the 1.5B and 3B models, respectively. To ensure a fair comparison, we quantize
354 the shared expert of MoTE to INT8 using RTN (Dettmers et al., 2022). Additionally, we extend the
355 comparison to scenarios with lower memory constraints. For expert memory footprints of 1.6GB and
356 3.4GB in the 1.5B and 3B models, MoE-LLaVA’s experts are quantized to 3-bit integers using GPTQ,
357 while the shared experts of MoTE are quantized to INT4.

358 Table 3 presents the results for MoTE and MoE-LLaVA, both combined with post-training quantiza-
359 tion. Given the same expert memory footprint, MoTE achieves better performance than MoE-LLaVA.
360 Under the same expert memory footprint, our method outperforms MoE-LLaVA across different
361 model sizes. Notably, under stricter memory constraints, we observe a significant performance drop
362 for MoE-LLaVA combined with GPTQ at 3-bit precision. However, since the parameters of our MoE
363 layer are ternary, we can achieve the same memory footprint by applying INT4 quantization only
364 to the shared expert. This further amplifies the advantages of our approach. Specifically, given the
365 same expert memory of 3.4GB, MoTE achieves a gain of 4.3% average accuracy compared with
366 MoE-LLaVA on the end tasks. These results demonstrate that our method can achieve lower memory
367 footprint combined with post-training quantization, while maintaining competitive performance.

368
369 4.4 SCALING WITH MORE DATA

370 To examine whether our method is friendly for scaling with data, we train a 1.5B MoTE model with
371 more data during ternary up-cycling. We adopt the same data recipe for Stage I and Stage II as shown
372 in Section 4.1. Then we use a full set of Mammoth-VL (Guo et al., 2024) for Stage III, which
373 contains 10 million samples, each associated with a single image. Every dense layer is replaced with
374 an MoTE layer with one full-precision shared expert and four routed ternary experts. The training
375 steps is set as 40k. The other hyper-parameters are consistent with the setup presented in Section 4.1.

376 Table 4 summarizes the zero-shot accuracy of MoTE and the baselines across various multimodal
377 reasoning and general VQA tasks. For the baselines, we use their reported scores when available;
378 otherwise, we evaluate the open-sourced models using the same prompts as ours to ensure a fair

378
379 Table 6: Ablations on the precision of shared experts and the initialization methods of routed experts
380 in MoTE.

Precision of Shared Expert	Initialize from FFN	MMMU (val)	MMB (en test)	AI2D (test)	ChartQA (test)	Seed ²⁺ (test)	MMS (test)	Avg.↑
Ternary	✗	34.6	49.4	62.7	56.4	46.2	39.8	48.2
BF16	✗	40.1	69.9	67.1	59.9	53.2	44.5	55.8
BF16	✓	42.6	70.0	68.7	61.3	54.8	46.4	57.3

387
388 Table 7: Ablations on the training recipe of MoTE. Given the same training FLOPs, we do not
389 observe performance improvement from initially training with full-precision experts then fine-tuning
390 them into ternary precision.

Ternary Training	Full-Precision Training	MMMU (val)	MMB (en test)	AI2D (test)	ChartQA (test)	Seed ²⁺ (test)	MMS (test)	Avg.↑
20%	80%	39.3	60.5	62.6	56.8	53.2	42.0	52.4
60%	40%	41.3	64.0	65.3	57.0	54.0	45.1	54.4
100%	0%	42.6	70.0	68.7	61.3	54.8	46.4	57.3

391 comparison. As shown in Table 4, although MoTE-1.5B is only trained with 21.6B tokens, our model
392 achieves an improvement of 2.0% average accuracy compared to Qwen2-VL-2B (Wang et al., 2024d).
393 Furthermore, MoTE outperforms the larger dense model with fewer FLOPs. Specifically, MoTE
394 outperforms MiniCPM-V-2.0-3B and Phi-3-Vision-4B by a gain of 11.1% and 5.3% accuracy on the
395 *testmini* set of MathVista.

396 For sparse model, due to stronger base LLM and vision encoder, our model significantly outperforms
397 MoE-LLaVA of similar total and active model size by a gain of 16.5% average accuracy. Notably,
398 MM1.5-1B-MoE is a strong multimodal MoE baseline, which was trained from an 1B dense model
399 with 64 experts replacing dense layers every two layers. MoTE outperforms it by a gain of 0.6%,
400 1.1%, 12.8% and 6.9% on MMMU, SeedBench (image), MMVet and MathVista, respectively. These
401 results proves the effectiveness of the proposed MoTE on multimodal reasoning and general VQA.
402

403 4.5 ABLATION STUDIES

404 **Precision of routed experts.** We investigate the impact of expert precision on the performance
405 of MoTE. Specifically, we compare ternary (i.e., 1.58-bit) up-cycling to 1-bit up-cycling with
406 BWN (Rastegari et al., 2016) as the weight quantizers. Both models are up-cycled from Qwen2.5-
407 1.5B with SigLIP-L as the vision encoder to ensure a fair comparison. As shown in Table 5, using
408 binary experts results in performance degradation across most tasks. Similar findings have been
409 reported in the quantization-aware training of BERT models (Bai et al., 2021), where transitioning
410 from ternary to binary weights leads to a substantially more complex and irregular loss landscape,
411 making optimization notably more difficult. Above all, ternary up-cycling is a memory-effective and
412 high-performance solution for MoE models.

413 **Precision of shared experts.** We ablate the effect of the precision of the shared expert reused from
414 the FFN of pre-trained dense checkpoint. MoTE retains the precision of shared expert as BF16 and
415 freezes the modules during up-cycling. We compare it to a model with the ternary shared expert.
416 All ternary experts are trainable. Table 6 presents the zero-shot performance of these models on
417 MMMU, MMBench, AI2D, ChartQA, SeedBench-2-Plus and MMStar tasks. Weight ternarization
418 of the shared experts has significant effect on overall performance. Specifically, the model with
419 full-precision shared experts outperforms it with ternary shared experts by an improvement of 7.6%
420 average accuracy on the end tasks. This demonstrates the importance of keeping the pre-trained FFN
421 as a high-precision shared expert during ternary up-cycling.

422 **Initialization of routed experts.** We compare MoTE to randomly initialized routed experts in
423 Stage III. Table 6 presents the results for a 1.5B model, where initializing from the FFN yields a 1.5%
424 improvement in average accuracy on end tasks compared to random initialization. Moreover, we

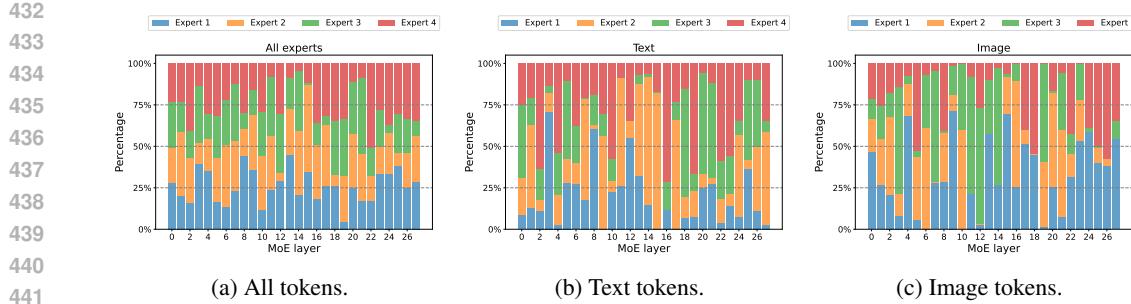


Figure 2: Visualization of the routing distributions of all tokens, text tokens, image tokens across all experts on the *en-test* set of MMBench.

analyze the impact of data scaling using the data recipe described in Section 4.4. As demonstrated in Table 4, FFN-based initialization maintains its advantage with additional training data, achieving a 1.3% higher average accuracy than random initialization. These findings suggest that leveraging a pre-trained full-precision FFN for MoTE’s initialization not only enhances performance but also accelerates the convergence of ternary experts. Additional results for the 0.5B and 3B models are provided in the Appendix B.

Training recipe. We conduct ablation studies on the training strategy of ternary up-cycling in MoTE to assess the effectiveness of first training with full-precision experts before fine-tuning the model to ternary precision. All models are trained on 6.25B tokens and up-cycled from Qwen2.5-1.5B. We vary the proportion of training conducted in full-precision versus ternary precision. As shown in Table 7, we do not observe performance gain from initially training with full-precision experts. In fact, accuracy improves as the proportion of ternary training increases. Therefore, for both simplicity and improved performance, MoTE is trained directly in ternary precision without a full-precision training phase during up-cycling.

5 ANALYSIS

We visualize the routing distribution of all tokens in MoTE-1.5B on the *en-test* split of the MMBench dataset. As shown in Figure 2a, expert utilization across all tokens is well-balanced. To further investigate modality-specific behavior, we present the routing distributions for text and image tokens separately in Figures 2b and 2c, respectively. Notably, text and image tokens exhibit distinct routing patterns. For example, expert #1 is frequently activated for image tokens in the first layer and the final five layers. Additional visualizations across various tasks are provided in Appendix C.1. We observe that routing distributions remain largely consistent across different tasks, suggesting that the experts in MoTE specialize based on modality rather than task-specific features. Moreover, we include per-expert routing distributions by modality in Appendix C.2. Interestingly, some experts exhibit clear modality preferences despite the absence of explicit modality conditioning during training. To better understand expert specialization, we further apply PCA to extract the top-10 routing pathways for text and image tokens. More visualizations are included in Appendix C.3. These findings enhance our understanding of MoTE’s behavior and workflow from a token-level perspective.

6 CONCLUSION

In this work, we introduce MoTE, a scalable and memory-efficient approach to train multimodal Mixture-of-Ternary-Experts models from full-precision dense checkpoints. Extensive experiments show that our model matches the full-precision up-cycling MoE-LLaVA in zero-shot performance on end tasks, starting from model sizes exceeding 1.5B parameters. Furthermore, MoTE is compatible with post-training quantization methods, enabling further reductions in the memory footprint of MoE models. Given the same expert memory footprint of 3.4GB, MoTE surpasses MoE-LLaVA with an average accuracy gain of 4.3% on image understanding tasks, highlighting the effectiveness of our approach, particularly for memory-constrained edge devices.

486 REFERENCES
487

488 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
489 Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
490 capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.

491 Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin, Xin Jiang, Qun Liu, Michael R. Lyu, and
492 Irwin King. Binarybert: Pushing the limit of BERT quantization. In *Proceedings of the 59th*
493 *Annual Meeting of the Association for Computational Linguistics and the 11th International*
494 *Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers),*
495 *Virtual Event, August 1-6, 2021*, pp. 4334–4348. Association for Computational Linguistics, 2021.

496 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
497 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
498 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
499 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report, 2025.

500

501 Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
502 through stochastic neurons for conditional computation. *CoRR*, abs/1308.3432, 2013.

503

504 Jerry Chee, Yachui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of
505 large language models with guarantees. *Advances in Neural Information Processing Systems*, 36,
506 2024.

507 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
508 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
509 models? *arXiv preprint arXiv:2403.20330*, 2024a.

510

511 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
512 Kongzhi Hu, Jiapeng Luo, Zheng Ma, Ji Ma, Jiaqi Wang, Xiaoyi Dong, Hang Yan, Hewei Guo,
513 Conghui He, Botian Shi, Zhenjiang Jin, Chao Xu, Bin Wang, Xingjian Wei, Wei Li, Wenjian
514 Zhang, Bo Zhang, Pinlong Cai, Licheng Wen, Xiangchao Yan, Min Dou, Lewei Lu, Xizhou Zhu,
515 Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. How far are we to gpt-4v? closing
516 the gap to commercial multimodal models with open-source suites. *CoRR*, abs/2404.16821, 2024b.

517 Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
518 pretrained transformers. In *ACL 2022*, pp. 8493–8502, 2022.

519

520 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
521 Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
522 Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
523 Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
524 Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
525 Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
526 Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
527 Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
528 Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
529 Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
530 Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
531 Shanghao Lu, Shangyan Zhou, Shanhuan Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
532 Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuteng Pan, T. Wang, Tao
533 Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng. Deepseek-v3 technical report. *CoRR*,
534 abs/2412.19437, 2024.

535 Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
536 madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
537 weights and open data for state-of-the-art multimodal models. *arXiv preprint arXiv:2409.17146*,
538 2024.

539 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix
multiplication for transformers at scale. *CoRR*, abs/2208.07339, 2022.

540 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
 541 models with simple and efficient sparsity. *J. Mach. Learn. Res.*, 23:120:1–120:39, 2022.

542

543 Elias Frantar and Dan Alistarh. Qmoe: Sub-1-bit compression of trillion parameter models. In
 544 *Proceedings of the Seventh Annual Conference on Machine Learning and Systems, MLSys 2024,*
 545 *Santa Clara, CA, USA, May 13–16, 2024*. mlsys.org, 2024.

546 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
 547 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.

548

549 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
 550 key-value memories. In *EMNLP 2021*, pp. 5484–5495, 2021.

551

552 Jarvis Guo, Tuney Zheng, Yuelin Bai, Bo Li, Yubo Wang, King Zhu, Yizhi Li, Graham Neubig,
 553 Wenhua Chen, and Xiang Yue. Mammoth-vl: Eliciting multimodal reasoning with instruction
 554 tuning at scale. 2024. URL <https://arxiv.org/abs/2412.05237>.

555

556 Ayush Kaushal, Tejas Vaidhya, Arnab Kumar Mondal, Tejas Pandey, Aaryan Bhagat, and Irina Rish.
 557 Spectra: Surprising effectiveness of pretraining ternary language models at scale. *arXiv preprint*
 558 *arXiv:2407.12327*, 2024.

559

560 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
 561 A diagram is worth a dozen images. In *Computer Vision–ECCV 2016: 14th European Conference,*
 562 *Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14*, pp. 235–251.
 563 Springer, 2016.

564

565 Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa, Joshua
 566 Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training mixture-of-
 567 experts from dense checkpoints. In *ICLR 2023*. OpenReview.net, 2023.

568

569 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 570 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
 571 computation and automatic sharding. In *ICLR 2021*, 2021.

572

573 Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Fanyi Pu, Jingkang Yang, Chunyuan Li, and
 574 Ziwei Liu. MIMIC-IT: multi-modal in-context instruction tuning. *CoRR*, abs/2306.05425, 2023a.

575

576 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
 577 marking multimodal llms with generative comprehension. *CoRR*, abs/2307.16125, 2023b.

578

579 Bohao Li, Yuying Ge, Yi Chen, Yixiao Ge, Ruimao Zhang, and Ying Shan. Seed-bench-2-plus:
 580 Benchmarking multimodal large language models with text-rich visual comprehension. *arXiv*
 581 *preprint arXiv:2404.16790*, 2024a.

582

583 Pingzhi Li, Xiaolong Jin, Yu Cheng, and Tianlong Chen. Examining post-training quantization for
 584 mixture-of-experts: A benchmark. *CoRR*, abs/2406.08155, 2024b.

585

586 Yunxin Li, Shenyuan Jiang, Baotian Hu, Longyue Wang, Wanqi Zhong, Wenhan Luo, Lin Ma, and
 587 Min Zhang. Uni-moe: Scaling unified multimodal llms with mixture of experts. *IEEE Transactions*
 588 *on Pattern Analysis and Machine Intelligence*, 2025.

589

590 Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Junwu Zhang, Munan Ning, and
 591 Li Yuan. Moe-llava: Mixture of experts for large vision-language models. *CoRR*, abs/2401.15947,
 592 2024a.

593

594 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 595 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
 596 on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6:
 597 87–100, 2024b.

598

599 Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Mitigating
 600 hallucination in large multi-modal models via robust instruction tuning. In *The Twelfth International*
 601 *Conference on Learning Representations*, 2023.

594 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 595 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 596 pp. 26296–26306, 2024a.

597 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
 598 Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
 599 In *European conference on computer vision*, pp. 216–233. Springer, 2024b.

600

601 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
 602 Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
 603 of foundation models in visual contexts. In *International Conference on Learning Representations*
 604 (*ICLR*), 2024.

605 Tongxu Luo, Jiahe Lei, Fangyu Lei, Weihao Liu, Shizhu He, Jun Zhao, and Kang Liu. Moelora:
 606 Contrastive learning guided mixture of experts on parameter-efficient fine-tuning for large language
 607 models. *CoRR*, abs/2402.12851, 2024.

608

609 Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
 610 Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
 611 1.58 bits. *CoRR*, abs/2402.17764, 2024.

612 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
 613 mark for question answering about charts with visual and logical reasoning. *arXiv preprint*
 614 *arXiv:2203.10244*, 2022.

615

616 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
 617 images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,
 618 pp. 2200–2209, 2021.

619 Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar.
 620 Infographicvqa. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer*
 621 *Vision*, pp. 1697–1706, 2022.

622 Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter,
 623 Dhruti Shah, Xianzhi Du, Futang Peng, Anton Belyi, Haotian Zhang, Karanjeet Singh, Doug
 624 Kang, Hongyu Hè, Max Schwarzer, Tom Gunter, Xiang Kong, Aonan Zhang, Jianyu Wang, Chong
 625 Wang, Nan Du, Tao Lei, Sam Wiseman, Mark Lee, Zirui Wang, Ruoming Pang, Peter Grasch,
 626 Alexander Toshev, and Yinfei Yang. MM1: methods, analysis and insights from multimodal LLM
 627 pre-training. In *ECCV 2024*, volume 15087, pp. 304–323, 2024.

628 Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
 629 Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts language
 630 models. *arXiv preprint arXiv:2409.02060*, 2024.

631

632 Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao, Yuxiang Yang, Ze Liu, Yifan Xiong, Ziyue
 633 Yang, Bolin Ni, Jingcheng Hu, et al. Fp8-lm: Training fp8 large language models. *arXiv preprint*
 634 *arXiv:2310.18313*, 2023.

635 Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
 636 classification using binary convolutional neural networks. In *Computer Vision - ECCV 2016 - 14th*
 637 *European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV*,
 638 volume 9908 of *Lecture Notes in Computer Science*, pp. 525–542. Springer, 2016.

639 Noam Shazeer. Glu variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020.

640

641 Fangxun Shu, Yue Liao, Le Zhuo, Chenning Xu, Lei Zhang, Guanghao Zhang, Haonan Shi, Long
 642 Chen, Tao Zhong, Wanggui He, et al. Llava-mod: Making llava tiny via moe knowledge distillation.
 643 *arXiv preprint arXiv:2408.15881*, 2024.

644 Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#: Even
 645 better LLM quantization with hadamard incoherence and lattice codebooks. In *ICML*, 2024a.

646

647 Albert Tseng, Qingyao Sun, David Hou, and Christopher De Sa. Qtip: Quantization with trellises
 648 and incoherence processing. *arXiv preprint arXiv:2406.11235*, 2024b.

648 An Wang, Xingwu Sun, Ruobing Xie, Shuaipeng Li, Jiaqi Zhu, Zhen Yang, Pinxue Zhao, J. N. Han,
 649 Zhanhui Kang, Di Wang, Naoaki Okazaki, and Cheng-Zhong Xu. Hmoe: Heterogeneous mixture
 650 of experts for language modeling. *CoRR*, abs/2408.10681, 2024a.

651 Jinheng Wang, Hansong Zhou, Ting Song, Shaoguang Mao, Shuming Ma, Hongyu Wang, Yan Xia,
 652 and Furu Wei. 1-bit ai infra: Part 1.1, fast and lossless bitnet b1. 58 inference on cpus. *arXiv*
 653 *preprint arXiv:2410.16144*, 2024b.

654 Junke Wang, Lingchen Meng, Zejia Weng, Bo He, Zuxuan Wu, and Yu-Gang Jiang. To see is to
 655 believe: Prompting gpt-4v for better visual instruction tuning. *arXiv preprint arXiv:2311.07574*,
 656 2023.

657 Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Jilong Xue, Yining Shi, Ningxin Zheng,
 658 Ziming Miao, Fan Yang, Ting Cao, Yuqing Yang, and Mao Yang. Ladder: Enabling efficient
 659 low-precision deep learning computing through hardware-aware tensor transformation. In *18th*
 660 *USENIX Symposium on Operating Systems Design and Implementation (OSDI 24)*, 2024c.

661 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 662 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 663 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 664 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024d.

665 Ruizhe Wang, Yeyun Gong, Xiao Liu, Guoshuai Zhao, Ziyue Yang, Baining Guo, Zhengjun Zha, and
 666 Peng Cheng. Optimizing large language model training using fp4 quantization. *arXiv preprint*
 667 *arXiv:2501.17116*, 2025.

668 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 669 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 670 *arXiv:2412.15115*, 2024.

671 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 672 Weilin Zhao, Zhihui He, Qianyu Chen, Huarong Zhou, Zhensheng Zou, Haoye Zhang, Shengding
 673 Hu, Zhi Zheng, Jie Zhou, Jie Cai, Xu Han, Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong
 674 Sun. Minicpm-v: A GPT-4V level MLLM on your phone. *CoRR*, abs/2408.01800, 2024.

675 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 676 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv*
 677 *preprint arXiv:2308.02490*, 2023.

678 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
 679 Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-
 680 standing and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on*
 681 *Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

682 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 683 image pre-training. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 684 pp. 11975–11986, 2023.

685 Haotian Zhang, Mingfei Gao, Zhe Gan, Philipp Dufter, Nina Wenzel, Forrest Huang, Dhruti Shah,
 686 Xianzhi Du, Bowen Zhang, Yanghao Li, Sam Dodge, Keen You, Zhen Yang, Aleksei Timofeev,
 687 Mingze Xu, Hong-You Chen, Jean-Philippe Fauconnier, Zhengfeng Lai, Haoxuan You, Zirui Wang,
 688 Afshin Dehghan, Peter Grasch, and Yinfei Yang. MM1.5: methods, analysis & insights from
 689 multimodal LLM fine-tuning. *CoRR*, abs/2409.20566, 2024a.

690 Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
 691 Yuanhan Zhang, Jingkang Yang, Chunyuan Li, et al. Lmms-eval: Reality check on the evaluation
 692 of large multimodal models. *arXiv preprint arXiv:2407.12772*, 2024b.

693 Bo Zhao, Boya Wu, and Tiejun Huang. SVIT: scaling up visual instruction tuning. *CoRR*,
 694 abs/2307.04087, 2023.

695 Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo, Xien Liu, Ji Wu, and Lei Huang. Tinyllava:
 696 A framework of small-scale large multimodal models. *arXiv preprint arXiv:2402.14289*, 2024.

Rui-Jie Zhu, Yu Zhang, Ethan Siferman, Tyler Sheaves, Yiqiao Wang, Dustin Richmond, Peng Zhou, and Jason K Eshraghian. Scalable matmul-free language modeling. *arXiv preprint arXiv:2406.02528*, 2024.

A HYPER-PARAMETERS

In this section, we present the detailed hyper-parameters used for the training of MoTE and full-precision up-cycling baseline MoE-LLaVA. For Stage I and Stage II, we adopt the same training recipe, data and hyper-parameters, for both MoTE and MoE-LLaVA. For Stage III, we use the learning rate and scheduler recommended by MoE-LLaVA for full-precision training. For MoTE, following BitNet, we use a much large learning rate and two-stage weight decay for ternary experts which is critical for the optimization of extremely low-bit training.

We utilize *torch.compile* to compile the PyTorch code in the quantization into optimized kernels, which significantly speed up the training of MoTE. As for the training of 1.5B model’s up-cycling in Stage III, MoTE costs 43.3 hours on 16 NVIDIA A100 cards (40GB), while MoE-LLaVA uses 41.8 hours. Above all, MoTE has similar training time compared to full-precision up-cycling MoE-LLaVA.

Table 8: Hyper-parameters for the training of MoTE and MoE-LLaVA with 0.5B model. a/b denotes the value of MoTE/MoE-LLaVA. $1 + 4$ denotes that the model has one shared expert and four routed experts.

Hyper-parameter	Stage I	Stage II	Stage III
Learning rate	1e-3	5e-5	1.5e-4/5e-5
Batch Size	256	128	256
Weight decay	\times	\times	0.1 → 0/ \times
Training steps	2500	8000	12500
Training sequence	1024	1024	2048
Vision sequence		729	
AdamW β		(0.9, 0.999)	
AdamW ϵ		1e-8	
# MoE layer	-	-	24
# Experts	-	-	1+4 / 0+4
# Top- k	-	-	1+1 / 0+2

Table 9: Hyper-parameters for the training of MoTE and MoE-LLaVA with 1.5B and 3B model. a/b denotes the value of MoTE/MoE-LLaVA. $1 + 4$ denotes that the model has one shared expert and four routed experts.

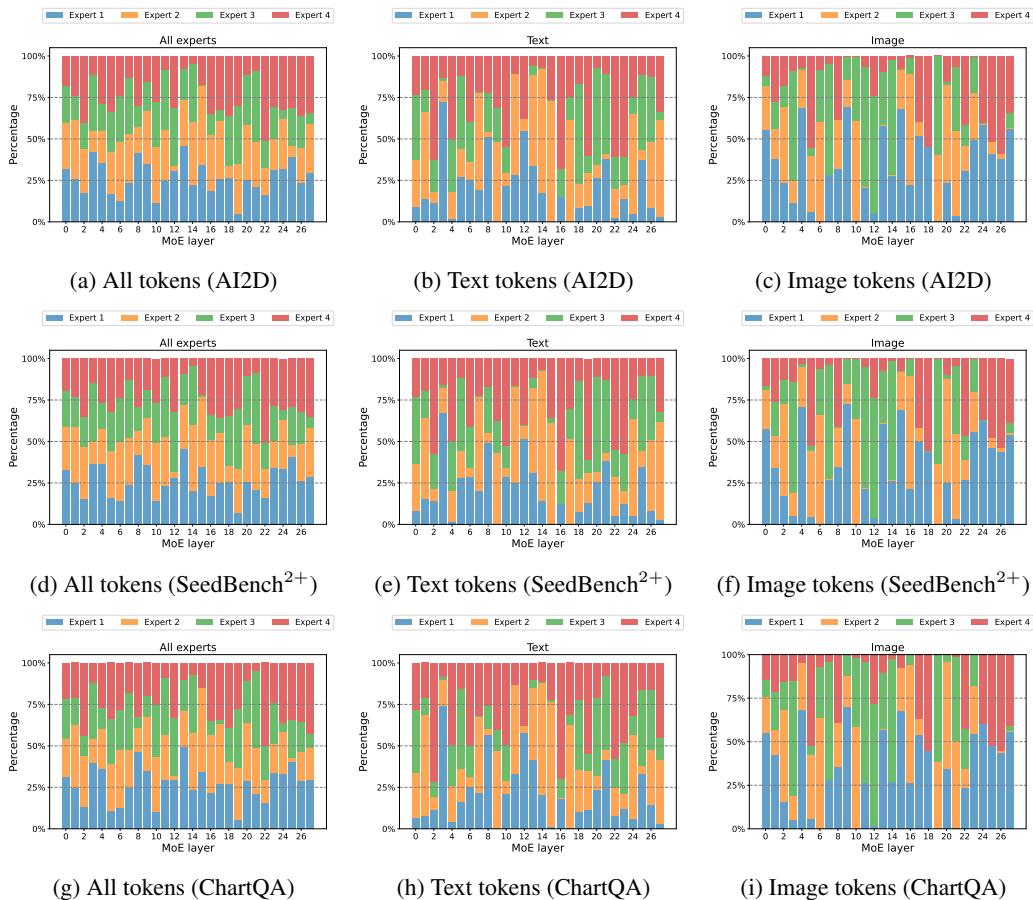
Hyper-parameter	Stage I	Stage II	Stage III
Learning rate	1e-3	2e-5	1e-4/2e-5
Batch Size	256	128	256
Weight decay	\times	\times	0.1 → 0/ \times
Training steps	2500	8000	12500
Training sequence	1024	1024	2048
Vision sequence		729	
AdamW β		(0.9, 0.999)	
AdamW ϵ		1e-8	
# MoE layer	-	-	28
# Experts	-	-	1+4 / 0+4
# Top- k	-	-	1+1 / 0+2

756 **B MORE ABLATION STUDIES**
757758 We compare MoTE with the randomly initialized routed experts in Stage III. We evaluate the zero-shot
759 performance of these models on a range of image understanding tasks, including MMMU, MMBench,
760 AI2D, ChartQA, SeedBench-2-Plus and MMStar dataset.
761762 Table 10 shows the results of both methods in 0.5B, 1.5B and 3B model size. Initializing from FFN
763 outperforms random initialization by a gain of 1.0%, 1.5% and 0.3% average accuracy on end tasks
764 in 0.5B, 1.5B and 3B model size, respectively. The results demonstrate that using the pre-trained
765 full-precision FFN for MoTE’s initialization achieves better performance across various model size.
766767 Table 10: Ablations on the initialization methods of the routed experts for MoTE across different
768 model sizes.
769

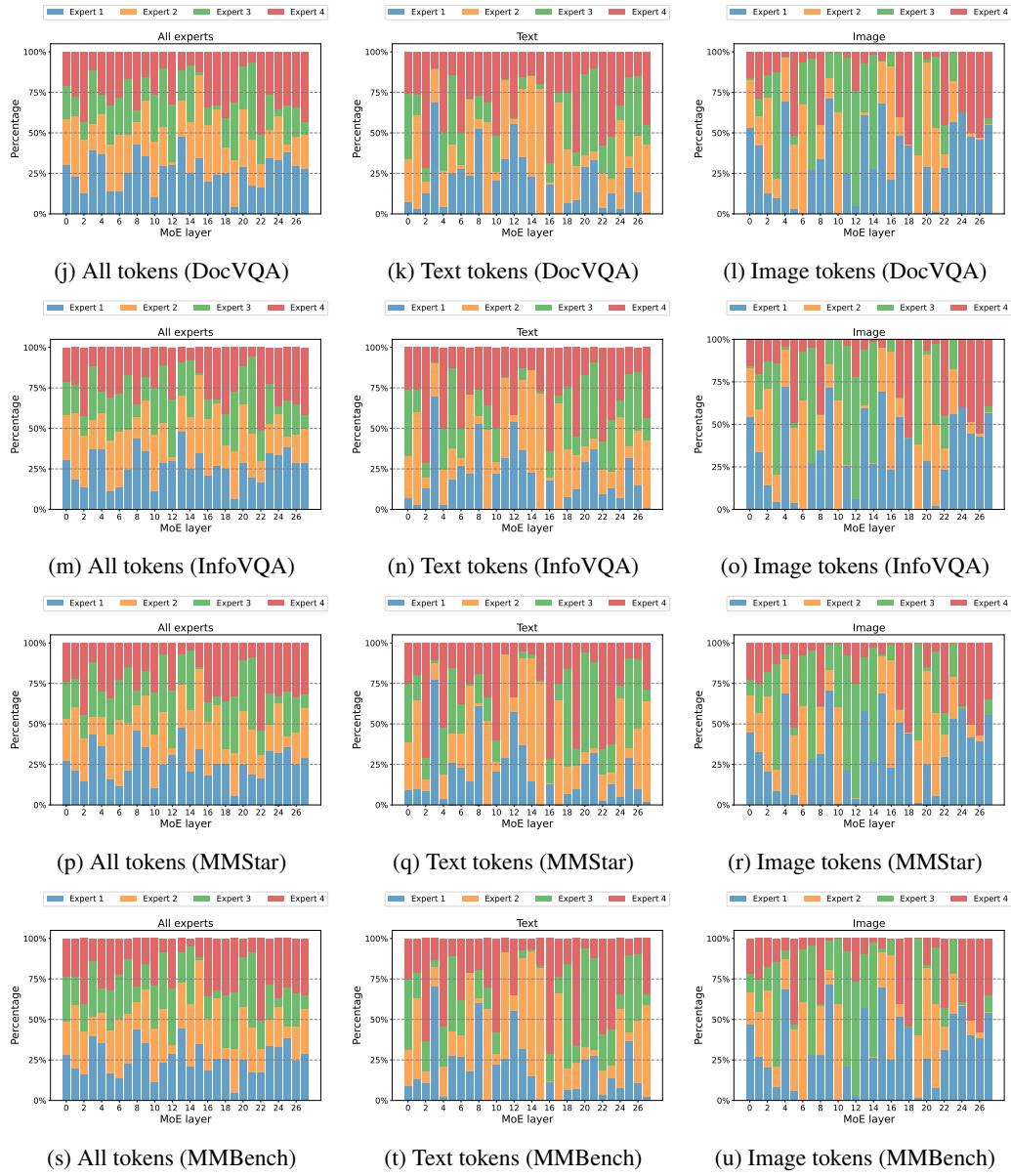
770 Initialize 771 from FFN	772 MMMU	773 MMBench	774 AI2D	775 ChartQA	776 SeedBench ²⁺	777 MMStar	778 Avg.
<i>0.5B Model Up-cycling</i>							
✗	34.8	50.5	55.2	55.8	43.0	39.1	46.4
✓	34.2	57.6	55.2	54.9	44.8	37.9	47.4
<i>1.5B Model Up-cycling</i>							
✗	40.1	69.9	67.1	59.9	53.2	44.5	55.8
✓	42.6	70.0	68.7	61.3	54.8	46.4	57.3
<i>3B Model Up-cycling</i>							
✗	43.3	75.5	72.7	65.5	57.1	48.8	60.5
✓	43.4	74.5	73.9	67.6	57.5	48.2	60.8

781 **C VISUALIZATION**
782783 We visualize the workflows of MoTE-1.5B at three distinct levels: expert, modality, and token.
784 Specifically, we selected the AI2D, SeedBench-2-Plus, ChartQA, DocVQA, InfoVQA, MMStar, and
785 MMBench datasets. Figures 3, 4, and 5 respectively illustrate the load distributions across different
786 experts, the modality-aware routing distributions for each expert, and the top-10 activated pathways
787 obtained via PCA. Our analysis indicates that, although the routing distributions of MoTE remain
788 quite similar across tasks, they are predominantly influenced by the input modality.
789790 **C.1 ROUTING DISTRIBUTION FOR TOKENS**
791792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862



864
865
866
867
868
869
870
871



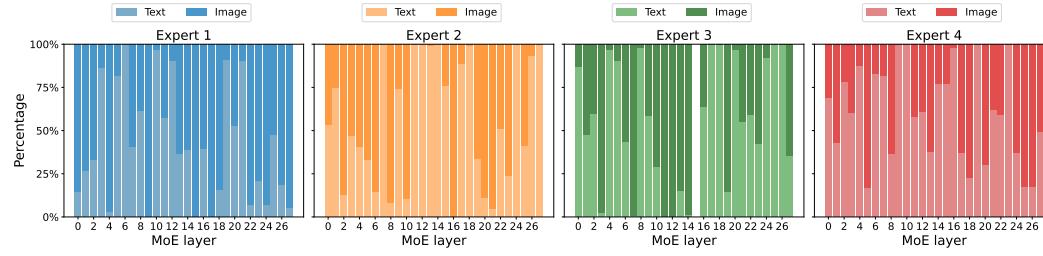
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 3: Visualization of the routing distributions of all tokens, text tokens, image tokens across all experts on various tasks.

918
919

C.2 ROUTING DISTRIBUTION FOR EACH EXPERTS

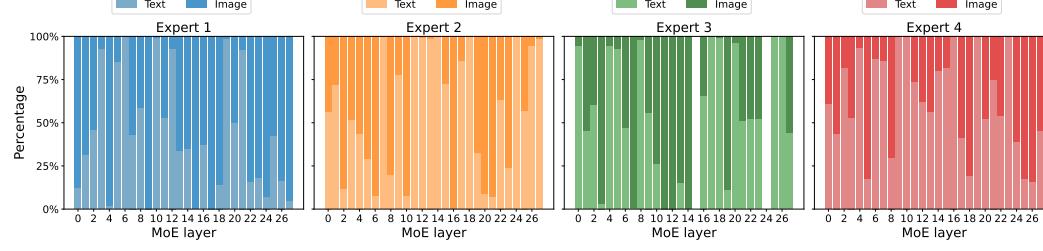
920



921

(a) Routing distribution on AI2D.

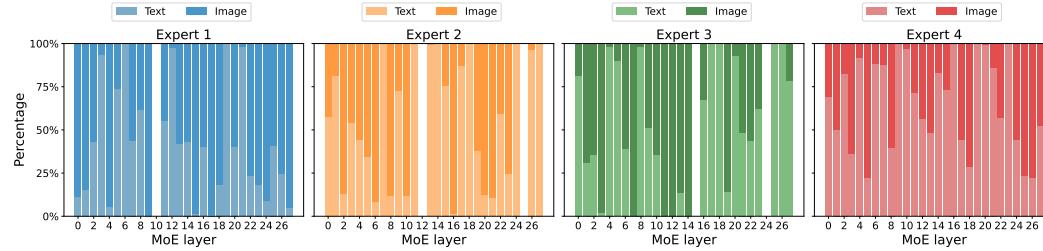
922



923

(b) Routing distribution on SeedBench-2-Plus.

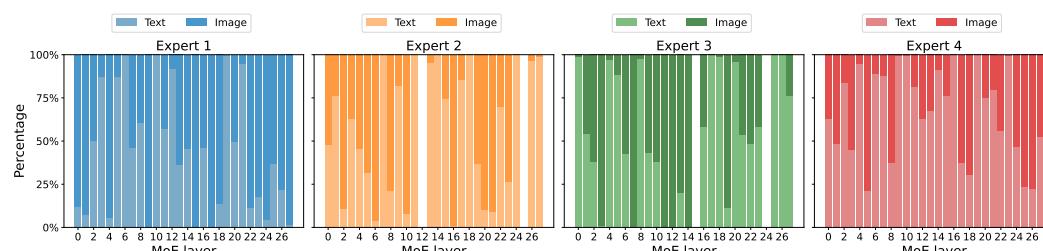
924



925

(c) Routing distribution on ChartQA.

926



927

(d) Routing distribution on DocVQA.

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

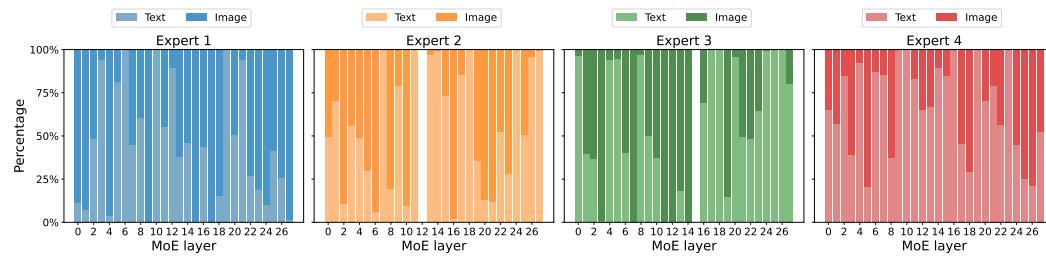
968

969

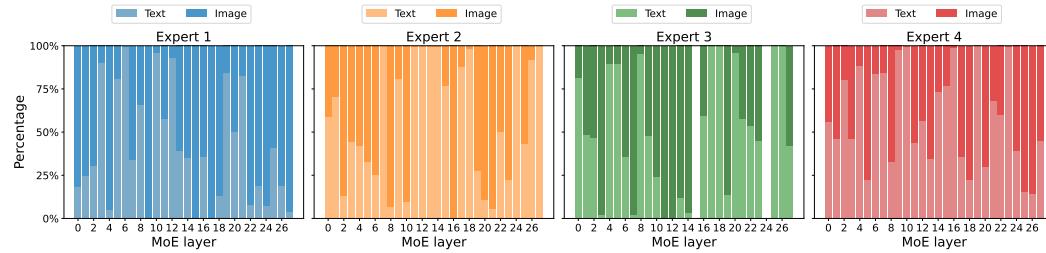
970

971

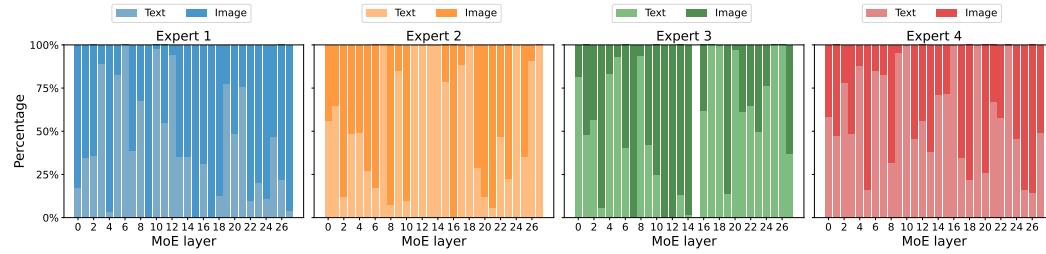
972
973
974
975
976
977
978
979
980
981
982
983
984



(e) Routing distribution on InfoVQA.



(f) Routing distribution on MMStar.



(g) Routing distribution on MMBench.

Figure 4: Visualization of the modality-aware routing distributions for each expert on various tasks.

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026

1027
C.3 ACTIVATED PATHWAYS

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

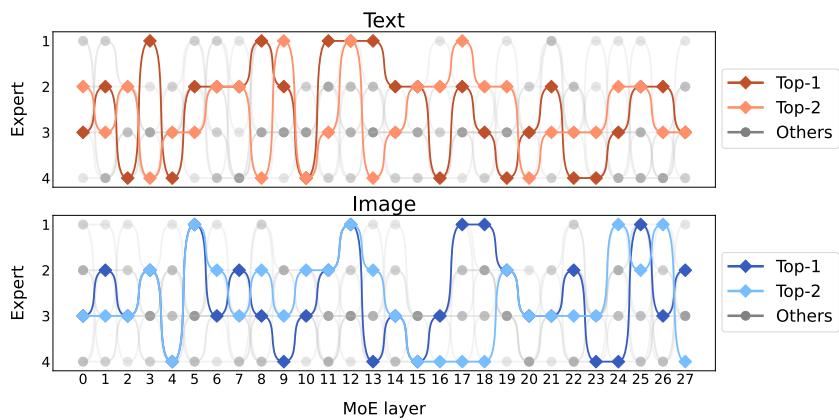
1075

1076

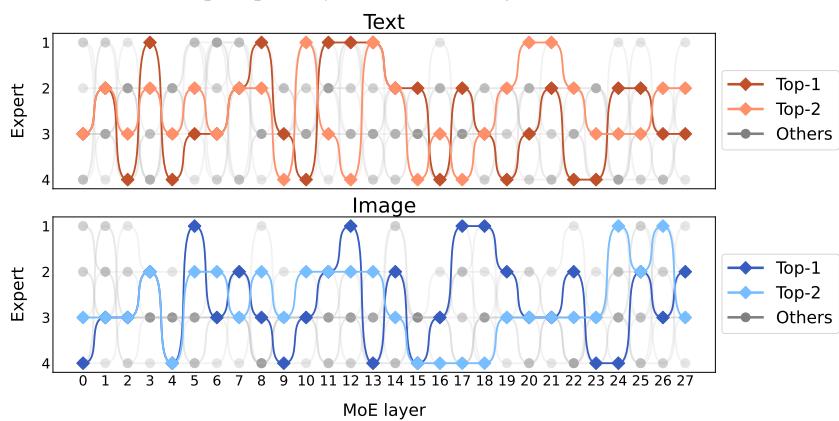
1077

1078

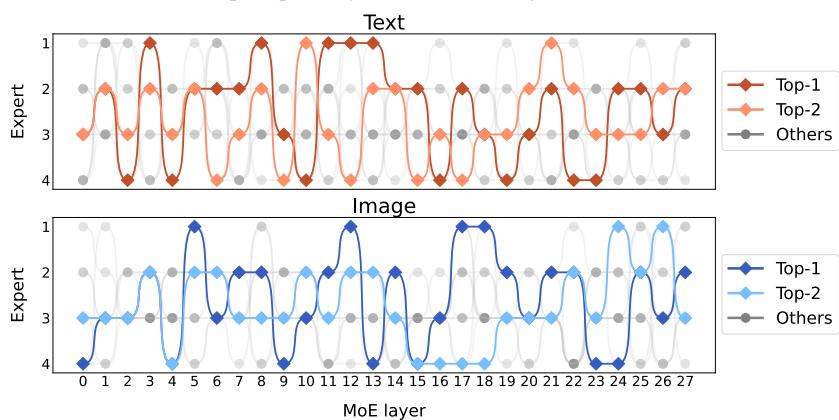
1079



(a) The top-10 pathways for text and image tokens on MMBench.



(b) The top-10 pathways for text and image tokens on AI2D.



(c) The top-10 pathways for text and image tokens on SeedBench-2-Plus.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

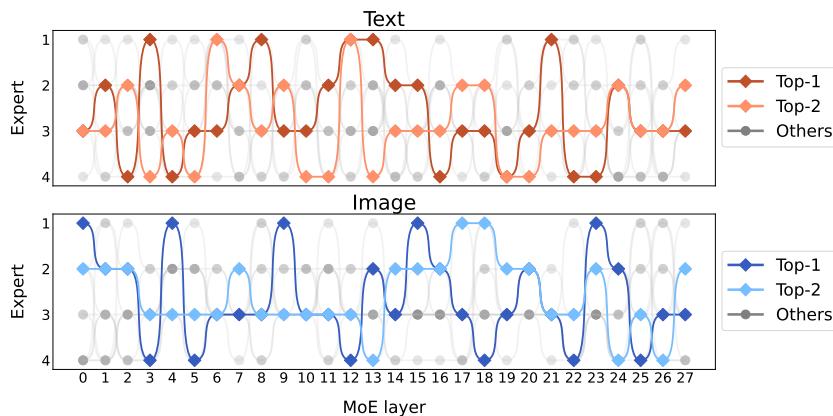
1129

1130

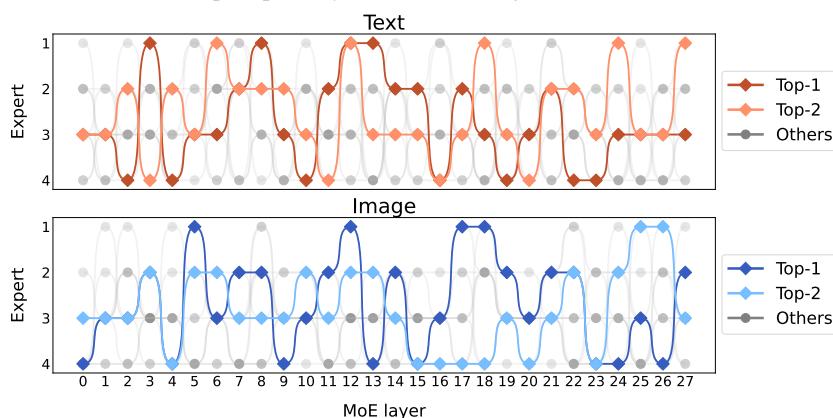
1131

1132

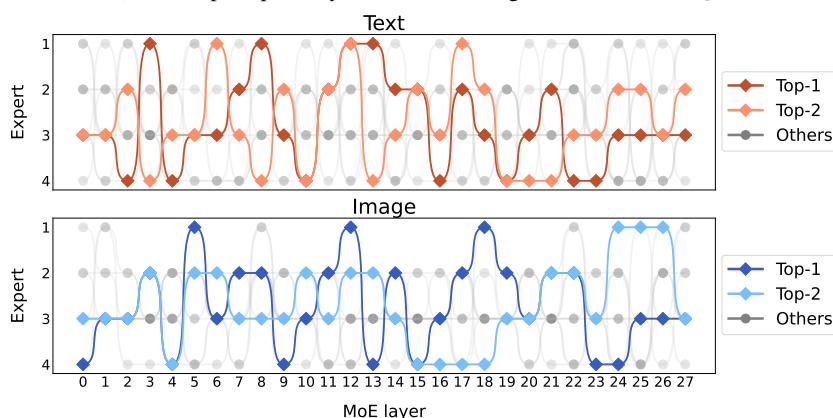
1133



(d) The top-10 pathways for text and image tokens on ChartQA.

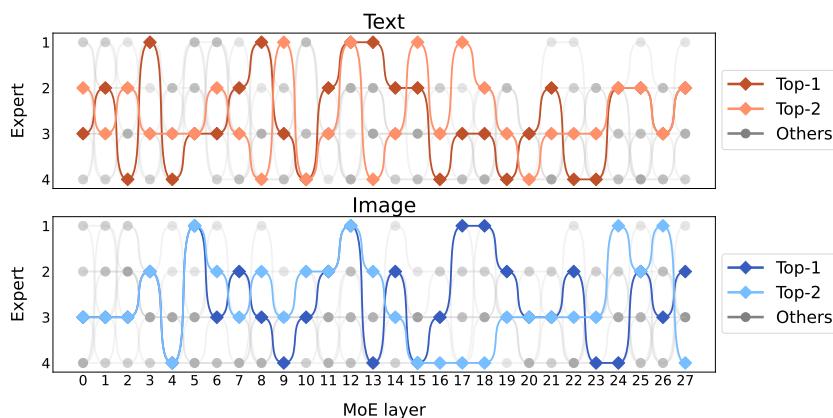


(e) The top-10 pathways for text and image tokens on DocVQA.



(f) The top-10 pathways for text and image tokens on InfoVQA.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187



(g) The top-10 pathways for text and image tokens on MMStar.

Figure 5: Visualization of the top-10 activated pathways for text and image modality on various tasks.