
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PEML: PARAMETER-EFFICIENT MULTI-TASK LEARN-
ING WITH OPTIMIZED CONTINUOUS PROMPTS

ABSTRACT

Parameter-Efficient Fine-Tuning (PEFT) is widely used for adapting Large Lan-
guage Models (LLMs) for various tasks. Recently, there has been an increasing
demand for fine-tuning a single LLM for multiple tasks because it requires over-
all less data for fine-tuning thanks to the common features shared among tasks.
More importantly, LLMs are resource demanding and deploying a single model for
multiple tasks facilitates resource consolidation and consumes significantly less
resources compared to deploying individual large model for each task. Existing
PEFT methods like LoRA and Prefix Tuning are designed to adapt LLMs to a
specific task. LoRA and its variation focus on aligning the model itself for tasks,
overlooking the importance of prompt tuning in multi-task learning while Prefix
Tuning only adopts a simple architecture to optimize prompts, which limits the
adaption capabilities for multi-task. To enable efficient fine-tuning for multi-task
learning, it is important to co-optimize prompt optimization and model adaptation.
In this work, we propose a Parameter-Efficient Multi-task Learning (PEML), which
employs a neural architecture engineering method for optimizing the continuous
prompts while also performing low-rank adaption for model weights. We prototype
PEML by creating an automated framework for optimizing the continuous prompts
and adapting model weights. We evaluate PEML against state-of-the-arts multi-task
learning methods MTL-LoRA, MultiLoRa, C-Poly, and MoE, on the GLUE, Super-
GLUE, Massive Multitask Language Understanding, and commonsense reasoning
benchmarks. The evaluation results present an average accuracy improvement of
up to 6.67%, with individual tasks showing peak gains of up to 10.75%.

1 INTRODUCTION

Q

WQ WK WV

LoRALoRA LoRA

Attention

Multi-Head Attention

PK PVK V

Hidden States

Figure 1: Overview of PEML.

Large language models (LLMs) have made significant advance-
ments in various natural language processing tasks such as
machine translation Lewis et al. (2019), text generation Chung
et al. (2022), and code analysis Wang et al. (2021); Qin et al.
(2024). Traditional task-specific fine-tuning (FT) becomes
increasingly computationally expensive as LLMs continue to
grow in size. It requires adjusting all of the model’s param-
eters, which makes it difficult to scale Devlin et al. (2018);
Howard & Ruder (2018); Raffel et al. (2020), and thus moti-
vated parameter-efficient fine-tuning (PEFT) methods that only
require learning a small set of additional parameters for each
task Houlsby et al. (2019); Lester et al. (2021). These meth-
ods Pfeiffer et al. (2020); Hu et al. (2021) have been widely
adopted as they offer comparable performance to full fine-
tuning while significantly reducing computational overhead
Houlsby et al. (2019); Lester et al. (2021); Ding et al. (2023).

LoRA Hu et al. (2021) and Prefix Tuning Li & Liang (2021) are among prominent PEFT methods
for adapting models to a single task. LoRA enhances efficiency by introducing trainable low-rank
matrices into a subset of the model’s weights during training, enabling learning directional updates
in the parameter space. Prefix Tuning improves adaptability by generating task-specific continuous
vectors Liu et al. (2021a); Li & Liang (2021) to the input embeddings before each transformer layer
to steer the model’s generation process without modifying the original model parameters. Such
learned prefix vectors and low-rank matrices enable efficient adaptation to new and related tasks with
minimal additional training Lester et al. (2021); Liu et al. (2022; 2021b).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LoRA and Prefix Tuning, however, face challenges when applied to multi-task training. First,
deploying many task-specific adapters (e.g., prefix vectors or LoRA matrices) increases memory
usage and makes resource management complex. Frequent switching between adapters incurs
computational costs due to the need for adapter loading and model reconfiguration. Therefore, it is
inefficient and costly for inference serving deployment. In addition, individual task training prevents
knowledge sharing across tasks, missing opportunities to leverage insights from one task to improve
others Lopes et al. (2023); Zamir et al. (2020). Such isolated task training limits potential performance
gains from inter-task knowledge-sharing.

Lately, there are efforts to adapt PEFT methods for multi-task learning. MPT Wang et al. (2023d)
learns a shared transferable prompt distilled from multiple task-specific prompts and applies multi-
plicative low-rank adaptations for downstream task specialization. However, it requires pre-training
individual teacher prompts for each task. MultiLoRA Wang et al. (2023c) extends LoRA by horizon-
tally scaling modules, dividing them into parallel sub-modules with separate scaling factors. Yet, this
approach increases VRAM usage due to activation caching for multiple parallel modules. C-Poly
Wang et al. (2023a) employs a skill-based framework that merges shared and task-specific low-rank
parameters using a learned skill matrix, but its fixed architecture limits generalization to unseen
tasks. MTL-LoRA Yang et al. (2025) introduces task-adaptive parameters that reduce interference in
shared low-dimensional spaces. However, it requires task-specific routing during inference, which
complicates inference deployment and resource management. Despite these advancements, most ap-
proaches focus on extending LoRA but overlook the critical aspect of prompt alignment in multi-task
environment Shen et al. (2024); Xin et al. (2024). Aligned prompts can significantly improve model
generalization during multi-task Xu et al. (2022) training. Motivated by this observation, we explore
integrating prompt alignment into PEFT methods to enhance multi-task performance.

To this end, we propose PrefixNAS which generates and optimizes a single, unified continuous prompt
architecture through neural architecture search (NAS) for better alignment of the model’s behavior
in multi-task learning. PrefixNAS captures task-relevant features and relationships, allowing the
prompt encoder to leverage shared knowledge efficiently while preserving task-specific distinctions
(∼ see Appendix 7.2.1). Additionally, PrefixNAS automatically tunes both the prefix architecture and
its hyperparameters, eliminating the need for manual adjustments when adapting to new tasks. We
further develop a Parameter-efficient Multi-Task Learning framework (PEML) to integrate PrefixNAS
enabled prompt optimization into LoRA for model alignment. Figure 1 shows the structure of PEML.
LoRA matrices are applied to all projection layers, while prefix vectors are added in parallel to only
the key and value projections of each attention head. This combination allows the model to adapt to
new tasks, with LoRA handling model adaptation and prefix vectors handling input alignment. Such
an integrated design also facilitates efficient inference deployment as only one adapter needs to be
deployed and does not require adapter switching.

We formulate multi-task learning as a joint optimization problem through LoRA and PrefixNAS and
conduct theoretical analysis on PEML. We evaluate PEML by comparing it with state-of-the-arts
multi-task learning methods such as MTL-LoRA, MultiLoRa, C-Poly, and MoE Yang et al. (2025);
Shazeer et al. (2017); Wang et al. (2023c;a), on the GLUEWang et al. (2018), SuperGLUEWang
et al. (2019), Massive Multitask Language Understanding Hendrycks et al. (2021) and commonsense
reasoning benchmarks Bisk et al. (2020); Sakaguchi et al. (2020); Mihaylov et al. (2018); Zellers et al.
(2019); Clark et al. (2018). The evaluation results demonstrate an average accuracy improvement of
up to 6.67%, with individual tasks showing peak gains of up to 10.75%.

2 RELATED WORK

Approaches tackling parameter efficient fine tuning can be broadly classified into three categories:
adapter-based, prompt-based (e.g. Prefix Tuning), and low-rank adaptation techniques.

Adapter-based methods Houlsby et al. (2019); He et al. (2021); Mahabadi et al. (2021) insert small,
trainable modules into a pretrained model while keeping the rest of the model frozen, capturing
task-specific information with minimal added parameters. It introduce additional layers, leading to
parameter redundancy, whereas LoRA focuses on low-rank updates without introducing additional
layers

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Prompt-based methods Lester et al. (2021); Razdaibiedina et al. (2023); Wang et al. (2023b) adjust
only a few trainable tokens, called soft prompts, instead of fine-tuning the entire model, but they can
be sensitive to initialization. Prefix Tuning mitigates this by learning continuous vectors as prompts.
Continuous vectors in Prefix Tuning are learnable parameters initialized in a high-dimensional space,
whereas soft prompts are discrete token embeddings that depend heavily on specific initialization,
making Prefix Tuning less prone to initialization sensitivity.

Prefix Tuning Li & Liang (2021) is a specialized form of prompt-based fine-tuning that focuses
on prepending learnable continuous vectors, known as ”prefixes,” to the inputs. It involves the
optimization of continuous vectors that shift the model towards specific downstream tasks. Prefix
Tuning updates only the prefixes during fine-tuning, keeping the base model parameters frozen. This
makes it significantly more memory efficient and scalable, especially for large-scale models. However,
Prefix tuning remains sensitive to initialization, which may limit its adaptability in multitask settings.

LoRA Hu et al. (2021) reduces the number of trainable parameters by applying low-rank decomposi-
tion to simulate weight updates in frozen models, enabling efficient fine-tuning without increasing
inference costs. Several variants have been proposed to further enhance its efficiency and applica-
bility. AdaLoRA Zhang et al. (2023) leverages singular value decomposition (SVD) to prune less
significant components, while rsLoRA Kalajdzievski (2023) introduces a scaling factor to stabilize
the rank. DoRA Liu et al. (2024) implements dynamic optimization of LoRA parameters during
training to improve adaptability across learning tasks. In the context of Stable Diffusion, Yeh et al.
Yeh et al. (2024) proposed a unified LoRA framework that applies different combinations of LoRA
methods for various tasks. VeRA Kopiczko et al. (2024) introduces scaling vectors that adjust pairs
of frozen random matrices shared across layers, further optimizing parameter efficiency. Despite
these advancements, LoRA and its variants are still primarily designed for single-task scenarios, with
limited attention to multi-tasking environment.

Multi-task learning (MTL) trains models to solve multiple related tasks simultaneously by sharing
parameters across tasks Zhang & Yang (2017); Ruder (2017). It often involves fine-tuning on several
tasks before transferring knowledge to a new one Vu et al. (2020); Raffel et al. (2020); Aghajanyan
et al. (2021). Building on the foundational PEFT techniques, recent innovations have proposed MTL-
specific adaptations designed to minimize interference between tasks while maintaining parameter
efficiency. One approach, MPT Wang et al. (2023d), learns a shared transferable prompt distilled
from multiple task-specific prompts and applies multiplicative low-rank adaptations for efficient
downstream task specialization. However, its major drawback is the need to pre-train individual
teacher prompts for each source task before distilling knowledge into a shared prompt, which
introduces significant computational overhead. MTL-LoRA Yang et al. (2025) extends the original
LoRA framework by introducing task-adaptive parameters that preserve task-specific information
and reduce interference in shared low-dimensional spaces, enhancing multi-task adaptation. Unlike
standard LoRA, which merges adapters into the base model, MTL-LoRA requires task-specific
routing during inference, resulting in added latency. MultiLoRA Wang et al. (2023c) addresses the
limitations of LoRA’s reliance on top singular vectors by horizontally scaling LoRA modules and
diversifying their initialization, resulting in more balanced and effective adaptation across diverse
tasks. However, it introduces a linear increase in VRAM usage during training due to the activation
caching required for multiple parallel LoRA modules. Customized Polytropon (C-Poly) Wang
et al. (2023a) is a modular, skill-based framework that enhances multi-task learning by combining
shared and task-specific low-rank parameters through a learned skill assignment matrix. It struggles
with unseen tasks, relying on it’s fixed architecture with static skill modules limits generalization to
novel tasks, reducing practicality in open-ended environments. Furthermore, existing approaches
lack a mechanism to automatically adapt their architecture or hyperparameters to new or unseen data,
requiring manual adjustments for each benchmarks.

3 PEML

PEML strategically handle the challenges of prompt alignment and low-rank model adaptability
in multi-task learning by integrating standard LoRA with PrefixNAS. Unlike existing approaches
that extend LoRA (such as MTL-LoRA, MultiLoRA) without considering for prompt alignment,
PEML introduces a more cohesive framework where PrefixNAS dynamically adjusts the prefix
structure based on the specific requirements of each task. This adaptability allows PEML to maintain

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

a task-responsive prefix module throughout training and inference, reducing the reliance on static
architecture or any pre-trained teacher prefixes. Meanwhile, LoRA operates in parallel during training
to effectively optimize low-rank adaption of the model without introducing a linear increase in VRAM
usage. After training, LoRA is merged with the base model, resulting in a leaner architecture that
only retains the adaptive PrefixNAS module. PrefixNAS is allowed to continuously refine its structure
based on evolving task demands and ensuring optimal prompt alignment and model generalization.

Embedding

LayerNorm

Wq Wk Wv
LO

R
A

Lo
R

A

Q K VPk Pv

Attention

LayerNorm

MLP

Decoder

Output

Input

Pk Pv

}
Q

Pretrained
Weights

B

A
*

x

h
LoRA Prefix

Q K V

K VPk Pv

Attention

Layers
Generated from

PrefixNas

Prefix Layer
Tuning

0

1

2

n

PrefixNas

Figure 2: Unified view of PEML method. The left side illustrates LoRA, where matrix B is set
to 0 and matrix A follows a normal distribution N(0, σ2). The right side represents PrefixNAS,
showcasing the optimal architecture derived from the search process.

PEML combines LoRA with PrefixNAS mecha-
nism which use a gradient-based NAS approach
that’s built on continuous relaxation techniques.
Both techniques optimize parallelly during train-
ing, as shown in Figure 2. This allows the model
to adjust task-specific features and dynamically
generate prefixes at the same time. A detailed
breakdown of how this works is provided in Algo-
rithm 1 and convergence analysis mentioned in 7.1.
In Algorithm 1 the base model Φ is initialized with
frozen pre-trained weights, while LoRA parame-
ters B,A and PrefixNAS architecture parameters
α are trained concurrently. In each iteration, Pre-
fixNAS generates candidate prefix architectures
Ai(α), which are used to construct task-specific
prefixes Pi. These prefixes are concatenated with
inputs and passed through the model adapted by
LoRA parameters, producing predictions and com-
puting a combined loss consisting of task-specific
and architecture regularization terms. LoRA and

Algorithm 1 PEML: Joint Optimization with
LoRA & PrefixNAS

Φ← pre-trained model
θ ← base weights [Frozen]
{Di}ni=1 ← datasets
h← PrefixNAS search space for prefixes
s← PrefixNAS operations
Initialize LoRA params B,A and PrefixNAS params α
Parallel Joint Optimization
for joint iteration t = 1 to T do

Generate prefix architectures: Ai(α)← PrefixNAS(s)
Pi ← LearnablePrefix(Ai(α), h) {NAS-optimized pre-
fix}
for each dataset Di do

X̃i = Pi ⊕Xi {Input with a prepend prefix}
θ′ ← θ + B · A {LoRA adaptation}
Forward pass: ŷ = Φ(X̃i; θ

′)
Compute loss: Lt = L(ŷ, yi) + λR(α)
Simultaneous Updates:
▷ Update LoRA params: B,A← B,A− η∇B,ALt

▷ Update NAS params: α← α− η∇αLt

end for
Prune weak architectures via PrefixNAS

end for
return Φfinal(θ

′, α∗) {Jointly optimized model}

PrefixNAS parameters update via gradient descent, followed by pruning weak architectures. The final
model Φfinal consists of the optimized LoRA weights and a unified Prefix architecture.

3.1 PROBLEM STATEMENT

Let D = {D1, D2, . . . , Dn} denote multi-task datasets from different benchmarks, where each
dataset Di = {(xij , yij)}mi

j=1 contains input-output pairs for task Ti. Mini-batches are constructed
through parallel sampling:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Bk =

n⋃
i=1

{(xi1, yi1), . . . , (xibi , yibi)} with bi = ⌊γmi⌋ (1)

The model fθ with base parameters θ undergoes joint optimization through LoRA and PrefixNAS.
LoRA modifies low-rank matrices B,A ∈ Rd×r with r ≪ d. The adapted parameter set θ′ is
expressed as:

θ′ = θ +∆θ = θ +BA⊤ (2)

PrefixNAS employs a learnable prefix matrix P ∈ Rl×d, concatenated with the input sequence Xi.
The transformed input X̃i is given by:

X̃i = Aα(P)⊕Xi (3)

where Aα is an architecture search function parameterized by α.

The joint loss function for PEML is defined as:

Ljoint =
1

n

n∑
i=1

1

|B(i)
k |

∑
(x,y)∈B(i)

k

L(fθ′(x̃), y) + λR(α) (4)

Where the joint loss function Ljoint combines task loss and architecture regularization. The task loss
averages over mini-batches and samples, expressed as L(fθ′(x̃), y). The regularization term λR(α)
applies a penalty to architecture parameters α, scaled by λ.

During training, θ remains frozen, and the updates only B, A, and α alongside with A(P) . After
training, the final model integrated with PEML is expressed as:

fθfinal = fθ+BA⊤ ◦ Aα∗(P) (5)

where α∗ denotes the optimized architecture parameters obtained through PrefixNAS.

3.2 PREFIXNAS OPTIMIZATION

PrefixNAS generates adaptive architectures through differentiable search, enabling task-specific
optimization beyond static embedding layers. For each task Ti, the prefix architecture combines
candidate operations via continuous relaxation:

Ai(αi) =

k∑
j=1

exp(αij)∑k
m=1 exp(αim)

· oj(Pi) (6)

where αi ∈ Rk represents learnable architecture parameters, Pi is the task-specific prefix, and
{oj}kj=1 denotes the set of candidate operations. After convergence, the final architecture is obtained
by selecting the dominant operation:

Âi = oargmax
j

αij
(7)

PrefixNAS maintains differentiability during training while producing discrete, efficient architectures.
Each task’s prefix architecture is optimized independently, allowing specialized adaptation without
inter-task interference.

3.3 PEML OPTIMIZATION

PEML integrated on a pre-trained model Φ(X; θ) with frozen base parameters θ. The adaptation
combines low-rank updates ∆ = BA⊤ where B,A ∈ Rd×r, and task-specific prefixes Pi generated
through PrefixNAS with architecture parameters α. The modified forward pass handle inputs as:

X̃i = Aα(Pi)⊕Xi, θ′ = θ +∆ (8)

The unified objective maximizes the log-likelihood with architectural regularization:

max
∆,α

n∑
i=1

|Yi|∑
t=1

log pθ′(yi,t|X̃i, yi,<t)− λR(α) (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 HYPERPARAMETER OPTIMIZATION

PEML performs bi-level optimization where the inner loop optimizes the architectural parameters
using PrefixNAS, and the outer loop optimizes hyperparameters through Tree-structured Parzen
Estimator (TPE). Let h = {h1, ..., hn} represent the hyperparameters, and α = {αi}ki=1 denote the
PrefixNAS architecture parameters.

Inner Loop (PrefixNAS Optimization) searches for the optimal prefix architecture by evaluating
multiple configurations and selecting those that maximize the objective function:

αt ∼ pt(α) (10)

For each sampled αt, the model is trained with the prefix defined by Aαt(P) and evaluated using:

f(αt) =
1

m

m∑
j=1

A(Φ(Xj ; θ
′ +∆,Aαt

(P))) (11)

Outer Loop (Hyperparameter Optimization with TPE) samples hyperparameters and guiding the
search based on previous evaluations for each trial t:

ht ∼ pt(h) (12)

The objective function for the outer loop becomes:

f(ht, α
∗) =

1

m

m∑
j=1

A(Φ(Xj ; θ
′ +∆,Aα∗(P),ht)) (13)

TPE updates the sampling distributions for hyperparameters based on the evaluation results, while
the architecture parameters are refined through PrefixNAS:

pt+1(h) ∝ exp(f(ht, α
∗)), pt+1(α) ∝ exp(f(αt)) (14)

The optimization process continues iteratively, refining both hyperparameters and prefix configura-
tions to converge to the optimal combination (h∗, α∗), defined as:

h∗, α∗ = argmax
h,α

f(h, α) (15)

4 EXPERIMENTS

4.1 MODELS & DATASET

We evaluate PEML using T5-Large (770M) Raffel et al. (2020), FLAN-T5-Large Chung et al. (2024),
LLaMA-7B Touvron et al. (2023) and LLaMA2-7B Touvron et al. (2023). Our experiments span
across GLUE Wang et al. (2018) (SST-2 Socher et al. (2013), COLA Warstadt et al. (2018), STS-B
Cer et al. (2017)), SuperGLUE Wang et al. (2019) (RTE Dagan et al. (2006), Boolq Clark et al. (2019),
WIC Pilehvar & Camacho-Collados (2018)), MMLU Hendrycks et al. (2021), and commonsense
reasoning tasks (PIQA Bisk et al. (2020), SIQA Sap et al. (2019), Winogrande Sakaguchi et al. (2020),
OBQA Mihaylov et al. (2018), HellaSwag Zellers et al. (2019), ARC Clark et al. (2018)).

4.2 EXPERIMENTAL SETUP

In this study, we implemented various PEFT methods using the Hugging Face PEFT Mangrulkar
et al. (2022) library, including PreEmbedd, PrefixNAS, and LoRA variants like DoRA and AdaLoRA.
PreEmbedd consists only an embedding layer and an output layer, without any intermediate layers,
virtual tokens is set to 20, and the learning rate is fixed at 1e-3. The LoRA and AdaLoRA config-
urations are as follows: rank r = 16, LoRA alpha = 32, and LoRA dropout = 0.1. We
also provide huggingface modularity to PrefixNAS. It defines operations in the search space O as
linear transformations with dimensions of (1024 x 1024). Each transformation is associated
with an activation function (ReLU, Tanh, Leaky ReLU, or GELU), dropout layers
= [0.1, 0.3, or 0.5], and layer normalization. PrefixNAS generates n = 6 lay-
ers between an embedding layer and a fixed output layer. TPE Watanabe (2023) is integrated with
the PrefixNAS framework to refine hyperparameter search. The search required approximately 2
hours on 8× A100 GPUs for LLaMa variants (16 GPU-hours, ∼1.1 PFLOPs) and around 30 minutes

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

on 8× A100 GPUs for T5-large variants (4 GPU-hours, ∼0.28 PFLOPs). This search process is
a one-time effort for each benchmark. The learning rate is sampled from a logarithmic uniform
distribution between 0.001 and 0.02, with a base step of 5e-5. The prefix length varies from
5 to 50. A total of n=100 trials are conducted, each running for a maximum of 150 epochs.
The early stopping function is applied to terminate training after 25 epochs without improvement
in average accuracy. Ray Tune Liaw et al. (2018) framework is used to implement TPE. For
efficient multi-GPU training, the training is distributed across 8 NVIDIA A100 40 GB GPUs
using huggingface Accelerate Gugger et al. (2022) library.

4.3 RESULTS

4.3.1 GENERAL LANGUAGE UNDERSTANDING

As shown in Table 1, PEML improves the average accuracy by 3.59% on GLUE benchmark compared
to standalone LoRA, while it shows a smaller improvement of 0.71% over standalone AdaLoRA.
Combining PreEmbedd with LoRA or AdaLoRA showed almost the same performance as using
LoRA or AdaLoRA alone which proves our hypothesis that LoRA may limit the effectiveness of
prompt alignment. PrefixNAS addresses this issue by optimizing the prefix architecture to better
align prompts.

Table 1: Performance of various PEFT methods, including PreEmbedd, LoRA, AdaLoRA, and their
combinations with PEML tested on the T5-large model across seven GLUE tasks.

Peft Techniques SST2 MRPC RTE COLA QQP WNLI QNLI AVG

PreEmbedd 0.895 0.799 0.893 0.753 0.962 0.734 0.879 0.845
LoRA 0.954 0.815 0.901 0.779 0.935 0.765 0.943 0.870

LoRA-PreEmbedd 0.966 0.851 0.891 0.834 0.961 0.671 0.965 0.877

PEML 0.976 0.867 0.899 0.843 0.971 0.781 0.974 0.901

AdaLoRA 0.951 0.891 0.910 0.880 0.960 0.812 0.962 0.908
AdaLoRA-PreEmbedd 0.960 0.883 0.912 0.890 0.973 0.7812 0.966 0.909

PEML-AdaLoRA 0.966 0.906 0.934 0.889 0.972 0.767 0.975 0.916

Table 2 presents a comparison of PEML against state-of-the-art multitask PEFT techniques on the
GLUE benchmark using the LLaMA2-7B model. PEML achieves the highest average performance
of 91.1%, outperforming all baselines. All experiments and the instructions prompt are follow the
experimental setup described inYang et al. (2025).

Table 2: Compare the performance accuracy (COLA : mcc & STS-B: pea.) of PEML using LLaMA2-
7B model with state-of-the-art multitasking framework.

Peft Techniques COLA MNLI MRPC QNLI QQP RTE SST2 STSB AVG

LoRA-MT 0.659 0.914 0.860 0.960 0.909 0.917 0.971 0.919 0.889
MultiLoRA 0.613 0.910 0.863 0.955 0.900 0.910 0.963 0.918 0.879
MoELoRA 0.637 0.912 0.855 0.957 0.906 0.921 0.966 0.922 0.884
MTL-LoRA 0.680 0.914 0.902 0.963 0.914 0.924 0.971 0.928 0.900

PEML 0.698 0.964 0.912 0.967 0.928 0.912 0.971 0.935 0.911

4.3.2 MULTI-SENTENCE ADVANCED REASONING

Table 3 demonstrates the effectiveness of PEML across SuperGLUE benchmark. It achieves the
highest overall average score of 88.08%, outperforming standalone PEFT baselines such as PreEm-
bedd (84.78%) and LoRA (83.67%) by +3.30% and +4.41%, respectively. Compared to standalone
AdaLoRA, which achieves an average of 86.94%, PEML still provides a relative improvement of
+1.14%. However, WSC is extremely sensitive to syntactic cues and entity disambiguation, which
may benefit more from AdaLoRA’s selective parameter tuning. In this case, pruning less useful LoRA
components helps sharpen specific linguistic cues, and PrefixNAS provides minimal yet relevant
contextual prompts leading to improved generalization.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance of various PEFT methods, including PreEmbedd, LoRA, AdaLoRA, and their
combinations with PEML tested on the T5-large model across SuperGLUE benchmark.

Peft Techniques Boolq RTE COPA MultiRC WIC WSC AVG

PreEmbedd 0.918 0.939 0.775 0.897 0.841 0.714 0.847
LoRA 0.921 0.907 0.750 0.891 0.800 0.750 0.836

LoRA-PreEmbedd 0.926 0.931 0.750 0.902 0.830 0.678 0.836

PEML 0.934 0.9317 0.825 0.904 0.870 0.750 0.869

AdaLoRA 0.940 0.959 0.800 0.905 0.878 0.732 0.869
AdaLoRA-PreEmbedd 0.935 0.951 0.875 0.901 0.886 0.714 0.877

PEML-AdaLoRA 0.924 0.935 0.850 0.900 0.852 0.821 0.880

We also compare PEML with the state-of-the-art techniques in table 4 using the FLAN-T5-Large.
PEML achieves the highest average accuracy of 84.31%, surpassing competitive baselines such as
C-Poly (83.21%) and MOE-LoRA (82.31%) by +1.32% and +2.43%, respectively. Although C-Poly
and PEML have similar performance, the C-Poly method struggles to handle unseen data due to its
fixed architecture, while PrefixNAS offers a dynamic architecture that is better suited for handling
unseen data.

Table 4: Compare the performance accuracy of PEML using FLAN-T5-Large model with state-of-
the-art multitasking framework. All the results are directly reported from Wang et al. (2023a).

Peft Techniques Boolq CB COPA MultiRC RTE WIC WSC AVG

LoRA 0.818 0.857 0.900 0.827 0.859 0.595 0.644 0.818
MOE-LoRA 0.851 0.875 0.910 0.834 0.864 0.579 0.663 0.823

Poly 0.851 0.875 0.900 0.825 0.862 0.606 0.769 0.820
MHR 0.850 0.875 0.900 0.829 0.862 0.611 0.759 0.823

C-Poly 0.856 0.857 0.900 0.833 0.888 0.670 0.750 0.832

PEML 0.864 0.856 0.825 0.904 0.901 0.800 0.750 0.843

4.3.3 MASSIVE MULTITASK LANGUAGE UNDERSTANDING

We mixed four SuperGLUE tasks with MMLU in Table 5 and compared them with full fine-tuning
(FT) and PEFT baselines. We demonstrates a comparable total rank budget across configurations.
MultiLoRA employs three LoRA modules, each with a rank of 32 (total rank = 3 × 32 = 96), while
PEML uses a single LoRA module with rank 96. Consequently, both configurations share the same
overall rank budget. PEML achieves the highest average accuracy of 80.3%, outperforming the FT
(76.9%) by +3.4% and the most computationally intensive MultiLoRA configuration (n=5, r=32) by
+2.3%. It produces similar results but at the cost of increased VRAM usage as n scales (∼ see figure
4). However, our method does not require horizontal scaling, and the results support that PEML is
more efficient than MultiLoRA in terms of performance and resource optimization.

Table 5: Compare the performance accuracy of PEML using LLaMA-7B model with state-of-the-art
multitasking framework. MMLU is tested with 5-shot prompts and SuperGLUE are tested with
zero-shot. All results are reported directly from Wang et al. (2023c).

Peft Techniques MMLU Boolq MultiRC RTE WIC AVG

FT 0.495 0.884 0.872 0.852 0.740 0.769

LoRAn=1
r=96 0.477 0.882 0.854 0.834 0.716 0.752

LoRAn=1
r=160 0.502 0.877 0.853 0.833 0.701 0.753

MultiLoRAn=3
r=32 0.512 0.878 0.887 0.897 0.708 0.776

MultiLoRAn=5
r=32 0.514 0.885 0.894 0.894 0.714 0.780

PEMLn=1
r=96 0.516 0.923 0.928 0.896 0.755 0.803

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3.4 COMMONSENSE REASONING

Table 6 presents performance comparison across eight commonsense reasoning tasks using various
PEFT techniques. All the instructions prompt are same as Liu et al. (2024); Yang et al. (2025).
PEML outperforming DoRA (80.5%) and MoELoRA (78.3%) by +2.52% and +4.72%, respectively.
DoRA, like other LoRA variants, ignores prompt alignment and MoE needs to store many experts for
different tasks. It adds extra latency when switching experts. However, in PEML, we have a unified
architecture, so there’s no need to switch adapters.

Table 6: Commonsense reasoning results on LLaMA2-7B. We follow the joint training setup described
in Liu et al. (2024); Yang et al. (2025), and all results are reported directly from those works.

Peft Techniques Boolq PIQA SIQA Winogrande OBQA Hellaswag ARC-E ARC-C AVG

LoRA 0.698 0.799 0.795 0.826 0.810 0.836 0.798 0.647 0.776
DoRA 0.720 0.831 0.799 0.830 0.812 0.891 0.845 0.710 0.805

MultiLoRA 0.665 0.658 0.628 0.793 0.754 0.792 0.767 0.596 0.707
MoELoRA 0.680 0.835 0.704 0.825 0.832 0.906 0.868 0.615 0.783
MTL-LoRA 0.710 0.844 0.808 0.849 0.826 0.931 0.870 0.734 0.821

PEML 0.775 0.887 0.837 0.902 0.838 0.774 0.885 0.741 0.830

5 SENSITIVITY ANALYSIS

In this section, we examine the robustness of PrefixNAS across various settings, focusing on the
number of layers (n), repetition of blocks (b), and the inclusion of skip connections (sc) and reduction
cells (rc). Using T5-large as the backbone model, we conduct our analysis on the SuperGLUE
benchmark. As shown in Figure 3, our findings indicate that setting n=6 consistently delivers optimal
performance. Repeating the same block multiple times does not significantly impact the results,
while the inclusion of skip connections and reduction cells appears to limit further performance gains,
suggesting that further structural changes offer minimal gains. Therefore, We exclude them from the
NAS search operation, thereby reducing complexity and potentially leading to faster convergence.

Skip Connection
Incl. Excl. Incl. Excl.

Reduction Cell

Av
er

ag
e

Sc
or

e

0.85

0.84

0.83

0.82

0.81

0.80
2 4 6 8

Number of Layers (n)

Av
er

ag
e

Sc
or

e

0.85

0.86

0.87

0.84

0.83

Av
er

ag
e

Sc
or

e

0.85

0.86

0.87

5 15 30
Repetition of Blocks (b)

Figure 3: The performance of PEML on SuperGLUE benchmark with different sensitive hyperparam-
eter configurations.

6 CONCLUSION

In this research, we introduced PEML, a novel approach designed to overcome the limitations of
existing state-of-the-art (SOTA) PEFT methods in multi-task learning. SOTA techniques such as
MTL, MultiLoRA, C-Poly, and MoE often struggle with challenges such as prompt misalignment,
static task specific architecture, multiple adapter switching during inference and linear increase in
VRAM during training. PEML effectively addresses these issues by dynamically select the optimize
prefix architecture through PrefixNAS. PEML reduces the need for multiple adapters as it is a unified
structure. One of the limitations of PEML introduces additional parameters to the prefix in order to
unify multiple tasks, and also incurs resource cost during NAS search process. Our experimental
results illustrate that PEML achieves an average accuracy improvement of up to 6.67% across various
tasks, with some individual tasks showing enhancements of up to 10.75%. These results highlight the
capability of PEML to enhance multi-task learning in natural language understanding.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettlemoyer, and Sonal
Gupta. Muppet: Massive multi-task representations with pre-finetuning. CoRR, abs/2101.11038,
2021. URL https://arxiv.org/abs/2101.11038.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 7432–7439, 2020.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. Semeval-2017
task 1: Semantic textual similarity - multilingual and cross-lingual focused evaluation. CoRR,
abs/1708.00055, 2017. URL http://arxiv.org/abs/1708.00055.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu,
Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned
language models, 2022. URL https://arxiv.org/abs/2210.11416.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. CoRR,
abs/1905.10044, 2019. URL http://arxiv.org/abs/1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Joaquin Quiñonero-Candela, Ido Dagan, Bernardo Magnini, and Florence d’Alché
Buc (eds.), Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Clas-
sification, and Recognising Tectual Entailment, pp. 177–190, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg. ISBN 978-3-540-33428-6.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong Sun.
Sparse low-rank adaptation of pre-trained language models, 2023. URL https://arxiv.org/
abs/2311.11696.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang.
Glm: General language model pretraining with autoregressive blank infilling. arXiv preprint
arXiv:2103.10360, 2021.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

10

https://arxiv.org/abs/2101.11038
http://arxiv.org/abs/1708.00055
https://arxiv.org/abs/2210.11416
http://arxiv.org/abs/1905.10044
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2311.11696
https://arxiv.org/abs/2311.11696

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Man-
grulkar, Marc Sun, and Benjamin Bossan. Accelerate: Training and inference at scale made simple,
efficient and adaptable. https://github.com/huggingface/accelerate, 2022.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. CoRR, abs/2110.04366, 2021. URL
https://arxiv.org/abs/2110.04366.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP.
CoRR, abs/1902.00751, 2019. URL http://arxiv.org/abs/1902.00751.

Jeremy Howard and Sebastian Ruder. Fine-tuned language models for text classification. CoRR,
abs/1801.06146, 2018. URL http://arxiv.org/abs/1801.06146.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685, 2021. URL
https://arxiv.org/abs/2106.09685.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora, 2023. URL
https://arxiv.org/abs/2312.03732.

Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. Vera: Vector-based random matrix
adaptation, 2024. URL https://arxiv.org/abs/2310.11454.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. CoRR, abs/2104.08691, 2021. URL https://arxiv.org/abs/2104.08691.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. CoRR, abs/1910.13461, 2019. URL
http://arxiv.org/abs/1910.13461.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. CoRR,
abs/2101.00190, 2021. URL https://arxiv.org/abs/2101.00190.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Stoica. Tune:
A research platform for distributed model selection and training. arXiv preprint arXiv:1807.05118,
2018.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. CoRR, abs/2107.13586, 2021a. URL https://arxiv.org/abs/2107.13586.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation, 2024. URL
https://arxiv.org/abs/2402.09353.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally across scales and tasks. CoRR, abs/2110.07602,
2021b. URL https://arxiv.org/abs/2110.07602.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 61–68, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.8. URL
https://aclanthology.org/2022.acl-short.8.

11

https://github.com/huggingface/accelerate
https://arxiv.org/abs/2110.04366
http://arxiv.org/abs/1902.00751
http://arxiv.org/abs/1801.06146
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2312.03732
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2104.08691
http://arxiv.org/abs/1910.13461
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2110.07602
https://aclanthology.org/2022.acl-short.8

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ivan Lopes, Tuan-Hung Vu, and Raoul de Charette. Cross-task attention mechanism for dense multi-
task learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 2329–2338, 2023.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. CoRR, abs/2106.04647, 2021. URL https://arxiv.org/
abs/2106.04647.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 2381–2391, 2018.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. CoRR, abs/2005.00247, 2020. URL
https://arxiv.org/abs/2005.00247.

Mohammad Taher Pilehvar and José Camacho-Collados. Wic: 10, 000 example pairs for evaluating
context-sensitive representations. CoRR, abs/1808.09121, 2018. URL http://arxiv.org/
abs/1808.09121.

Chengwei Qin, Wenhan Xia, Fangkai Jiao, Chen Chen, Yuchen Hu, Bosheng Ding, and Shafiq Joty.
Improving in-context learning via bidirectional alignment, 2024. URL https://arxiv.org/
abs/2312.17055.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, Jimmy Ba, and Amjad
Almahairi. Residual prompt tuning: Improving prompt tuning with residual americanization, 2023.
URL https://arxiv.org/abs/2305.03937.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. CoRR, abs/1706.05098,
2017. URL http://arxiv.org/abs/1706.05098.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 8732–8740, 2020.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iqa: Common-
sense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 4463–4473, 2019.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
CoRR, abs/1701.06538, 2017. URL http://arxiv.org/abs/1701.06538.

Sheng Shen, Shijia Yang, Tianjun Zhang, Bohan Zhai, Joseph E Gonzalez, Kurt Keutzer, and Trevor
Darrell. Multitask vision-language prompt tuning. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 5656–5667, 2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp.
1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/D13-1170.

12

https://arxiv.org/abs/2106.04647
https://arxiv.org/abs/2106.04647
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://arxiv.org/abs/2005.00247
http://arxiv.org/abs/1808.09121
http://arxiv.org/abs/1808.09121
https://arxiv.org/abs/2312.17055
https://arxiv.org/abs/2312.17055
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2305.03937
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1701.06538
https://www.aclweb.org/anthology/D13-1170

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessandro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. Exploring and predicting transferability across NLP
tasks. CoRR, abs/2005.00770, 2020. URL https://arxiv.org/abs/2005.00770.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. CoRR,
abs/1804.07461, 2018. URL http://arxiv.org/abs/1804.07461.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. CoRR, abs/1905.00537, 2019. URL http://arxiv.org/abs/1905.
00537.

Haowen Wang, Tao Sun, Cong Fan, and Jinjie Gu. Customizable combination of parameter-efficient
modules for multi-task learning. arXiv preprint arXiv:2312.03248, 2023a.

Yaqing Wang, Jialin Wu, Tanmaya Dabral, Jiageng Zhang, Geoff Brown, Chun-Ta Lu, Frederick
Liu, Yi Liang, Bo Pang, Michael Bendersky, and Radu Soricut. Non-intrusive adaptation: Input-
centric parameter-efficient fine-tuning for versatile multimodal modeling, 2023b. URL https:
//arxiv.org/abs/2310.12100.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Multilora: Democratizing lora for
better multi-task learning. arXiv preprint arXiv:2311.11501, 2023c.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. CoRR, abs/2109.00859,
2021. URL https://arxiv.org/abs/2109.00859.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. Multitask
prompt tuning enables parameter-efficient transfer learning, 2023d. URL https://arxiv.
org/abs/2303.02861.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471, 2018.

Shuhei Watanabe. Tree-structured parzen estimator: Understanding its algorithm components and
their roles for better empirical performance. arXiv preprint arXiv:2304.11127, 2023.

Yi Xin, Junlong Du, Qiang Wang, Ke Yan, and Shouhong Ding. Mmap: Multi-modal alignment
prompt for cross-domain multi-task learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 16076–16084, 2024.

Shicheng Xu, Liang Pang, Huawei Shen, and Xueqi Cheng. Match-prompt: Improving multi-task
generalization ability for neural text matching via prompt learning. In Proceedings of the 31st
ACM International Conference on Information & Knowledge Management, pp. 2290–2300, 2022.

Yaming Yang, Dilxat Muhtar, Yelong Shen, Yuefeng Zhan, Jianfeng Liu, Yujing Wang, Hao Sun,
Weiwei Deng, Feng Sun, Qi Zhang, et al. Mtl-lora: Low-rank adaptation for multi-task learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 22010–22018,
2025.

Shih-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard B W Yang, Giyeong Oh, and Yanmin Gong.
Navigating text-to-image customization: From lycoris fine-tuning to model evaluation, 2024. URL
https://arxiv.org/abs/2309.14859.

Amir R. Zamir, Alexander Sax, Teresa Yeo, Oguzhan Fatih Kar, Nikhil Cheerla, Rohan Suri, Zhangjie
Cao, Jitendra Malik, and Leonidas J. Guibas. Robust learning through cross-task consistency.
CoRR, abs/2006.04096, 2020. URL https://arxiv.org/abs/2006.04096.

13

https://arxiv.org/abs/2005.00770
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
https://arxiv.org/abs/2310.12100
https://arxiv.org/abs/2310.12100
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2303.02861
https://arxiv.org/abs/2303.02861
https://arxiv.org/abs/2309.14859
https://arxiv.org/abs/2006.04096

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 4791–4800, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512, 2023.

Yu Zhang and Qiang Yang. A survey on multi-task learning. CoRR, abs/1707.08114, 2017. URL
http://arxiv.org/abs/1707.08114.

7 APPENDIX

7.1 CONVERGENCE ANALYSIS

This section analyzes the convergence properties of PEML, which jointly optimizes LoRA and
PrefixNAS. The analysis considers the coupled dynamics of LoRA parameters, Prefix parameters,
and PrefixNAS search variables under a unified optimization framework. The objective is to minimize
the function f(θLoRA, θPrefix, α), where α determines the selection of operations in the search process.
The parameters are updated simultaneously using stochastic gradients, with α constrained to a simple∑

i αi = 1, αi ≥ 0. The problem formulation involves three parameter groups: the LoRA parameters
(θLoRA), the Prefix parameters (θPrefix), and the architecture weights (α). The joint optimization
objective can be expressed as:

min
θ∈Θ

f(θ) [where θ = θLoRA, θPrefix, α] (16)

The convergence analysis is based on several key assumptions. (1) The loss function f is assumed to
be β-smooth in all parameters:

|∇f(θ)−∇f(θ′)| ≤ β|θ − θ′| (17)

(2) The gradients of the parameters are bounded:
|∇θLoRAf | ≤ ML, |∇θPrefix,α]f | ≤ MP (18)

where M = max(ML,MP) prevents gradient explosion in any module.

(3) A unified learning rate ηt =
c√
T

with effective step sizes defined for each parameter group as
follows:

ηLoRA
t = ηPrefix

t = ηαt = ηt (19)

The optimization dynamics involve projected SGD for NAS variables and standard SGD for LoRA
and Prefix parameters:

θt+1
LoRA = θtLoRA − ηt∇θLoRAf(θ

t)

[θt+1
Prefix, α

t+1] = ΠK
(
θtPrefix, α

t]− ηt∇[θPrefix,α]f(θ
t)
) (20)

Applying the descent lemma under the β-smoothness assumption, the per-iteration loss change can
be expressed as:

f(θt+1) ≤f(θt)− ηt
(
|∇θLoRAf(θ

t)|2 + |∇θPrefix,α]f(θ
t)|2

)
+

βη2t
2

(
M2

L +M2
P

) (21)

Summing over T iterations and utilizing the gradient bounds, the convergence bound can be derived
as:

1

T

T−1∑
t=0

(
|∇θLoRAf(θ

t)|2 + |∇θPrefix,α]f(θ
t)|2

)
≤ C(ML +MP)√

T
(22)

where C is a constant that depends on β, c, and cα.

14

http://arxiv.org/abs/1707.08114

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Under the specified assumptions and a learning rate schedule of ηt = c√
T

, the final convergence
guarantee after T iterations is given by:

1

T

T−1∑
t=0

E[|∇f(θt)|2] ≤ 2(f(θ0)− f∗) + βc2(M2
L +M2

P)

c
√
T

(23)

where the gradient norm incorporates contributions from both parameter optimization and architecture
search. The analysis ensures stable updates across LoRA, Prefix Tuning, and NAS variables under a
unified learning rate framework.

7.2 ADDITIONAL RESULTS

7.2.1 PERFORMANCE ANALYSIS ON LOW DATA SETTINGS

We also evaluated cross-task knowledge transfer by training on a small sample from all tasks,
observing comparable results as shown in Table 7 and Table 8. We evaluated the performance of
various PEFT techniques, including PreEmbedd, LoRA, and AdaLoRA, along with their combinations
with PEML, on GLUE and SuperGLUE benchmarks. PEML achieved the highest average accuracy
with LoRA and AdaLoRA on both benchmark in resource-constrained scenarios.

Table 7: Performance of various PEFT methods, including PreEmbedd, LoRA, AdaLoRA, and their
combinations with PEML, tested on the T5-large model on GLUE benchmark. Results are reported
for low data (500 samples from each task) settings.

Peft Techniques SST2 MRPC RTE COLA QQP WNLI QNLI AVG

PreEmbedd 0.855 0.811 0.888 0.806 0.936 0.687 0.856 0.834
LoRA 0.932 0.871 0.891 0.859 0.944 0.718 0.940 0.880

LoRA & PreEmbedd 0.938 0.863 0.910 0.875 0.944 0.718 0.939 0.884
PEML 0.952 0.932 0.942 0.890 0.942 0.750 0.952 0.908

AdaLoRA 0.932 0.895 0.896 0.871 0.950 0.734 0.952 0.890
AdaLoRA & PreEmbedd 0.916 0.891 0.893 0.846 0.945 0.750 0.946 0.884

PEML-AdaLoRA 0.968 0.907 0.920 0.835 0.972 0.796 0.962 0.904

Table 8: performance of various PEFT methods, including PreEmbedd, LoRA, AdaLoRA, and their
combinations with PEML tested on the T5-large model on SuperGLUE tasks. Results are reported
for low data (300 samples from each task) efficiency settings, with the PEML achieving the highest
average performance.

Peft Techniques Boolq RTE COPA MultiRC WIC WSC AVG

PreEmbedd 0.911 0.891 0.750 0.877 0.781 0.875 0.847
LoRA 0.919 0.935 0.750 0.889 0.810 0.732 0.839

LoRA & PreEmbedd 0.922 0.931 0.800 0.890 0.814 0.714 0.845
PEML 0.912 0.871 0.925 0.876 0.829 0.767 0.863

AdaLoRA 0.912 0.907 0.750 0.871 0.785 0.767 0.832
AdaLoRA & PreEmbedd 0.897 0.895 0.725 0.878 0.791 0.767 0.826

PEML-AdaLoRA 0.922 0.943 0.825 0.893 0.840 0.803 0.871

7.2.2 PERFORMANCE ANALYSIS ON GLM-10B

As detailed in Table 9, we also benchmarked PEML against other PEFT methods on the GLM-
10B model. Our approach demonstrates clear superiority by achieving the highest accuracy on
SuperGLUE benchmark with an average score of 0.631.

7.2.3 BENCHMARK COMPARISON: DEEPSEEK 7B VS QWEN2-7B VS LLAMA3-8B

We selected our primary models to ensure fair comparison with prior work, since they are widely
used and well-established in the parameter-efficient tuning literature. Most baseline studies rely on
these models, making them natural choices for consistent evaluation. While newer models such

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Compare the performance accuracy of PEML using GLM-10B Du et al. (2021) model with
state-of-the-art multitasking framework. All the results are directly reported from Wang et al. (2023a).

Peft Techniques Boolq CB COPA MultiRC RTE WIC WSC AVG

LoRA 0.609 0.463 0.657 0.624 0.573 0.391 0.323 0.520
MOE-LoRA 0.633 0.450 0.634 0.640 0.612 0.403 0.396 0.538

Poly 0.646 0.521 0.655 0.656 0.621 0.417 0.4708 0.569
MHR 0.648 0.507 0.663 0.657 0.627 0.423 0.455 0.569

C-Poly 0.673 0.603 0.704 0.679 0.680 0.487 0.534 0.622

PEML 0.682 0.610 0.707 0.688 0.693 0.491 0.552 0.631

as LLaMa3-8B Grattafiori et al. (2024) , DeepSeek-LLM-7B Bi et al. (2024), and Qwen2-7B Bai
et al. (2023) show strong potential, we opted for LLaMa2-7B due to its maturity, stable training
dynamics, and broad community support. Nonetheless, we also evaluated our PEML approach on
several state-of-the-art models across GLUE, SuperGLUE, MMLU, and Commonsense Reasoning
(CR) benchmarks in table 10.

Table 10: Benchmark performance of recent LLMs on MMLU, GLUE, SuperGLUE, and Common-
sense Reasoning (CR). Average accuracy across all benchmarks is reported for each model.

SOTA Models MMLU GLUE SuperGLUE CR

LLaMA3-8B 0.662 0.922 0.915 0.821
DeepSeek-7B 0.569 0.910 0.897 0.834

Qwen2-7B 0.694 0.904 0.882 0.809

7.3 ADDITIONAL PARAMETERS

PEML introduces a dynamic architecture search mechanism where the number of additional parame-
ters is not predetermined but instead depends on the trajectory of the search and the sub-architectures
selected during training. In practice, the overhead remains relatively small, typically within 2% to 8%
of the base model’s parameters.

7.4 ABLATION STUDY

We conduct ablation studies to evaluate the impact of three critical aspects in PEML: the optimization
order in PEML the number of layers (n), and the search space operations within PrefixNAS. For
each experiment, we use T5-large model and train it on the SuperGLUE dataset. (1) We observe that
parallel optimization consistently outperforms sequential optimization—whether LoRA is followed
by PrefixNAS or vice versa. Moreover, sequential order has more additional training overhead than
the parallel order (∼ see Appendix 7.6). (2) We increase the number of layers up to 8 but beyond
n=6 does not yield a significant performance boost (∼ see Figure 3). However, A more complex
architecture with additional layers could theoretically improve performance but it also introduces
a large number of trainable parameters. Therefore, we must find a balance between architectural
complexity and the associated computational cost. Lastly, (3) We find that certain operations did
not have any major contribution to the PrefixNAS architecture. We exclude these operations during
our search space design (∼ see Figure 3). This reduction in search space results in significant time
savings during the search process.

7.5 PEML VS. MULTILORA: VRAM-EFFICIENT SCALING

Training throughput, and VRAM usage are critical for generative LLMs. MultiLoRA increases
model capacity by adding multiple parallel LoRA modules (n > 1), which linearly increases VRAM
usage due to activation caching, especially for long sequences. For example, training LLaMA-7B
with sequences of 1024 tokens and n=5 modules can consume more VRAM than full-parameter
fine-tuning, limiting practical scalability. In contrast, our proposed PEML maintains a single LoRA
module (n=1) and increases the rank r to match or exceed the expressivity of MultiLoRA. This design

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

avoids horizontal scaling entirely and VRAM usage remains nearly constant regardless of the rank
increase. Additionally, MultiLoRA and PEML do not introduce notable latency and the throughput
remains close to around 400 tokens per GPU per second (∼ see figure 4). In our benchmarking, the
throughput of PEML is almost twice that of full parameter fine-tuning (208 tokens per GPU per
second)

32 64 96 160
Rank (n x r)

VR
AM

 (g
b)

PEML
Multi-LoRA

Fine-tuning

0

20

40

60

32 64 96 160
Rank (n x r)

Fine-tuning

PEML
Multi-LoRA

0

100

200

300

400

To
ke

ns
 (g

pu
 p

er
 s

ec
)

a) Throughput b) VRAM

Figure 4: (a) Throughput and (b) peak VRAM usage benchmarked when training LLaMA-7B with
sequences of 1024 tokens. n × r on horizontal axis indicates total rank of MultiLoRA and PEML.

7.6 COMPARISON OF SEQUENTIAL AND PARALLEL OPTIMIZATION

We further investigate the effect of combining LoRA and Prefix Tuning under different optimization
approaches. Table 11 reports the performance on five representative SuperGLUE tasks. We consider
three settings: (i) sequential optimization where LoRA is trained first followed by Prefix Tuning,
(ii) sequential optimization in reverse order where Prefix Tuning is trained first followed by LoRA,
and (iii) parallel optimization where LoRA and Prefix Tuning are jointly optimized (PEML). Re-
sults demonstrate that parallel optimization consistently yields higher average performance, while
sequential variants show task-specific variations.

Table 11: Performance comparison of sequential and parallel optimization of LoRA and Prefix Tuning
across SuperGLUE tasks. Parallel optimization achieves the highest average performance.

Approches BoolQ COPA RTE WSC WiC Avg

LoRA→ Prefix 0.929 0.855 0.922 0.750 0.835 0.858
Prefix→ LoRA 0.922 0.835 0.938 0.735 0.864 0.859

LoRA ∥ Prefix (PEML) 0.925 0.850 0.932 0.804 0.837 0.869

7.7 INFERENCE LATENCY INDUCED BY ADAPTER SWITCHING

Inference latency in multi-task setting is affected by PEFT adapter switching. For 100 tasks with
separate adapters, each task’s latency is the forward pass tf plus switch time ts, giving total latency
T = 100× (tf + ts). In PEML, a single unified adapter removes switching (ts = 0), so TPEML =
100 × tf . Using empirical estimates with minor variability, T5-large has tf = 11 ms, average
ts ≈ 2.1 ms, resulting in 1,320 ms for 100 adapters vs 1,100 ms with PEML (∼ 17% reduction);
LLaMA2-7B has tf = 52 ms, average ts ≈ 4.3 ms, giving 5,630 ms vs 5,200 ms (∼ 8% reduction).
The switching overhead scales linearly with the number of tasks, so PEML’s unified-adapter design
becomes increasingly advantageous for larger multi-task setups, maintaining efficiency without
compromising forward-pass computation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

7.8 LLM USAGE

We used a large language model (LLM) solely for writing polish, such as improving grammar, clarity,
and readability of the text. The LLM did not contribute to research ideation, methodology, analysis,
or results. All scientific content and conclusions are the responsibility of the authors.

18

	Introduction
	Related Work
	PEML
	Problem Statement
	PrefixNAS Optimization
	PEML Optimization
	Hyperparameter Optimization

	Experiments
	Models & Dataset
	Experimental Setup
	Results
	General Language Understanding
	Multi-Sentence Advanced Reasoning
	Massive Multitask Language Understanding
	Commonsense Reasoning

	Sensitivity Analysis
	Conclusion
	Appendix
	Convergence Analysis
	Additional Results
	Performance Analysis on Low Data Settings
	Performance Analysis on GLM-10B
	Benchmark Comparison: DeepSeek 7B vs Qwen2-7B vs LLaMA3-8B

	Additional Parameters
	Ablation Study
	PEML vs. MultiLoRA: VRAM-Efficient Scaling
	Comparison of Sequential and Parallel Optimization
	Inference Latency Induced by Adapter Switching
	LLM Usage

