
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCALABLE DO-SHAPLEY EXPLANATIONS WITH
ESTIMAND-AGNOSTIC CAUSAL INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Among explainability techniques, SHAP stands out as one of the most popular, but
often overlooks the causal structure of the problem. While do-SHAP uses inter-
ventional causal queries, its reliance on estimands hinders scalability. To address
this problem, we propose employing estimand-agnostic Causal Inference, which
allows for the estimation of any identifiable query with a single model, making
do-SHAP feasible on arbitrarily complex graphs. We also develop a novel algo-
rithm to significantly accelerate its computation at a negligible cost with a marked
improvement in computational speed, as well as a method to explain inaccessible
Data Generating Processes. We validate our approach on two real-world datasets,
highlighting its potential in obtaining reliable explanations.

1 INTRODUCTION

A S

E

Y

Figure 1: Salary causal graph.

The widespread adoption of Machine Learning (ML) systems has
raised concerns about their limitations: models can replicate human
biases (Angwin et al., 2016), base their outcomes on spurious cor-
relations (Neuhaus et al., 2023), or be vulnerable to malicious ad-
versarial attacks (Szegedy et al., 2014). Since most of these systems
are black-boxes, there is an ever-increasing need for explainability
techniques to make sense of the model. This is especially relevant
w.r.t. fairness (i.e., protecting certain groups against discrimina-
tion), the right to explanation (European Commission, 2016) (e.g.,
“What would I need to do for my loan to be approved?”), debug-
ging, auditing, and fostering user trust in the system.

As a response, the field of explainability has steadily gained traction, resulting in several approaches
(Zhang et al., 2021) to explain model predictions. Among them, the Shapley value (SV, or SHAP)
(Štrumbelj & Kononenko, 2014) is one of the most popular, since it is the only attribution strategy
fulfilling a set of axioms that correspond to human intuition (see Appendix A). SVs are derived from
a value function ν, used to measure the effect of a subset (coalition) S of features X when applied
on the model’s prediction. Different definitions of ν result in different kinds of Shapley values, the
most common being marginal and conditional SHAP (Chen et al., 2023).

However, both of these options ignore the causal structure underlying the data; for instance, Fig-
ure 1 represents the salary Y of an employee of age A with a certain education level E and seniority
level S. Let f be a ML model f(X) ≈ E [Y | X], learning Y given inputs X = {A,E, S}. Consider
ν({E}). In marginal SHAP, ν assigns values {E = e} and marginalizes the complementary set
(a, s) ∼ P (A,S) regardless of how the coalition’s values causally affect them (E → S). Condi-
tional SHAP does consider these effects, but conditionally, (a, s) ∼ P (A,S | E = e), producing
anti-causal effects to A (i.e., we cannot change age by granting them a degree). Please refer to
Appendix G for an extended discussion on this example.

Several works (Frye et al., 2020; Heskes et al., 2020; Lauritzen & Richardson, 2002; Janzing et al.,
2020) discuss the limitations of non-causal SHAP and propose approaches with a causal interpreta-
tion under certain limitations, finally resulting in do-SHAP (Jung et al., 2022), whose value function
is defined as ν(S) = E [f(X) | do(S = s)], where do(S = s) represents a causal intervention on
S with values s. Thanks to Causal Inference, we can transform this query into a probabilistic for-
mula (the estimand) only containing terms from the observational distribution P (X); hence, it is

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

possible to train ML models on each of these terms and apply them back into the formula to ob-
tain an estimation for the query. The main drawback of estimand-based estimation is that do-SVs
require computing 2|X| causal queries, one for each subset S ⊆ X, each with a different estimand
formula and several ML models to estimate its terms, making it infeasible for complex graphs. In
fact, do-SHAP’s authors stated they “are not aware of any general causal effect estimators suitable
for estimating the expression”.

Here lies our first contribution: by employing the estimand-agnostic approach (Parafita & Vitrià,
2022) —based on Structural Causal Models (SCMs)—, we can compute any of the required causal
effects with a single model. We do so by following a general procedure instead of query-specific
estimands, thereby enabling the computation of do-SVs in a general, scalable way; see Sections 3.2
and 4.1. Secondly, we demonstrate new do-SHAP properties that result in the novel Frontier-
Reducibility Algorithm (FRA), which optimizes do-SHAP significantly at virtually no cost; see
Section 4.2. Next, we devise a explainability strategy with do-SVs, not only for accessible ML sys-
tems, but also for natural, inaccessible Data Generating Processes; see Section 4.3. Finally, we test
the estimation capabilities of the estimand-agnostic approach on do-SVs, demonstrate the speedup
of FRA, and showcase the application of these techniques on two real-world datasets to demonstrate
the power of do-SHAP in providing reliable explanations; see Section 5 and Appendix F. We include
an Impact Statement of our work in Appendix I.

2 RELATED WORK

Among many different kinds of explainability techniques (see (Zhang et al., 2021) for a recent
survey), we are particularly interested in Shapley values (Lundberg & Lee, 2017), which provide
an attribution for each input feature of the system to explain. There is a vast literature on SHAP
estimation, discussing the choice of value function ν and tractable estimation strategies for the actual
Shapley value (e.g., permutation sampling, adaptive sampling or model-specific strategies); refer to
(Chen et al., 2023) for an extensive survey on the topic.

Our main interest is in SHAP approaches that leverage the underlying causal structure of the data.
Asymmetric Shapley values (Frye et al., 2020) employ a topological order of the graph to restrict
which permutations are considered in the computation of Conditional SHAP, thereby granting more
attribution to ancestors of other features. Causal Shapley values (Heskes et al., 2020) properly
considers the impact of causal interventions on Shapley attributions, but assumes a partial causal
ordering of the graph to define causal chain graphs (Lauritzen & Richardson, 2002) in order to avoid
the impact of causal confounders on identifiability. do-SHAP (Jung et al., 2022) does require a
full causal graph, but provides a full method to compute attribution on all variables, as long as an
estimand can be found for every causal query. Finally, in a different direction, Shapley flow (Wang
et al., 2021) studies causal attributions on the causal graph’s edges instead of its nodes/variables.

In order to avoid do-SHAP’s scalability problems, we propose estimand-agnostic methods, which
train SCMs modelling the data distribution and estimate causal queries. This approach is explored
in the Neural Causal Models framework (Xia et al., 2021). In this line, recent contributions em-
ploy Deep Learning for SCM modeling: CausalGAN (Kocaoglu et al., 2018) uses Generative Ad-
versarial Networks (Goodfellow et al., 2020) to model images in an SCM containing descriptive
factors of the image; Parafita & Vitrià (Parafita & Vitrià, 2019) propose the Distributional Causal
Node as a way to model mixed-type distributions (i.e., with discrete and continuous random vari-
ables) and expand their framework with Deep Causal Graphs (Parafita & Vitrià, 2022); Pawlowski et
al. (Pawlowski et al., 2020) propose Normalizing Flows (Papamakarios et al., 2021) and Variational
AutoEncoders (Kingma & Welling, 2014) for SCMs with medical image nodes; and Diffusion-based
Causal Models (Chao et al., 2023) uses Diffusion Models (Ho et al., 2020) to train their SCMs on
high-dimensional data. A promising alternative models SCMs not node by node as all previous
works, but the graph as a whole with a single function of its noise signals, thereby avoiding error
propagation when sampling. Two of these approaches are VACA (Sánchez-Martın et al., 2022),
which uses Graph Neural Networks (Zhou et al., 2020), and Causal Normalizing Flows (Javaloy
et al., 2024), with a single Normalizing Flow for the whole graph.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 PRELIMINARIES

This section establishes the concepts and notations needed in this work. We start with Structural
Causal Models, an essential framework for causal queries, along with a discussion on the estimation
of such queries. We then define the general Shapley value, from which we can derive do-SHAP.

Notation Sets, unless unambiguously differentiated, are represented by boldface letters (X), while
their elements are represented by simple letters (X ∈ X). Let P(X) := {∅ ⊆ S ⊆ X} denote
the power set of X, [K] := {1, . . . ,K} an index set, Π(S) the set of permutations of set S and <π
the order entailed by π (e.g., 3 <π 2 in π = (3, 1, 2)). Given a graph G = (V,E) and a subset
of vertices X ⊆ V, we denote the set of ancestors of X (including X) as An(X) and the set of
descendants (including X) as De(X). For a certain node X ∈ V, let PaX denote the set of parents
of X (not including X). Random variables (r.v.s) are denoted in uppercase (X) with realizations in
lowercase (x). Let x ∼ P(X) denote the generation of a new sample x from the distribution P (X).

3.1 STRUCTURAL CAUSAL MODELS

LetM = (V,W,P,F) be a Structural Causal Model (SCM), consisting of a set of measured r.v.s
V = (V1, . . . , VK), a set of latent r.v.s W , their priors P(W) =

∏
W∈W P(W) (all mutually

independent), and a set of functions F := {fk}k∈[K] for each measured variable. The set of latent
variables consists of W := E ∪ U , with E := (E1, . . . , EK) the exogenous noise signals, Ek
corresponding to Vk, and a set of confounders U ⊆ {U{k,l} | 1 ≤ k < l ≤ K}1, with each
U{k,l} ∈ U affecting both Vk and Vl. Finally, each fk ∈ F is a deterministic function Vk =
fk(Pak,U{k,·}, Ek) that returns Vk’s realizations given its measured parents Pak ⊆ V \ {Vk},
confounders U{k,·} := {U{k,l}}l∈[K] ∩ U and the corresponding Ek. Let Pa′k := Pak ∪ U{k,·}.

Let GM = (V,E) be the directed graph associated to M, with vertices, nodes or variables V :=
V ∪ W and edges E := {X → Vk | ∀Vk ∈ V, X ∈ Pa′k ∪ {Ek}}2. If GM is a Directed Acyclic
Graph (DAG), there is a topological order3 for V . In that case, we can define M’s probability
distribution PM(V) from the SCM ’s sampling procedure: it starts by sampling any latent variable
EX ∈ E , U ∈ U from their priors εX ∼ P(EX), u ∼ P(U); then, following the topological order
k = 1..K, it samples every Vk ∈ V by applying vk = fk(pak, u{k,·}, εk).

We define an intervention do(X = x), also denoted x̂, on a variableX ∈ V as the replacement of fx
with the assignment X ← x. X takes this value independently of its parents, and any descendants
may be affected by this change. Note that this transforms the SCM M into an intervened model
Mx, graph Gx := GMx

(without any edges pointing to X), and distribution Px(V) := PMx
(V).

We can also define interventions on sets of variables do(X = x) by the replacement of each of the
corresponding functions {fX | X ∈ X}. The terms Px(Y) = P (Y | do(X = x)) = P (Y | x̂) are
used interchangeably, for clarity or economy of notation depending on the case.

3.2 IDENTIFIABILITY AND THE ESTIMAND-AGNOSTIC APPROACH

Let us assume a set of r.v.s V and an i. i. d. dataset D = (v(i))i∈[N] ∼ P(V) sampled from an un-
known Data Generating Process (DGP) with a strictly positive probability measure P(V). Further
assume that P(V) follows an unknown SCM M, but whose graph GM is known. For instance,
Figure 1 shows an SCM where V = (A,E, S, Y) and U = ∅. Let us estimate the causal query
Q := EY [Y | ê]. Note that we can transform this interventional query into an observational for-
mula —with no interventions— by leveraging do-calculus (Pearl, 2009) (see Appendix C), a set
of operations to transform probabilistic expressions following their graph structure. At the end of
this process, known as identification, we arrive at the final formula, the estimand: for this example,
Q = EY [Y | ê] = EA [EY [Y | e,A]]. If such a formula exists, the query is said to be identifiable in
that graph. Fortunately, there are algorithms to automatically determine identifiability and obtain the

1U can be empty, i.e., no latent confounders. This case is known as the causal sufficiency assumption.
2When representing GM, we usually omit W as a notation shorthand; E is implicit, and confounders U{k,l}

are denoted by Vk ↔ Vl.
3We say V = (V1, . . . , VK) is in a topological order of the DAG G if ∀k, l ∈ [K], Vk ∈ An(Vl) ⇒ k ≤ l.

Let <G represent the particular order defined by G: X <G Y .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

corresponding estimand (Shpitser & Pearl, 2006a;b), with implementations in R (Tikka & Karvanen,
2017) and Python (Pedemonte et al., 2021).

The estimand-based approach employs ML models to approximate each of the probabilistic terms in
an estimand; in the example, we can train a classifier or regressor (depending on the kind of r.v. Y is)
to model f(E,A) ≈ EY [Y | E,A] and then estimate the formula through Monte Carlo to arrive at
an estimation for the query. However, this approach does not scale, since, for each and every query,
we need to 1) derive the corresponding estimand for that query; 2) train ML models to estimate
each term in the formula; and 3) put it all together to arrive at an answer for the query. Even
with algorithms to automatically extract the estimand, it is not trivial to compute these formulas,
especially if we need to answer exponentially many queries, as will be the case for do-SHAP.

However, if we had access to the original SCMM, we could simply apply Monte Carlo by takingN
samples from the intervened distribution Pe, (y(i))i∈[N] ∼ Pe(Y), usingMe’s sampling procedure.
Instead, let us consider a family of SCMs MΘ = (V,W,P ′,FΘ) with graph GMΘ = GM and
whose FΘ depends on a set of parameters Θ (models parameterized by Θ). Irrespective of the
choice of prior P ′ and functions FΘ, if both are expressive enough, we can trainMΘ to find a value
θ so that the associated distribution PMθ

(V) = P(V) (in an infinite data setting). If that is the case,
by the application of procedures based on our proxy SCMMθ’s distribution, any identifiable query
can be estimated as if we were employing the underlying SCMM, without ever using the estimand.

It is trivial to see why: since our identifiable query Q’s value is derived from the observational
formula of the estimand, it depends exclusively on observational terms resulting from the joint dis-
tribution PM (V), which we assume is correctly represented by our trained proxyMθ. Therefore,
as long as we derive its value from the distribution entailed by the proxy, we will necessarily ar-
rive at the same result as with M; otherwise, PMθ

(V) ̸= PM(V). In other words, even though
its latent priors and functional assignments may be different, we can still compute the causal query
through the proxy SCM because there is an estimand for Q in GM. Hence, this results in an al-
ternative approach for causal query estimation, the estimand-agnostic approach (Parafita & Vitrià,
2022): define a trainable SCMM′ with the underlying SCM G, train it to learn the observational
distribution PM(V) and compute any identifiable queries from that single model using the SCM’s
procedures, not the specific estimand for each query. This will become essential for the computation
of do-Shapley values.

3.3 THE SHAPLEY VALUE

Consider a set of K players X and a value function ν : P(X)→ R. We can define the corresponding
coalitional (cooperative) game ∆ν(S) := ν(S)−ν(∅),∀S ∈ P(X) such that ∆ν(∅) = 0. We define
the Shapley value (Shapley, 1953) ϕ∆ν

(X) for a player X ∈ X (denoted by ϕν(X) or simply ϕX
unless when leading to ambiguity) as:

ϕ∆ν
(X) :=

∑
S⊆X\{X}

1

K

(
K − 1

|S|

)−1

(ν(S ∪ {X})− ν(S)) (1)

=
1

K!

∑
π∈Π(X)

(ν(X≤πX)− ν(X<πX)), (2)

where X<πX := {X ′ ∈ X | X ′ <π X} and equivalently for X≤πX . Both equations are equivalent
given that the sum over weighted subsets S results from the average over all permutations of the set
of players X. Note that SVs fulfill efficiency:

∑
X∈X ϕX = ν(X) − ν(∅) = ∆(X) (i.e., SHAP

attributions add up to the contributions of the whole set X).

3.4 TRACTABLE ESTIMATION OF THE SHAPLEY VALUE

Even though Equation (2) requires 2 · K! computations of ν, we can consider each permutation
π ∈ Π([K]) as a sample from the uniform distribution over the set of permutations, π ∼ U(Π([K])),
resulting in ϕX = Eπ∼U(Π([K])) [ν(X≤πX)− ν(X<πX)], which can be approximated with Monte
Carlo by sampling N i.i.d. permutations and averaging their results (Mann & Shapley, 1960). This

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

estimator ϕ̃X is unbiased w.r.t. ϕX with variance σ2
X

N , where σ2
X is the variance of ν(X≤πX) −

ν(X<πX) over random π. Quasi-random and adaptive sampling strategies can also be employed for
faster convergence of the Monte Carlo estimators; please refer to (Štrumbelj & Kononenko, 2014)
for more details.

On the other hand, both methods result in a significant number of subset collisions, making it worth-
while to cache the ν(S) values to avoid unnecessary computations. We derive the expected number
of coalitions sampled after N permutations in Appendix B, which let us define a computational
budget (i.e., how many permutations to sample) based on the desired coalition coverage.

4 METHOD

In the following, we present our contributions: we start defining the do-Shapley value (Jung et al.,
2022) to propose estimand-agnostic techniques as a way to make do-SHAP feasible for arbitrary
graphs; we derive several do-SHAP properties that motivate the definition of an efficient algorithm
for a faster computation of do-SVs, the Frontier-Reducibility Algorithm; finally, we present a the-
orem allowing explanations on inaccessible DGPs. Please refer to Appendix H after reading this
section for a detailed example illustrating the application of our approach.

4.1 THE DO-SHAPLEY VALUE

Consider an SCMM = (V,W,P,F), a target r.v. Y ∈ V , a subset of K variables X ⊆ V \ {Y }
and a certain sample x ∼ P(X) we wish to explain. Given a coalition S ∈ P(X) with realizations s
(a subset of x), let us define the value function νx(S):

νx(S) := E [Y | do(S = s)] (3)

Then, the do-Shapley value (do-SV) (Jung et al., 2022) over variables X with realizations x ∼ P(X)
on a variable X ∈ X is ϕX := ϕνx(X). For economy of notation, we will simply write ν := νx.

Assumption 4.1. We assume P(V) to be strictly positive, resulting from an unknown SCMM, but
whose graph GM is known4, a DAG, and s.t. its do-SVs are identifiable in GM (i.e., all ν(S) terms,
with S ⊆ X, are identifiable5). Note that GM may include latent confounders as long as its do-SVs
are identifiable.

Jung et al. (2022) employed the estimand-based approach, which requires an estimand for each of
the 2|X| terms ν(S). This makes do-SHAP impractical, since each estimand requires different ML
models for its probability terms and an ad-hoc computation following the estimand formula. In
response, we propose the estimand-agnostic approach: 1) train a single SCM to learn P(V); 2) for
each query ν(S), determine if it is identifiable (as we do in the estimand-based approach); and 3)
use general SCM-based procedures, not the estimand, to estimate the query. We do not include
further details about SCM modeling and query estimation in this work because it is already covered
in the respective papers (e.g., (Kocaoglu et al., 2018; Pawlowski et al., 2020; Javaloy et al., 2024)),
which would unduly expand our already lengthy appendix. For a detailed explanation on a general
framework for SCM training and estimation procedures, please refer to (Parafita & Vitrià, 2022).

4.2 EFFICIENT ESTIMATION OF THE DO-SHAPLEY VALUE

In this section, we derive several do-SHAP properties that will motivate a novel algorithm to accel-
erate its computation. We leave the proofs and derivation of the algorithm to Appendix D.

4This is a standard assumption in the Structural Causal Models community. If the graph is not available,
Causal Discovery algorithms (Spirtes & Zhang, 2016) can be employed.

5Running the identifiability algorithms (Section 3.2) on all 2|X| terms a priori is unnecessary. Instead, when
using the approximation method discussed in Section 3.4, we can test identifiability for each new sampled query,
caching results for repeated coalitions. If any coalition is found to be non-identifiable during this process, an
error state should halt it immediately; otherwise, if no non-identifiable coalition is found, our do-SV estimation
will be valid. Moreover, certain graph structures (e.g., no latent confounders) make do-SVs trivially identifiable;
a general graphical criterion for do-SV identifiability is left for future work.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proposition 4.2. For any non-ancestor X of Y , ϕX = 0.

Consequently, we can restrict G to Y ’s ancestors, since every other do-SV will necessarily be 0.

Assumption 4.3. Given an SCM M = (V,W,P,F) and a target r.v. Y ∈ V , we assume M
to be the projected SCMM[An(Y)] (see Definition C.8) and simply denote itM. From now on,
V = X ∪ {Y } with X := An(Y) \ {Y } = (V0, . . . , VK−1) in a topological order. Let Y := VK .

Next, we introduce the concept of frontiers, with which we derive essential properties necessary to
define an algorithm to speed up do-SHAP. Please refer to Appendix D.2 for a complete demonstra-
tion of these properties and the derivation of Algorithm 1.

Definition 4.4. Given any node X ∈ X, a subset S ⊆ X is a frontier between X and Y if X ̸∈ S
and all directed paths p = (X, . . . , Y) from X to Y are blocked by S, i.e., ∃Z ∈ S s.t. Z ∈ p. We
denote the set of frontiers between X and Y in G as FrG(X,Y).

Proposition 4.5. Given X ∈ X and Y , and a subset S ∈ FrG(X,Y), then ν(S ∪ {X}) = ν(S).
Remark 4.6. For any parent X ∈ PaY , no subset S ⊆ X \ {X} is a frontier between X and Y .

Theorem 4.7. Consider any subset S ⊆ X and let us define Z := {X ∈ S | S>GX ∈ FrG(X,Y)},
where S>GX := {Z ∈ S | Z >G X}. Then ν(S) = ν(S \ Z), and S \ Z cannot be further reduced.

Thanks to this theorem, we can significantly reduce execution time for do-SHAP by using a cache on
these irreducible subsets, thereby avoiding the computation of any ν(S) term whose irreducible S\Z
overlaps with a previously computed coalition. Additionally, we propose the Frontier-Reducibility
Algorithm (FRA), described in Algorithm 1, to efficiently reduce any coalition S ⊆ X, encoded as
s :=

∑
Vk∈S 2

k. Given three pre-computed maps and the Frontier map (populated as we execute
the FRA procedure), we can employ the output set, uniquely encoded as an integer, to identify S\Z,
which will then be passed to ν and stored in the ν-cache for subsequent evaluations.

Finally, note that this contribution is related to Luther et al. (2023) work, in which coalitions such
that ν(S∪ {X}) = ν(S) were identified, but with ν defined for conditional SHAP. We move further
by: 1) extending this idea to the do-SHAP causal setting, which requires the use of do-calculus to
derive these properties; and 2) by describing and efficiently computing the irreducible set such that
ν(S) = ν(S’), with S’ ⊆ S. See Appendix D.2 for an in-depth explanation of the procedure and its
preceding results.

4.3 DO-SHAPLEY EXPLANATIONS

So far, we have been talking about do-SHAP values w.r.t. a variable Y ∈ V in a certain SCMM, but
there are two use cases to consider in practice: either we want to explain a ML model that models Y
given some inputs Z ⊆ V \ {Y } or we want to explain the original variable Y directly.

If we want to explain a ML model f(Z) := E [Y | Z], we can replace Y with Y ′ := f(Z) (EY will
have no effect on fY ′ since f is deterministic) and then work on the projected SCM M[An(Y ′)]
considering PaY = Z. Note that this subgraph may contain variables other than those in Z, since
any X ∈ X \ Z may have an effect on some Z ∈ Z, and are therefore ancestors of Y . With this
SCM, we can apply estimand-agnostic procedures to estimate do-SHAP. We exemplify this case in
the experiment in Section 5.1.

If, instead, we want to explain the target variable Y directly, we simply employ do-SHAP on a
proxy SCM, but note that for a particular (x, y) ∼ P(X, Y),

∑
X∈X ϕνx(X) = E [Y | x̂]− E [Y] ̸=

y − E [Y] (unless Y is a constant distribution). There is a gap between the contribution of X
(∆νx(X)) and the actual value of Y , because our particular ν, an interventional query, is essentially
a population estimate, and as such aggregates for the whole distribution. In order to explain a
particular outcome, we need some kind of counterfactual value function ν; this is a promising avenue
of research, but is left for future work, since it is beyond the scope of this paper. As an alternative
approach, the following theorem proves that, under additional assumptions, we can explain this gap
through EY ’s SHAP attribution.

Theorem 4.8. do-Shapley Value for the Noise.
Let us assume that fY ∈ F follows an additive noise model, i.e., Y = f(PaY) + EY for
a certain function f . Consider the do-Shapley game involving variables X and EY . Then,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Frontier-Reducibility Algorithm (FRA)

Require: ParentsY :=
∑
Vk∈PaG(Y) 2

k.

Require: ∀k = 0..K − 1, Descendants[2k] :=
∑
Vk′∈DeG(Vk)

2k
′
.

Require: ∀k = 0..K − 1,Children[2k] :=
∑
Vk′∈ChG(Vk)

2k
′
.

Require: Frontier, a map int→ bool.
1: procedure IS-FRONTIER(s, x, y,Children)
2: c← x ▷ Current nodes
3: while c ̸= 0 and y & c = 0 do ▷ While C ̸= ∅ and Y ̸∈ C
4: s← s | c ▷ Update visited nodes with the new nodes
5: c′ ← c
6: while c′ > 0 do ▷ Iterate over the elements in C
7: x← 2⌊log2 c

′⌋

8: c′ ← c′ − x
9: c← c | Children[x]

10: end while
11: c← c & ¬s ▷ Remove any previously visited nodes
12: end while
13: return c = 0
14: end procedure
15: procedure FRA(s, ParentsY, Descendants, Children, Frontier)
16: p← 0; z ← 0; ▷ Initialize P,Z (encoded)
17: while s > 0 do
18: x← 2⌊log2 s⌋ ▷ Get the last element (encoded)
19: s← s− x
20: if x & ParentsY = 0 then ▷ Only if not a parent of Y
21: p′ ← p & Descendants[x] ▷ Only check descendants
22: t← p′ + x ▷ p′ + x uniquely defines (p′, x)
23: if t ̸∈ Frontier then
24: v ← IS-FRONTIER(p′, x, y,Children)
25: Frontier[t]← v
26: else
27: v ← Frontier[t]
28: end if
29: if v then
30: z ← z + x
31: end if
32: end if
33: p← p+ x
34: end while
35: return p− z ▷ Return the encoded set S \ Z
36: end procedure

ϕEY
= y − E [Y | paY] and every other do-Shapley value ϕX for X ∈ X can be computed w.r.t. X

only. Furthermore,
∑
X∈X ϕX + ϕEX

= y − E [Y].

Thanks to this theorem (proved in Appendix D.3), assuming an additive noise model for the target
variable, we can explain inaccessible DGPs with attribution to the noise with no computational
overhead. In practice, we can define a ML model f ′(paY) for E [Y | paY] and explain it instead,
computing the do-SV for EY afterwards with a simple subtraction, ϕEY

= y − f ′(paY).

4.4 LIMITATIONS

We finish this section by discussing the limitations of our approach. The causal graph G must be
known (otherwise, we would need domain experts and/or Causal Discovery algorithms (Spirtes &
Zhang, 2016) to derive it), it must be a DAG, its distribution P (V) must be strictly positive on its
support, and the do-SV must be identifiable in G. These limitations are shared with estimand-based

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

linear DCN DCG CNF
Estimator

8

7

6

5

Te
st

 lo
g-

lik
el

ih
oo

d
(

)

marginal linear DCN DCG CNF
Estimator

0.000

0.025

0.050

0.075

0.100

0.125

0.150

SH
AP

 E
st

im
at

io
n

Lo
ss

 (
)

U Z X A B C
Feature

0.0

0.1

0.2

0.3

0.4

0.5

Fe
at

ur
e

Im
po

rta
nc

e

marginal linear DCN DCG CNF ground-truth

Figure 2: Markovian case. Box-plots computed over 30 realizations of the dataset. (a) Distribution
adjustment score, log-likelihood (bigger is better). (b) SHAP estimation loss, L (lower is better).
(c) Feature Importance (the closer to ground-truth, the better). Dashed horizontal line represents
uniform importance (1

K). See Appendix E.1 for a bigger figure.

approaches, but, on the other hand, there is no doubly-robust general solution for SCMs yet, so this is
a definite disadvantage w.r.t. estimand-based methods; nevertheless, their ad-hoc nature makes them
impractical for do-SHAP, while our approach can adapt to arbitrary graphs. Finally, FRA requires
that not all variables are parents of Y , since no coalition would be reducible otherwise. Fortunately,
real-world DGPs rarely have all (proper) Y -ancestors as parents, and in the case of ML systems,
defining all X as model inputs (PaY ′) is rarely advisable, since they may contain non-ancestors
of Y (leading to spurious correlations or anti-causal directions (Schölkopf et al., 2021)) or inputs
A ⊆ X \PaY that are blocked by PaY , (Y ⊥⊥ A | PaY), in which case their inclusion could easily
lead to overfitting and adversarial vulnerability. In fact, feature selection strategies should aim at
discarding these cases.

5 EXPERIMENTS

The Fundamental Problem of Causal Inference (Pearl, 2009) means that we can never observe causal
effects on a single sample; when we observe an outcome (factual), we cannot go back in time to ap-
ply an intervention to obtain a different outcome (counterfactual), so we cannot measure the effect of
that intervention. For this reason, our first experiment deals with synthetic data, for which we have
access to the underlying DGP, to measure do-SHAP estimation error of several estimand-agnostic
estimators. Secondly, we demonstrate the speedup resulting from the FRA algorithm, also on a
synthetic dataset due to the difficulty in finding real datasets with known causal graphs and a pro-
gressively increasing number of features. Please refer to Appendix E for further details about these
experiments. Finally, we showcase do-SHAP explanations on two real world datasets (a classifica-
tion and a regression task). Given that the synthetic experiments validate our approach, while the
real world experiments are mere examples of its applicability, we prioritize the former in terms of
space and leave the latter for Appendix F due to space restrictions.

5.1 ESTIMATION PERFORMANCE

We designed a synthetic SCMM0 with the graph in Figure 3 for two cases: assuming U{X,B} is
observed (Markovian) or latent (semi-Markovian). We train a ML model f(paX) ≈ E [Y | paY],
which will become the accessible DGP to explain. Consider a new SCMM based onM0 but with
Y replaced by Y ′ := f(PaY); let X := V \ {Y ′}. Note that both cases are identifiable.

We replicate the experiment 30 times with different seeds. Let D be a dataset generated fromM
with N = 1000 i. i. d. samples. Since we have access to the DGP, we can estimate each query
ν(S) by Monte Carlo with M i. i. d. samples from the intervened DGP, passing them through f

and averaging the outputs; we will use the do-Shapley values Φ := (ϕ
(i)
X)i∈[N],X∈X computed

from these estimations as ground truth. We will train several kinds of SCM (with Y ′ replacing Y)
to learn the distribution P(V), use them to estimate the do-Shapley values Φ̃ = (ϕ̃

(i)
X)i∈[N],X∈X,

and compute their SHAP estimation loss L2(Φ, Φ̃) := 1
N |X|

∑N
i=1

∑|X|
k=1(ϕ

(i)
Xk
− ϕ̃(i)Xk

)2. We will
also compare against a marginal-SHAP estimator (which should result in different values). We
compute the average test log-likelihood (loglk) for each model as a way to measure distribution

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

adjustment. Finally, for all X ∈ X, we compute its Feature Importance (FI), defined as FIX :=
1
N

∑
i∈[N]

|ϕ(i)
X |∑

X′∈X |ϕ(i)

X′ |
.

Z

Y

X

C

B

A

Figure 3: Synthetic semi-
Markovian graph. The Markovian
graph results from U{X,B} (see
Footnote 2) being observed.

We will test do-SHAP with several SCM architectures to com-
pare among them6; we justify our choices in Appendix E.1.1,
along with further implementation details, due to space re-
strictions. These methods are: 1) a linear SCM with Nor-
mal distributions for each variable, used as a baseline; 2) the
Distributional Causal Node (Parafita & Vitrià, 2019) (DCN),
where every node is modeled after a specific distribution; and
3) Deep Causal Graph (Parafita & Vitrià, 2022) (DCG) pow-
ered with Normalizing Flows. Additionally, in order to test the
alternative approach of modeling SCMs not node-wise, but the
graph as a whole, we opt for Causal Normalizing Flows (CNF)
(Javaloy et al., 2024).

See Figure 2 for the Markovian case. As expected, distribu-
tion adjustment (loglk) correlates with SHAP estimation per-
formance; as our SCMs better model P(V), they better esti-
mate ν(S), resulting in better do-SHAP estimations. Linear-SCM cannot adjust properly to the
dataset’s distribution, and so its do-SHAP performance suffers; DCN comes remarkably close to
the best two models, probably because of the synthetic nature of the data; DCGs and CNFs ex-
hibit similar performance, with DCGs having more variance, possibly due to CNFs modeling all
variables at once. Finally, marginal SHAP significantly differs from the do-SHAP ground truth,
showing that, evidently, do-SHAP and marginal-SHAP measure different kinds of importance. FI
comparisons w.r.t. ground truth values are also aligned with the previous conclusions. As for the
semi-Markovian experiment, we found equivalent conclusions even without measuring the latent
confounder, with DCGs displaying the best estimation performance and FI values in agreement with
the ones in the Markovian case. We leave this experiment to Appendix E.1.2.

In the following, we will employ DCGs instead of CNFs because, while CNFs seem to be more
stable variance-wise, DCGs admit latent confounders and are orders of magnitude faster than CNFs.

5.2 FRONTIER-REDUCIBILITY ALGORITHM

We now test the speed-up resulting from the FRA; do-SHAP estimation performance is not tested
here since it is already covered in the previous experiment. Let us consider GK,p, the class of graphs
G withK+1 nodes, defined in topological order, X := (V0, . . . , VK−1), Y := VK , where p ∈ (0, 1)
is a parameter such that, for any possible edge Vi → Vj , 0 ≤ i < j ≤ K, the probability of this edge
appearing in G is p, and such that they fulfill two conditions: 1)An(Y) = X∪{Y } and 2) PaY ⊊ X
(otherwise, FRA will trivially have no effect and should be skipped). It is trivial to sample a graph
from this distribution using rejection sampling to ensure that both conditions are fulfilled.

Figure 4 summarizes our experiments. We will compute the error bars for the mean of several
metrics at 2-sigma over 30 graphs per configuration. Let K ∈ {5, . . . , 20} and p ∈ {0.1, . . . , 0.9}.
Figure 4 (a) shows the average ratio of coalitions out of the 2K possible coalitions that need to be
evaluated with ν after reduction by FRA. Note that, while these ratios depend on the actual topology
of the graph, each p-curve approaches the region of p, which in the case of p = 0.1 leads to a 90%
reduction in ν computations. Figure 4 (b) shows the average execution time of FRA per coalition.
Despite the exponentially-larger number of directed paths in the graph (in the worst case, a complete
graph, 2K − 1 directed paths from X ∈ X to Y), the computation of FRA appears to grow linearly
with K, due to the fact that it scales with the size of the coalition S to be evaluated (|S| < K) and
the depth of the graph (at most K). For K ≤ 20, the error bars do not exceed 3µs.

Finally, we evaluate FRA with an ablation test in Figure 4 (c). We design synthetic DGPs for
random G ∈ GK,p with ∀X ∈ V, fX(paX , εX) := mean(paX) + εX , εX ∼ N (0, 1). We choose
a linear SCM for its fast execution; real world SCMs, with far more complex architectures, will

6None of these methods are external baselines, since do-SHAP has not been tested with estimand-agnostic
approaches yet, nor has seen much use so far because of the ad hoc nature of estimand-based approaches.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 10 15 20
K (#variables)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f c

om
pu

te
d

co
al

iti
on

s a
fte

r F
RA

0.0

0.2

0.4

0.6

0.8

1.0

p
(e

dg
e

pr
ob

ab
ilit

y)

5 10 15 20
K (#variables)

1.0

1.5

2.0

2.5

3.0

FR
A

no
rm

al
ize

d
ex

ec
ut

io
n

tim
e

(s
) 1e 6

0.0

0.2

0.4

0.6

0.8

1.0

p
(e

dg
e

pr
ob

ab
ilit

y)

8 10 12 14
K (#variables)

100

101

102

Ex
ec

ut
io

n
tim

e
(s

) -
 lo

gs
ca

le baseline
cache
FRA

Figure 4: FRA experiments. (a) Ratio of computed coalitions after FRA. (b) FRA execution time
per coalition. (c) do-SHAP execution time (logarithmic scale) without cache (baseline), with cache
(cache) and with an FRA cache (FRA). Error bars at 2-sigma over 30 replications.

require even longer to execute, and FRA will therefore have an even stronger impact. We evaluate
do-SHAP with a linear DCG and using the approximate method with N permutations such that the
ratio of processed coalitions after N permutations is bigger than 0.5, computed with Equation (6) in
Appendix B; we set K ≥ 8 so that N ≥ 30. Note that this choice for N results in an exponential
time-growth w.r.t. K. We restrict this experiment to 8 ≤ K ≤ 15 and p = 0.25. For the ablation
test, we run three alternatives: compute every coalition S (baseline), employ a cache, and employ
an FRA cache (fra). We plot mean execution time for each alternative, with a consistent pattern:
FRA is an order of magnitude faster than the baseline and twice faster than the cache.

Please refer to Appendix E.2 for further tests on FRA and our experimental setup. There we show
that FRA’s execution time is negligible w.r.t. the computation of ν(S), even on linear SCMs. This
difference can only increase with more complex SCM architectures; therefore, for virtually no cost,
FRA skips computing ν(S) up to a significant factor, resulting in a marked speedup for do-SHAP.

6 CONCLUSION

In this work, we have introduced a practical and scalable method to estimate do-SVs using the
estimand-agnostic approach, with which we can estimate any identifiable query—in particular, do-
SVs—using general procedures agnostic to the query’s estimand. This flexibility is essential to make
these techniques accessible to practitioners, who may not necessarily be experts in Causal Inference.
We have tested our approach on multiple SCM architectures, showcasing the relationship between
distribution modeling and do-SHAP estimation performance, which paves the way for future re-
search. We have demonstrated several do-SHAP properties along with the proposal of the Frontier-
Reducibility Algorithm to speed up do-SHAP significantly. Finally, we have applied our method on
two real-world datasets (see Appendix F) showcasing the applicability of these techniques to obtain
reliable explanations, either from a ML model or an inaccessible DGP.

Further work could propose new SCM architectures to better model the data distribution, along with
more efficient estimators (ideally with doubly-robust guarantees) for the causal queries underlying
do-SHAP. A general graphical criterion for do-SV identifiability is also a worthwhile new direction.
Finally, do-SVs are based on interventional queries, but these are inherently population-based mea-
sures, and therefore not really appropriate for individual, local explanations; alternative definitions
of the value function could try to offer causal local explanations.

REFERENCES

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine Bias.
Propublica, May 2016. URL https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing.

CDC. CDC Diabetes Health Indicators. UCI Machine Learning Repository, 2015. Preprocessed
dataset downloaded from DOI: https://doi.org/10.24432/C53919.

Patrick Chao, Patrick Blöbaum, and Shiva Prasad Kasiviswanathan. Interventional and counterfac-
tual inference with diffusion models. arXiv preprint arXiv:2302.00860, 2023.

10

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Hugh Chen, Ian C Covert, Scott M Lundberg, and Su-In Lee. Algorithms to estimate Shapley value
feature attributions. Nature Machine Intelligence, pp. 1–12, 2023.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural Spline Flows. In
Advances in Neural Information Processing Systems (NeurIPS), volume 32, pp. 7511–7522, Van-
couver, Canada, 2019.

European Commission. Regulation (EU) 2016/679 of the European Parliament and of the Council
of 27 April 2016 on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation), 2016. URL https://eur-lex.europa.eu/eli/reg/2016/
679/oj.

Hadi Fanaee-T and Joao Gama. Event labeling combining ensemble detectors and background
knowledge. Progress in Artificial Intelligence, 2:113–127, 2014.

Christopher Frye, Colin Rowat, and Ilya Feige. Asymmetric Shapley values: incorporating causal
knowledge into model-agnostic explainability. Advances in Neural Information Processing Sys-
tems (NeurIPS), 33:1229–1239, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. Communications of the
ACM, 63(11):139–144, 2020.

Tom Heskes, Evi Sijben, Ioan Gabriel Bucur, and Tom Claassen. Causal Shapley values: exploit-
ing causal knowledge to explain individual predictions of complex models. Advances in Neural
Information Processing Systems (NeurIPS), 33:4778–4789, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems (NeurIPS), 33:6840–6851, 2020.

Dominik Janzing, Lenon Minorics, and Patrick Blöbaum. Feature relevance quantification in ex-
plainable AI: A causal problem. In International Conference on artificial intelligence and statis-
tics, pp. 2907–2916. PMLR, 2020.

Adrián Javaloy, Pablo Sánchez-Martı́n, and Isabel Valera. Causal normalizing flows: from theory to
practice. Advances in Neural Information Processing Systems, 36, 2024.

Yonghan Jung, Shiva Kasiviswanathan, Jin Tian, Dominik Janzing, Patrick Blöbaum, and Elias
Bareinboim. On measuring causal contributions via do-interventions. In International Conference
on Machine Learning, pp. 10476–10501. PMLR, 2022.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In Proceedings of the 2nd
International Conference on Learning Representations (ICLR), Banff, Canada, 2014.

Murat Kocaoglu, Christopher Snyder, Alexandros G. Dimakis, and Sriram Vishwanath. Causal-
GAN: learning causal implicit generative models with adversarial training. In Proceedings of the
6th International Conference on Learning Representations (ICLR), Vancouver, Canada, 2018.

Steffen L Lauritzen and Thomas S Richardson. Chain graph models and their causal interpretations.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 64(3):321–348, 2002.

Sanghack Lee and Elias Bareinboim. Causal effect identifiability under partial-observability. In
International Conference on Machine Learning, pp. 5692–5701. PMLR, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances
in neural information processing systems, 30, 2017.

11

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Christoph Luther, Gunnar König, and Moritz Grosse-Wentrup. Efficient sage estimation via causal
structure learning. In Proceedings of The 26th International Conference on Artificial Intelligence
and Statistics (AISTATS), pp. 11650–11670. PMLR, 2023.

Irwin Mann and Lloyd S Shapley. Values of large games, IV: Evaluating the electoral college by
Montecarlo techniques. Rand Corporation, 1960.

Yannic Neuhaus, Maximilian Augustin, Valentyn Boreiko, and Matthias Hein. Spurious features
everywhere - large-scale detection of harmful spurious features in ImageNet. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 20235–20246, 2023.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing Flows for probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57), 2021.

Álvaro Parafita and Jordi Vitrià. Explaining visual models by causal attribution. In 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW), pp. 4167–4175, Seoul, Korea,
2019. IEEE.

Álvaro Parafita and Jordi Vitrià. Estimand-agnostic causal query estimation with Deep Causal
Graphs. IEEE Access, 10:71370–71386, 2022.

Nick Pawlowski, Daniel Coelho de Castro, and Ben Glocker. Deep Structural Causal Models
for tractable counterfactual inference. In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, 2020.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, second
edition, 2009.

Martı́ Pedemonte, Jordi Vitrià, and Álvaro Parafita. Algorithmic causal effect identification with
causaleffect. arXiv preprint arXiv:2107.04632, 2021.

Pablo Sánchez-Martın, Miriam Rateike, and Isabel Valera. VACA: designing Variational Graph
Autoencoders for causal queries. In Proceedings of the 36th AAAI Conference on Artificial Intel-
ligence, volume 36, 2022.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of
the IEEE, 109(5):612–634, 2021.

LS Shapley. A value for n-person games. In Contributions to the Theory of Games (AM-28), Volume
II, pp. 307–317. Princeton University Press, 1953.

Ilya Shpitser and Judea Pearl. Identification of joint interventional distributions in recursive semi-
Markovian causal models. In Proceedings of 21st National Conference on Artificial Intelligence
(AAAI), pp. 1219–1226, Boston, MA, USA, 2006a.

Ilya Shpitser and Judea Pearl. Identification of conditional interventional distributions. In Pro-
ceedings of the 22th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 437–444,
Cambridge, MA, USA, 2006b.

Peter Spirtes and Kun Zhang. Causal discovery and inference: concepts and recent methodological
advances. In Applied informatics, volume 3. SpringerOpen, 2016.

Erik Štrumbelj and Igor Kononenko. Explaining prediction models and individual predictions with
feature contributions. Knowledge and information systems, 41:647–665, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In 2nd International Conference on
Learning Representations, ICLR, 2014.

Santtu Tikka and Juha Karvanen. Identifying causal effects with the R package causaleffect. Journal
of Statistical Software, 76(12):1–30, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jiaxuan Wang, Jenna Wiens, and Scott Lundberg. Shapley flow: A graph-based approach to inter-
preting model predictions. In International Conference on Artificial Intelligence and Statistics,
pp. 721–729. PMLR, 2021.

Kevin Xia, Kai-Zhan Lee, Yoshua Bengio, and Elias Bareinboim. The causal-neural connection: ex-
pressiveness, learnability, and inference. In Advances in Neural Information Processing Systems
(NeurIPS), volume 34, pp. 10823–10836, 2021.

Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. A survey on neural network interpretability.
IEEE Transactions on Emerging Topics in Computational Intelligence, 5(5):726–742, 2021.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI open, 1:57–81, 2020.

A SHAPLEY VALUE AXIOMS

The Shapley value ϕ = {ϕX}X∈X is the unique attribution measure that fulfills a number of desir-
able properties:

• Efficiency:
∑
X∈X ϕX = ν(X)− ν(∅) = ∆(X); the sum of Shapley values adds up to the

total contribution of X.

• Missingness: if ∀S ⊆ X \ {X}, ν(S ∪ {X}) = ν(S), then ϕX = 0; players with no
contribution to any coalition have Shapley value 0.

• Symmetry: if ∀S ⊆ X \ {X,Y }, ν(S ∪ {X}) = ν(S ∪ {Y }) then ϕX = ϕY ; players with
identical contribution to any coalition have identical Shapley values.

B CACHE IMPACT ON THE APPROXIMATION ALGORITHM

Consider the approximation method (see Section 3.4), where we sample permutations ofK elements
uniformly with replacement, π ∼ U(Π([K])), so as to approximate the Shapley value with a Monte
Carlo estimator. In this section, we want to evaluate how much we can accelerate the computation
of new permutations as we fill a cache with the values of previously computed coalitions. When
we use a cache, once we compute a coalition for the first time, we save its result in it (assuming
no cache limit) and further computations of this coalition will incur in negligible computation time
(simply a cache access), therefore speeding up the computation of new permutations. We want to
measure exactly how much we can speed up the process.

Let us define some notation. Given π ∈ Π([K]), let us denote by C(π) the set of K + 1 coalitions
S ∈ P([K]) defined by taking the first s elements of π, s = 0..K (e.g., for π = (3, 1, 2), C(π) =
{∅, (3), (3, 1), (3, 1, 2)}). Then, for an arbitrary S ∈ P([K]) and a permutation π ∼ U(Π([K])):

P (S ∈ C(π)) = |S|!(K − |S|)!
K!

=

(
K

|S|

)−1

(4)

since S must appear at the beginning of π in an arbitrary order, so there is |S|! possibilities, with
the remaining (K − |S|) elements in an arbitrary order, so (K − |S|)!, out of the total K! possible
permutations. Since we are taking N i. i. d. permutations (π(n))n∈[N], it follows that

P (∀n ∈ [N],S ̸∈ C(π(n))) =

(
1−

(
K

|S|

)−1
)N

, (5)

which is the probability of an arbitrary coalition S not belonging to any of theN previously sampled
permutations, and therefore, it still needs to be computed when it appears in a future permutation.
In particular, note that we do not need to know the elements of S, only its cardinality |S|, which
we will denote by s := |S|. Given the set of K + 1 coalitions C(π(N)) in permutation π(N), we
can now compute the expected ratio of its coalitions not found in any of the previous permutations

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
n
2K

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

ct
ed

 ra
tio

 o
f c

ac
he

d
co

al
iti

on
s

in
 p

er
m

ut
at

io
n

(n
)

10

20

30

40

50

K

0.00 0.25 0.50 0.75 1.00
n
2K

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

ct
ed

 ra
tio

 o
f c

ac
he

d
co

al
iti

on
s

af
te

r n
 p

er
m

ut
at

io
ns

5

10

15

20

K

Figure 5: Cache evolution plots. a) Ratio of coalitions in π(n) already cached. b) Ratio of total
coalitions already cached after n permutations. Both x-axis represent the number of permutations n
divided by 2K , so as to compare between different values of K.

(therefore not cached); in other words, the expected ratio of computations we need to perform at the
N -th permutation, N > 1, is:

1

K + 1

∑
S∈C(π(N))

P (∀n ∈ [N − 1],S ̸∈ C(π(n))) =
1

K + 1

K∑
s=0

(
1−

(
K

s

)−1
)N−1

. (6)

For N = 1, the ratio is trivially 1. Also that for s = 0 (S = ∅) and s = K (S = [K]), the term
(1−

(
K
s

)−1
) becomes 0 (it is impossible not to have seen them in a previous permutation, since they

are in every permutation), so we omit these cases in the following sums.

Finally, the expected ratio of cached coalitions (out of the total number of coalitions 2K) afterN ≥ 1
permutations is:

1

2K

N∑
n=1

∑
S∈C(π(n))

P (∀n′ ∈ [n− 1],S ̸∈ C(π(n′))) =
K + 1

2K
+

1

2K

N∑
n=2

K−1∑
s=1

(
1−

(
K

s

)−1
)n−1

=
K + 1

2K
+

1

2K

K−1∑
s=1

(
K

s

)(
1−

(
K

s

)−1
)(

1−

(
1−

(
K

s

)−1
)N−1)

=
K + 1

2K
+

1

2K

K−1∑
s=1

((
K

s

)
− 1

)
− 1

2K

K−1∑
s=1

(
K

s

)(
1−

(
K

s

)−1
)N

= 1− 1

2K

K∑
s=0

(
K

s

)(
1−

(
K

s

)−1
)N

, (7)

where we first split the sum over n for n = 1 and n > 1, and then swap the sums and apply, for
x := 1−

(
K
s

)−1
, the equality

∑N
n=1 x

n = x 1−xN

1−x for x ∈ (0, 1) (which is the case when s ̸= 0,K),
and noting that 1

1−x =
(
K
s

)
. We then split the sum in two terms, with the first half adding up to 1

with K+1
2K

. The rest of the transformation is trivial.

We now plot Equations (6) and (7) in Figure 5 (a) and (b), respectively, for several values of K
(represented by color opacity). The x-axis in both cases is n

2K
, so as to show how each curve

progresses as n → 2K , where we will have encountered (K + 1)2K coalitions. We can see: a)
that the likelihood of encountering previously-computed coalitions is very high early in the process,
which means that the computations required per permutation speed up significantly in the early
stages; b) the fraction of the total number of coalitions requires many more permutations to approach
100%. These plots are merely illustrative; we encourage researchers to make use of the derived
equations to adjust for the appropriate number of permutations in terms of computation time budget.

C CAUSAL INFERENCE CONCEPTS

We include here some additional notation and concepts for Causal Inference, necessary for the proofs
in Appendix D.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

NOTATION

Given r.v.s X ̸= Y and a disjoint set of r.v.s Z (possibly empty), we denote that X is independent of
Y conditioned on Z in a distribution P by (X ⊥⊥ Y | Z)P . Given disjoint sets of r.v.s X,Y,Z, we
say that X is independent of Y given Z in a distribution P , denoted by (X ⊥⊥ Y | Z)P , if and only if
∀X ∈ X,∀Y ∈ Y, (X ⊥⊥ Y | Z)P . P can be omitted unless it leads to ambiguity.

Given X,Y ⊆ V, let GXY denote the graph G modified such that all edges pointing towards nodes in
X are removed (overline) and all edges starting from nodes in Y are removed (underline). We may
incur in abuse of notation (e.g., GXY := GX∪{Y }) unless it leads to ambiguity.

C.1 d-SEPARABILITY AND do-CALCULUS

In the following, we will define the concept of d-separability, its connection to independence, and
the three rules of do-calculus. Please refer to (Pearl, 2009) for more details.

Definition C.1. d-separability.
Given a DAG G = (V,E), a path p is d-separated (blocked) by a set Z ⊆ V (possibly empty) if and
only if either is true:

1. p contains a chain A→ B → C or a fork A← B → C such that B is in Z.

2. p contains a collider A→ B ← C such that no descendant of B (including B) is in Z.

Given disjoint sets X,Y,Z ⊆ V, we say that Z d-separates X from Y in G if Z d-separates every path
p from a node X ∈ X to a node Y ∈ Y. We denote this by (X ⊥⊥ Y | Z)G .

Definition C.2. Markov Compatibility.
We say that a distribution P(V) on a set of variables V = (V1, · · · , VK) is (Markov) compatible
with a DAG G with V as vertices in G if P (V) =

∏
k∈[K] P(Vk | PaG(Vk)).

Theorem C.3. Independence and d-separability.
Given an SCMM = (V,W,P,F) compatible with a DAG GM and disjoint sets X,Y,Z ⊆ V , if
(X ⊥⊥ Y | Z)GM then (X ⊥⊥ Y | Z)P . Conversely, if (X ̸⊥⊥ Y | Z)GM , there exists at least one
distribution P ′ compatible with GM (in fact, almost all) such that (X ̸⊥⊥ Y | Z)P′ .

Remark C.4. The second statement comes from the fact that precise parameter choices θ of distri-
butions PΘ might result in independence in an otherwise unblocked path in G. Fortunately, such
specific tuning of Θ rarely occurs in practice.
Remark C.5. If we need to determine independence relationships (X ⊥⊥ Y | Z)P (Z possibly empty),
we simply verify that all paths connecting X and Y are blocked by Z, using d-separability.

Next, we introduce the three rules of do-calculus, with which we can transform causal queries step
by step, until we reach the desired estimand.

Theorem C.6. Rules of do-calculus.
Given an SCMM = (V,W,P,F) compatible with a DAG GM, for any disjoint sets X,Y,Z,W,⊆
V (X and W possibly empty):

1. Insertion/deletion of observations (R1):
Px(Y | Z,W) = Px(Y | W) if (Y ⊥⊥ Z | X,W)GX

.

2. Exchange of interventions/observations (R2):
Px,z(Y | W) = Px(Y | z,W) if (Y ⊥⊥ Z | X,W)GXZ

.

3. Insertion/deletion of interventions (R3):
Px,z(Y | W) = Px(Y | W) if (Y ⊥⊥ Z | X,W)GX Z(W)

,
where Z(W) := Z \AnGX

(W), the set of nodes in Z that are not ancestors of W (including
W) in the graph GX.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C.2 PROJECTED STRUCTURAL CAUSAL MODELS

Definition C.7. Divergent Path.
A divergent path between X and Y consists of two directed paths, from W to X and from W ′ to Y ,
such that W =W ′ or W ↔W ′.
Definition C.8. Projected SCM.
Given an SCMM = (V,W,P,F) compatible with a DAG GM and a subset V ′ ⊆ V , we define
the projected causal DAG G[V ′] defined on vertices V ′ andW ′ := E ′ ∪W ′, with E ′ := {EX ∈ E |
X ∈ V ′} and U ′ as defined next, such that:

• ∀Vk, Vl ∈ V ′, there is a directed edge Vk → Vl if there exists a directed path from Vk to Vl
in GM where every internal node in the path is not in V ′.

• ∀Vk, Vl ∈ V ′, there is a bidirected edge Vk ↔ Vl (connected by a latent confounder
U{k,l} ∈ U ′) if there exists a divergent path in G between them such that every internal
node is not in V ′.

We define the projected SCM M[V ′] by restricting its graph to GM[V ′], with distribution
PM[V′](V ′) = PM(V ′).
Remark C.9. The projected SCM respects all conditional independence relationships and the rules
of do-calculus in the original graph. (Lee & Bareinboim, 2020).

D PROOFS

In this section, we will prove the results in the main paper and discuss the Frontier-Reducibility
Algorithm.

D.1 NON-ANCESTORS

Lemma D.1. Given a DAG G = (V,E) and disjoint subsets of vertices X,Y ⊆ V (possibly empty),
if there is a path p in GXY, then p is a path in G.

Proof. GXY’s edges are a subset of G’s edges, since GXY only removes edges either ending in X or
starting from Y. Adding those edges back in G cannot remove any edge from the path; hence, p is a
path in G.

Proposition D.2. Non-Ancestors do not Contribute.
LetM be an SCMM = (V,W,P,F), Y the target r.v., X a subset X ⊆ V\{Y } and x a realization
x ∼ P(X). For any X ∈ X, if X is not an ancestor of Y , then ϕνx(X) = 0.

Proof. We will prove that ∀X ̸∈ AnG(Y),∀S ⊆ X\{X}, ν(S∪{X}) = E [Y | ŝ, x̂] = E [Y | ŝ] =
ν(S). If that is the case, then

ϕX =
∑

S⊆X\{X}

1

K

(
K − 1

|S|

)−1

(ν(S ∪ {X})− ν(S)) = 0.

Note that E [Y | ŝ, x̂] = E [Y | ŝ] if Ps,x(Y) = Ps(Y), which is implied by R3 if (Y ⊥⊥ X | S)GSX
.

Let us prove this independence by contradiction: assume there is a path p connecting X and Y
unblocked conditioned on S in GSX . The path cannot start with X ← · · · since all edges pointing
towards X are removed in GSX , so p = X → · · · ? Y . Since the path is unblocked, if there
were any left arrows (←) in the path, the resulting collider · · · → B ← · · · must necessarily fulfill
DeGSX

(B) ∈ S to unblock the path. There are two cases: 1) if B ∈ S, then there is an edge
B ← · · · for a node B ∈ S, which cannot be true in GSX ; 2) if B ∈ AnGSX

(S) \ S, then there is a
directed path from B to a node in S, which again cannot happen in GSX because we have removed
all edges pointing towards S. Therefore, the path must necessarily not contain any left arrows, which
means that p is a directed path from X to Y in GSX , which must also be a directed path in G due to
Lemma D.1; therefore X ∈ AnG(Y), contradicting the initial assumption. No unblocked path can
exist, which proves (Y ⊥⊥ X | S)GSX

and the theorem in turn.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D.2 FRONTIER-REDUCIBILITY ALGORITHM

We begin by defining the concept of frontier and proving several properties related to it, necessary
for the definition of the Frontier-Reducibility Algorithm (FRA), introduced next. We finish with
an alternative formulation of the FRA algorithm with integers for faster execution time and lesser
memory usage.

D.2.1 FRONTIERS AND PROPERTIES

In the following, consider an SCM M = (V,W,P,F) with associated DAG G = (V,E),
where V = (V0, . . . , VK) is sorted in an arbitrary topological order of the graph. Let X :=
{V0, . . . , VK−1}, Y := VK , and assume that X ⊆ An(Y). Note that there may be latent con-
founders (U ̸= ∅).

Definition D.3. Given any node X ∈ X, a subset S ⊆ X is a frontier between X and Y if X ̸∈ S
and all directed paths p = (X, . . . , Y) from X to Y are blocked by S, i.e., ∃Z ∈ S s.t. Z ∈ p. We
denote the set of frontiers between X and Y in G as FrG(X,Y).

Proposition D.4. Given nodes X ∈ X and Y , and a subset S ∈ FrG(X,Y), frontier from X to Y ,
then ν(S ∪ {X}) = ν(S).

Proof. We will apply R3 by proving that (Y ⊥⊥ X | S)GSX
, in which case

ν(S ∪ {X}) = E [Y | ŝ, x̂] = E [Y | ŝ] = ν(S).

Note that in GSX , all paths from X to Y are front-door paths. Consider any such p = X →
· · · ? Y . If the path is fully directed, since S is a frontier, ∃Z ∈ S s.t. Z is in the path, thereby
blocking it. If it is not directed, there exists a collider · · · → Z ← · · · , which also blocks the path:
Z ̸∈ An(S), since S has no ancestors other than itself in GSX and Z ̸∈ S because · · · → Z is in p.
Therefore, any path p between X and Y must be blocked by S in GSX , which proves R3.

Remark D.5. For any parent X ∈ PaY , no subset S ⊆ X \ {X} is a frontier between X and Y .

Proposition D.6. Given nodes X ∈ X and Y , and a frontier S ∈ FrG(X,Y),

1. ∀S′ ⊆ X \ {X},S′ ⊇ S, then S′ ∈ FrG(X,Y).

2. S ∩De(X) ∈ FrG(X,Y).

Proof.

1. Since S ∈ FrG(X,Y), any directed path p between X and Y is blocked by S; being S′ a
superset of S, it must also block all such paths.

2. Any non-descendant of X cannot appear in a directed path from X to Y , which means that
it is superfluous in the frontier set. As such, S ∩De(X) ∈ FrG(X,Y).

Corollary D.7. Given X ∈ X and S ⊆ X \ {X}, let S>GX := {Z ∈ S | Z >G X}.

S ∈ FrG(X,Y)⇔ S>GX ∈ FrG(X,Y)⇔ S ∩DeG(X) ∈ FrG(X,Y). (8)

Proof. If S ∈ FrG(X,Y), S ∩ De(X) ∈ FrG(X,Y), and S>GX ⊇ S ∩ De(X), since any Z ∈
S∩De(X) fulfills Z >G X , which proves that S>GX ∈ FrG(X,Y). On the other hand, if S>GX ∈
FrG(X,Y), S ∈ FrG(X,Y), since S ⊇ S>GX . The remaining iff is trivial given Proposition D.6.

Definition D.8. A set S ⊆ X is Frontier-Reducible (FR) in G if ∃X ∈ S s.t. S \ {X} ∈ FrG(X,Y).

In particular, if S is FR by X ∈ S, ν(S) = ν(S \ {X}).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Theorem D.9. Consider any FR S ⊆ X, and let us define Z := {X ∈ S | S\{X} ∈ FrG(X,Y)} =
{X ∈ S | S>GX ∈ FrG(X,Y)}. Then ν(S) = ν(S \ Z) and S \ Z is not FR.

Proof. Consider Z = {Xi1 , . . . , Xin} in the order <G . Note that ∀j ∈ [n], S \ {Xi1 , . . . , Xij} =
S>GXij

, which is a frontier between Xij and Y by construction.

Let us prove that ∀j ∈ [n], ν(S) = ν(S>GXij
) by induction. For j = 1, ν(S) = ν(S \ {Xi1}) since

S>GXi1
∈ FrG(Xi1 , Y). For an arbitrary j, and assuming it true for j − 1, ν(S) = ν(S>GXij−1

) =

ν(S>GXij
), since S>GXij−1

\ {Xij} = S>GXij
∈ FrG(Xij , Y). Therefore, for j = n, ν(S) =

ν(S \ {Xi1 , . . . , Xin}) = ν(S \ Z).

Additionally, S \ Z is not FR since, if ∃X ∈ S \ Z s.t. S \ Z \ {X} ∈ FrG(X,Y), then S \ {X} ⊇
S \ Z \ {X} is also a frontier between X and Y , which implies that X ∈ Z.

Finally, for a clearer characterization of the irreducible set, consider the following proposition.

Proposition D.10. Given a FR S ⊆ X and its corresponding irreducible S’ := S \ Z, with Z :=
{X ∈ S | S>GX ∈ FrG(X,Y)}, then S’ = S ∩AnGS

(Y).

Proof. We will show that S\Z = S∩AnGS
(Y), or equivalently, that ∀X ∈ S, S>GX ̸∈ FrG(X,Y)

iff X ∈ AnGS
(Y).

Consider X ∈ S. If S>GX ̸∈ FrG(X,Y), then S \ {X} ̸∈ FrG(X,Y) by Corollary D.7, so
there is a directed path from X to Y not blocked by S \ {X}. Consequently, X is an ancestor
of Y in the graph where we remove any incoming edges to S; in other words, X ∈ AnGS

(Y).
Conversely, if X ∈ AnGS

(Y), there is a directed path from X to Y not blocked by S \ {X},
therefore S \ {X} ̸∈ FrG(X,Y) and S>GX ̸∈ FrG(X,Y), again by Corollary D.7.

D.2.2 ALGORITHM SOUNDNESS

Theorem D.9 identifies which elements can be removed from the computation of ν(S) for any set
S. As a result, if we compute and cache ν(S \ Z), any other set with the same Frontier-Irreducible
set can skip the ν computation and return the cached value instead. Additionally, we do not need to
test identifiability for FR sets, only for the corresponding Frontier-Irreducible sets. We now need to
define an efficient method to compute S \ Z, Algorithm 2, which consists of two procedures; let us
first demonstrate the soundness of the Frontier-Reducibility Algorithm (FRA).

Given S = (Xi1 , . . . , Xin) in <G order, at step k = n..1, X := Xik and P := {Xin , . . . , Xik+1
} =

S>GXik
. At this stage, we can check if P ∈ FrG(X,Y), or equivalently, if P ∩ DeG(X) ∈

FrG(X,Y), in which case we will include it in Z. At the end of the process, Z = {X ∈ S |
S>GX ∈ FrG(X,Y)}, which, by Theorem D.9, means that ν(S) = ν(S \ Z), and S \ Z is not FR.

We include some optimizations to this algorithm. Firstly, we precompute ParentsY,
Descendants and Children (the latter one for the IS-FRONTIER procedure) so that we
do not need to traverse the graph every time they are needed. Secondly, we employ a cache for
Frontier, which is populated as FRA processes more sets S. On the other hand, when checking
if P ∈ FrG(X,Y), we check instead for P’ := P ∩DeG(X), which is equivalent; this is so that we
can better employ the Frontier cache, collapsing different P ∪{X} sets into the same evaluation,
with the added benefit that a lower number of parents when testing if a path is blocked by P’ will be
faster. As a result, for any given set S ⊆ X, Algorithm 2 requires |S| iterations (one per element of
S), some of them skipped because X ∈ PaG(Y), some already cached in Frontier. Finally, this
cache can be reused between explanations of do-SHAP for the same graph; only the ν cache must
be reset every time. This speeds up further explanations with virtually zero cost from the FRA.

The next step is how to determine if a set S ⊆ X \ {X} is a frontier between X and Y . Naively,
we could check if all directed paths between X and Y are blocked by (intersect with) S; we could
precompute all paths and store them for faster access, but the number of paths grows exponentially
(in the worst case scenario, i.e., a complete graph, there are 2K − 1 directed paths), which would
in turn require an exponential number of iterations per frontier check. Instead, we devise a more
efficient method, described in the IS-FRONTIER procedure in Algorithm 2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 2 Frontier-Reducibility Algorithm: set version.

Require: ParentsY := PaG(Y).
Require: ∀X ∈ X,Descendants[X] := DeG(X).
Require: ∀X ∈ X,Children[X] := ChG(X).
Require: Frontier, a map: tuple[int]→ bool.

1: procedure IS-FRONTIER(S, X, Y,Children)
2: C← {X} ▷ Current nodes
3: while C ̸= ∅ and Y ̸∈ C do
4: S← S ∪ C
5: C←

⋃
C∈C Children[C] \ S

6: end while
7: return C = ∅
8: end procedure
9: procedure FRA(S,ParentsY,Descendants,Children,Frontier)

10: SORT(S, <G) ▷ Sort to move in descending order
11: P← ∅
12: Z← ∅
13: k ← |S|
14: while k > 0 do
15: X ← S[k] ▷ X = Xik
16: if X ̸∈ PaG(Y) then
17: P’← P ∩ Descendants[X] ▷ P’ = S>GX ∩DeG(X)
18: T← P’ ∪ {X}
19: if T ̸∈ Frontier then
20: v ← IS-FRONTIER(P’, X, Y,Children)
21: Frontier[T]← v
22: else
23: v ← Frontier[T]
24: end if
25: if v then
26: Z← Z ∪ {X}
27: end if
28: end if
29: P← P ∪ {X}
30: k ← k − 1
31: end while
32: return S \ Z
33: end procedure

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We now prove the validity of this procedure. Let us define C0 := {X}. C0 will never be empty
nor contain Y , so we always enter the loop. At step k = 1..n, Sk :=

⋃
k′<k Ck′ ∪ S and Ck :=⋃

C∈Ck−1
Children[C] \ Sk. All directed paths from X to Y are sequences of parent-child pairs,

just as any node C ∈ Ck is a child of a certain node C ′ ∈ Ck−1. Additionally, since every node
in X is an ancestor of Y , by exploring these parent-child sequences we will necessarily result in
a directed path from X to Y . Therefore, every directed path is covered by a sequence of nodes
Ck ∈ Ck unless they are discarded by Sk, in which case either S blocked the node in the path, or
it was a node already visited before which would continue with a subpath C → · · · → Y that is
currently being explored or has already been discarded.

Note that since Sk removes any already-visited nodes from Ck, and we always move one level
deeper in the graph, Ck’s nodes are all necessarily at depth k from X . Given that the graph G is
finite and acyclic, C will eventually be empty or contain Y (since it is the last node in any path),
which guarantees that the loop ends. Let Cn denote the last step. Note that if Cn ̸= ∅, then Y ∈ Cn,
which means that there was a sequence of nodes, each a child of the previous one, that were never
filtered by S; in other words, there exists a directed path from X to Y that is not blocked by S,
therefore S ̸∈ FrG(X,Y), and the procedure returns false. On the other hand, if Cn = ∅, then
every sequence of nodes (every path) was eventually blocked by S; therefore, S ∈ FrG(X,Y), and
the procedure returns true.

In terms of execution time, since every step results in nodes one depth level deeper, the number of
iterations of this procedure cannot be higher than the maximum depth of the graph, which, in the
worst case scenario (e.g., a chain graph) is K, making it much more efficient than the naive strategy.
We incorporate this procedure as part of the larger FRA algorithm.

D.2.3 INTEGER FORMULATION

We can further optimize this algorithm by transforming set-operations into integer and binary
operations, resulting in the algorithm presented in the main paper, repeated in Algorithm 3
for the reader’s convenience. Let us demonstrate that both algorithms are equivalent. Given
X = (V0, . . . , VK−1),K := |X|, there is a bijection ϕ : P(X) → {0, . . . , 2K − 1} such that
ϕ(S) =

∑
Vk∈S 2

k. Note that ϕ(S) is a K-length binary array with 1s in each position k (start-
ing from the end) such that Vk ∈ S. Consequently, let us define, for any s ∈ {1, · · · , 2K − 1},
ψ(s) := ⌊log2 s⌋; then ψ(s) = max {k | Vk ∈ ϕ−1(s)}; if we subtract 2ψ(s) from s, we can apply
ψ again to retrieve the second-largest element, and so on until s = 0 (S = ∅). The sequence of
elements ψ(s) returns the original set S = ϕ−1(s).

Thanks to this bijection, we can perform all our operations directly on integers with arithmetic and
binary operations, which are less expensive, timing- and memory-wise, than with operations over
sequences of integers. Note that, ∀S,S’ ⊆ X:

1. ϕ(S ∩ S’) = ϕ(S) & ϕ(S’), with & the bitwise AND operator.
2. ϕ(S ∪ S’) = ϕ(S) |ϕ(S’), with | the bitwise OR operator.
3. ϕ(S \ S’) = ϕ(S) & ¬ϕ(S’), with ¬ the bitwise NOT operator.
4. S ∩ S’ = ∅⇒ ϕ(S ∪ S’) = ϕ(S) + ϕ(S’).
5. S ⊇ S’⇒ ϕ(S \ S’) = ϕ(S)− ϕ(S’).

Let us compare between Algorithms 2 and 3. Firstly, we precompute and ϕ-encode ParentsY,
Descendants and Children, since they will be used repeatedly throughout the algorithm. Note
that we do not need to sort S beforehand, instead passing it in its s := ϕ(S) representation 7. We
can obtain the elements x in descending order, already encoded, by computing x := 2⌊log2 s⌋ and
subtracting it from s. We can check if an encoded x is a parent of Y with the AND operator. We
can restrict P, encoded by an integer p, to P’ := P ∩ DeG(X), encoded by an integer p′, by using
the AND operator on the precomputed encoded set ParentsY := ϕ(PaG(Y)). We can identify
the cache-key P’ ∪ {X} by its code p′ + x. In terms of the IS-FRONTIER procedure, we iterate
over the elements in Ck by employing the same strategy as before.

7It is more efficient to pass s directly to the FRA procedure, since we can pre-encode all indices {0, . . . ,K−
1} before generating permutations of them; then, we just need to pass the sum of the chosen coalition.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 3 Frontier-Reducibility Algorithm (FRA)

Require: ParentsY :=
∑
Vk∈PaG(Y) 2

k.

Require: ∀k = 0..K − 1, Descendants[2k] :=
∑
Vk′∈DeG(Vk)

2k
′
.

Require: ∀k = 0..K − 1,Children[2k] :=
∑
Vk′∈ChG(Vk)

2k
′
.

Require: Frontier, a map int→ bool.
1: procedure IS-FRONTIER(s, x, y,Children)
2: c← x ▷ Current nodes
3: while c ̸= 0 and y & c = 0 do ▷ While C ̸= ∅ and Y ̸∈ C
4: s← s | c ▷ Update visited nodes with the new nodes
5: c′ ← c
6: while c′ > 0 do ▷ Iterate over the elements in C
7: x← 2⌊log2 c

′⌋

8: c′ ← c′ − x
9: c← c | Children[x]

10: end while
11: c← c & ¬s ▷ Remove any previously visited nodes
12: end while
13: return c = 0
14: end procedure
15: procedure FRA(s, ParentsY, Descendants, Children, Frontier)
16: p← 0; z ← 0; ▷ Initialize P,Z (encoded)
17: while s > 0 do
18: x← 2⌊log2 s⌋ ▷ Get the last element (encoded)
19: s← s− x
20: if x & ParentsY = 0 then ▷ Only if not a parent of Y
21: p′ ← p & Descendants[x] ▷ Only check descendants
22: t← p′ + x ▷ p′ + x uniquely defines (p′, x)
23: if t ̸∈ Frontier then
24: v ← IS-FRONTIER(p′, x, y,Children)
25: Frontier[t]← v
26: else
27: v ← Frontier[t]
28: end if
29: if v then
30: z ← z + x
31: end if
32: end if
33: p← p+ x
34: end while
35: return p− z ▷ Return the encoded set S \ Z
36: end procedure

All of these changes result in an equivalent algorithm, more time-efficient (as demonstrated in Ap-
pendix E.2) and memory-efficient (since we operate and cache integers rather than sets of integers).

D.3 DO-SHAPLEY VALUE FOR THE NOISE

Remark D.11. No Bow Patterns.
Given a target variable Y , if we consider the SCM projected to the ancestors of Y , with X denoting
the set of features in this graph, and assume that do-SHAP is identifiable in this graph, then, ∀X ∈ X,
there are no bow patterns from X to Y (a back-door path X ← · · · → · · · ? Y consisting only of
latent nodes between X and Y). If there were, the query νx({X}) = E [Y | do(X = x)] would not
be identifiable (Pearl, 2009) (section 3.5.2).

Theorem D.12. do-Shapley Value for the Noise.
Given a target r.v. Y ∈ V , consider the projected SCMM[An(Y)], with X := An(Y) \ {Y } and

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

realizations (x, y) ∼ P (X, Y). Let (ϕX := ϕνx(X))X∈X be the (identifiable) do-Shapley values
associated with K players X.

Let us assume that fY ∈ F follows an additive noise model, i.e., Y = fY (PaY , EY) = f(PaY) +
EY for an unknown function f . Let ϕ′ be the do-Shapley values w.r.t. players X′ := X∪{EY }; then,
for anyX ∈ X, ϕ′X = ϕX and ϕ′EY

= y−E [Y | paY]. Furthermore,
∑
X∈X ϕ

′
X+ϕ′EY

= y−E [Y].

Proof. Let us define some notation for convenience:

• ∀S ⊆ X, let Sc := X \ S.

• Note that PaY ⊆ S ∪ Sc; let us denote the selected values paY as the output of a function
PaY (s, sc) for ease of exposition.

• Let ν′(S) := ESc |̂s [f(PaY (s,Sc))] for convenience of notation.

We want to compute do-Shapley values ϕ′ for the (K + 1)-game (including EY) with realizations
(εY , x, y) ∼ P(EY ,X, Y) (with εY latent, unknown) based on the values ϕ for the K-game (only
including X) with the same realizations (x, y) ∼ P(X, Y). Let us first determine the value of the
following two quantities for any S ⊆ X (EY ̸∈ S):

ν(S ∪ {EY }) = E [Y | ŝ, ε̂Y]
= ESc |̂s,ε̂Y [Y | ŝ,Sc, ε̂Y]
= ESc |̂s [f(PaY (s,Sc))] + εY

= ν′(S) + εY . (9)

We can perform the first step by marginalizing over Sc in Ps,εY . Then, (Sc ⊥⊥ EY | S)GS,EY
because

any path p connecting EY must necessarily have a collider in Y , since De(Y) = Y , therefore
blocking the path. By R3, Pŝ,ε̂Y (S

c) = Pŝ(Sc) so we can remove it from the expectation over Sc.
On the other hand, we know that Y = f(PaY) + EY and by the linearity of expectations, we can
remove εY from the expectation. Finally, for later clarity, we can denote the first term by ν′(S).

Next, let us solve the analogous term for S:

ν(S) = E [Y | ŝ]
= ESc,EY |̂s [Y | ŝ,Sc, EY]
= ESc |̂s [f(PaY (s,Sc))] + E [EY]

= ν′(S) + E [EY] . (10)

We proceed similarly, beginning with a marginalization over Sc and EY this time. In order to
separate EY from the first term, note that (Sc ⊥⊥ EY)GS

and (S ⊥⊥ EY)GS
for the same reason as

before: any path connecting EY must necessarily pass through Y , which acts as an unconditioned
collider, thereby blocking it. Thanks to these two properties, P (Sc, EY | ŝ) = P (Sc | ŝ)P (EY |
ŝ) = P (Sc | ŝ)P (EY), with the former step by the rules of independence and the latter by R3. We
can then split the expectation, this time with E [EY] as the second term and using the same notation
ν′(S) again.

With these two computations, we can see that:

ν(S ∪ {EY })− ν(S) = εY − E [EY] , (11)

and substituting it into the SHAP formula (with K + 1 players):

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

ϕ′EY
=
∑
S⊆X

1

K + 1

(
K

|S|

)−1

(εY − E [EY])

=

K∑
s=0

(
K

s

)
1

K + 1

(
K

s

)−1

(εY − E [EY])

= εY − E [EY] . (12)

We transform the first to second step by realizing that we do not need to know what the coalitions
S are, only their cardinality, so we can transform

∑
S⊆X into

∑K
s=0 by multiplying by

(
K
s

)
, the

number of combinations of s elements. This term and its inverse cancel out, and K + 1 constant
terms summed together cancels with 1

K+1 , resulting in εY − E [EY].

Now, note that εY = y − f(paY) and:

E [Y | paY] = E [f(paY) + EY] = f(paY) + E [EY] , (13)

so f(paY) = E [Y | paY]− E [EY]. Then,

ϕ′EY
= εY − E [EY] = y − f(paY)− E [EY] = y − E [Y | paY] . (14)

This proves the value for ϕ′EY
. Let us now compute ϕ′X for anyX ∈ X. Let S ⊆ (X∪{EY })\{X}.

If EY ∈ S, we can apply Equation (9) and ν(S) = ν′(S \ {EY }) + εY . Otherwise, Equation (10)
gives us ν(S) = ν′(S) + E [EY]. Now, ϕ′X ’s computation can use both results:

ϕ′X =
∑

S⊆X\{X}

1

K + 1

(
K

|S|+ 1

)−1

(ν(S ∪ {EY , X})− ν(S ∪ {EY }))

+
∑

S⊆X\{X}

1

K + 1

(
K

|S|

)−1

(ν(S ∪ {X})− ν(S))

=
∑

S⊆X\{X}

1

K + 1

((
K

|S|+ 1

)−1

(ν(S ∪ {X})− ν(S)) +
(
K

|S|

)−1

(ν(S ∪ {X})− ν(S))

)

=
∑

S⊆X\{X}

1

K + 1

((
K

|S|+ 1

)−1

+

(
K

|S|

)−1
)
(ν(S ∪ {X})− ν(S))

=
∑

S⊆X\{X}

1

K

(
K − 1

|S|

)−1

(ν(S ∪ {X})− ν(S)) = ϕX (15)

We first split the SHAP formula in two: those sets that include EY and those that do not; note that
the combination terms are altered to reflect the size of the base set applied to ν (|S| + 1 in the first
case since the base set is S∪{EY }). For the first to second step, we can bring together the two sums,
and transform the first difference,

ν(S ∪ {EY , X})− ν(S ∪ {EY }) = ν′(S ∪ {X})− ν′(S) = ν(S ∪ {X})− ν(S), (16)

by applying Equation (9) and Equation (10) and cancelling the εY and E [EY] terms, respectively.
We now sum the two inverse combination terms; let s := |S|, with s ≤ K − 1 since S ⊆ X \ {X}:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(
K

s+ 1

)−1

+

(
K

s

)−1

=
(s+ 1)!(K − s− 1)! + s!(K − s)!

K!

=
(s+ 1) · s!(K − s− 1)! + (K − s) · s!(K − s− 1)!

K · (K − 1)!

=
(s+ 1 +K − s)s!(K − s− 1)!

K · (K − 1)!

=
K + 1

K
· s!(K − s− 1)!

(K − 1)!
=
K + 1

K

(
K − 1

s

)−1

(17)

Substituting this result back into Equation (15), we can cancel out K + 1. We arrive at the last
formula, which is exactly the value for do-SHAP in the K-player game without EY .

Finally, to prove the last statement,
∑
X∈X ϕ

′
X + ϕ′EY

= y−E [Y], let us discuss two facts. Firstly,
as stated in Remark D.11, there are no bow patterns between any X ∈ X and Y , therefore, no latent
confounders connected to Y . Secondly, let us prove that E [Y | x̂] = E [Y | paY]:

E [Y | x̂] = E
[
Y | p̂aY , p̂acY

]
= E [Y | p̂aY] = E [Y | paY] . (18)

We first split X = PaY ∪ PacY . Next, we apply R3 with (Y ⊥⊥ PacY | PaY)GX
since only the

edges ending in Y remain in GX, which are the ones starting on PaY and the ones connected to
confounders U{Y,·}, but there are none. No matter the case, PacY is not connected through any
of these paths, so it is independent of Y . Then, we apply R2 with (Y ⊥⊥ PaY)GPaY

: since Y
has no descendants and we remove any incoming edges to Y in GPaY except for the ones starting
from confounders in U{Y,·}, of which there are none, Y must be independent of PaY , proving the
expression.

Now we can prove the remaining fact:∑
X∈X

ϕ′X + ϕ′EY
= (E [Y | x̂]− E [Y]) + (y − E [Y | paY]) = y − E [Y] (19)

E EXPERIMENTS

These experiments are executed on personal computers (particularly, a Macbook with an M3 Pro
chip) and do not require an infrastructure of workers for their execution. No experiment lasted
longer than 6h to execute, reason why we did not take measurements of their times.

E.1 SYNTHETIC DATASET

We include here further details about the Synthetic experiment in Section 5.1, bigger figures for the
Markovian case (for better visibility) and a discussion on the semi-Markovian case. Please refer
to the supplementary code for the actual implementation of these experiments, available with the
submission of the camera-ready version of this work.

E.1.1 IMPLEMENTATION DETAILS

We chose several SCM architectures for the experiment; here we justify these choices. Regarding
the classic approach of modeling an SCM with each of its functions fk ∈ F separately, some of the
approaches mentioned in Section 2 focus on how to model complex multivariate r.v.s (e.g., images),
but the remaining univariate r.v.s are modelled by specifying which probability distribution family
they belong to. Since our DGP consists exclusively of univariate continuous r.v.s, these proposals
are equivalent. Instead, we will employ Deep Causal Graph (DCG) (Parafita & Vitrià, 2022), a gen-
eral framework for all sorts of implementations of SCMs. In particular, with DCGs, we can train

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

three different kinds of SCM: 1) a linear SCM with Normal distributions for each variable, used
as a baseline; 2) the Distributional Causal Node (Parafita & Vitrià, 2019) architecture, where every
node is modeled after a probability distribution family with a feed-forward network for the com-
putation of its parameters (DCN); and 3) DCGs powered with its most flexible implementation for
continuous nodes, based on Normalizing Flows. Finally, in order to test the alternative approach of
modeling SCMs not node-wise, but the graph as a whole, we could use Variational Causal Autoen-
coder (VACA) (Sánchez-Martın et al., 2022) or Causal Normalizing Flows (CNF) (Javaloy et al.,
2024). However, as stated by the authors of CNF based on their experiments, “VACA shows poor
performance, and is considerably slower due to the complexity of GNNs”. For this reason, we opt
for CNFs as a representative of this alternative approach for SCM modeling.

Regarding the definition of the synthetic DGP, we employ a set of non-linear functions along with
exogenous samples from diverse continuous r.v.s for the generation of new samples. Let χ2(k) be
the Chi-squared distribution with k degrees of freedom, B(α, β) the Beta distribution, N (µ, σ) the
Normal distribution, and Exponential(λ) the Exponential distribution. We sample from each
latent variable first and then apply the functions in F in topological order:

u ∼ χ2(k = 10);

εZ ∼ B(α = 2, β = 5);

εX ∼ N (µ = 0, σ = 0.1);

εA,1 ∼ Exponential(λ = 1);

εA,2 ∼ N (µ = 0, σ = 0.1);

εB ∼ N (µ = 0, σ = 1);

εC ∼ N (µ = 0, σ = 0.5);

εY ∼ N (µ = 0, σ = 0.5);

z ← εZ ;

x← |z(u− 5) + εX |;
a← |

√
x+ εA,1 + εA,2|;

b← 5 sin(a)− u
10 + εB ;

c← log(1 + b2) + εC ;

y ← log z
1−z +

(
x
10

)2
+ c+ εY ;

(20)

Note that we have diverse continuous variables: some non-negative, some restricted to (0, 1), some
with unrestricted support. For the DCN implementation, where we need to assume the r.v.’s proba-
bility distribution family, we will employ Exponential, Beta and Normal distributions respectively.
Each set of parameters ΘX can be computed with a shared feed-forward network using a Graphical
Conditioner (Parafita & Vitrià, 2022). For the DCG implementation with Normalizing Flows, we
will use a Normal Distribution as its base noise (EX) and the following flow structure (from X to
EX):

• Affine layer, f(x) = σx+ µ, with µ, σ learnable parameters.

• 3 blocks of:

– Rational-Quadratic Spline Flow (Durkan et al., 2019), defined on the interval [−5, 5],
with K = 8 bins.

– Affine layer.

Additionally, depending on the support of the r.v. to be modelled, we prepend another layer to
transform the original domain into R before the application of the first Affine layer. In particular,
for flows defined in (0, 1), we use a Logit transformation f(x) := log x

1−x , and for non-negative
flows, an inverse Softplus layer f(x) := log(ex − 1) (using the identity after a certain threshold
for numerical stability). All parameters not set as hyperparameters are computed by an external
trainable Conditioner that takes the node’s parents as input and outputs their value.

Regarding the Conditioner network’s architecture, it is a standard feed-forward network with ELU
activations (Clevert et al., 2015), 2 hidden layers of dimension 32, and a standardizer layer at the
beginning defined with the training dataset. This is used for the DCN and DCG SCMs. Regarding
the CNF architecture, it uses a Softclip-constrained NSF-based architecture similar to ours, but with
4 stacked Spline layers (the diameter of the graph) and a MADE Conditioner to learn to model all
variables at once. In this case, the conditioner uses 3 hidden layers with dimension 32 and ELU as
its activation.

In terms of training, we use the AdamW optimizer (Loshchilov & Hutter, 2019) with Early Stopping
(after 100 epochs with no improvement), using learning rate 10−3, weight decay 10−2 and batch

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

linear DCN DCG CNF
Estimator

8

7

6

5

Te
st

 lo
g-

lik
el

ih
oo

d
(

)

marginal linear DCN DCG CNF
Estimator

0.000

0.025

0.050

0.075

0.100

0.125

0.150

SH
AP

 E
st

im
at

io
n

Lo
ss

 (
)

U Z X A B C
Feature

0.0

0.1

0.2

0.3

0.4

0.5

Fe
at

ur
e

Im
po

rta
nc

e

marginal linear DCN DCG CNF ground-truth

Figure 6: Markovian case. Box-plots computed over 30 realizations of the dataset. (a) Distribution
adjustment score, log-likelihood (bigger is better). (b) SHAP estimation loss, L (lower is better).
(c) Feature Importance (the closer to ground-truth, the better). Dashed horizontal line represents
uniform importance (1

K).

size 100. Regarding SHAP estimation, since we only have 5 variables, we use the exact permutation
method, taking 1,000 samples from each SCM for the Monte Carlo estimators of ν(S).

Finally, see Figure 6 for a bigger representation of the plots in the Markovian case.

E.1.2 SEMI-MARKOVIAN CASE

We also test our approach on the semi-Markovian case, where the latent confounder U{X,B} is not
observed. As stated in Section 5.1, CNF cannot be applied without the causal sufficiency assump-
tion, so we will proceed with the remaining SCMs.

Figure 7 shows the same three plots as in the Markovian case, with similar results. The linear SCM
cannot properly estimate P(V), which results in worse SHAP loss. DCNs achieve similar results
to DCGs, but DCGs exhibit the best distribution adjustment and estimation performance. Finally,
marginal SHAP results in different estimations than do-SHAP, something that is patently clear in the
FI plot, where Z and C’s contribution are overestimated while A and B are underestimated. Note
that we obtain the same explanations as in the Markovian case even though we cannot measure the
latent confounder nor know its distribution.

E.2 FRA EXPERIMENTS

We will now describe additional tests for FRA.

Figure 8 shows comparisons between both versions of the FRA algorithm: FR1 (using sets, Al-
gorithm 2) and FR2 (using integers, Algorithm 3). Note that FR2 is consistently and significantly
faster that FR1, and less memory-intensive, since the Frontier cache needs only store numerical
encodings of sets, instead of sets of integers. However, depending on graph topology, particularly
if the number of edges is too high (p = 0.9) FR1 can be faster than FR2, as shown by Figure 8
(b), possibly because the procedure to iterate through C in the IS-FRONTIER procedure of FR2 is
more expensive than in FR1. In any case, FRA is negligible time-wise w.r.t. the time needed for the
estimation of ν(S), as we will see next.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

linear DCN DCG
Estimator

6.5

6.0

5.5

5.0

4.5

4.0

Te
st

 lo
g-

lik
el

ih
oo

d
(

)

marginal linear DCN DCG
Estimator

0.00

0.05

0.10

0.15

SH
AP

 E
st

im
at

io
n

Lo
ss

 (
)

Z X A B C
Feature

0.0

0.1

0.2

0.3

0.4

0.5

Fe
at

ur
e

Im
po

rta
nc

e

marginal linear DCN DCG ground-truth

Figure 7: Semi-Markovian case. Box-plots computed over 30 realizations of the dataset. (a) Dis-
tribution adjustment score, log-likelihood (bigger is better). (b) SHAP estimation loss, L (lower
is better). (c) Feature Importance (the closer to ground-truth, the better). Dashed horizontal line
represents uniform importance (1

K).

5.0 7.5 10.0 12.5 15.0 17.5 20.0
K (#variables)

1.5

2.0

2.5

3.0

3.5

FR
A

no
rm

al
ize

d
ex

ec
ut

io
n

tim
e

(s
) 1e 6

FR1 - sets
FR2 - numerical

5 10 15 20
K (#variables)

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
tim

e
FR

1/
FR

2

0.0

0.2

0.4

0.6

0.8

1.0

p
(e

dg
e

pr
ob

ab
ilit

y)

8 10 12 14
K (#variables)

45

50

55

60

65

70

t F
RA

 /
t

Figure 8: FRA experiments. (a) shows the errors bars (at 2-sigma over 270 replications) for the
average normalized execution times of FR1 (sets) and FR2 (numerical) per number of nodes (K).
(b) shows the error bars (at 2-sigma over 30 replications) of the ratio between FR1 time and FR2
time, split by edge probability (p), over the number of nodes K. If above 1, FR2 is faster. (c) shows
the error bars (at 2-sigma over 30 replications) for the mean of quotients between the total time
executing FRA (+permutations) and for estimating all sampled ν(S).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

In the second experiment, as described in Section 5.2, we employed a synthetic DGP consisting of
a linear function. We generate 1,000 i. i. d. samples from this DGP to create training, validation and
test sets with ratios 8:1:1. We train a linear DCG with Normal DCN nodes, which is fitting for this
dataset and deliberately lightweight, so as to show the improvements from the application of FRA
even in the case where the model is particularly fast; FRA can only improve time-gains with more
expressive and expensive models. We use a learning rate of 10−2, weight decay of 10−2, a batch
size of 100, early stopping with patience of 10 epochs and AdamW (Loshchilov & Hutter, 2019) as
the optimizer. For each ν estimation, we generate 100 samples from the SCM.

For this experiment, we kept track of do-SHAP execution time as well as the time for the compu-
tation of ν(S) specifically; this allows us, by subtraction, to compute the time needed for FRA and
generating the permutations π from where the sets S emerge. If we compare these two quantities,
dividing the ν execution time by the FRA+permutation time, as shown in Figure 8 (c), we see that
FRA is orders of magnitude faster than ν; this means that, at a negligible cost, we can speed up
do-SHAP by a significant ratio, specifically the number of FR coalitions.

F APPLICATIONS

In this section, we showcase the application of do-SHAP explanations on two real-world datasets as
illustrative examples of the explanatory power of our techniques.

F.1 DIABETES DATASET

SM

PA

ST

BP

BM

FR VG

CH CC

HD

Figure 9: Diabetes Causal Graph,
with variables Physical Activity
(PA), Fruit (FR), Veggies (VG),
Smoker (SM), BMI (BM), High
Cholesterol (CH), High Blood
Pressure (BP), Heart Disease or
Attack (HD), Stroke (ST), Chol.
Check (CC). Boldface letters de-
note PaY , with Y , Diabetes, the
target variable, not represented for
clarity. We can skip modeling
any non-ancestors of Y (Proposi-
tion 4.2): SM, ST, HD and CC.

Here we discuss the Diabetes Health Indicators Dataset (CDC,
2015), containing healthcare statistics and lifestyle survey in-
formation along with their diagnosis (or not) of diabetes, for
the year 2015. Note that the dataset is biased, with 14% of
individuals having diabetes. We start with a preprocessed ver-
sion of the original questionnaire dataset, from which 21 fea-
tures and the target variable are extracted. We select 10 out of
21 features to provide a more easily understandable problem
for the reader.

We construct a causal graph (see Figure 9) relating these vari-
ables and train an SCM to model them, with which we finally
compute their do-Shapley values. We design the graph using
common sense. Note that any causal analysis depends on its
graph being sound, but it can be replicated at any time once
a better graph is found; for this reason, please take this as an
illustrative example, since its conclusions regarding healthcare
are not necessarily rigorous. We train a DCG with the same
setup as before, except that every variable other than BMI is
binary, so they are modelled with Bernoulli DCNs.

Our objective here is not to explain a ML model, but the data
itself; particularly, how each variable affects the likelihood of
diabetes. However, the effect of the noise is not as clear in a
classifier as in a regressor, since ϕEX

= y − E [Y | paY] =
y − P (Y | paY); for an application of Theorem 4.8, please
refer to Appendix F.2.

We compute do-SHAP for the first 1,000 test set entries, and
measure FI. See Figure 10 a); HighBP, HighChol and BMI ap-
pear to be the most important variables, with Physical Activity,
and fruit and vegetable intake having a less pronounced role.
It is also important to consider the dependency between feature values and do-SHAP values; see
the beeswarm plot in Figure 10 c), which shows clear-cut effects in do-SV sign and magnitude for
HighBP and HighChol, with a more nuanced relationship between BMI (continuous) and do-SVs,
which we plot in Figure 10 b); BMI 30 (typically categorized as obese) seems to be the cutting

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3
Feature Importance

Veggies

Fruits

PhysActivity

BMI

HighChol

HighBP

Fe
at

ur
e

20 40 60 80
BMI

0.1

0.0

0.1

0.2

do
-S

ha
pl

ey
 V

al
ue

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25
SHAP value (impact on model output)

Veggies

Fruits

PhysActivity

BMI

HighChol

HighBP

Low

High

Fe
at

ur
e

va
lu

e

Figure 10: Diabetes Dataset. a) do-SHAP Feature Importance. Dashed vertical line represents
uniform importance (1

K). b) Scatterplot between BMI value and do-SVs. c) do-SHAP beeswarm
plot, relating do-SVs and feature values.

point after which higher BMI values increase the chances of diabetes up to 20%, while lower values
decrease that likelihood up to 10%.

F.2 BIKE RENTAL DATASET

We now study the Bike Rental Dataset (Fanaee-T & Gama, 2014), describing the number of rentals
in a bike sharing service in Washington D.C., between 2011 to 2012 (both included), measured on an
hourly basis, along with weather data and whether that day was a working day. Again, our objective
in this case is to explain the data itself; particularly, how each variable affects the number of rented
bikes.

We design a causal graph, depicted in Figure 11 (a). As stated before, please do not take the con-
clusions from this experiment as is, but merely as an illustrative example. We train a DCG with
the same architecture and training parameters as the synthetic experiment, except that hour can be
modeled with a uniform distribution on the integer interval [0, 23]. We train our DCG and compute
the do-Shapley values for the test set entries. However, since we are operating on an inaccessible
DGP in this case, we also want to measure the effect of the noise, employing Theorem 4.8.

We measure FI, represented in Figure 11 (b). Hour seems to be the major cause of the target variable,
as is to be expected, followed by noise (given by the inherent variance of the target conditioned on
its parents) and temperature, which also conditions on the likelihood of users renting bikes. Other
variables also do have an impact, with only wind speed and weather (categorical, with three levels)
having a less pronounced effect.

The relationship between feature values and do-SVs is more informative; we use scatter plots in
order to study how each value affects the outcome; see Figure 12. Hour presents positive attribution
during daytime from 8AM to 8PM, with night-time having negative attribution; temperature’s effect
is mainly negative, with certain temperatures being less inviting for cycling (below 15ºC and above
35ºC); in the same way, humidity only affects past 80%, as well as wind speed, past 15 km/h.

G COMPARISON BETWEEN DO-SVS AND NON-CAUSAL APPROACHES

In this appendix, we expand on the discussion about why do-SHAP results in more reliable expla-
nations than its non-casual alternatives (marginal-SHAP and conditional-SHAP). We follow on the
example presented in Section 1, here replicated in Figure 13 for reader’s convenience.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

HU

WE WO

WI

HOTE

SE

Figure 11: Bike Rental Dataset. a) Causal Graph with nodes Season (SE), Weather (WE), Humidity
(HU), Temperature (TE), Working day (WO), Wind speed (WI), Hour (HO). Boldface letters denote
PaY , with target Y , Rentals, not represented for clarity. b) Feature Importance (FI) for each vari-
able. Dashed vertical line represents uniform importance (1

K).

0 5 10 15 20
Hour

200

0

200

do
-S

ha
pl

ey
 v

al
ue

0 10 20 30 40
Temperature (ºC)

200

100

0

100

200

0 20 40 60 80 100
Humidity (%)

150

100

50

0

50

100

0 10 20 30 40 50
Wind speed (km/h)

100

50

0

50

Figure 12: Bike Rental, continuous features’ values against their SHAP values. Errors bars at 2-
sigma.

A S

E

Y

Figure 13: Salary causal
graph.

Firstly, let us reason about how each method will behave in this
particular Data Generating Process (DGP). In marginal-SHAP, con-
sider for example ν({E}), where we would marginalize A and S
regardless of the assigned value to E, thereby ignoring the impact
that education level may have on the seniority level of the employee
(their standing in the company), and producing out-of-distribution
configurations (a, e, s). Alternatively, with conditional SHAP, we
would operate with P (A,S | E = e), thereby including this de-
pendency between E and S, but also taking whichever value of A
would have generated this specific value e, which introduces in turn
an anti-causal effect (E → A). Since both approaches ignore the causal structure, they incorporate
non-causal effects that fail to reflect the real DGP, and would therefore lead to unreliable expla-
nations. In contrast, do-SHAP does take into account this causal effect, by using the intervention
do(E = e), therefore affecting S (E → S) while not affecting A (E ← A); not only that, but A’s
effect is de-confounded by blocking the back-door path E ← A→ S → Y .

Secondly, we will illustrate this reasoning with an example SCM corresponding to the same graph;
see Equation (21). Let us consider Bernoulli r.v.s A,E, S, Y with parameters pA, pE , pS , pY , re-
spectively. These parameters are computed following the aforementioned causal graph, with the
following structural equations, which generate samples (a, e, s, y) through Bernoulli sampling.

pA = 0.25

pE = 0.5a+ 0.25

pS = 0.25a+ 0.5e+ 0.1

pY = 0.5e+ 0.3s+ 0.1

(21)

We evaluate marginal-SHAP, conditional-SHAP, and do-SHAP on this DGP. For that, we gen-
erate 1,000 background samples (used for marginalization in the first two methods) and 1,000
test samples to explain. We estimate marginal-SVs on test set samples x by approximating
νmarg(S) := Ex′∼P (X) [P (Y | xS, x′Sc)] through Monte Carlo with the i.i.d. background samples.
Similarly, we estimate conditional-SVs by approximating νcond(S) = Ex′∼P (X|xS) [P (Y | xS, x′Sc)],
averaging over those x′ background samples that fulfill x′S = xS. Finally, we compute do-SVs by es-

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

timating ν(S) = Ex′∼P (X|do(S=xS)) [P (Y | xS, x′Sc)], sampling and intervening on the DGP directly
with interventions do(S = xS). We split the test samples for every factual combination (a, e, s) and
plot the corresponding estimations in the boxplots in Figure 14.

a e s
0.4

0.2

0.0

0.2

0.4

Sh
ap

le
y

Va
lu

e

a = , e = , s =
method
marg-SHAP
cond-SHAP
do-SHAP

a e s

a = , e = , s = +

a e s
0.4

0.2

0.0

0.2

0.4

Sh
ap

le
y

Va
lu

e

a = , e = + , s =

a e s

a = , e = + , s = +

a e s
0.4

0.2

0.0

0.2

0.4

Sh
ap

le
y

Va
lu

e

a = + , e = , s =

a e s

a = + , e = , s = +

a e s
0.4

0.2

0.0

0.2

0.4

Sh
ap

le
y

Va
lu

e

a = + , e = + , s =

a e s

a = + , e = + , s = +

Figure 14: Salary example, comparison between marginal-SHAP, conditional-SHAP and do-SHAP
for each input variable (A,E, S) on every factual combination (title).

We use the results of this experiment to exemplify how marginal-SHAP and conditional-SHAP fail
to address the behavior of the underlying DGP, hence providing explanations whose insights are not
reliably applicable to the real world. Meanwhile, do-SHAP does take into account the corresponding
data structure, and overcomes these weaknesses.

On the one hand, marginal-SHAP sets ϕA = 0, since A does not appear in Y ’s structural equation;
however, there is an effect from A to E and from A to S, both of which in turn do have an effect
on Y . As for ϕE , it disregards the effect of E on S while also confounding the back-door effect
E ← A → S → Y . Finally, for ϕS , it is closer to an intervention with do-SHAP, since S does not
affect any variable other than Y , but it is unable to control the back-door effect (S ← E → Y or
S ← A→ E → Y), which explains the difference with do-SHAP.

On the other hand, conditional-SHAP results in similar attributions for ϕA to do-SHAP, due to the
fact that {A}, {A,E} and {A,E, S} have identical ν(.) values for conditional-SHAP and do-SHAP.
However, {A,S} introduces an anti-causal flow when conditioning (S → E), which explains the

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

difference with do-SHAP. This is more apparent in ϕE and ϕS , where the anti-causal flow inevitably
affects the estimations.

In summary, both marginal-SHAP and conditional-SHAP misrepresent the underlying DGP, given
that they ignore its underlying causal structure. This is the reason why do-SHAP results in more
reliable explanations than the alternatives.

H DO-SHAP ESTIMATION EXAMPLE

Z

Y

X

C

B

A

Figure 15: Synthetic semi-
Markovian graph.

In this appendix, we explain how to employ the estimand-
agnostic approach in practice to estimate do-SVs. This is
meant as an illustrative written explanation; for a code exam-
ple, please refer to the experiments code, which will be sub-
mitted along with the camera-ready version of this work.

We will focus on the graph introduced in Section 5.1, here
replicated in Figure 15 for reader’s convenience. We will em-
ploy the semi-Markovian version of this example (meaning,
there is a latent confounder U{X,B} between X and B). We
will assume the (measured) data distribution is composed of
unconstrained continuous r.v.s, with an unknown prior distri-
bution for U{X,B}, but with a known causal graph G.

In terms of notation, let Pa′X = PaX ⊔ U{X,·} be the con-
catenation of the parents of a certain node X ∈ X and any latent confounders pointing to it. For
example, in our current graph, Pa′B = (A,U{X,B}).

H.1 DO-SHAP IDENTIFIABILITY

Before starting, we need to confirm that do-SVs are indeed identifiable in this particular graph; other-
wise, two SCMs trained on the same distribution may output different do-SV estimations, rendering
them useless.

If there was a graphical criterion that fit the structure of our graph G, it could be used at this step;
for instance, if there are no latent confounders in a graph, do-SHAP is trivially identifiable. Since
this is not the case, we need to test it using the ID algorithm (Shpitser & Pearl, 2006a). See (Tikka
& Karvanen, 2017) or (Pedemonte et al., 2021) for implementations in R and Python, respectively.

To guarantee do-SHAP identifiability, we need to test it for each coalition S. In other words, ensure
that νx(S) := E [Y | do(S = s)] is identifiable ∀S ⊆ X. Therefore, we run the ID algorithm on
each of the 25 = 32 queries ν(S); if all are identifiable, so are the do-SVs. Note that this test is
independent to the data distribution, as it only requires the corresponding graph structure G.

Given that this is a small graph, with only 5 X variables, amounting to 32 coalitions, it is feasible to
test for identifiability before starting the process. In the general case, with potentially bigger graphs
and 2|X| coalitions to test, this becomes infeasible or very expensive, and it is therefore recommended
to test for identifiability during do-SV estimation; we will indicate where in the process this is taken
care of in the following subsections.

H.2 SCM IMPLEMENTATION

Given that G contains a latent confounder, we choose DCGs (Parafita & Vitrià, 2022) as the SCM
architecture, and for generality (to adjust to more complex data distributions) employ Normalizing
Causal Flows (NCFs) as the node architecture. Refer to Appendix E.1.1 for a possible implemen-
tation of NCFs (without domain adjustment, given that our variables are unconstrained real-valued
r.v.s). These NCFs provide a general function X = fX(EX ,ΘX(Pa′X)), with EX the correspond-
ing exogenous noise signal for node X , which is used to sample new values x ∼ P (X | Pa′X) as
well as to compute the log-likelihood of these values given its parents: P (x | pa′X). The choice of
prior distribution for the exogenous signal EX and for the latent confounder U{X,B} is irrelevant,
as long as the desired queries to estimate are identifiable (which has been previously tested) and

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

the particular choice of prior guarantees enough modeling capacity to represent the data distribution
P (X). In this particular case, we choose a N (0, 1) for both priors.

Regarding the function ΘX(Pa′X), it returns the appropriate function parameters θX for each node’s
function fX . These parameters define the shape of the distribution P (X | Pa′X) and as such depend
on the values pa′X of Pa′X . After that, fX only depends on the parameters θX and the exogenous
noise εX ∼ P (EX). This function ΘX(.) could be modeled with a simple Multilayer Perceptron
(MLP) node by node (one for each node), but this would inevitably result in overfitting for larger
graphs. Instead, we employ the Graphical Conditioner presented in (Parafita & Vitrià, 2022), a
single MLP network that takes every node X and latent confounders U as the input and returns all
parameters {θX | X ∈ X} as the output. By using a particular training and inference strategy,
the Graphical Conditioner allows to compute each of these functions ΘX independently through a
single network, thereby reducing training time and overfitting risk.

H.3 SCM TRAINING

DCGs are trained with Maximum Likelihood Estimation, so we will define, for a particular sample
x ∼ P (X), the Negative Log-Likelihood (NLL) loss to minimize as the training objective. Given
the graph structure G of the data distribution to model, we can derive two formulas, one for the
Markovian case (no latent confounders),

L := − logP (x) = −
∑
X∈X

logP (x | paX), (22)

the other for the semi-Markovian case (with latent confounders),

L := − logP (x) = −EU

[
exp

∑
X∈X

logP (x | pa′X)

]
. (23)

In our example, we need to employ Equation (23), given that U = {U{X,B}} ̸= ∅. This latter
expectation can be estimated by generating M i. i. d. samples from P (U) and averaging the results
of the expectation’s contents. The terms logP (x | pa′X) can be estimated by the predefined node
architectures (NCF in our example) using a simple function. Finally, the Monte Carlo average can
be computed using the log-sum-exp trick for numerical stability.

By running an optimization algorithm (e.g., AdamW (Loshchilov & Hutter, 2019)) on the average
of these NLL losses for random mini-batches of samples, we can learn the data distribution P (X)
with our SCM, from which we can now estimate (identifiable) do-SVs.

H.4 DO-SHAP ESTIMATION

We cover this last step in three parts.

Firstly, we need to run the SHAP formula. In this case, with only 5 variables, we could employ
the exact formula directly, using Equation (1). Instead, we exemplify the more general approach,
compatible with larger graphs, with the permutations formula in Equation (2), which we approximate
via Monte Carlo as described in Section 3.4, here re-established for reader’s convenience:

ϕνx(X) = Eπ∼U(Π(X)) [νx(X≤πX)− νx(X<πX)] , (24)

where the expectation over permutations π is estimated by generating M i.i.d. permutations uni-
formly, and the internal νx(.) terms are estimated as described in the following. However, before
we run the νx-estimation procedure, we employ FRA to compute the Frontier-Irreducible subsets
S′ ⊆ S and, as such, reduce the number of νx-computations required, by using a cache.

Secondly, let us discuss FRA. Consider the permutation π = (A,B,Z,X,C). We need to attempt
to reduce sets X≤πX = {A,B,Z,X} and X<πX = {A,B,Z}. By running the FRA algorithm (see
Algorithm 2 for a simpler application with sets), we can see that both sets can be reduced by remov-
ing A, since B acts as a frontier between A and Y . Hence, we compute both values νx({B,Z,X})

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

and νx({B,Z}) and store their results in a cache for later look-up. If, on another permutation π′,
we encounter coalitions with irreducible sets that have been computed before, we can retrieve the
results from the cache directly, thereby reducing the number of required computations.

At this point, if we have not tested identifiability at the beginning of the process, we must confirm
identifiability of each encountered ν(S′) query (with the irreducible set) before proceeding. If the
query is deemed unidentifiable, the process must halt with an error, as do-SVs cannot be estimated
in this particular graph.

Thirdly, let us describe how to estimate an arbitrary coalition value, νx(S), which is accom-
plished with a general sampling procedure. In order to estimate this query, we need to gener-
ate M i. i. d. samples x(i) ∼ P (X | do(S = s)). We start by generating values ε(i) ∼ P (E)
and u(i) ∼ P (U) from their respective prior distributions. Afterwards, we go node by node
X ∈ X following any topological order of the graph, using the corresponding sampling functions
x(i) = fX(εX

(i),ΘX(pa′X
(i)
)) unless the variable X is in the intervened coalition S, in which case

x(i) becomes the corresponding value from the to-be-explained sample x. After we have sampled
from every variable in the graph, we have a joint sample x(i) ∼ P (X | do(S = s)). We pass each of
these samples through our model fY (.) to compute the corresponding y(i) values, which will finally
be averaged for the final estimation of νx(S).

Finally, we can add further optimizations to these procedures. Consider the tuple νx(π) =
(νx(π:k))k=0..K , with π:k the set of variables up to index k on π (inclusive) (note that π:0 = ∅).
When computing SVs, instead of using the formula directly, we sample permutations π, compute the
corresponding tuples νx(π) and, from there, their diff-tuple ∆νx(π) = (νx(π:k)−νx(π:k−1))k=1..K .
Note that each of these ∆νx(π)k terms is the difference in the SHAP formula for variable X := πk,
so we can update our do-SV estimations (ϕX)X∈X simultaneously, which accelerates this computa-
tion by reducing the number of FRA-cache accesses and employing tensor operations. Along with
this, other estimation approaches, such as antithetic sampling for these permutations, can be used to
obtain better estimator efficiency, hence further reducing the number of required permutations.

H.5 FINAL CONSIDERATIONS

Putting all of this together amounts to a seemingly complex method to estimate feature attribution:
from finding the assumed Causal Graph G, defining the appropriate SCM architecture, training such
a model, estimating the ν values, running FRA to avoid computations, to finally arriving at the do-SV
estimations. However, given already-implemented SCM architectures with appropriate training and
estimation procedures ready for use, estimand-agnostic do-SHAP is made practical. For this reason,
we advocate for an open-source library bringing together different SCM architectures for easier
switching between approaches, facilitating the general applicability of estimand-agnostic methods,
and as a result, of do-SHAP explanations.

I IMPACT STATEMENT

The goal and byproduct of this work is a tool for the estimation of do-SVs on an arbitrary black-
box system we wish to explain, natural or artificial. As an explainability tool, the core impact of
this research is positive, as it will push towards several desirable goals: on top of being a useful
tool both for science and business, as it allows to understand underlying systems in the data and
apply that knowledge with informed decisions, explanations answer to several concerns about the
trustworthiness of AI systems; e.g., the right to explanation on human-facing decision systems,
debugging complex black-box systems, and better transparency and accountability. Additionally,
since it constitutes a tool for auditing these systems, explainability paves the way for AI regulation,
necessary to protect human rights against the blind application of powerful but opaque AI systems.

One potential negative application of these techniques is in terms of willingly or unwillingly obfus-
cating harmful behaviour in black-box models. Given the complexity of these techniques and the
subsequent analysis required to derive conclusions from its outputs, explainability techniques could
be used to provide a superficial layer of supervision and result in misleading conclusions about the
behaviour of the system. Great care with respect to the assumptions and outputs of these tools must
be taken in their application.

34

	Introduction
	Related work
	Preliminaries
	Structural Causal Models
	Identifiability and the estimand-agnostic approach
	The Shapley value
	Tractable estimation of the Shapley value

	Method
	The do-Shapley value
	Efficient estimation of the do-Shapley value
	do-Shapley explanations
	Limitations

	Experiments
	Estimation performance
	Frontier-Reducibility Algorithm

	Conclusion
	Shapley value axioms
	Cache impact on the approximation algorithm
	Causal Inference concepts
	d-separability and do-calculus
	Projected Structural Causal Models

	Proofs
	Non-ancestors
	Frontier-Reducibility Algorithm
	Frontiers and properties
	Algorithm soundness
	Integer formulation

	do-Shapley value for the noise

	Experiments
	Synthetic dataset
	Implementation details
	Semi-Markovian case

	FRA experiments

	Applications
	Diabetes dataset
	Bike Rental dataset

	Comparison between do-SVs and non-causal approaches
	do-SHAP estimation example
	do-SHAP identifiability
	SCM implementation
	SCM training
	do-SHAP estimation
	Final considerations

	Impact statement

