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ABSTRACT

Large multimodal Mixture-of-Experts (MoEs) effectively scale the model size
to boost performance while maintaining fixed active parameters. However, pre-
vious works primarily utilized full-precision experts during sparse up-cycling.
Despite they show superior performance on end tasks, the large amount of ex-
perts introduces higher memory footprint, which poses significant challenges for
the deployment on edge devices. In this work, we propose MoTE, a scalable
and memory-efficient approach to train Mixture-of-Ternary-Experts models from
dense checkpoint. Instead of training fewer high-precision experts, we propose
to train more low-precision experts during up-cycling. Specifically, we use the
pre-trained FFN as a shared expert and train ternary routed experts with parameters
in {-1, 0, 1}. Extensive experiments show that our approach has promising scaling
trend along model size. MoTE achieves comparable performance to full-precision
baseline MoE-LLaVA while offering lower memory footprint. Furthermore, our
approach is compatible with post-training quantization methods and the advantage
further amplifies when memory-constraint goes lower. Given the same amount of
expert memory footprint of 3.4GB and combined with post-training quantization,
MoTE outperforms MoE-LLaVA by a gain of 4.3% average accuracy on end tasks,
demonstrating its effectiveness and potential for memory-constrained devices.1

1 INTRODUCTION

Large Multimodal Models (LMMs) (Abdin et al., 2024; McKinzie et al., 2024; Zhang et al., 2024a;
Wang et al., 2024d; Chen et al., 2024b; Bai et al., 2025) have achieved remarkable performance
across a wide range of downstream tasks, including visual question answering and autonomous
computer agents. However, as model size increases, the rising inference cost presents significant
challenges for deploying LMMs efficiently. To address this, Mixture-of-Experts (MoE) (Lepikhin
et al., 2021; Fedus et al., 2022; DeepSeek-AI et al., 2024) introduces a mechanism that maintains a
large pool of experts while activating only a subset for each input, thereby improving computational
efficiency. Although MoE models significantly reduce FLOPs, they generally have a higher memory
footprint, making deployment on edge devices challenging. For example, when training multimodal
MoE up-cycled from Qwen2.5-3B, if all feed-forward network (FFN) layers are replaced with
MoE layers containing 16 experts, the resulting model’s non-embedding memory footprint will
increase from 5.2GB to 73.2GB. This limitation is particularly pronounced for consumer-grade
GPUs, which often have constrained memory capacities.

Model quantization is a promising approach to reducing the memory footprint of LMMs while
maintaining comparable performance. Most mainstream quantization methods (Frantar et al., 2022;
Lin et al., 2024b; Chee et al., 2024; Tseng et al., 2024b) aim to compress the bit-width of a pre-trained,
full-precision model. Although these methods have a low training cost, they suffer from significant
performance degradation when the bit-width is reduced below 4-bit. Recent studies (Ma et al.,
2024; Kaushal et al., 2024; Zhu et al., 2024) have demonstrated promising scaling trends for ternary
pre-training in Large Language Models (LLMs). At sufficiently large model sizes, ternary models
can achieve accuracy comparable to full-precision models on downstream tasks while maintaining
the same pre-training cost. Furthermore, they have much lower inference costs in terms of memory,
latency, and energy consumption (Wang et al., 2024b). However, since these models have only been

1We will release the code and model weights for reproducibility.
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trained on billions of tokens, a substantial performance gap remains between open-sourced ternary
models and full-precision dense models. As a result, directly training MoE models initialized from
these under-trained models leads to weak performance on end tasks.

In this work, we introduce MoTE, a scalable and memory-efficient architecture designed to train
Mixture-of-Ternary Experts model from a pre-trained, full-precision dense checkpoint in multimodal
tuning. Our approach addresses the inefficiency of multimodal MoE models in terms of memory
footprint. Prior works (Lin et al., 2024a; Li et al., 2025) primarily replace the FFN layer in dense
checkpoints with an MoE layer, initializing the experts using the pre-trained FFN. However, we
observed that in ternary training, replacing the FFN layer leads to significant performance degradation,
as weight ternarization disrupts the pre-trained FFN. To mitigate this, we retain the FFN from the
dense checkpoint as a shared expert activated for all inputs. During up-cycling, the layers inherited
from the dense model remain frozen, while only the ternary MoE layers are trainable.

We first conduct strict and controlled experiments to evaluate the proposed approach against full-
precision up-cycling MoE-LLaVA (Lin et al., 2024a) across various model scales on a wide range of
image understanding tasks. Our results show that ternary up-cycling exhibits surprising effectiveness
as model size scales. As the size of the up-cycled dense checkpoint increases, the performance gap
between MoTE and MoE-LLaVA narrows, eventually reaching comparable performance at scales
larger than 1.5 billion parameters. Additionally, MoTE is compatible with post-training quantization
techniques (Frantar et al., 2022). Given the same expert memory footprint and combined with
post-training quantization, MoTE outperforms full-precision MoE-LLaVA at both 1.5B and 3B model
sizes. This advantage becomes even more pronounced as memory constraints tighten. Specifically,
under an expert memory budget of 3.4GB, our approach achieves a 4.3% improvement in average
accuracy on downstream task. These results demonstrate that given the same amount of total memory
footprint and active parameter counts, training with a larger number of low-precision experts yields
better performance than using fewer high-precision experts.

2 RELATED WORK

Mixture of Experts. LMMs demonstrate superior performance across various tasks as model size
and training data scale increase. MoE models (Lepikhin et al., 2021; Fedus et al., 2022; Muennighoff
et al., 2024) maintain a large pool of experts but activate only a subset for each token, enabling
improved performance at the same FLOPs budget. Komatsuzaki et al. (2023) introduced sparse
up-cycling to reduce the training costs of MoE models by initializing them from dense checkpoints.
Lin et al. (2024a) explored the up-cycling of LMMs in the context of multimodal training, while
Shu et al. (2024) proposed a progressive knowledge transfer strategy to train small-scale multimodal
MoEs from dense models. A straightforward way to improve the memory efficiency of MoE models
is to train smaller experts or LoRAs (Luo et al., 2024; Wang et al., 2024a). However, since the expert
size typically differs from that of the pre-trained FFN, dense checkpoints cannot be directly reused,
leading to degraded performance compared with sparse up-cycled MoEs. While prior studies have
mainly focused on reducing parameter counts during up-cycling, our work explores an alternative
direction, i.e., up-cycling with reduced bit-width.

Model Quantization. Quantization is a promising approach to reducing the memory footprint of
LMMs while maintaining competitive performance, which can be categorized into two types based
on the stage at which it is applied: post-training (Dettmers et al., 2022; Frantar et al., 2022; Lin
et al., 2024b; Tseng et al., 2024b) and pre-training quantization (Wang et al., 2025; Peng et al., 2023).
Post-training quantization compresses high-precision pre-trained models after training. Due to its
lower cost, it is widely adopted for mainstream large-scale models. GPTQ (Frantar et al., 2022)
and AWQ (Lin et al., 2024b) reduce the bit-width to 4 bits while incurring minimal degradation.
QuIP# (Tseng et al., 2024a) builds on QuIP (Chee et al., 2024) by improving incoherence processing
and applying vector quantization to incoherent weights. With additional fine-tuning, QuIP# achieves
state-of-the-art performance in 2-bit models. However, when the bit-width is reduced below 4-bit,
these methods all suffer from significant performance degradation compared to BF16 baselines. In
contrast, pre-training quantization integrates quantization into the training process, requiring models
to be trained from scratch, which results in better performance. Recent Ma et al. (2024) showed that
ternary LLMs match the performance of full-precision counterpart starting from 3B parameter counts.
Frantar & Alistarh (2024) quantized a 1.6 trillion parameter Switch Transformer to sub 1-bit precision.
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Figure 1: The overview of MoTE. We retain the pre-trained full-precision FFN as a shared expert and
add a top-1 activated MoE layer with ternary experts. All experts and attention layers are initialized
from the dense checkpoint.

Li et al. (2024b) proposed to quantize the experts with a mixed precision recipe and introduced a
novel data-driven techniques for optimizing bit allocation.

3 MOTE: MIXTURE-OF-TERNARY-EXPERTS

3.1 ARCHITECTURE

We illustrate the architecture of MoTE in Figure 1. Previous studies (Komatsuzaki et al., 2023; Lin
et al., 2024a) expanded a dense model into an MoE model by directly replacing the FFN layer with an
MoE layer, where each expert is initialized from the dense FFN to accelerate convergence. However,
as shown in Table 6, we found that directly replacing the FFN with an MoE in ternary up-cycling
leads to significant performance degradation. We hypothesize that this occurs because the FFN
encodes a substantial amount of factual knowledge acquired during pre-training (Geva et al., 2021;
Dai et al., 2022), and weight ternarization severely disrupts pre-trained information. To mitigate this
issue, we retain the FFN module from the dense model as a shared expert, ensuring it is activated for
every token. Specifically, the forward computation of the l-th layer of MoTE can be formulated as:

xa
l = xl−1 + MSA(LN(xl−1)) (1)

xl = xa
l + MoE(LN(xa

l )) + FFN(LN(xa
l )) (2)

where MSA and LN stands for multi-head self-attention and layer normalization, respectively. As
illustrated in Figure 1, we initialize the FFN, MSA and MoE layers from the dense model. We
implement the MoE mechanism following the GShard (Lepikhin et al., 2021), with each expert
modeled as a Gated Linear Unit (GLU) (Shazeer, 2020). An MoE layer which consists of E ternary
experts FFNT

1 ... FFNT
E satisfies that:

MoE(x) =
E∑
i=1

P(x)i · FFNT
i (x), P(x)i =

ef(x)i∑E
j=1 e

f(x)j
(3)
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where f(x) is the gating logits produced by the router. We leave the projection in router as BF16,
since it only accounts for very small portion of total memory footprint. The forward computation of
the i-th ternary expert FFNT

i (x) satisfies that:

FFNT
i (x) = Qw(W

T
down)Qa(h) (4)

h = Qw(W
T
up)Qa(x)⊗ σ[Qw(W

T
gate)Qa(x)] (5)

σ is SiLU function. We apply absmean quantizer and per-token absmax quantizer for weight and
activation quantization in expert’s linear layers following BitNet (Ma et al., 2024). Specifically, the
quantization can be formulated as:

Qw(W ) = α · RoundClip(W
α
,−1, 1), (6)

Qa(x) =
β

127
· RoundClip(127x

β
,−128, 127) (7)

α =
1

nm
||W ||1, β = ||x||∞ (8)

RoundClip(x, a, b) = max(a,min(b, round(x))) (9)

The weight W ∈ Rm×n is quantized into ternary values, i.e., {−1, 0, 1}. The activations x are
per-token quantized into 8-bit integers, i.e., [−128, 127]. The output of ternary linear layer Y is
Qw(W )Qa(x). During inference, we use the kernel from BitBlas (Wang et al., 2024c) to save
the memory footprint and accelerate the inference. Despite ternary values results in 1.58-bit, i.e.,
log 3/ log 2, BitBlas still stores and processes ternary weight in INT2 format since current GPUs are
still based on binary system.

3.2 TRAINING RECIPE

Following MoE-LLaVA (Lin et al., 2024a), the training of MoTE consists of three stages. In Stage
I, we train a two-layer MLP connector to align the visual encoder and LLM. As for Stage II, we
fine-tune the LLM and connector using more complex vision-language instruction data. In Stage III,
we expand the dense model from Stage II to an MoE model with ternary experts. The visual encoder
is frozen through the training process. As presented in Figure 1, during up-cycling, only ternary MoE
layers are trainable, and the shared expert and MSA layers are frozen.

We adopt quantization-aware training for MoTE. The weights and activations are quantized into
ternary and INT8 values on-the-fly. Since many operations in the quantization are no-differentiable,
we deploy straight-through estimator (Bengio et al., 2013) for gradient approximation. The gradients
are directly by-passing through non-differentiable functions, i.e., ∂L

∂W = ∂L
∂Q(W ) and ∂L

∂X = ∂L
∂Q(X) .

The gradients and optimizer states are retained as full-precision.

3.3 TRAINING OBJECTIVES

The training objective of MoTE Ltotal requires the minimization of both the loss of specific multimodal
tasks LLM and an auxiliary load balancing loss Lbalance.

Language modeling loss. The auto-regressive language modeling loss LLM is widely adopted in
the training of LMMs. Specifically, let V and T denote sequences of visual tokens and textual tokens,
respectively. T can be divided as the instruction part Tins and the response part Tans. The language
modeling loss is calculated as:

LLM = −
∑

tokeni∈Tans

log Pr(Yi | V, T [:i−1]) (10)

where Y is the model’s output. We only calculate the loss on the response part.

Load balancing loss. To ease the expert load imbalance problem in MoE, we adopt an auxiliary
loss following Switch Transformers (Fedus et al., 2022). Given a batch of training tokens X, the
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balancing loss can be formulated as:

Lbalance =
E

|X|

E∑
i=1

∑
x∈X

ti · P(x)i (11)

where |X| is the number of training tokens in X, P(x)i is the routing logits depicted in Equation 3,
ti is the number of tokens routed to the i-th expert.

Above all, the training objective of MoTE is:

Ltotal = LLM + γ · Lbalance (12)

where γ is a coefficient for load balancing.

4 EXPERIMENTS

4.1 SETUP

Table 1: The active/total parameter counts and expert
memory of MoTE and MoE-LLaVA in various model
sizes.

Method # Active/Total Params Expert
Stage I Stage II Stage III Memory ↓

0.5B Model Up-cycling
MoE-LLaVA 1B 1B 1.3B/1.8B 2.3GB (2.55×)
MoTE 1.3B/2.1B 0.9GB (1.00×)

1.5B Model Up-cycling
MoE-LLaVA 2B 2B 3.1B/5.4B 8.6GB (2.69×)
MoTE 3.1B/6.6B 3.2GB (1.00×)

3B Model Up-cycling
MoE-LLaVA 3.4B 3.4B 5.9B/10.8B 18.1GB (2.66×)
MoTE 5.9B/13.2B 6.8GB (1.00×)

Model settings. We select MoE-
LLaVA (Lin et al., 2024a) as the
baseline. It adopts a similar three-stage
MoE training recipe and utilizes full-
precision experts. Since MoE-LLaVA
activates the top-2 experts, and our
model includes a shared expert, we
use top-1 gating in MoTE to ensure
a fair comparison in terms of FLOPs.
All MoE layers consist of four routed
experts. We adopt SigLIP-L (Zhai
et al., 2023) as the vision encoder and
the instruct-version of Qwen2.5-series
model (Yang et al., 2024) as the base
LLM. The connector is a two-layer MLP
with GELU activation. Table 1 presents
the active and total parameter counts in
the training of MoTE and MoE-LLaVA across different model sizes. The expert memory footprint
includes contributions from both shared and routed experts.

Implementation details. We adopt expert parallelism for efficient training of MoE models. The
coefficient γ for load balancing loss is set as 0.01. The value is recommended by Fedus et al. (2022) to
ensure auxiliary loss not to overwhelm the primary language modeling objective. All experiments are
conducted on 16 NVIDIA A100 cards with 40GB memory. Due to the limited computation resources,
we do not perform dynamic resolution processing for the images, since it leads to extremely long
training sequence. The length of the total sequence is set as 2048 tokens, and the visual input includes
729 tokens. More hyper-parameters can be found in Appendix A.

Training data. We train MoTE and MoE-LLaVA on the same dataset to ensure a fair comparison.
The training dataset consists of a total of 5 million samples. For the first stage, we use the pre-training
data of LLaVA 1.5 (Liu et al., 2024a). For the second stage, we use the mixture of SViT (Zhao
et al., 2023), LVIS (Wang et al., 2023), LRV (Liu et al., 2023) and MIMIC-IT (Li et al., 2023a). For
the third stage, we use a subset of MAmmoTH-VL (Guo et al., 2024), which includes 3.4 million
instruction-response pairs, each associated with a single image as the visual input.

Evaluation. We report the zero-shot performance of these models on a range of image under-
standing tasks using LMM-Eval toolkit (Zhang et al., 2024b), including MMMU (Yue et al., 2024),
MathVista (Lu et al., 2024) (MathV), MMBench (Liu et al., 2024b) (MMB), MMStar (Chen et al.,
2024a) (MMS), MM-Vet (Yu et al., 2023) (MMV), SeedBench-2-Plus (Li et al., 2024a) (Seed2+),
SeedBench (Li et al., 2023b) (Seed), AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022),
InfoVQA (Mathew et al., 2022) and DocVQA (Mathew et al., 2021).
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Table 2: The results of MoTE and MoE-LLaVA on image understanding tasks in different model
sizes. All models utilize the same base LLM, vision encoder and training dataset to ensure a fair
comparison.

Method MMMU
(val)

MathV
(testmini)

MMB
(en test)

MMS
(test)

Seed2+

(test)
AI2D
(test)

ChartQA
(test)

InfoVQA
(val)

DocVQA
(val) Avg.

0.5B Model Up-cycling
MoE-LLaVA 35.4 35.4 57.3 39.5 43.3 57.4 56.0 25.8 49.3 44.4
MoTE 34.2 35.2 57.6 37.9 44.8 55.2 54.9 25.2 49.7 43.8
∆ compare to MoE-LLaVA -1.2 -0.2 +0.3 -1.6 +1.5 -2.2 -1.1 -0.6 +0.4 -0.6

1.5B Model Up-cycling
MoE-LLaVA 41.2 41.7 68.4 45.0 52.9 67.8 59.4 31.8 55.1 51.5
MoTE 42.6 44.8 70.0 46.4 54.8 68.7 61.3 32.5 57.4 53.2
∆ compare to MoE-LLaVA +1.4 +3.1 +1.6 +1.4 +1.9 +0.9 +1.9 +0.7 +2.3 +1.7

3B Model Up-cycling
MoE-LLaVA 42.3 48.6 75.4 45.5 56.2 73.5 65.0 35.1 60.1 55.7
MoTE 43.4 52.3 74.5 48.2 57.5 73.9 67.6 36.7 61.3 57.3
∆ compare to MoE-LLaVA +1.1 +3.7 -0.9 +2.7 +1.3 +0.4 +2.6 +1.6 +1.2 +1.6

Table 3: The results of MoTE and MoE-LLaVA given the same amount of expert memory in 1.5B
and 3B model size. Both of them are combined with post-training quantization (PTQ). The expert
memory footprint includes contributions from both shared and routed experts.

Method Expert Memory↓ MMMU↑
(val)

MMB↑
(en test)

Seed2+↑
(test)

AI2D↑
(test)

DocVQA↑
(val) Avg.↑

1.5B Model Up-cycling
MoE-LLaVA + PTQ 2.2GB 41.1 68.0 53.1 67.3 55.0 56.9
MoTE + PTQ 2.2GB 42.7 70.1 54.4 68.2 57.4 58.6
MoE-LLaVA + PTQ 1.6GB 36.0 60.3 49.8 62.6 50.0 51.7
MoTE + PTQ 1.6GB 40.3 69.3 55.2 67.8 57.1 57.9

3B Model Up-cycling
MoE-LLaVA + PTQ 4.5GB 42.2 75.3 55.4 72.3 59.4 60.9
MoTE + PTQ 4.5GB 43.2 74.8 57.0 73.3 60.9 61.8
MoE-LLaVA + PTQ 3.4GB 37.7 69.7 52.2 67.5 56.8 56.8
MoTE + PTQ 3.4GB 42.8 71.9 56.9 73.0 60.9 61.1

4.2 MAIN RESULTS

We compared the performance of ternary up-cycling MoTE to MoE-LLaVA across different model
sizes on various multimodal tasks. As shown in Table 2, MoTE underperformed full-precision
up-cycling MoE-LLaVA when converting a 0.5B dense model to an MoE model. However, the
performance gap between MoTE and MoE-LLaVA narrows as the parameter counts of the dense
model increases. Similar phenomenons are also reported by the low-bit pre-training of LLMs (Ma
et al., 2024; Kaushal et al., 2024), which suggests promising trends of scaling model size for ternary
MoEs.

As the model size scales to 1.5B parameters, due to larger total parameter counts, MoTE surpasses
MoE-LLaVA across various image understanding tasks, achieving an average accuracy improvement
of 1.7% with the same FLOPs. This demonstrates the effectiveness of our proposed method. Moreover,
since the expert weights in MoTE are trained to adapt to ternary values, despite it has larger total
parameter counts, the ternary MoE layer can be losslessly compressed to low-bit after training,
significantly reducing the memory footprint caused by the ensemble of experts. As shown in Table 1,
at the 3B model size, MoTE’s expert memory is only 6.8GB — just 38% of MoE-LLaVA’s 18.1GB.

4.3 COMPATIBILITY WITH POST-TRAINING QUANTIZATION

Despite the MoE layers of our model contain ternary experts, there still leaves a shared expert in
full-precision in each layer. These shared experts can be quantized into low-bit using post-training
quantization methods. We apply GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2024b) at various
bit-widths and report the best results given the same expert memory footprint. We use 512 samples

6
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Table 4: The results of MoTE and the other methods in similar model size on general VQA and
multimodal reasoning tasks.

Model Training
Tokens

MMMU
(val)

MMB
(en test)

Seed
(image)

MMS
(test)

MMV
(test)

MathV
(testmini) Avg.↑

Dense Model
MM1.5-1B (Zhang et al., 2024a) >200B 35.8 - 70.2 - 37.4 37.2 -
MM1.5-3B (Zhang et al., 2024a) >200B 37.1 - 72.4 - 41.0 44.4 -
MiniCPM-V2-3B (Yao et al., 2024) - 38.2 69.1 - 41.7 - 38.7 -
TinyLLaVA-3B (Zhou et al., 2024) 4B 39.9 - - - 34.8 - -
Phi-3-Vision-4B (Abdin et al., 2024) >0.8T 40.4 73.9 71.8 47.9 45.4 44.5 54.0
Qwen2-VL-2B (Wang et al., 2024d) >1.4T 41.1 74.9 72.1 48.0 49.5 43.0 54.8

Sparse Model
MoE-LLaVA (Lin et al., 2024a) 4B 33.9 52.6 64.8 32.5 32.3 25.6 40.3
MolmoE-1B (Deitke et al., 2024) 1.5B 34.9 63.6 68.7 43.3 38.5 34.0 47.2
LLaVA-MoD-2B (Shu et al., 2024) 10B - 68.9 - - - - -
MM1-3B-MoE (McKinzie et al., 2024) >400B 38.6 70.8 69.4 - 42.2 32.6 -
MM1-7B-MoE (McKinzie et al., 2024) >400B 40.9 72.7 70.9 - 45.2 40.9 -
MM1.5-1B-MoE (Zhang et al., 2024a) >200B 41.2 - 71.4 - 39.8 42.9 -

MoTE-1.5B (ours) 21.6B 40.4 75.0 72.5 50.2 52.6 49.8 56.8
w/o initialize experts from FFN 21.6B 41.8 75.0 71.3 48.1 48.6 48.2 55.5

Table 5: Ablations on the precision of routed experts in MoTE.

Precision of
Routed Expert

MMMU
(val)

MMB
(en test)

AI2D
(test)

ChartQA
(test)

Seed2+

(test)
MMS
(test) Avg.↑

1-bit 40.3 69.5 67.6 60.2 53.9 43.1 55.7
1.58-bit 42.6 70.0 68.7 61.3 54.8 46.4 57.3

with the length of 2048 tokens from Stage III’s data as the calibration set. For MoE-LLaVA, all
full-precision experts are quantized, resulting in expert memory footprints of 2.2GB and 4.5GB under
INT4 quantization for the 1.5B and 3B models, respectively. To ensure a fair comparison, we quantize
the shared expert of MoTE to INT8 using RTN (Dettmers et al., 2022). Additionally, we extend the
comparison to scenarios with lower memory constraints. For expert memory footprints of 1.6GB and
3.4GB in the 1.5B and 3B models, MoE-LLaVA’s experts are quantized to 3-bit integers using GPTQ,
while the shared experts of MoTE are quantized to INT4.

Table 3 presents the results for MoTE and MoE-LLaVA, both combined with post-training quantiza-
tion. Given the same expert memory footprint, MoTE achieves better performance than MoE-LLaVA.
Under the same expert memory footprint, our method outperforms MoE-LLaVA across different
model sizes. Notably, under stricter memory constraints, we observe a significant performance drop
for MoE-LLaVA combined with GPTQ at 3-bit precision. However, since the parameters of our MoE
layer are ternary, we can achieve the same memory footprint by applying INT4 quantization only
to the shared expert. This further amplifies the advantages of our approach. Specifically, given the
same expert memory of 3.4GB, MoTE achieves a gain of 4.3% average accuracy compared with
MoE-LLaVA on the end tasks. These results demonstrate that our method can achieve lower memory
footprint combined with post-training quantization, while maintaining competitive performance.

4.4 SCALING WITH MORE DATA

To examine whether our method is friendly for scaling with data, we train a 1.5B MoTE model with
more data during ternary up-cycling. We adopt the same data recipe for Stage I and Stage II as shown
in Section 4.1. Then we use a full set of MammoTH-VL (Guo et al., 2024) for Stage III, which
contains 10 million samples, each associated with a single image. Every dense layer is replaced with
an MoTE layer with one full-precision shared expert and four routed ternary experts. The training
steps is set as 40k. The other hyper-parameters are consistent with the setup presented in Section 4.1.

Table 4 summarizes the zero-shot accuracy of MoTE and the baselines across various multimodal
reasoning and general VQA tasks. For the baselines, we use their reported scores when available;
otherwise, we evaluate the open-sourced models using the same prompts as ours to ensure a fair
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Table 6: Ablations on the precision of shared experts and the initialization methods of routed experts
in MoTE.

Precision of
Shared Expert

Initialize
from FFN

MMMU
(val)

MMB
(en test)

AI2D
(test)

ChartQA
(test)

Seed2+

(test)
MMS
(test) Avg.↑

Ternary ✗ 34.6 49.4 62.7 56.4 46.2 39.8 48.2
BF16 ✗ 40.1 69.9 67.1 59.9 53.2 44.5 55.8
BF16 ✓ 42.6 70.0 68.7 61.3 54.8 46.4 57.3

Table 7: Ablations on the training recipe of MoTE. Given the same training FLOPs, we do not
observe performance improvement from initially training with full-precision experts then fine-tuning
them into ternary precision.

Ternary
Training

Full-Precision
Training

MMMU
(val)

MMB
(en test)

AI2D
(test)

ChartQA
(test)

Seed2+

(test)
MMS
(test) Avg.↑

20% 80% 39.3 60.5 62.6 56.8 53.2 42.0 52.4
60% 40% 41.3 64.0 65.3 57.0 54.0 45.1 54.4

100% 0% 42.6 70.0 68.7 61.3 54.8 46.4 57.3

comparison. As shown in Table 4, although MoTE-1.5B is only trained with 21.6B tokens, our model
achieves an improvement of 2.0% average accuracy compared to Qwen2-VL-2B (Wang et al., 2024d).
Furthermore, MoTE outperforms the larger dense model with fewer FLOPs. Specifically, MoTE
outperforms MiniCPM-V-2.0-3B and Phi-3-Vision-4B by a gain of 11.1% and 5.3% accuracy on the
testmini set of MathVista.

For sparse model, due to stronger base LLM and vision encoder, our model significantly outperforms
MoE-LLaVA of similar total and active model size by a gain of 16.5% average accuracy. Notably,
MM1.5-1B-MoE is a strong multimodal MoE baseline, which was trained from an 1B dense model
with 64 experts replacing dense layers every two layers. MoTE outperforms it by a gain of 0.6%,
1.1%, 12.8% and 6.9% on MMMU, SeedBench (image), MMVet and MathVista, respectively. These
results proves the effectiveness of the proposed MoTE on multimodal reasoning and general VQA.

4.5 ABLATION STUDIES

Precision of routed experts. We investigate the impact of expert precision on the performance
of MoTE. Specifically, we compare ternary (i.e., 1.58-bit) up-cycling to 1-bit up-cycling with
BWN (Rastegari et al., 2016) as the weight quantizers. Both models are up-cycled from Qwen2.5-
1.5B with SigLIP-L as the vision encoder to ensure a fair comparison. As shown in Table 5, using
binary experts results in performance degradation across most tasks. Similar findings have been
reported in the quantization-aware training of BERT models (Bai et al., 2021), where transitioning
from ternary to binary weights leads to a substantially more complex and irregular loss landscape,
making optimization notably more difficult. Above all, ternary up-cycling is a memory-effective and
high-performance solution for MoE models.

Precision of shared experts. We ablate the effect of the precision of the shared expert reused from
the FFN of pre-trained dense checkpoint. MoTE retains the precision of shared expert as BF16 and
freezes the modules during up-cycling. We compare it to a model with the ternary shared expert.
All ternary experts are trainable. Table 6 presents the zero-shot performance of these models on
MMMU, MMBench, AI2D, ChartQA, SeedBench-2-Plus and MMStar tasks. Weight ternarization
of the shared experts has significant effect on overall performance. Specifically, the model with
full-precison shared experts outperforms it with ternary shared experts by an improvement of 7.6%
average accuracy on the end tasks. This demonstrates the importance of keeping the pre-trained FFN
as a high-precision shared expert during ternary up-cycling.

Initialization of routed experts. We compare MoTE to randomly initialized routed experts in
Stage III. Table 6 presents the results for a 1.5B model, where initializing from the FFN yields a 1.5%
improvement in average accuracy on end tasks compared to random initialization. Moreover, we
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Figure 2: Visualization of the routing distributions of all tokens, text tokens, image tokens across all
experts on the en-test set of MMBench.

analyze the impact of data scaling using the data recipe described in Section 4.4. As demonstrated
in Table 4, FFN-based initialization maintains its advantage with additional training data, achieving
a 1.3% higher average accuracy than random initialization. These findings suggest that leveraging
a pre-trained full-precision FFN for MoTE’s initialization not only enhances performance but also
accelerates the convergence of ternary experts. Additional results for the 0.5B and 3B models are
provided in the Appendix B.

Training recipe. We conduct ablation studies on the training strategy of ternary up-cycling in
MoTE to assess the effectiveness of first training with full-precision experts before fine-tuning the
model to ternary precision. All models are trained on 6.25B tokens and up-cycled from Qwen2.5-1.5B.
We vary the proportion of training conducted in full-precision versus ternary precision. As shown in
Table 7, we do not observe performance gain from initially training with full-precision experts. In
fact, accuracy improves as the proportion of ternary training increases. Therefore, for both simplicity
and improved performance, MoTE is trained directly in ternary precision without a full-precision
training phase during up-cycling.

5 ANALYSIS

We visualize the routing distribution of all tokens in MoTE-1.5B on the en-test split of the MMBench
dataset. As shown in Figure 2a, expert utilization across all tokens is well-balanced. To further
investigate modality-specific behavior, we present the routing distributions for text and image tokens
separately in Figures 2b and 2c, respectively. Notably, text and image tokens exhibit distinct routing
patterns. For example, expert #1 is frequently activated for image tokens in the first layer and the final
five layers. Additional visualizations across various tasks are provided in Appendix C.1. We observe
that routing distributions remain largely consistent across different tasks, suggesting that the experts
in MoTE specialize based on modality rather than task-specific features. Moreover, we include
per-expert routing distributions by modality in Appendix C.2. Interestingly, some experts exhibit
clear modality preferences despite the absence of explicit modality conditioning during training. To
better understand expert specialization, we further apply PCA to extract the top-10 routing pathways
for text and image tokens. More visualizations are included in Appendix C.3. These findings enhance
our understanding of MoTE’s behavior and workflow from a token-level perspective.

6 CONCLUSION

In this work, we introduce MoTE, a scalable and memory-efficient approach to train multimodal
Mixture-of-Ternary-Experts models from full-precision dense checkpoints. Extensive experiments
show that our model matches the full-precision up-cycling MoE-LLaVA in zero-shot performance on
end tasks, starting from model sizes exceeding 1.5B parameters. Furthermore, MoTE is compatible
with post-training quantization methods, enabling further reductions in the memory footprint of MoE
models. Given the same expert memory footprint of 3.4GB, MoTE surpasses MoE-LLaVA with an
average accuracy gain of 4.3% on image understanding tasks, highlighting the effectiveness of our
approach, particularly for memory-constrained edge devices.
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A HYPER-PARAMETERS

In this section, we present the detailed hyper-parameters used for the training of MoTE and full-
precision up-cycling baseline MoE-LLaVA. For Stage I and Stage II, we adopt the same training
recipe, data and hyper-parameters, for both MoTE and MoE-LLaVA. For Stage III, we use the
learning rate and scheduler recommended by MoE-LLaVA for full-precision training. For MoTE,
following BitNet, we use a much large learning rate and two-stage weight decay for ternary experts
which is critical for the optimization of extremely low-bit training.

We utilize torch.compile to compile the PyTorch code in the quantization into optimized kernels,
which significantly speed up the training of MoTE. As for the training of 1.5B model’s up-cycling in
Stage III, MoTE costs 43.3 hours on 16 NVIDIA A100 cards (40GB), while MoE-LLaVA uses 41.8
hours. Above all, MoTE has similar training time compared to full-precision up-cycling MoE-LLaVA.

Table 8: Hyper-parameters for the training of MoTE and MoE-LLaVA with 0.5B model. a/b denotes
the value of MoTE/MoE-LLaVA. 1 + 4 denotes that the model has one shared expert and four routed
experts.

Hyper-parameter Stage I Stage II Stage III
Learning rate 1e-3 5e-5 1.5e-4/5e-5
Batch Size 256 128 256
Weight decay ✗ ✗ 0.1→ 0/✗
Training steps 2500 8000 12500
Training sequence 1024 1024 2048
Vision sequence 729
AdamW β (0.9, 0.999)
AdamW ϵ 1e-8

# MoE layer - - 24
# Experts - - 1+4 / 0+4
# Top-k - - 1+1 / 0+2

Table 9: Hyper-parameters for the training of MoTE and MoE-LLaVA with 1.5B and 3B model. a/b
denotes the value of MoTE/MoE-LLaVA. 1 + 4 denotes that the model has one shared expert and
four routed experts.

Hyper-parameter Stage I Stage II Stage III
Learning rate 1e-3 2e-5 1e-4/2e-5
Batch Size 256 128 256
Weight decay ✗ ✗ 0.1→ 0/✗
Training steps 2500 8000 12500
Training sequence 1024 1024 2048
Vision sequence 729
AdamW β (0.9, 0.999)
AdamW ϵ 1e-8

# MoE layer - - 28
# Experts - - 1+4 / 0+4
# Top-k - - 1+1 / 0+2
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B MORE ABLATION STUDIES

We compare MoTE with the randomly initialized routed experts in Stage III. We evaluate the zero-shot
performance of these models on a range of image understanding tasks, including MMMU, MMBench,
AI2D, ChartQA, SeedBench-2-Plus and MMStar dataset.

Table 10 shows the results of both methods in 0.5B, 1.5B and 3B model size. Initializing from FFN
outperforms random initialization by a gain of 1.0%, 1.5% and 0.3% average accuracy on end tasks
in 0.5B, 1.5B and 3B model size, respectively. The results demonstrate that using the pre-trained
full-precision FFN for MoTE’s initialization achieves better performance across various model size.

Table 10: Ablations on the initialization methods of the routed experts for MoTE across different
model sizes.

Initialize
from FFN MMMU MMBench AI2D ChartQA SeedBench2+ MMStar Avg.

0.5B Model Up-cycling
✗ 34.8 50.5 55.2 55.8 43.0 39.1 46.4
✓ 34.2 57.6 55.2 54.9 44.8 37.9 47.4

1.5B Model Up-cycling
✗ 40.1 69.9 67.1 59.9 53.2 44.5 55.8
✓ 42.6 70.0 68.7 61.3 54.8 46.4 57.3

3B Model Up-cycling
✗ 43.3 75.5 72.7 65.5 57.1 48.8 60.5
✓ 43.4 74.5 73.9 67.6 57.5 48.2 60.8

C VISUALIZATION

We visualize the workflows of MoTE-1.5B at three distinct levels: expert, modality, and token.
Specifically, we selected the AI2D, SeedBench-2-Plus, ChartQA, DocVQA, InfoVQA, MMStar, and
MMBench datasets. Figures 3, 4, and 5 respectively illustrate the load distributions across different
experts, the modality-aware routing distributions for each expert, and the top-10 activated pathways
obtained via PCA. Our analysis indicates that, although the routing distributions of MoTE remain
quite similar across tasks, they are predominantly influenced by the input modality.

C.1 ROUTING DISTRIBUTION FOR TOKENS
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(a) All tokens (AI2D)
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(b) Text tokens (AI2D)
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(c) Image tokens (AI2D)
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(d) All tokens (SeedBench2+)
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(e) Text tokens (SeedBench2+)
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(f) Image tokens (SeedBench2+)
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(g) All tokens (ChartQA)

0 2 4 6 8 10 12 14 16 18 20 22 24 26
MoE layer

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge

Text

Expert 1 Expert 2 Expert 3 Expert 4

(h) Text tokens (ChartQA)
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(i) Image tokens (ChartQA)
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(j) All tokens (DocVQA)
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(k) Text tokens (DocVQA)
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(l) Image tokens (DocVQA)
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(m) All tokens (InfoVQA)
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(n) Text tokens (InfoVQA)
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(o) Image tokens (InfoVQA)
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(p) All tokens (MMStar)
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(q) Text tokens (MMStar)
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(r) Image tokens (MMStar)
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(s) All tokens (MMBench)

0 2 4 6 8 10 12 14 16 18 20 22 24 26
MoE layer

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge

Text

Expert 1 Expert 2 Expert 3 Expert 4

(t) Text tokens (MMBench)
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(u) Image tokens (MMBench)

Figure 3: Visualization of the routing distributions of all tokens, text tokens, image tokens across all
experts on various tasks.
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C.2 ROUTING DISTRIBUTION FOR EACH EXPERTS
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(a) Routing distribution on AI2D.
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(b) Routing distribution on SeedBench-2-Plus.
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(c) Routing distribution on ChartQA.
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(d) Routing distribution on DocVQA.
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(e) Routing distribution on InfoVQA.
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(f) Routing distribution on MMStar.
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(g) Routing distribution on MMBench.

Figure 4: Visualization of the modality-aware routing distributions for each expert on various tasks.
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C.3 ACTIVATED PATHWAYS
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(a) The top-10 pathways for text and image tokens on MMBench.
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(b) The top-10 pathways for text and image tokens on AI2D.
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(c) The top-10 pathways for text and image tokens on SeedBench-2-Plus.
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(d) The top-10 pathways for text and image tokens on ChartQA.
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(e) The top-10 pathways for text and image tokens on DocVQA.
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(f) The top-10 pathways for text and image tokens on InfoVQA.
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(g) The top-10 pathways for text and image tokens on MMStar.

Figure 5: Visualization of the top-10 activated pathways for text and image modality on various tasks.
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