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ABSTRACT

Conformal prediction (CP) constructs prediction sets with a marginal coverage
guarantee of 1− α, assuming the calibration distribution PXY and test distribution
QXY are identical. Under distribution shift, existing approaches align calibration
and test conformal scores only at the marginal level, which helps preserve marginal
coverage. However, ignoring their mismatched conditional score distributions
can lead to poor conditional coverage at individual test inputs. In response, we
introduce the conditional coverage gap (CCG) and its expectation over QX to
quantify the robustness of the conditional guarantee. To study how a distribution
shift is propagated from data to conformal scores, we use the Wasserstein distance
between PXY and QXY to bound the expected CCG. This bound implies that an
invertible transformation betweenPXY andQXY via Wasserstein minimization can
promote robust conditional coverage. Lastly, we implement the idea by Branched
Normalizing Flow (BNF), a two-branch structure where the X-branch transports
test inputs from QX to PX to obtain prediction sets with conditional guarantee
on PY |X , and the Y -branch inversely maps these sets with preserved conditional
guarantee on QY |X . Extensive experiments on nine datasets demonstrate that
BNF consistently reduces CCG with improved coverage robustness across various
confidence levels under distribution shift.

1 INTRODUCTION

Due to data noise and lack of prior knowledge, prediction uncertainty hinders applications of
AI in various safety-critical domains. Conformal Prediction (CP) yields a set of possible targets
rather than a single prediction to accommodate prediction uncertainty (Vovk et al., 2005; Shafer
& Vovk, 2007). We focus on CP for regression (Lei et al., 2017). Given a trained model h, a
score function s(X,Y ) = |h(X)− Y | computes the residuals (conformal scores) of n calibration
instances {(Xi, Yi)}ni=1. Denoting τ the ⌈(1− α)(n+ 1)⌉/n quantile of the conformal scores, a
vanilla prediction set CM(Xn+1) of a test input Xn+1 contains all target values whose conformal
scores are smaller than τ . Let PXY and QXY be calibration and test distributions in space X × Y ,
respectively. If the data are independent and identically distributed (i.i.d.) so that PXY = QXY , the
prediction set CM(Xn+1) achieves the marginal coverage guarantee Pr (Yn+1 ∈ CM(Xn+1)) ≥
1−α. However, since τ does not depend on the specific test input x, CM(Xn+1) has constant size and
lacks adaptiveness. To address the weakness, adaptive prediction set CA(Xn+1) aims at conditional
coverage guarantee Pr(Yn+1 ∈ CA(Xn+1)| Xn+1 = x ) ≥ 1− α,∀x ∈ X , which provides more
effective uncertainty quantification (Papadopoulos et al., 2011; Vovk, 2012).

In practice, a distribution shift (PXY ̸= QXY ) can violate the i.i.d. assumption. For example, multi-
source domain generalization (MSDG) considers QXY as a random mixture of multiple source
distributions (Krueger et al., 2021). In this scenario, ensuring coverage guarantees becomes both
important and challenging. Let PV and QV be the calibration and test conformal score distributions
in space V , respectively. The difference between the cumulative probabilities of PV and QV at τ can
measure the validity of marginal coverage. Various upper bounds of the discrepancy between PV and
QV are proposed to estimate the potential deviation from the nominal marginal coverage (Barber
et al., 2023; Xu et al., 2025). Nevertheless, since these existing methods align calibration and test
conformal scores only at the marginal level, they offer no insight into how the scores are conditionally
distributed at individual inputs. As a result, these methods are unable to assess the conditional
coverage of CA(Xn+1) under distribution shift(Figure 1(a)).
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Figure 1: (a) Vanilla prediction set CM(x) has constant size and offers marginal coverage, which is robust
if conformal score distributions PV and QV have similar cumulative probabilities at τ . Adaptive prediction
set CA(x) has input-dependent size and provides conditional guarantees for calibration inputs Xi = x where
i = 1, ..., n, but may fail on non-i.i.d. test input Xn+1 = x. The difference between PV and QV can not capture
the reliability of conditional coverage on the shifted test data; (b) Conditional coverage gap (CCG) measures
CA(Xn+1) validity at x by comparing PV |X=x and QV |X=x. Integrated coverage gap (ICG) is the expectation
of CCG under QX for a holistic robustness measure. Wasserstein distance W (PXY , QXY ) bounds ICG to
reveal how a distribution shift results in non-i.i.d. conformal scores. An invertible mapping between PXY and
QXY via Wasserstein minimization promotes robust conditional coverage; (c) Branched Normalizing Flow fθ
minimizes W (fθ#QXY , PXY ), where fθ#QXY is a pushforward distribution. For inference, we first compute
a normalized test input Xn+1 by fθX and generate CA(Xn+1) ⊆ Y with conditional guarantee on PXY . Then,
f−1
θY

inversely transforms the set to CBNF(Xn+1) ⊆ Y with preserved conditional coverage on QXY .

We aim to ensure the conditional guarantee under distribution shifts with three key contributions.

1. Quantification of conditional coverage robustness. We define the conditional coverage gap
(CCG) in the space of conditional conformal score distributions. We further define the integrated
coverage gap (ICG) as the expected CCG under the test feature distribution (Figure 1(b), 1st plot).

2. Upper bound by Wasserstein distance. We bound ICG with the Wasserstein distance between
calibration and test distributions to reveal how a distribution shift is propagated from X × Y to
V . This bound implies that an invertible mapping between calibration and test distributions via
Wasserstein minimization can promote robust conditional coverage (Figure 1(b) 2nd plot).

3. Branched Normalizing Flow (BNF). We embed the Wasserstein bound into a branched structure,
defined as fθ(x, y) = (fθX (x), fθY (y)) = (x, y), to transform QXY to PXY (Figure 1(c) 1st

plot). The structure does not explicitly couple the transformations of x and y, so fθX can
compute the normalized test input without knowing the true label during inference. If the adaptive
prediction set of the normalized input holds 1−α conditional coverage on calibration distribution,
f−1
θY

inversely transforms it with preserved guarantee on test distribution (Figure 1(c) 2nd plot).

To enhance the fitting ability of BNF, we propose a variant, called Augmented BNF, with imple-
mentation in Algorithm 1 under multi-source domain generalization (MSDG). Experiments on nine
datasets cover both synthetic distribution shifts (Rana, 2013) and real-world challenges, including
sales prediction across time series (Fanaee-T, 2013), traffic forecasting with mismatched data (Cui
et al., 2019), medicine decision-making for different populations (Johnson et al., 2023; Pollard et al.,
2018), and epidemic modeling over pandemic intervals (Deng et al., 2020). The results show that we
effectively improve the robustness of the conditional guarantee.

2 BACKGROUND

2.1 ADAPTIVE CONFORMAL PREDICTION

Denote X ∈ X ⊆ Rd and Y ∈ Y ⊆ R the input and output random variables, respectively. With a
trained regression model h : X → Y , a score function s : X ×Y → V ⊆ R outputs conformal scores
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to assess how data conform to the model h. We denote V ∈ V the random variable of conformal score,
typically defined as the absolute residual: V = s(X,Y ) = |h(X)−Y |. With instances {(Xi, Yi)}ni=1
from a calibration distribution PXY , split conformal prediction computes calibration conformal scores
Vi = s(Xi, Yi) for i = 1, ..., n (Papadopoulos et al., 2002). For an instance (Xn+1, Yn+1) from a test
distribution QXY , a vanilla prediction set is given by CM(Xn+1) = {y : s(Xn+1, y) ≤ τ, y ∈ Y},
where τ is the ⌈(1− α)(n+ 1)⌉/n quantile of {Vi}ni=1.1 Under the i.i.d. assumption such that
PXY = QXY , CM(Xn+1) provides marginal coverage guarantee that the probability of including
the true test target Yn+1 by CM(Xn+1) is at least 1− α, namely, Pr (Yn+1 ∈ CM(Xn+1)) ≥ 1− α.

As τ is independent from test inputs, fixed-size prediction sets often underestimate uncertainty for
hard samples and overestimate it for easy ones (Angelopoulos et al., 2022). Therefore, an adaptive
prediction set CA(Xn+1) aims at improving the guarantee under the condition where Xn+1 = x,
∀x ∈ X . Formally, denote τ(x) the ⌈(1− α)(nx + 1)⌉/nx quantile of {Vi : Xi = x, i = 1, ...n},
where nx is the number of calibration samples satisfying Xi = x. Then, for Xn+1 = x, an adaptive
prediction set is given by

CA(Xn+1) = {y : s(Xn+1, y) ≤ τ(x), y ∈ Y} , (1)
and obtain conditional coverage guarantee (Vovk, 2012):

Pr (Yn+1 ∈ CA(Xn+1)|Xn+1 = x) ≥ 1− α, ∀x ∈ X . (2)
However, the conditional guarantee is not practically achievable using finite calibration samples
without regularity assumptions, such as Lipschitz continuity of PY |X=x density (Foygel Barber et al.,
2021). Hence, approximations of the conditional guarantee are extensively developed. Mondrian
CP ensures 1− α coverage conditioned over input subspaces (Boström et al., 2021). Some methods
estimate the conformal score distribution conditioned on specific test input x, for example, by
weighting each Vi based on the proximity of Xi to x (Lin et al., 2021; Guan, 2023; Gibbs et al.,
2023). Conformal training embeds a size-based loss in the training of the model h (Correia et al.,
2024; Stutz et al., 2021; Bars & Humbert, 2025). Besides, advanced score functions are developed to
facilitate conditional coverage in regression (Romano et al., 2019; Feldman et al., 2021). Generative
models also show promise for enhancing adaptiveness, especially for multivariate output (Colombo,
2024; Fang et al., 2025; Klein et al., 2025; Thurin et al., 2025).

2.2 CONFORMAL PREDICTION FOR MULTI-SOURCE DOMAIN GENERALIZATION

Joint distribution shift is a challenging non-i.i.d. situation where both covariate shift (PX ̸=
QX ) (Tibshirani et al., 2019) and concept shift (PY |X ̸= QY |X ) (Sesia et al., 2023; Einbinder et al.,
2022) can occur. Some existing works treat joint distribution shifts as perturbations on calibration
data to keep marginal coverage (Gendler et al., 2021; Yan et al., 2024).

Multi-source domain generalization (MSDG) is a specific case of joint distribution shifts where the
test distribution is in the convex hull of multiple source distributions. This scenario is extensively stud-
ied in domain adaptation theory (Zhang et al., 2019) and distributionally robust optimization (Sagawa
et al., 2019). In the context of MSDG, conservative CP approaches ensure the marginal coverage
under the worst-case shift (Cauchois et al., 2024; Zou & Liu, 2024). Recent work further regularizes
the model h for a balance between the robustness of marginal coverage and prediction efficiency (Xu
et al., 2025). A related area is federated CP (Lu et al., 2023; Wen et al., 2025), where robust CP is
pursued across separated sources without data centralization.

Nevertheless, how joint distribution shifts undermine the conditional coverage guarantee remains
unexplored. Therefore, we focus on developing a theoretical framework to assess the robustness of
conditional coverage and propose a practical solution in the presence of multiple source domains.

3 THEORY

3.1 INTEGRATED COVERAGE GAP

Under the i.i.d. assumption: (Xn+1, Yn+1) ∼ QXY = PXY , the conditional guarantee in Eq. (2)
indicates that s(Xn+1, Yn+1) ≤ τ(x) occurs with probability of at least 1− α when Xn+1 = x:

Pr (s(Xn+1, Yn+1) ≤ τ(x)|Xn+1 = x) ≥ 1− α, ∀x ∈ X (3)
1Equivalently, τ can be defined as the 1−α quantile of {Vi}ni=1 ∪{V∞} (Vovk et al., 2005; Lei et al., 2017).
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For brevity, let PV |x and QV |x be the calibration and test conformal score distributions conditioned
on an input x. Eq. (3) implies that PV |x and QV |x hold the same cumulative probability at τ(x) when
PXY = QXY . Formally, denoting FPV |x and FQV |x cumulative distribution functions (CDFs) of
PV |x and QV |x, respectively, Eq. (3) indicates FPV |x(τ(x)) = FQV |x(τ(x)) ≥ 1− α.

To quantify how PXY ̸= QXY impedes the conditional guarantee with Xn+1 = x, we define
conditional coverage gap (CCG) by

CCG(P,Q, x) = |FPV |x(τ(x))− FQV |x(τ(x))|. (4)

CCG utilizes the two CDFs, FPV |x and FQV |x , to assess the coverage robustness of CA(Xn+1) when
Xn+1 = x. A lower CCG value indicates higher robustness. However, since test inputs are drawn
from QX , evaluating CCG at a single point x can not take QX(x) at different x into account. To
address this, integrated coverage gap (ICG) is defined as the expectation of CCG under QX by

ICG(P,Q) =

∫
X

CCG(P,Q, x)dQX(x). (5)

By integrating CCG over QX , ICG is a comprehensive metric for coverage robustness of adaptive
prediction sets. A low ICG means that conditional coverage is consistently close to 1− α in X .

3.2 UPPER BOUND BY WASSERSTEIN DISTANCE

We further explore how a distribution shift between PXY and QXY in space X × Y is propagated to
a shift between PV |x and QV |x in space V for all x ∈ X .
Definition 1 (p-Wasserstein Distance between Population Distributions (Panaretos & Zemel, 2019)).
For any probability measures µX and νX defined on a metric space (X , dX ), where X is a set and
dX is a metric on X , the Wasserstein distance of order p ≥ 1 between µX and νX is defined by

Wp(µX , νX) = inf
γ∈Γ(µX ,νX)

(∫
X×X

dX (x1, x2)
p dγ(x1, x2)

) 1
p

,

where Γ(µX , νX) is the set of all joint probability measures γ on X ×X with marginals γ(A×X ) =
µX(A) and γ(X × B) = νX(B), ∀ measurable sets A,B ⊆ X .

The Wasserstein distance with p = 1 is denoted as W . An upper bound of the marginal coverage gap
is proposed in (Xu et al., 2025). Let L be the Lebesgue density bound of PV |x for all x ∈ X (Ross,
2011). We derive

CCG(P,Q, x) ≤
√
2L ·W (PV |x, QV |x). (6)

Next, we explore how W (PV |x, QV |x) arises from the difference in PY |x and QY |x by Theorem 1.

Theorem 1. Let µXY and νXY be probability measures in the metric space (X × Y, dXY),
where dXY is the 2-product metric of dX and dY such that dXY((x1, y1), (x2, y2)) :=
||(dX (x1, x2), dY(y1, y2))||2. Let s : X × Y → V be a measurable function such that s(x, y) = v.
In the metric space (V, dV), denote µV the probability measure of s(X,Y ) for (X,Y ) ∼ µXY . Also,
let νV be the probability measure of s(X,Y ) for (X,Y ) ∼ νXY . If s has a continuity constant κ at
x such that dV(s(x,y1),s(x,y2))

dY(y1,y2)
≤ κ,∀x ∈ X and ∀y1, y2 ∈ Y , the following inequality holds:

W (µV |x, νV |x) ≤ κ ·W (µY |x, νY |x). (7)

A related theorem in (Xu et al., 2025) does not condition on a specific x. Since V,Y ⊆ R, we can
take the metrics dV(·, ·) and dY(·, ·) as the absolute value of the difference. Therefore, according to
Theorem 1, if the score function s(X,Y ) is continuous with a constant κ such that |s(x,y1)−s(x,y2)|

|y1−y2| ≤
κ, ∀x ∈ X , ∀y1, y2 ∈ Y , we can derive that

W (PV |x, QV |x) ≤ κ ·W (PY |x, QY |x). (8)

For an intuitive explanation, a smaller κ implies that the score function s becomes less responsive to
changes in y conditioned on x. Consequently, a substantial distribution shift between PY |x and QY |x
will not result in a large W (PV |x, QV |x). Combining Eq. (8) and Eq. (6), we obtain

CCG(P,Q, x) ≤
√
2κL ·W (PY |x, QY |x). (9)
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Besides, as
√
W (PY |x, QY |x) ≤W (PY |x, QY |x) + 1/4,2 we can bound ICG based on Eq. (9) by

ICG(P,Q) ≤
√
2κL

(∫
X
W (PY |x, QY |x)dQX(x) +

1

4

)
. (10)

Eq. (10) suggests that ICG is influenced by the Wasserstein distance W (PY |x, QY |x) averaged over
the test input distribution QX . However, this upper bound does not fully capture the distribution shift
between PXY and QXY , as it omits the effect of covariate shift, i.e.,PX ̸= QX .
Theorem 2. Let µXY and νXY be probability measures on the metric space (X × Y, dXY).
µY |x and νY |x are the corresponding conditional distributions of Y given X = x. A joint
distribution shift occurs between µXY and νXY such that µX ̸= νX and µY |X ̸= νY |X . De-
note γ∗XYXY ∈ Γ(µXY , νXY ) the optimal transport plan of W (µXY , νXY ) and γ∗XX(x1, x2) =∫
Y2 dγ

∗
XYXY (x1, y1, x2, y2). If ∃ η > 0 such that∫

X
W (µY |x, νY |x)dνX(x) ≤ η

∫
X×X

W (µY |x, νY |x)dγ
∗
XX(x, x), (11)

the following inequality holds that∫
X
W (µY |x, νY |x)dνX(x) ≤ η ·W (µXY , νXY ). (12)

Changing the notations µ and ν into P and Q in Theorem 2, we establish an upper bound for the
integrated conditional Wasserstein distance in Eq. (10) as follows∫

X
W (PY |x, QY |x)dQX(x) ≤ η ·W (PXY , QXY ). (13)

Finally, combining Eq. (10) and Eq. (13), we deduce that

ICG(P,Q) ≤
√
2κL (η ·W (PXY , QXY ) + 1/4). (14)

Eq. (14) states that ICG is bounded by W (PXY , QXY ), meaning that greater shifts in the joint
distribution lead to a more significant decline in conditional coverage. However, the influence of
W (PXY , QXY ) is moderated by scaling constants, which include κ, L, and η. The specific roles
and particular implications of these constants for CP are detailed in Appendix B. The finite-sample
behavior of W (PXY , QXY ) is examined in Appendix C.

4 METHOD

The upper bound in Eq. (14) provides a framework to ensure conditional coverage under distribution
shift. Specifically, if a model fθ transforms QXY via the Wasserstein transport plan to PXY , we have

(Xn+1, Y n+1) := fθ(Xn+1, Yn+1) ∼ PXY , ∀(Xn+1, Yn+1) ∼ QXY . (15)
Therefore, the adaptive prediction set CA(Xn+1) constructed on the transformed input ensures
conditional coverage with respect to PXY . However, to achieve 1− α conditional coverage on QXY

during inference, the model fθ must satisfy two additional requirements:

(i) fθ can inversely transform CA(Xn+1) ⊆ Y with preserved conditional guarantee on QXY ;
(ii) fθ should not explicitly couple the transformations of Xn+1 and Yn+1, since Yn+1 remains

unknown during inference.

4.1 BRANCHED NORMALIZING FLOW

Normalizing flows are widely applied techniques for invertible mapping (Kobyzev et al., 2020;
Papamakarios et al., 2021). A formal definition of normalizing flows is presented in Definition 2 with
a demonstration in Figure 2.
Definition 2 (Normalizing flows (Kobyzev et al., 2020)). Let µX be a probability measure in Rd. For
a measurable and invertible function g : Rd → Rd, νX is the pushforward measure of µX through g,
denoted as νX = g#µX , if νX(A) = µX(g−1(A)) for every measurable set A ⊆ Rd. g is referred
to as the generative flow, and f = g−1 is known as the normalizing flow with µX = f#νX .

2When W (PY |x, QY |x) ≥ 1, we refine Eq. (10) into ICG(P,Q) ≤
√
2κL

∫
X W (PY |x, QY |x)dQX(x) by√

W (PY |x, QY |x) ≤ W (PY |x, QY |x). This tightens Eq. (14) to ICG(P,Q) ≤
√
2κL · η ·W (PXY , QXY ).
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Figure 2: Invertible generative and normalizing flows.

To make fθ meet the two requirements (i)
and (ii), we introduce a special normalizing
flow, called Branched Normalizing Flow
(BNF). For a sample (x, y), BNF transforms it
with a branched structure such that fθ(x, y) =
(fθX (x), fθY (y)) = (x, y). The invertibility
of BNF allows that f−1

θ (x, y) = (f−1
θX

(x), f−1
θY

(y)) = (x, y), enabling the inverse transformation of
CA(Xn+1) and satisfying requirement (i). Besides, the parameters θX and θY are not shared between
branches, so BNF does not explicitly couple the mappings of x and y. Therefore, the normalized test
input Xn+1 can be obtained without knowing Yn+1 during inference, fulfilling requirement (ii).

Consider a BNF that achieves fθ#QXY = PXY so that fθX#QX = PX and fθY #QY |x = PY |x by
min
θ
W (PXY , fθ#QXY ). (16)

Then, given a test input Xn+1 = x, we normalize it as Xn+1 = fθX (x) = x. Since fθ#QXY =

PXY , the transformed true target Y n+1 = fθY (Yn+1), together with Xn+1, should follow the
calibration distribution, i.e, (Xn+1, Y n+1) ∼ PXY , as shown in Figure 1(c) 1st plot. Therefore, the
adaptive prediction set of Xn+1 has the conditional guarantee:

Pr
(
Y n+1 ∈ CA(Xn+1)|Xn+1 = x

)
≥ 1− α. (17)

BNF then constructs a prediction set of the original input Xn+1 by including all targets whose
normalized counterparts lie in CA(Xn+1). Specifically, we define CBNF(Xn+1) as follows:

CBNF(Xn+1) = {f−1
θY

(y) : y ∈ CA(Xn+1)}, where Xn+1 = fθX (Xn+1). (18)
Proposition 6 in Appendix D and the invertibility of the univariate function fθY imply that

Y n+1 ∈ CA(Xn+1) ⇐⇒ f−1
θY

(Y n+1) ∈ CBNF(Xn+1). (19)

Consequently, since Yn+1 = f−1
θY

(Y n+1), the conditional guarantee is inherited by CBNF(Xn+1):
Pr (Yn+1 ∈ CBNF(Xn+1)|Xn+1 = x) ≥ 1− α. (20)

Even if fθX and fθY do not share parameters, Wasserstein minimization in Eq. (16) considers the
dependency between them. Let y = ϕ(x) be the ground truth mapping function of PXY . Since
(Xn+1, Y n+1) ∼ PXY , we have Y n+1 = ϕ(Xn+1) = ϕ(fθX (Xn+1)). Thereby, even if f−1

θY
(Y n+1)

is not explicitly conditioned onXn+1, it implicitly depends onXn+1 through the composition ϕ◦fθX .
Further explanation with an illustrative example is provided in Appendix E.

4.2 ENHANCING EXPRESSIVENESS VIA GAUSSIAN NOISE AUGMENTATION

The monotonicity of the univariate fθY allows the equivalence in Eq. (19), but also limits its fitting
ability. As a result, it struggles to optimize Eq. (16) for complex distributions, leading to unreliable
conditional coverage, as shown in Appendix F.

To address this limitation, we adopt the augmentation technique proposed in (Huang et al., 2020) to
gain higher expressiveness. Specifically, given a sample (x, y), an augmented transformation of y is
defined as f aug

θY
(y; ε) = ȳ, where ε is sampled from a Gaussain distributionN (0, 1). Meanwhile, fθX

is unchanged. We refer to this variant as Augmented BNF, defined as
f aug
θ (x, y, ε) = (fθX (x), f aug

θY
(y; ε)) = (x, y). (21)

We implement Augmented BNF using Real NVP (Dinh et al., 2016; Huang et al., 2020), a repre-
sentative coupling flow, with architectural details provided in Appendix H. Although f aug

θY
(y; ε) = ȳ

remains invertible, it does not build a monotonic relationship between y and ȳ. As a result, we can not
rely on Eq. (19) to preserve the conditional guarantee. To address this issue, we propose an alternative
approach to obtain a prediction set for test input Xn+1 with a sampled noise εn+1 by defining

Caug
BNF(Xn+1) =

{
y : f aug

θY
(y; εn+1) ∈ CA(Xn+1)

}
, where Xn+1 = fθX (Xn+1). (22)

Proposition 7 in Appendix D implies that Y n+1 ∈ CA(Xn+1) ⇐⇒ Yn+1 ∈ Caug
BNF(Xn+1). Hence,

based on Eq. (17), we conclude that
Pr

(
Yn+1 ∈ Caug

BNF(Xn+1)|Xn+1 = x
)
≥ 1− α. (23)

Conditioning the Y transformation on features, denoted by f fea
θY

(y;x) = ȳ, theoretically enhances
expressiveness and inter-branch dependency as well. However, in practice, it exacerbates the curse of
dimensionality, increasing the risk of overfitting with finite samples, as shown in Appendix G.

6
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5 APPLICATION TO MULTI-SOURCE DOMAIN GENERALIZATION

In this work, we study joint distribution shift in multi-source domain generalization (MSDG) (Sagawa
et al., 2019), a widely explored setting in CP (Cauchois et al., 2024; Zou & Liu, 2024; Xu et al., 2025).
In MSDG, the test distribution is a random mixture within the convex hull of the source distributions.
Formally, given K source distributions Dk

XY for k = 1, ..,K, we assume the test distribution satisfies

QXY ∈
{∑K

k=1
λkD

k
XY : λ1, ..., λK ≥ 0,

∑K

k=1
λk = 1

}
. (24)

Theorem 3. Let {νkXY }Kk=1 be probability measures defined on the metric space (X × Y, dXY),
and let νXY lie in the convex hull of these measures, i.e., νXY =

∑K
k=1 λkν

k
XY with λk ≥ 0 and∑K

k=1 λk = 1. For any probability measure µXY on (X × Y, dXY), the following inequality holds:

W (µXY , νXY ) ≤
∑K

k=1
λkW (µXY , ν

k
XY ). (25)

As outlined in (Cauchois et al., 2024; Xu et al., 2025), achieving coverage guarantee for each source
distribution ensures that the coverage on the test distribution is preserved. Inspired by the principle,
Theorem 3 suggests a surrogate objective for Augmented BNF by

∑K
k=1 λkW (PXY , f

aug
θ #

Dk
XY ).

Since the mixture weights {λk}Kk=1 are unknown, we minimize the expectation assuming they are
uniformly distributed over the simplex:

min
θ

1/K ·
∑K

k=1
W (PXY , f

aug
θ #

Dk
XY ). (26)

We typically work with finite samples in practice. Let SDk be the training set from the k-th source
distribution Dk

XY for k = 1, ..., n. All training sets are of equal size. Based on the setup of
split conformal prediction, all training and calibration samples are from the same distribution, so
PXY =

∑K
k=1 |SDk |/|

⋃K
k=1 SDk | ·Dk

XY =1/K ·
∑K

k=1D
k
XY . Denote SP a calibration set from PXY .

An empirical calibration distribution P̂XY is constructed from SP , as introduced in Appendix C.

During training, for each (x, y) ∈ SDk , we sample a noise ε from N (0, 1) and compute (x, y)
using Eq. (21). All normalized pairs are collected in SDk to construct the empirical pushforward
f aug
θ #

D̂k
XY . Using f aug

θ #
D̂k

XY for k = 1, . . . ,K and P̂XY , we approximate the objective in Eq. (26).

Algorithm 1 Augmented BNF + CQR under MSDG

Require: training sets SDk for k=1, ...,K; calibra-
tion set SP ; test set SQ; N epochs; 1−α confidence;
Augmented BNF f aug

θ ; CQR algorithm ACQR.

Training Phase:
for i=1 to N epochs do

for k=1 to K do
Initialize SDk ← ∅
for each (x, y) ∈ SDk do
(x, y)=f aug

θ (x, y, ε), where ε ∼ N (0, 1)

SDk ← SDk ∪ {(x, y)}
end for

end for
minθ

1
K

∑K
k=1W

(
P̂XY , f

aug
θ #

D̂k
XY

)
end for

Inference Phase:
for x from SQ do
x̄=fθX (x)

CCQR(x)=ACQR

(⋃K
k=1 SDk ,SP , x, 1− α

)
Sample ε ∼ N (0, 1)
Caug

BNF(x)={y : f aug
θY

(y; ε) ∈ CCQR(x)}
end for

Moreover, even if the Augmented BNF
perfectly achieves f aug

θ #
QXY = PXY so

that (Xn+1, Y n+1) ∼ PXY , constructing
a prediction set CA(Xn+1) that satisfies
the conditional guarantee under PXY re-
mains challenging with finite samples, as
we introduced in Section 2.1.

In this work, we employ conformalized
quantile regression (CQR) (Romano et al.,
2019), which generates an adaptive pre-
diction set CCQR(Xn+1) to approximate
the 1−α conditional coverage specified in
Eq. (17). We briefly denote the algorithm
of CQR as

ACQR

(⋃K

k=1
SDk ,SP , Xn+1, 1− α

)
.

Crucially, the construction ofCCQR(Xn+1)
is independent of the Augmented BNF
training and can be seamlessly integrated
into our framework. Details of the CQR im-
plementation are provided in Appendix I.

Finally, given a test set SQ from QXY ,
we outline the combination of Augmented
BNF + CQR in Algorithm 1.

7
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6 EXPERIMENT

6.1 EXPERIMENTAL SETUP

We conduct Augmented BNF using the normflows library (Stimper et al., 2023). To estimate the
empirical Wasserstein distance in Algorithm 1, we adopt the Sinkhorn algorithm (Cuturi, 2013;
Knight, 2008) via the geomloss library (Feydy et al., 2019), with a brief review in Appendix J.

Baselines. Five methods are selected for a comprehensive comparison. Split CP (SCP) (Papadopoulos
et al., 2002) guarantees marginal coverage under the i.i.d. assumption. Importance-Weighted CP
(IW-CP) (Tibshirani et al., 2019) addresses covariate shifts. Worst-Case CP (WC-CP) conservatively
ensures marginal coverage under joint distribution shift (Cauchois et al., 2024; Zou & Liu, 2024;
Gendler et al., 2021). Wasserstein-Regularized CP (WR-CP) enhances the robustness of marginal
coverage under MSDG (Xu et al., 2025). Lastly, CQR without Augmented BNF is included to
demonstrate that CQR alone struggles to maintain valid conditional coverage under distribution shift.
Further details on the baselines are provided in Appendix K with an illustrative example in Figure 10.

Datasets. We set K = 3 under both synthetic and natural distribution shifts. Synthetic shifts
are introduced in the PTS dataset (Rana, 2013). For real-world applications, we consider (i) sales
prediction over time with Bike Rental (Fanaee-T, 2013), (ii) multi-location traffic forecasting with
Seattle-Loop (Cui et al., 2019), PEMSD4, and PEMSD8 (Bai et al., 2020), (iii) unbiased healthcare
with MIMIC-IV (Johnson et al., 2023), eICU (Pollard et al., 2018), and data from a collaborating hos-
pital, and (iv) epidemic modeling across pandemic phases with U.S. Influenza-like Illness (ILI) (Deng
et al., 2020). Dataset details are in Appendix L.

Evaluation metric. The worst-slice coverage (WSC) (Cauchois et al., 2021) measures the minimal
coverage over any sufficiently large slab in X , serving as an empirical proxy for the robustness of
conditional coverage, as reviewed in Appendix M. However, since WSC is evaluated only over a
restricted subset of X , it may fail to capture robustness across the entire space. Additionally, WSC
captures only the minimal (i.e., most insufficient) coverage and overlooks regions where coverage
may be overly conservative. To address these weaknesses, we propose Average-slice coverage gap
(ASCG) as a practical metric to assess the robustness of conditional coverage. Since X ∈ X ⊆ Rd,
each sample (x, y) can be represented as (x(1), x(2), . . . , x(d), y). For each dimension i ∈ {1, . . . , d},
we partition the test set SQ intoM equal-sized slices along the i-th feature dimension. Specifically, let
τ(m−1)/M and τm/M denote the (m− 1)/M and m/M quantiles of {x(i) : (x(1), ..., x(d), y) ∈ SQ}.
Then, we define the m-th slice in dimension i as

Si,m = {(x(1), ..., x(d), y) : x(i) ∈ [τ(m−1)/M , τm/M ), (x(1), ..., x(d), y) ∈ SQ}. (27)

Let ci,m denote the number of covered samples in the slice Si,m. The ASCG is defined as

ASCG =
1

d

d∑
i=1

1

M

M∑
m=1

∣∣∣∣ ci,m|Si,m| − (1− α)
∣∣∣∣ . (28)

If the coverage ratio ci,m/|Si,m| closely matches 1− α for all i and m, then conditional coverage is
approximately satisfied and ASCG remains low.

6.2 ROBUST CONDITIONAL COVERAGE VIA AUGMENTED BNF

We evaluate the combination of Augmented BNF and CQR, along with five baseline methods, across
10 independent trials for each dataset. The results are summarized in Figure 3, which presents box
plots of coverage metrics under 1− α = 0.9. For each trial, 100 random mixtures were generated
as test sets, resulting in 1000 test performances per box. One can observe that Augmented BNF
consistently achieves the lowest ASCG while maintaining marginal coverage close to 0.9, proving that
Augmented BNF effectively normalizes shifted test distributions toward the calibration distribution,
thereby enhancing conditional coverage robustness. We further examine the generalization ability of
the Augmented BNF across varying sample sizes and K values in Appendix N.

Rather than fixing 1 − α = 0.9, we explore the performance of Augmented BNF across different
confidence levels. We denote ASCG the mean ASCG over 10 trials across all dataset. Figure 4
illustrates the results with 1− α varying from 0.1 to 0.9. The proposed method consistently achieves
the most robust conditional coverage, maintaining the lowest ASCG over different confidence levels.

8
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Figure 3: Marginal coverage and ASCG of Augmented BNF+CQR and five baselines with 1− α = 0.9: the
proposed method achieves the lowest ASCG and brings the marginal coverage close to the expected confidence.
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Figure 4: ASCG for 1− α from 0.1 to 0.9.

Moreover, a consistent pattern emerges across all meth-
ods: ASCG tends to be higher in the mid-range of
confidence levels and lower at both ends. At high con-
fidence levels (e.g., 1− α = 0.9), prediction intervals
become wide enough to cover most possible outcomes,
thereby resulting in small coverage gaps. Conversely,
at low confidence levels (e.g., 1− α = 0.1), prediction
intervals are narrow and only need to capture a small
subset of outcomes, making them inherently less sen-
sitive to distribution shifts and again leading to lower
coverage gaps. As a result, the coverage gap typically
peaks at intermediate confidence levels, forming arch-
shaped curves across the confidence spectrum from 0.1
to 0.9, as shown in Figure 4.

7 DISCUSSION

In practice, the loss in Eq. (26) can only be minimized empirically, and thus the transformed test
distribution may not perfectly coincide with the calibration distribution. As a result, Augmented BNF
cannot reduce the ASCG to zero or fully achieve the target 1−αmarginal coverage in Figure 3. Hence,
it is essential to assess how closely the attained coverage approaches 1− α. Appendix O derives and
validates marginal and conditional coverage lower bounds under imperfect transformation.

Moreover, prediction efficiency, quantified by prediction set size, is an important performance
metric in CP. Reduced set size improves the likelihood of identifying the ground-truth value, while
maintaining the nominal coverage level. Nevertheless, during inference, the sampled noise εn+1

in Eq. (22) is source-agnostic, and thus the Y -branch f aug
θY

cannot determine the originating source
distribution of a new test sample. Consequently, the prediction set Caug

BNF(Xn+1) must expand to
encompass all potential sources in order to maintain valid coverage. To address this, we propose a
variant, Augment-Conditioned BNF, which incorporates source-specific conditioning to effectively
reduce prediction set size. Appendix P provides a detailed comparison of the two kinds of BNFs.

Lastly, this work focuses on the application of our method to MSDG. Other types of distribution shift
remain unexplored. We discuss this limitation, along with additional considerations, in Appendix Q.

8 CONCLUSION

This work proposes the Conditional Coverage Gap (CCG) to evaluate the robustness of conditional
coverage at a given test input, and defines the Integrated Coverage Gap (ICG) as its expectation
over the test feature distribution. We bound ICG using the Wasserstein distance W (PXY , QXY ),
capturing how distribution shift propagates from the data space to the conformal score space. To
ensure 1− α conditional coverage under shift, we introduce the Branched Normalizing Flow (BNF).
The invertibility of BNF enables mapping adaptive prediction sets from PXY to QXY , while the
branched structure allows input Xn+1 transformation without needing Yn+1 at test time. BNF is
applied to multi-source domain generalization (MSDG) with both synthetic and real-world distribution
shifts, validating the effectiveness of our approach.

9
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A THE USE OF LARGE LANGUAGE MODELS

We acknowledge the use of a large language model (ChatGPT, OpenAI) for editorial assistance. Its
role was limited to improving the readability of the manuscript by smoothing phrasing and correcting
grammar. The research ideas, methodology, theoretical results, experiments, and technical writing
were entirely conducted and authored by the researchers.

B INSIGHT INTO SCALING CONSTANTS OF THE ICG BOUND

We provide more intuitive explanations of the scaling constants in Eq. (14), clarifying their roles and
implications for CP.

First, the term L, representing the Lebesgue density bound of PV |x, captures the concentration of
conformal scores at x. A higher L indicates that the calibration scores are tightly clustered around
certain values of v, which makes the conditional coverage more sensitive to distribution shifts in test
conformal scores. Hence, this highlights how the shape of the calibration conformal score distribution
directly influences coverage robustness.

Second, κ provides an interpretation of how the score function s(x, y) influences robustness under
distribution shift. Specifically, the continuity constant κ ≥ (|s(x, y1)− s(x, y2)|)/(|y1 − y2|) for all
y1, y2 ∈ Y, x ∈ X . It captures the sensitivity of the score function s(x, y) to changes in the label
y, given a fixed input x. A smaller κ implies that the conformal score is relatively insensitive to
variations in the label, meaning that even under a large concept shift (i.e., large W (PY |x, QY |x)), the
induced shift in conformal scores W (PV |x, QV |x) remains small.

Lastly, the term η, introduced in Eq. (12), quantifies the extent to which the concept shift contributes
to the overall joint distribution shift. A smaller η indicates that most of the distributional difference
between PXY and QXY does not stem from the difference between PY |x and QY |x for x ∈ X . In
such cases, the impact of W (PXY , QXY ) on the coverage gap is limited, and accordingly, the upper
bound in Eq. (14) becomes tighter.

C FINITE-SAMPLE APPROXIMATION OF WASSERSTEIN DISTANCE

In practice, the population forms of calibration and test distributions are typically inaccessible, so we
may approximate W (PXY , QXY ) based on empirical distributions.
Definition 3 (p-Wasserstein Distance between Empirical Distributions (Panaretos & Zemel, 2019)).
Let {xi}ni=1 ∼ µX and {x′j}mj=1 ∼ νX be i.i.d. samples from two distributions on a metric space
(X , dX ). The Dirac measure εx is the point mass at x ∈ X . The empirical measures are defined as

µ̂X =
1

n

n∑
i=1

εxi
, ν̂X =

1

m

m∑
j=1

εx′
i
.

C ∈ Rn×m is a cost matrix where each element Cij = dX (xi, x
′
j) measures the distance between

sample xi from µ̂X and x′j from ν̂X . Let γ ∈ Rn×m be a transportation plan matrix, where each
γij ≥ 0 represents the mass transported from xi to x′j . The set of admissible transport plans is

Γ(µ̂X , ν̂X) =

γ ∈ Rn×m
≥0

∣∣∣∣∣∣
m∑
j=1

γij =
1

n
,

n∑
i=1

γij =
1

m

 .

The p-Wasserstein distance between empirical distributions µ̂X and ν̂X is then given by

Wp(µ̂X , ν̂X) =

 min
γ∈Γ(µ̂X ,ν̂X)

n∑
i=1

m∑
j=1

γij C
p
ij

1/p

.

Let P̂XY and Q̂XY be the empirical distributions based on n and m i.i.d. samples drawn from PXY

and QXY , respectively. Our goal is to bound the deviation between the empirical and population
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Wasserstein distances, i.e., to analyze how W (P̂XY , Q̂XY ) converges to W (PXY , QXY ) as n
increases.
Definition 4 (Upper Wasserstein Dimension (Dudley, 1969)). Given a set A ⊆ X , the ϵ-covering
number, denoted Nϵ(A), is the smallest n such that n closed balls, U1, ...,Un, of diameter ϵ
achieve A ⊆ ∪1≤i≤mUi. For a distribution µX in X , the (ϵ, ζ)-dimension is dϵ(µX , ζ) =
− log(inf{Nϵ(A) : µX(A) ≥ 1− ζ})/log ϵ. The upper Wassersteion dimension with p = 1 is

dW (µX) = inf{φ ∈ (2,∞) : lim supϵ→0 dϵ(µX , ϵ
φ

φ−2 ) ≤ φ}. (29)
Theorem 4. Given a probability measure µX in space X , let σ > dW (µX). If µ̂X is an empirical
measure corresponding to n i.i.d. samples from µX , ∃λ ∈ R such that E[W (µX , µ̂X)] ≤ λn−1/σ.
Furthermore, for t > 0, Pr(W (µX , µ̂X) ≥ E[W (µX , µ̂X)] + t) ≤ e−2nt2 (Weed & Bach, 2019).
Theorem 5. Given probability measures µX and νX in space X , let σµ > dW (µX) and σν >
dW (νX). Denote µ̂X and ν̂X empirical measures corresponding to n and m i.i.d. samples from µX

and νX , respectively. For tµ, tν > 0, ∃λµ, λν > 0 with probability at least (1−e−2ntµ
2

)(1−e−2mtν
2

)
that

|W (µX , νX)−W (µ̂X , ν̂X)| ≤ λµn−1/σµ + λνm
−1/σν + tµ + tν . (30)

A related theorem is proposed in (Xu et al., 2025), though without accounting for the signs of λµ
and λν . Based on Theorem 5, if σP > dW (PXY ) and σQ > dW (QXY ), for tP , tQ > 0, there are
λP , λQ > 0 with a probability at least (1− e−2nt2P )(1− e−2mt2Q) that∣∣∣W (PXY , QXY )−W (P̂XY , Q̂XY )

∣∣∣ ≤ λPn−1/σP + λQm
−1/σQ + tP + tQ. (31)

As n and m increase, the bound in Eq. (31) decreases, thereby improving the approximation of
the empirical Wasserstein distance. At the same time, the probability (1 − e−2nt2P )(1 − e−2mt2Q)
increases, indicating that the bound holds with higher confidence.

D ADDITIONAL THEORETICAL STATEMENTS

D.1 SUPPORTING PROPOSITIONS

Proposition 6. Let f : X → Y be an invertible univariate function, where X ,Y ⊆ R. Let
C = [ylo, yhi] ⊆ Y be a closed interval. Then for any y ∈ Y , the following equivalence holds:

y ∈ C ⇐⇒ f−1(y) ∈ {x ∈ X : f(x) ∈ C}.

Proof. Since f is an invertible univariate function, it must be strictly monotonic—either strictly
increasing or strictly decreasing.

Case 1: Suppose f is strictly increasing. Then f−1 is also strictly increasing.

⇒ If y ∈ C = [ylo, yhi], then by monotonicity,

f−1(ylo) ≤ f−1(y) ≤ f−1(yhi),

so f−1(y) ∈ [f−1(ylo), f
−1(yhi)]. Since f is strictly increasing, this implies

[f−1(ylo), f
−1(yhi)] = {x ∈ X : f(x) ∈ C}

and thus f−1(y) ∈ {x ∈ X : f(x) ∈ C}.

⇐ If f−1(y) ∈ {x ∈ X : f(x) ∈ C}, then equivalently we can derive y ∈ C.

Case 2: Suppose f is strictly decreasing. Then f−1 is also strictly decreasing.

⇒ If y ∈ C = [ylo, yhi], then

f−1(ylo) ≥ f−1(y) ≥ f−1(yhi),

so f−1(y) ∈ [f−1(yhi), f
−1(ylo)]. Again, since f is decreasing,

[f−1(yhi), f
−1(ylo)] = {x ∈ X : f(x) ∈ C},

which implies f−1(y) ∈ {x ∈ X : f(x) ∈ C}.
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⇐ If f−1(y) ∈ {x ∈ X : f(x) ∈ C}, then again y ∈ C.

In either case, the equivalence holds.

Proposition 7. Let f : X → Y be a univariate function, where X ,Y ⊆ R. Let C ⊆ Y be a closed
interval. Then for a ∈ X , it holds that:

f(a) ∈ C ⇐⇒ a ∈ {x ∈ X : f(x) ∈ C}.

Proof. The statement is a direct consequence of the definition of the set {x ∈ X : f(x) ∈ C}. By
definition, a belongs to this set if and only if a ∈ X and f(a) ∈ C. Since a ∈ X is already assumed,
the condition reduces to: f(a) ∈ C ⇐⇒ a ∈ {x ∈ X : f(x) ∈ C}.

We visualize Proposition 6 and Proposition 7 in Figure 5.
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(a) Proposition 6 (b) Proposition 7

Figure 5: Characterization of preimage membership under (a) monotonic and (b) non-monotonic functions.

D.2 PROOF OF THEOREM 1

Proof. Let µXY and νXY be probability measures on the metric space (X × Y, dXY), where
dXY((x1, y1), (x2, y2)) := ||(dX (x1, x2), dY(y1, y2))||2. Let s : X × Y → V be a measurable
function such that s(x, y) = v. In metric space (V, dV), denote µV the probability measure of
s(X,Y ) for (X,Y ) ∼ µXY . Also, let νV be the probability measure of s(X,Y ) for (X,Y ) ∼ νXY .
Denote ΓV |x = Γ(µV |x, νV |x) and ΓY |x = Γ(µY |x, νY |x). By Theorem 1 in (Xu et al., 2025), we
derive

W (µV |x, νV |x) = inf
γ∈ΓV |x

∫
V×V

dV(v1, v2) dγ(v1, v2)

= inf
γ∈ΓY |x

∫
Y×Y

dV(s(x, y1), s(x, y2)) dγ(y1, y2).

(32)

Consider γ∗ ∈ ΓY |x is the optimal transport plan for W (µY |x, νY |x). However, γ∗ is not necessarily
optimal for obtaining W (µV |x, νV |x) in Eq. (32), so we have

W (µV |x, νV |x) ≤
∫
Y×Y

dV(s(x, y1)− s(x, y2)) dγ∗(y1, y2). (33)

Given that the function s is continuous with constant κ conditioned on x, we have dV(s(x,y1),s(x,y2))
dY(y1−y2)

≤
κ, ∀x ∈ X , y1, y2 ∈ Y , so the following inequality holds that∫
Y×Y

dV(s(x, y1), s(x, y2)) dγ
∗(y1, y2) ≤

∫
Y×Y

κ · dY(y1, y2) dγ∗(y1, y2) = κ ·W (µY |x, νY |x).

(34)
Finally, combining Eq. (33) and Eq. (34), we can conclude that

W (µV |x, νV |x) ≤ κ ·W (µY |x, νY |x). (35)
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D.3 PROOF OF THEOREM 2

Proof. Let µXY and νXY be probability measures on the metric space (X × Y, dXY), where
dXY((x1, y1), (x2, y2)) := ||(dX (x1, x2), dY(y1, y2))||2. A joint distribution shift results in µX ̸=
νX , µY |X ̸= νY |X .

For any γXYXY ∈ Γ(µXY , νXY ), denote γXX(x1, x2) =
∫
Y2 dγXYXY (x1, y1, x2, y2). Thereby,

we can derive ∫
X 2×Y2

dXY((x1, y1), (x2, y2))dγXYXY (x1, y1, x2, y2)

≥
∫
X 2×Y2

dY(y1, y2)dγXYXY (x1, y1, x2, y2)

≥
∫
X 2×Y2

dY(y1, y2)I(x1 = x2)dγXYXY (x1, y1, x2, y2)

=

∫
X 2

(∫
Y2

dY(y1, y2)dγY Y |x1x2
(y1, y2)

)
I(x1 = x2)dγXX(x1, x2)

=

∫
X 2

(∫
Y2

dY(y1, y2)dγY Y |x1x1
(y1, y2)

)
dγXX(x1, x1).

(36)

Consider γ∗XYXY ∈ Γ(µXY , νXY ) that satisfies

W (µXY , νXY ) =

∫
X 2×Y2

dXY((x1, y1), (x2, y2))dγ
∗
XYXY (x1, y1, x2, y2). (37)

However, γ∗Y Y |x1x1
is not necessarily the optimal transport plan of W (µY |x1

, νY |x1
), ∀x1 ∈ X , so

W (µY |x1
, νY |x1

) ≤
∫
Y2

dY(y1, y2)dγ
∗
Y Y |x1x1

(y1, y2). (38)

Therefore, after plugging Eq. (37) and Eq. (38) into Eq. (36) and simplifying x1 as x, we obtain

W (µXY , νXY ) ≥
∫
X 2

W (µY |x, νY |x)dγ
∗
XX(x, x). (39)

Given η > 0 that satisfies

η

∫
X 2

W (µY |x, νY |x)dγ
∗
XX(x, x) ≥

∫
X
W (µY |x, νY |x)dνX(x), (40)

we can consequently prove

η ·W (µXY , νXY ) ≥
∫
X
W (µY |x, νY |x)dνX(x). (41)

We would like to further justify the necessity of introducing η to satisfy Eq. (40).

Considering
∫ 2

X dγ∗XX(x, x) =
∫ 2

X I(x1 = x2)dγ
∗
XX(x1, x2), we denote

ψ(A) = γ∗XX

(
{(x1, x2) ∈ X 2 : x1 = x2 ∈ A}

)
= γ∗XX(A×A), ∀A ⊂ X . (42)

As νX is a projection of γ∗XX , we have νX(A) = γ∗XX(A×X ) ≥ ψ(A). By the Radon-Nikodym
theorem (Fonseca & Leoni, 2007), there exists a density ρ(x) ≥ 0 such that

ψ(A) =
∫
A
ρ(x)dνX(x). (43)

Since ψ(A) ≤ ν(A), we can derive
∫
A ρ(x)dνX(x) ≤

∫
A 1dνX(x) for all A. This forces ρ(x) ≤ 1

almost everywhere on νX . As a result, we conclude that∫
X 2

W (µY |x, νY |x)dψ(x) =

∫
X
W (µY |x, νY |x)ρ(x)dνX(x) ≤

∫
X
W (µY |x, νY |x)dνX(x). (44)

Therefore, we introduce a constant η to reverse the inequality in Eq. (44).
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D.4 PROOF OF THEOREM 3

Proof. For each k ∈ {1, ...,K}, denote γk ∈ Γ(µXY , ν
k
XY ) the optimal transport plan realizing

W (µXY , ν
k
XY ) such that

W (µXY , ν
k
XY ) =

∫
X×Y

dXY(x, y)dγ
k(x, y). (45)

Given νXY =
∑K

k=1 λkν
k
XY , let γ∗ =

∑K
k=1 λkγ

k. Since the first marginal of γ∗ is µXY and the
second marginal of γ∗ is

∑K
k=1 λkν

k
XY , it follows that γ∗ ∈ Γ(µXY , νXY ). However, γ∗ is not

necessarily optimal transport plan for W (µXY , νXY ), we conclude that

W (µXY , νXY ) = inf
γ∈Γ(µXY ,νXY )

∫
X×Y

dXY(x, y)dγ(x, y) ≤
∫
X×Y

dXY(x, y)dγ
∗(x, y)

=
∑K

k=1
λk

∫
X×Y

dXY(x, y)dγ
k(x, y) =

∑K

k=1
λkW (µXY , ν

k
XY ).

(46)

D.5 PROOF OF THEOREM 5

Proof. Since the Wasserstein distance satisfies the triangle inequality, the distance W (µX , νX) can
be related to the empirical distributions µ̂X and ν̂X as follows:

W (µX , νX) ≤W (µ̂X , µX) +W (µ̂X , νX) ≤W (µ̂X , µX) +W (µ̂X , ν̂X) +W (ν̂X , νX). (47)

Given E[W (µ, µ̂X)] ≤ λµn−1/σµ and E[W (νX , ν̂X)] ≤ λνm−1/σν from Theorem 4, with probabil-
ities at least 1− e−2ntµ

2

and 1− e−2mtν
2

, respectively, we have

W (µX , µ̂X) ≤ λµn−1/σµ + tµ;

W (νX , ν̂X) ≤ λνm−1/σν + tν .
(48)

It is reasonable to assume the two events in Eq. (48) are independent, so we can apply them to
Eq. (47), and thus obtain

W (µX , νX)−W (µ̂X , ν̂X) ≤ λµn−1/σµ + λνm
−1/σν + tµ + tν (49)

with probability at least (1− e−2ntµ
2

)(1− e−2mtν
2

).

Since E[W (µ, µ̂X)] and E[W (νX , ν̂X)] are non-negative, it follows that λµ, λν ≥ 0. Given that tµ
and tν are also positive, the right-hand side of Eq. (49) is non-negative. Therefore, we can take the
absolute value on both sides of Eq. (49) without changing the direction of the inequality, leading to
Eq. (30).

E DEMONSTRATION OF IMPLICIT DEPENDENCY

We demonstrate that f−1
θY

(Y n+1) implicitly depends onXn+1 through the composition ϕ◦fθX , where
ϕ : X → Y is the ground truth mapping function under the calibration distribution PXY . Consider a
BNF fθ is optimized by Wasserstein distance minimization in Eq. (16) such that fθ#QXY = PXY .
Therefore, for a test sample (Xn+1, Yn+1) = (x, y) ∼ QXY , it holds that

(Xn+1, Y n+1) = fθ(x, y) = (fθX (x), fθY (y)) = (x, y) ∼ PXY .

As a result, CA(Xn+1) satisfies the conditional coverage guarantee under PXY . Moreover, since
ȳ = ϕ(x), we obtain

f−1
θY

(y) = f−1
θY

(ϕ(x)) = f−1
θY

(ϕ(fθX (x))),

which shows that the inverse transformation f−1
θY

(y) used to construct CBNF(Xn+1) inherently
captures the dependency on Xn+1 = x.
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We present an example to illustrate the dependency. Denote U and N uniform and Gaussian
distributions, respectively. To introduce a distribution shift between PXY and QXY , let

PX = U(0, 1), PY |X = N (−0.5X,−0.3X2 + 0.3X);

QX = U(0, 0.8), QY |X = N (0.25X,−0.24X2 + 0.24X).

Figure 6 shows how the inverse transformation f−1
θY

preserve the conditional guarantee from
CA(Xn+1) to CBNF(Xn+1) through the implicit dependency on Xn+1 = x.

𝐶A( ത𝑋𝑛+1) for ത𝑋𝑛+1, ത𝑌𝑛+1 =( ҧ𝑥, ത𝑦)~𝑃𝑋𝑌

𝐶BNF(𝑋𝑛+1) for (𝑋𝑛+1, 𝑌𝑛+1)=(𝑥, 𝑦)~𝑄𝑋𝑌

samples ( ҧ𝑥, ത𝑦)~𝑃𝑋𝑌

samples (𝑥, 𝑦)~𝑄𝑋𝑌

𝑌

𝑋

𝑋𝑛+1=𝑥 ത𝑋𝑛+1= ҧ𝑥
𝑓𝜃𝑋

𝐶A
ത𝑋𝑛+1

𝐶BNF(𝑋𝑛+1)

𝑓𝜃𝑌

−1

① ②

③

④

Figure 6: Preserving conditional coverage via implicit dependency on test input. The circled numbers indicate
the sequential steps to obtain the corresponding values or prediction sets.

F COMPARISON BETWEEN NORMALIZING FLOW TECHNIQUES

The monotonicity of the univariate fθY allows us to take advantage of Proposition 6 to inversely
transform CA(Xn+1) via Eq. (19). However, the monotonicity also limits the flexibility of fθY ,
restricting the class of distributions it can model. Here, we briefly introduce several normalizing
flow techniques designed for one-dimensional transformations that often struggle to map complex
distributions effectively, thereby motivating the design of Augmented BNF in Section 4.2. For a more
comprehensive overview of normalizing flows, we refer to the survey by Kobyzev et al. (2020).

We begin with planar flow, a fundamental transformation that expands or contracts the input space
along specific directions (Rezende & Mohamed, 2016). A planar flow is achieved by applying a linear
transformation followed by a nonlinear activation, which dictates how the data is warped. To enhance
expressiveness, normalizing flows are typically constructed as compositions of multiple sub-flows.
We implement a BNF where each branch applies a sequence of 16 planar flows. LeakyReLU is used
as the nonlinear activation function to preserve invertibility throughout the transformation.

Residual flow is built using residual connections (He et al., 2015). The output of a residual connection
is the sum of the original input and a transformation generated by a neural network. For these residual
connections to be invertible, the transformation must have a Lipschitz constant less than 1, ensuring
that the transformation does not distort the data too much. We also construct a BNF where each
branch consists of 16 residual connections. The neural network within each residual connection has
an architecture consisting of an input layer, two hidden layers with 128 units each, and an output
layer matching the input dimension.

Both planar flow and residual flow are capable of transforming one-dimensional data. In addition,
autoregressive flow (Kingma et al., 2016; Papamakarios et al., 2021) offers an alternative approach by
modeling each transformation step as conditioned on the preceding ones—meaning the transformation
of each sample value explicitly depends on the values that came before it. This sequential dependency
enables more flexible and expressive density estimation, particularly in one-dimensional settings.
However, because BNF requires deterministic transformations that are independent of input ordering,
autoregressive flow is not suitable for our approach.
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We illustrate the performance of BNFs constructed using planar flow and residual flow in Figure 7
and compare them against the Augmented BNF, which is implemented using a standard coupling
normalizing flow, Real NVP (Dinh et al., 2016). Detailed specifications for the Augmented BNF
are provided in Appendix H. The results show that BNFs using univariate fθY struggle to transform
complex distributions effectively, resulting in higher ASCG compared to the Augmented BNF.
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Figure 7: Marginal coverage and ASCG of BNFs constructed with planar and residual flows, compared with
Augmented BNF at confidence level 1− α = 0.9.

G EXACERBATED CURSE OF DIMENSIONALITY VIA FEATURE CONDITIONING

Feature-conditioned BNF, denoted by

f fea
θ (x, y) =

(
fθX (x), f fea

θY (y;x)
)
= (x̄, ȳ), (50)

conditions the Y transformations on input features, while keeping fθX unchanged. This design
theoretically improves the model’s expressiveness and captures stronger dependencies between X
and Y . However, it increases the input dimension of f fea

θY
to d+ 1, making the total input dimension

of Feature-conditioned BNF 2d+ 1. As a result, the curse of dimensionality is exacerbated with a
small sample-to-dimension ratio |SDk |/(2d + 1), making true distributions harder to estimate. In
contrast, Augmented BNF maintains a more favorable ratio of |SDk |/(d+ 2), as the input to f aug

θY
is only two-dimensional. Consequently, with limited data, Feature-conditioned BNF tends to yield
higher ASCG due to poor approximation.

Table 1: Feature-conditioned BNF holds a small sample-to-dimension ratio |SDk |/(2d+ 1).

Dataset Bike Rental PTS Traffic U.S. ILI Fair Med

d 4 9 3 2 2
|SDk | 2800 7500 2800 870 3000

|SDk |/(d+ 2) 466.7 681.8 560.0 217.5 750.0
|SDk |/(2d+ 1) 311.1 394.7 400.0 174.0 600.0

We report the small sample-to-dimension ratio of Feature-conditioned BNF in Table 1, and demon-
strate its less robust conditional coverage in Figure 8, where its ASCG tend to be higher than that of
Augmented BNF.

While projecting the original input x of f fea
θY

(y;x) in Eq. (50) to a one-dimensional representation x̃
(e.g., via PCA (Abdi & Williams, 2010), t-SNE (Van der Maaten & Hinton, 2008), or UMAP (McInnes
et al., 2018)) can alleviate the curse of dimensionality, this dimensionality reduction inevitably
discards information that may be crucial for accurately modeling the conditional distribution PY |x
of the calibration data. Consequently, PY |x̃ may fail to capture key dependencies in the true PY |x,
limiting the effectiveness of conditioning the Y -branch on x̃.

In contrast, the augmented Y -branch f aug
θY

(y; ε) in Augmented BNF can be viewed as conditioning
on a simple one-dimensional Gaussian noise variable ε. Compared to ε, the projected feature x̃ lacks
sufficient stochasticity or variability to provide the model with the expressive flexibility needed to
capture a broad family of distributions. As a deterministic and compressed summary of x, x̃ is neither
as informative as the original input nor as adaptable as a random noise input. As a result, conditioning
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on x̃ is disadvantaged—it inherits neither the full structure of x nor the modeling freedom enabled by
stochastic conditioning on ε, as demonstrated in Figure 8.
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Figure 8: Performance comparison of conditioning the Y -branch on feature and its one-dimensional projection
obtained via PCA, t-SNE, and UMAP.

H STRUCTURE OF AUGMENTED BNF VIA COUPLING FLOWS

Both branches of Augmented BNF operate on multi-dimensional data, enabling the use of coupling
flows—a technique for modeling complex high-dimensional distributions. A coupling flow usually
consists of multiple coupling layers. In a coupling layer, the input is partitioned into two parts. One
part remains unchanged during the transformation, while the other is modified using a neural network
c, whose parameter Θ depends on the unchanged part. This setup ensures invertibility and allows for
flexible, learnable transformations. Afterward, a permutation step is applied for higher expressiveness.
In our implementation, each branch of Augmented BNF consists of a sequence of 48 coupling layers
based on Real NVP (Dinh et al., 2016), allowing the entire input to be progressively transformed. The
neural network c within each coupling layer follows a symmetric architecture with hidden layers of
sizes 64, 128, 256, 128, and 64, mapping from the input dimension to the output dimension. Figure 9
illustrates the structure of a coupling layer, using a random variable Z ∈ Rd with a realization z,
and shows how both branches are constructed by stacking multiple coupling layers. The normalized
Gaussian noise ε is discarded after the transformation.

𝑧 = 𝑧 1 , … , 𝑧 𝑑

𝑧 1 , … , 𝑧 𝑑′

𝑧 𝑑′+1 , … , 𝑧 𝑑

a neural network 𝑐

Θ

= ҧ𝑧 𝑑′+1 , … , ҧ𝑧 𝑑

ҧ𝑧 1 , … , ҧ𝑧 𝑑′

𝑥 = 𝑥 1 , … , 𝑥 𝑑 1st Coupling 
Layer

2nd Coupling 
Layer 

48th Coupling 
Layer 

… ҧ𝑥 = ҧ𝑥 1 , … , ҧ𝑥 𝑑

(𝑦, 𝜀)
1st Coupling 

Layer
2nd Coupling 

Layer 
48th Coupling 

Layer 
… ( ത𝑦, ҧ𝜀)

Structure of a Coupling Layer

𝑓𝜃𝑋
:

𝑓𝜃𝑌

aug
:

Figure 9: Illustration of the coupling layer structure and the overall composition of Augmented BNF.

I CONFORMALIZED QUANTILE REGRESSION

Conformalized quantile regression (CQR) (Romano et al., 2019) first trains two regression models
with pinball loss at levels 1− α/2 and α/2, respectively, then calibrates the resulting intervals using
residuals on a separate calibration set. Under the assumption that test and calibration samples are
i.i.d., the calibrated intervals ensure conditional coverage with finite samples.

For clarity, we introduce CQR in the context of sample normalization and multi-source domain
generalization. For a regression model h, the pinball loss (Steinwart & Christmann, 2011) at quantile
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level α for sample (x, y) is defined as

lα(h(x), y) =

{
α (y − h(x)) if y − h(x) > 0,

(1− α) (h(x)− y) otherwise.
(51)

We denote SD =
⋃K

k=1 SDk the union of all training sets. The models hhi and hlo are obtained by
optimizing the pinball loss in Eq (51) at quantile levels 1− α/2 and α/2 on SD, respectively. For
calibration instances {(Xi, Yi)}ni=1 drawn from PXY , conformal scores are defined as

Vi = max {hlo(Xi)− Yi, Yi − hhi(Xi)} , for i = 1, ..., n. (52)

Let τ be the ⌈(1− α)(n+ 1)⌉/n quantile of {Vi}ni=1. If a test sample (Xn+1, Yn+1) ∼ QXY is
normalized to (Xn+1, Y n+1) ∼ PXY , we construct an adaptive prediction set

CCQR(Xn+1) =
[
hlo(Xn+1)− τ, hhi(Xn+1) + τ

]
. (53)

Here, hlo and hhi predict the likely lower and upper ends, while τ adjusts the set based on how well
the predictions fit the calibration data. As proved in (Romano et al., 2019), CCQR can empirically
approximate the conditional coverage guarantee described in Eq. (17). Extensions of CQR are
explored in (Kivaranovic et al., 2020; Sesia & Candès, 2020), which modified the score function in
Eq. (52) for higher adaptiveness.

J A BRIEF REVIEW OF THE SINKHORN ALGORITHM

As we introduced in Definition 3, the Wasserstein distance between two empirical distributions µ̂X

and ν̂X with p = 1 is given by

W (µ̂X , ν̂X) = min
γ∈Γ(µ̂X ,ν̂X)

n∑
i=1

m∑
j=1

γij Cij .

where C ∈ Rn×m is the cost matrix with entries Cij = dX (xi, x
′
j), and Γ(µ̂X , ν̂X) is the set of joint

distributions γ ∈ Rn×m
+ with marginals µ̂X and ν̂X .

To make this optimization problem more tractable, the Sinkhorn algorithm (Cuturi, 2013) introduces
an entropic regularization term:

W β(µ̂X , ν̂X) = min
γ∈Γ(µ̂X ,ν̂X)

n∑
i=1

m∑
j=1

γij Cij + β

n∑
i=1

m∑
j=1

γij log γij ,

where β > 0 controls the strength of the regularization.

This regularized objective is strictly convex and can be efficiently minimized via iterative matrix
scaling. Let K = exp(−C/β) be the Gibbs kernel. The scaling vectors u ∈ Rn and v ∈ Rm are
initialized to all ones and updated via

u← 1/n

Kv
, v ← 1/m

K⊤u
,

where divisions are element-wise. Once converged with small changes in u and v, the optimal
transport plan takes the form

γ∗ = diag(u)K diag(v).

This approach yields a differentiable approximation to the true Wasserstein distance, enabling its
integration into gradient-based optimization pipelines. We refer to (Cuturi, 2013; Knight, 2008;
Feydy, 2020) for more detailed studies about the Sinkhorn algorithm.

K INTRODUCTION TO BASELINES

Figure 10 highlights the distinctions between the baseline methods and the proposed approach. SCP
constructs prediction sets of fixed size and ensures only marginal coverage under i.i.d. assumptions,
rendering it ineffective under joint distribution shifts. IW-CP addresses only covariate shift and
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causes its prediction intervals to contract in the example, because test features are distributed in
regions where calibration data is concentrated. WC-CP accounts for worst-case distribution shifts,
expanding prediction sets until 1− α marginal coverage is achieved on the test data, which can be
inefficient. WR-CP improves upon this by regularizing the base predictive model through minimizing
the Wasserstein distance between calibration and test conformal scores, producing more compact
prediction sets while maintaining robust marginal coverage. All of these methods, however, focus
exclusively on marginal coverage. CQR, a representative conditional conformal prediction method,
fails to handle distributional shifts. In contrast, the proposed Augmented BNF transformation model
learns an invertible mapping between calibration and test data, enabling robust conditional coverage
even under non-i.i.d. conditions.
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prediction interval of test sample prediction interval of normalized test sample

predictive model

Figure 10: Comparison between baselines and the proposed method via a toy example. Augmented BNF
effectively transforms the prediction intervals from the calibration distribution to the test distribution.

L INTRODUCTION TO DATASETS

L.1 DATA PREPARATION

We introduce the data preparation procedure shared across all datasets. We set K = 3, partitioning
each dataset into three subsets, each exhibiting a distinct distribution shift. For each dataset, we
conduct 10 independent sampling trials. In each trial, we first sample SDk from subset k without
replacement. Since calibration and training data typically share the same distribution in conformal
prediction, SP is then sampled from the union of allK subsets, also without replacement. Finally, 100
different SQ sets are sampled as random mixtures from the remaining data. This procedure ensures
that SDk for k = 1, . . . ,K, SP , and SQ are mutually disjoint. Since the Sinkhorn algorithm is more
numerically stable when comparing empirical distributions with matching sample sizes, we set the
calibration set and each training set to have equal sizes, i.e., |SP | = |SDk | for all k = 1, . . . ,K.
Experimental results are aggregated over the 10 trials for each dataset.

We also leverage a toy example from (Xu et al., 2025) to demonstrate joint distribution shift under
multi-source domain generalization in Figure 11.

L.2 SYNTHETIC DISTRIBUTION SHIFTS

The Physicochemical Properties of Protein Tertiary Structure (PTS) dataset (Rana, 2013) contains
45,730 instances, with the target variable being the protein decoy size. It includes nine features:
surface area, non-polar exposed area, fractional area of exposed non-polar residue, fractional area of
exposed non-polar part, molecular mass weighted exposed area, average deviation, Euclidean distance,
secondary structure penalty, and spatial distribution constraints. Raw data is split into three subsets
based on the distribution of the secondary structure penalty, thereby introducing distribution shifts
among the subsets. We also use the PTS dataset to perform ablation studies on the approximation
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Figure 11: Joint distribution shift under multi-source domain generalization. The test distribution QXY is a
random mixture of source distributions, while the calibration distribution PXY is a fixed known mixture. As a
result, joint distribution shift occurs since PXY ̸= QXY .

ability (with varying sample sizes) and generalization performance (with different numbers of source
domains) of Augmented BNF.

L.3 NATURAL DISTRIBUTION SHIFTS REFLECTING REAL-WORLD CHALLENGES

Generalized sales prediction over time-series is crucial for risk-averse business decision-
making (Jin et al., 2022). Moreover, sales data typically exhibit strong periodic patterns, such
as seasonal or weekly fluctuations. Thus, effectively utilizing data from each sub-period to model a
robust and generalized sales pattern is critical for achieving reliable forecasts. This requires models
not only to capture short-term variations but also to generalize across different temporal domains,
where distribution shifts may occur naturally due to changes in consumer behavior, external events,
or market conditions. We consider the Bike Rental dataset (Fanaee-T, 2013) to reflect this challenge.
The dataset records hourly and daily rental counts from the Capital Bikeshare system during 2011
and 2012, along with associated weather and seasonal information. We partition the data based on
rental hours into three time intervals: [0,8] (midnight), [9,16] (daytime), and [17,23] (evening). For
prediction, we select continuous features including temperature, feeling temperature, humidity, and
wind speed. The target variable is the count of rental bikes.

Traffic speed prediction with mismatched data focuses on transferring models trained on source
distributions (e.g., traffic patterns on regular days and at major intersections) to test distributions
exhibiting different characteristics (e.g., traffic patterns on special days and at minor intersections).
For example, recent work has proposed traffic-law-informed models based on reaction-diffusion
equations to provide generalized speed predictions (Sun et al., 2023). Nevertheless, enhancing the
reliability of uncertainty quantification under such distribution shifts remains a significant challenge.
The Seattle-Loop dataset contains traffic volume and speed data collected in Seattle throughout 2015,
recorded by sensors at 5-minute intervals (Cui et al., 2019). PEMSD4 includes traffic data from
29 roads in San Francisco collected between January and February 2018, while PEMSD8 covers 8
roads in San Bernardino from July to August 2016 (Bai et al., 2020). The task is to predict traffic
speed at the next time step based on current speed and volume measurements. With K = 3, we
select one representative intersection from each dataset. Due to varying local traffic patterns, natural
distribution shifts arise among the three locations. Our goal is to achieve strong generalization across
these locations, ensuring robust predictions on any test sites where traffic patterns resemble a random
mixture of the three selected intersections.

Fair medical decision-making for patients from different hospitals is essential for ensuring
equitable healthcare outcomes. Variations in patient demographics, medical imaging scanners,
laboratory equipment, and clinical practices across hospitals can lead to distribution shifts in the
data. This phenomenon is commonly referred to as the multi-center issue (Das, 2022). Addressing
this challenge is essential for building predictive models that remain accurate and fair across diverse
healthcare institutions (Olsson et al., 2022). To validate the effectiveness of the proposed method
in this task, we collect patient data from a collaborating hospital. Additionally, we use the MIMIC-
IV (Johnson et al., 2023) and eICU (Pollard et al., 2018) datasets to simulate data from two other
hospitals. The goal is to fairly predict patients’ ICU stay times based on their Apache scores and
blood urea nitrogen (BUN) levels, ensuring reliable performance regardless of which center a patient

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

originates from. We consider fair medical prediction to be achieved across the three data sources if
the model exhibits comparable performance on random mixtures of the sources.

Robust epidemic modeling across pandemic phases can facilitate timely public health responses
and resource planning. The U.S. Centers for Disease Control and Prevention (CDC) categorizes
an epidemic period into three main phases: initiation, acceleration, and deceleration (CDC). Each
of these phases exhibits distinct epidemiological characteristics, which lead to natural distribution
shifts. Traditional forecasting methods typically rely on Susceptible-Infectious-Recovered (SIR)
models (Harko et al., 2014; Kabir et al., 2019; Turkyilmazoglu, 2022) to predict the number of recently
infected patients, aiming for robustness across the different pandemic phases. We demonstrate the
application of the proposed method using the U.S. Influenza-like Illness (ILI) dataset (Deng et al.,
2020), which contains weekly reports from the CDC on the number of ILI patients. The objective is
to predict new infections for the upcoming week using both the weekly increase of infected patients
and the cumulative infections for the year. The raw data is divided into three subsets based on the
corresponding pandemic phases. We consider a forecasting model to be robust if its predictions
remain reliable on random mixtures of data from the three phases.

We further apply t-SNE (Van der Maaten & Hinton, 2008) to map the samples from each source into
two dimensions, as shown in Figure 12. The visualization reveals clear distributional shifts between
most sources. However, for some cases, such as the second and third sources in the Bike Rental
and Fair Med setups, the distributions appear more similar. This slight overlap is not the result of
manually creating similar data but arises naturally from the datasets themselves, which are collected
from real-world scenarios.
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Figure 12: Empirical data distributions of source domains after applying t-SNE.

M CONDITIONAL COVERAGE EVALUATION METRIC

M.1 WORST-SLICE COVERAGE (WSC)

Worst-slice coverage (WSC) (Cauchois et al., 2021) quantifies the minimum empirical coverage over
any slab S ⊆ X that contains at least 10% of the test samples in SQ. Specifically, for any CP methods
that produce a prediction set C(x) given an input x, WSC is defined by

WSC = inf
S⊆X

Pr(y ∈ C(x)|x ∈ S), s.t.Pr(x ∈ S|(x, y) ∈ SQ) ≥ 0.1. (54)
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Figure 13: WSC of Augmented BNF+CQR and five baselines with 1− α = 0.9.

Figure 13 reports the WSC performance of our method and baselines following the implementation
of (Romano et al., 2020). Our approach consistently achieves WSC values close to the desired
confidence level 1 − α = 0.9. Worst-Case CP (WC-CP) shows similarly high WSC, but a closer
inspection reveals that this is largely driven by its conservative behavior, which produces substantial
over-coverage, as illustrated in Figure 10.

This discrepancy arises because WSC, defined in Eq. (54), only evaluates the infimum slice coverage
and therefore fails to penalize over-coverage. As also noted in (Romano et al., 2020), ensuring a high
worst-case slice does not guarantee good conditional coverage across X , particularly when different
regions exhibit excessive coverage.

These limitations motivate our introduction of ASCG, which evaluates a richer family of subsets
(Eq. (27)) and penalizes both under- and over-coverage from the target level 1−α. As a result, ASCG
provides a more comprehensive and balanced assessment of conditional coverage robustness.

M.2 WORST-SLICE COVERAGE GAP (WSCG)

We propose a variant of WSC called worst-slice coverage gap (WSCG), quantified by

WSCG = sup
S⊆X

|Pr(y ∈ C(x)|x ∈ S)− (1− α)| , s.t.Pr(x ∈ S|(x, y) ∈ SQ) ≥ 0.1. (55)

By taking the maximum absolute difference from the desired confidence level 1−α, WSCG captures
both under-coverage and over-coverage in any sufficiently large slice of the input space. This makes
it a more stringent and informative metric than WSC.

As illustrated in Figure 14, when 1− α = 0.9, our method consistently achieves low WSCG values
across datasets, demonstrating its robustness in maintaining conditional coverage even in the most
challenging regions. Interestingly, we observe that WC-CP consistently attains a WSCG of 0.1 on the
Traffic setup. This occurs because its conservative nature makes the coverage on individual slabs
ranges between 0.8 and 1.0 on the Traffic setup, preventing the WSCG from exceeding 0.1. The
conservativeness becomes even more evident when we reduce the target coverage to 1− α = 0.8 in
Figure 15. In that case, WC-CP has additional slack, and its WSCG correspondingly increases to 0.2.
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Figure 14: WSCG of Augmented BNF+CQR and five baselines with 1− α = 0.9.

0.10

0.20

0.30

0.40

0.50

0.60

W
SC

G

Bike Rental

0.10

0.20

0.30

0.40
PTS

0.10

0.20

0.30

0.40

0.50
Traffic

0.20

0.40

0.60

U.S. ILI

0.10

0.20

0.30

Fair Med

SCP IW-CP WC-CP WR-CP CQR Augmented BNF+CQR

Figure 15: WSCG of Augmented BNF+CQR and five baselines with 1− α = 0.8.
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M.3 MULTIVARIATE AVERAGE-SLICE COVERAGE GAP

While ASCG introduced in Eq. (28) computes coverage gaps only along one-dimensional slices, it
does not fully capture potential failures in multivariate regions of the input space. Inspired by WSCG,
we introduce a multivariate version of ASCG defined as

Multivariate ASCG =
1

NS

∑
S⊆X

|Pr(y ∈ C(x) | x ∈ S)− (1− α)| ,

s.t. Pr(x ∈ S | (x, y) ∈ SQ) ≥ 0.1,

(56)

where NS is the total number of multivariate slabs considered. We follow (Romano et al., 2020) by
randomly generating 1000 slabs, and therefore set NS = 1000. This multivariate ASCG generalizes
the original ASCG metric by evaluating and aggregating coverage gaps across subsets formed in
multivariate partitions of the feature space. As shown in Figure 16, our method maintains low
multivariate ASCG values, demonstrating reliable conditional coverage even on complex multivariate
partitions of the test space.
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Figure 16: Multivariate ASCG of Augmented BNF+CQR and five baselines with 1− α = 0.9.

N GENERALIZATION PERFORMANCE OF AUGMENTED BNF

N.1 VARIOUS K VALUES

To explore the generalization ability of Augmented BNF under varying numbers of source domains,
we modified the sampling procedure in Appendix L by changing K ∈ {2, 3, 4, 8, 12}. For each
value of K, we generated 10 independent trials using the PTS dataset to account for sampling
variability. Augmented BNF combined with CQR was applied to each trial across confidence levels
1− α ∈ [0.1, 0.9], enabling a comprehensive evaluation. Figure 17 shows that increasing the number
of source domains does not significantly degrade conditional coverage robustness, suggesting that
Augmented BNF generalizes well even in the presence of greater domain heterogeneity.
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Figure 17: Generalization performance of Augmented BNF+CQR with different numbers of source domains.

N.2 DIFFERENT SAMPLE SIZES

Generative models may struggle to approximate underlying distributions when data are limited,
especially in high dimensions (Kong & Chaudhuri, 2020; Poggio et al., 2017). To assess how sample
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size affects the performance of Augmented BNF, we vary the number of training samples and perform
10 trials for each setting on the PTS dataset. For each trial, we apply Augmented BNF+CQR across
1−α from 0.1 to 0.9 and compute the mean ASCG over all confidence levels. As shown in Figure 18,
the results reveal a clear trend: conditional coverage becomes more robust as the size of each training
set increases.
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Figure 18: Impact of data availability on Augmented BNF approximation ability.

O COVERAGE LOWER BOUNDS UNDER IMPERFECT TRANSFORMATION

O.1 MARGINAL COVERAGE LOWER BOUND

We establish a marginal coverage lower bound by quantifying the alignment between the calibration
conformal scores and those obtained from the transformed test distribution.

Marginal coverage gap can be defined as the discrepancy between the CDFs of PV and QV at the
calibration quantile τ (Xu et al., 2025). After applying the transformation f aug

θ , the test distribution
QXY is mapped to f aug

θ #
QXY , yielding the conformal score distribution s#(f

aug
θ #

QXY ), where s
denotes the score function. The residual marginal coverage gap after transformation is therefore

|FPV
(τ)− Fs#(f aug

θ #
QXY )(τ)|, (57)

with F denoting the CDF of the distribution indicated in the subscript.

This leads to the following lower bound on the marginal coverage of prediction sets produced by the
Augmented BNF transformation model:

Pr
(
Yn+1 ∈ Caug

BNF(Xn+1)
)
≥ 1− α− |FPV

(τ)− Fs#(f aug
θ #

QXY )(τ)|. (58)

Within the multi-source domain generalization (MSDG) framework, the test distribution QXY is
assumed to be a random mixture of source distributions Dk

XY

K

k=1. In this setting, we can bound the
coverage gap as

|FPV
(τ)− Fs#(f aug

θ #
QXY )(τ)| ≤ supk∈{1,...,K} |FPV

(τ)− Fs#(f aug
θ #

Dk
XY )(τ)|. (59)

Consequently, we obtain the final marginal coverage lower bound under MSDG as

Pr
(
Yn+1 ∈ Caug

BNF(Xn+1)
)
≥ 1− α− supk∈{1,...,K} |FPV

(τ)− Fs#(f aug
θ #

Dk
XY )(τ)|. (60)

For validation, we compare the theoretical bound with the empirical marginal coverage observed
across randomly sampled test distributions. The results, presented in Figure 19, show that the
empirical coverage for most test distributions exceeds the proposed lower bound, thereby confirming
the validity of Eq. (60). The closeness between 1−α and the bound further indicates that our method
effectively aligns the calibration and test distributions.

O.2 CONDITIONAL COVERAGE LOWER BOUND

Next, we establish a conditional coverage lower bound that accounts for the imperfect alignment
between calibration and test data induced by Augmented BNF.
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Figure 19: Empirical marginal coverage after transformation compared with the proposed lower bound.

First, even in the i.i.d. setting, exact conditional coverage is unattainable with finite samples (Vovk,
2012; Lei & Wasserman, 2014; Foygel Barber et al., 2021), as discussed in Section 2.1. For
instance, Romano et al. (2019) explicitly note that CQR achieves conditional coverage only on the
training data, not on unseen test samples. Likewise, the performance of LCP (Guan, 2023) is highly
sensitive to the choice of kernel bandwidth, preventing finite-sample conditional coverage guarantees.
Consequently, even under i.i.d. assumptions, the application of CQR can only guarantee that

Pr(Yn+1 ∈ CCQR(Xn+1)|Xn+1 = x) ≥ 1− α− αi.i.d., (61)

where αi.i.d. reflects the approximation error introduced by CQR. This gap is an intrinsic limitation of
existing conditional CP approaches.

Secondly, under distribution shift, for a test sample (Xn+1, Yn+1) ∼ QXY , we have

FPV |x (τ(x, Vi : Xi = xni=1)) ≥ 1− α, (62)

FQV |x (τ(x, Vi : Xi = xni=1) = Pr (Yn+1 ∈ CA(Xn+1)|Xn+1 = x) . (63)
As a result, the Conditional Coverage Gap (CCG) defined in Eq. (4) leads to

Pr (Yn+1 ∈ CA(Xn+1)|Xn+1 = x) ≥ 1− α− CCG(P,Q, x) (64)

Accounting for the approximation error αi.i.d. from CQR, we can derive

Pr (Yn+1 ∈ CCQR(Xn+1)|Xn+1 = x) ≥ 1− α− αi.i.d. − CCG(P,Q, x) (65)

To evaluate the expected conditional coverage across the test distribution, we take the expectation
over x ∼ QX and obtain

Ex∼QX
[Pr(Yn+1 ∈ CCQR(Xn+1)|Xn+1 = x)] ≥ 1− α− αi.i.d. − ICG(P,Q), (66)

where the ICG(P,Q) is defined in Eq. (5) as the expectation of CCG(P,Q, x) over QX .

Finally, using our bound on ICG(P,Q) in terms of the Wasserstein distance W (PXY , QXY ) in
Eq. (13), we obtain a bound on the expected conditional coverage under distribution shift:

Ex∼QX
[Pr(Yn+1 ∈ CCQR(Xn+1)|Xn+1 = x)] ≥ 1− α− αi.i.d.

−
√
2κL (η ·W (PXY , QXY ) + 1/4) .

(67)

Finally, the transformation by Augmented BNF lead to a more robust prediction set Caug
BNF(Xn+1).

We clarify the role of the remaining Wasserstein distance W (PXY , f
aug
θ #

QXY ) by

Ex∼QX
[Pr

(
Yn+1 ∈ Caug

BNF(Xn+1)|Xn+1 = x
)
] ≥ 1− α− αi.i.d.

−
√
2κL

(
η ·W (PXY , f

aug
θ #

QXY ) + 1/4
)
,

where the term η can be obtained by substituting QXY and QY |x with f aug
θ #

QXY and f aug
θY #

QY |x,
respectively, in Eq. (13).

We denote αtrans =
√
2κL(η ·W (PXY , f

aug
θ #

QXY ) + 1/4) to quantify the remaining deviation
induced by imperfect alignment between calibration and test distributions.

To evaluate the magnitude of αtrans, we compare the Average Slice Coverage Gap (ASCG) across a
range of confidence levels 1− α ∈ [10%, 90%], under the following three settings: (1) CQR under
the distribution shift, (2) Augmented BNF+CQR under distribution shift, and (3) CQR under i.i.d.
condition. Figure 20 shows that the proposed transformation model effectively approximates the
CQR under the i.i.d. condition. This suggests that αtrans is significantly smaller than αi.i.d. with the
remaining coverage gap primarily attributable to the approximation error of CQR itself.
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Figure 20: The transformation by Augmented BNF can effectively simulate the i.i.d. condition.

P PREDICTION EFFICIENCY UNDER SOURCE CONDITIONING

P.1 PREDICTION INEFFICIENCY BY AUGMENTED BNF

Augmented BNF uses Eq. (22) to obtain prediction sets on the test distribution QXY . During training,
this augmented component ε of the Y branch f aug

θY
in Eq. (21) is sampled from a single Gaussian

distribution N (0, 1), making it independent of the training sample sources. As a result, the model
learns a shared transformation for all training distributions Dk

XY for k = 1, ...,K to align with the
calibration distribution PXY .

At test time, this design leads to a key limitation: since εn+1 is source-agnostic, the Y branch f aug
θY

cannot infer which source distribution a new test sample originates from. As a result, the prediction
set Caug

BNF(Xn+1) must widen to account for all sources to ensure valid coverage. This behavior
corresponds to a conditional worst-case strategy and inherently results in larger prediction sets.

The prediction inefficiency is reflected in Figure 21. The Augmented BNF produces noticeably larger
prediction sets on Traffic, U.S. ILI, and Fair Med. This is due to the substantial variation in the
conditional label distributions Dk

Y |x within the three settings, such as significantly different supports,
which leads to enlarged prediction sets.
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Figure 21: Prediction set size comparison. The standard Augmented BNF can produce large prediction sets,
whereas the Augment-Conditioned variant significantly reduces set size while preserving coverage performance.

P.2 EFFICIENT PREDICTION BY AUGMENT-CONDITIONED BNF

To achieve smaller prediction sets, we propose Augment-conditioned BNF, denoted as f aug-cond
θ .

In this design, the augmented component ε is sampled from a distinct Gaussian distribution N k

if an instance (x, y) is from Dk
XY during training. In other words, ε serves not only to enhance

expressiveness but also as a conditioning variable in f aug-cond
θY

(y, ε). Consequently, during inference,
if εn+1 correctly captures the source of the test sample, we can construct a smaller prediction set
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Caug-cond
BNF (Xn+1). Using a similar calculation as in Eq. (22), we derive

Caug-cond
BNF (Xn+1) =

{
y : f aug-cond

θY
(y; εn+1) ∈ CA(Xn+1)

}
, where Xn+1 = fθX (Xn+1) (68)

As shown in Figure 21, Augment-conditioned BNF leads to significantly smaller prediction sets
compared to the standard Augmented BNF. Correia et al. (2024) also demonstrate that knowledge of
the test sample’s source can serve as valuable side information to improve prediction efficiency. Such
side information is often available in real-world applications. For instance, in multi-center healthcare
settings, models are required to generalize across different hospitals. In these scenarios, the center
at which a patient is admitted is typically known and can be used to tailor the prediction procedure.
Leveraging this information allows the model to generate tighter prediction sets while maintaining
valid coverage guarantees.

We observe that the Augment-Conditioned BNF may exhibit slightly higher ASCG compared
to the standard Augmented BNF. That is attributed to data sparsity, caused by the use of more
distinct Gaussian distributions to model the data sources. As the number of Gaussians increases,
the samples become more dispersed, making it more challenging to learn the underlying population
distributions effectively. Hence, although the Augment-conditioned BNF yields smaller prediction
sets, it compromises robustness in coverage, revealing an inherent trade-off.

Q LIMITATIONS

Q.1 BEYOND MSDG: ALTERNATIVE FORMS OF JOINT DISTRIBUTION SHIFT

In Section 5, we describe the implementation of Augmented BNF within the context of multi-source
domain generalization (MSDG), which represents a specific instance of joint distribution shift (Zou
& Liu, 2024; Xu et al., 2025). Beyond MSDG, various alternative formulations have been proposed
to characterize joint distribution shifts.

Statistical distance ball. The space of test distribution QXY can be defined within a Wasserstein
ball centered at the source distribution PXY :

B(PXY , r) = {QXY :W (PXY , QXY ) ≤ r}, where r ≥ 0. (69)
The notion of a Wasserstein ball can be generalized using alternative divergence measures, such as
the Kullback–Leibler (KL) divergence (Cauchois et al., 2024).

Input perturbation. Joint distribution shift can be modeled as a perturbation applied to the test input
Xn+1 (Gendler et al., 2021; Ghosh et al., 2023; Yan et al., 2024). In this formulation, the perturbed
test input X̃n+1 is constrained within a neighborhood of the original input by a norm-bound:

||X̃n+1 −Xn+1|| ≤ r, where r ≥ 0. (70)
These two ways are closely related. For instance, sampling a collection of local pointwise perturba-
tions around calibration points can approximate a global statistical distance ball. Thereby, we can
replace the summation over K domains in Eq. (26) with a supremum over a ball B(PXY , r) by

min
θ

[supQXY ∈B(PXY ,R)W (PXY , f
aug
θ #

QXY )]. (71)

Although the supremum over all possible distributions is theoretically well-defined, it is computation-
ally intractable in practice; therefore, we approximate it following the two steps below:

(i) Initialize QXY as emprical PXY samples

(ii) For fixed θ, find a perturbed batch of samples that maximizes the objective Wasserstein distance
but remains in B(PXY , r).

This represents a sample-based estimation of the supremum, which can be used to update θ. Further
refinement is necessary to make it effective in practice. A key challenge lies in identifying a perturbed
batch that maximizes the Wasserstein distance and remains within the specified ball. Several strategies
can be employed to address this. For instance, genetic algorithms may be used to search for high-risk
perturbations that maximize the divergence under the f aug

θ .

In this work, we do not propose a dedicated training algorithm for Augmented BNF to handle joint
distribution shifts expressed in the two alternative forms discussed above. Developing such methods
remains an important direction for future work.
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Q.2 ROOT-FINDING CHALLENGES

Unlike the original BNF, Augmented BNF does not employ a univariate monotonic transformation
for the Y -branch. As a result, we cannot directly apply Eq. (18) to construct the prediction set.
Instead, Augmented BNF relies on Eq. (22) to generate Caug

BNF(Xn+1), which frames the construction
as a root-finding problem. Specifically, let the interval endpoints of the calibrated set CA(Xn+1)
be denoted by ylo and yhi. Then, Eq. (22) requires solving a root-finding problem to identify the
pre-images of these endpoints under the learned transformation. In particular, we need to find the
values of y that satisfy the following equations

f aug
θY

(y; εn+1) = ylo; f aug
θY

(y; εn+1) = yhi. (72)

While the coverage can be efficiently computed by checking whether Y n+1 ∈ CA(Xn+1), as
supported by Proposition 7, it is still crucial to develop a practical method for solving Eq. (72).

Q.3 STOCHASTIC PREDICTION SETS

One practical drawback of Augmented BNF lies in its reliance on stochastic augmentation through
a random noise ε ∼ N (0, 1), which is used to modulate the Y -branch of the Augmented BNF in
Eq. (21). While this augmentation introduces flexibility, it also introduces randomness into the
transformation. As a result, in Eq. (22), the prediction set produced by Augmented BNF for the same
input x is no longer deterministic. The set varies across different forward passes depending on the
realization of ε.

This stochasticity undermines one of the appealing features of standard conformal prediction: the
deterministic and repeatable nature of the prediction set given a test point. In high-stakes domains,
such randomness can lead to interpretability challenges or instability in downstream decisions. While
one may average over multiple runs to approximate a stable prediction, this requires additional com-
putational cost and still does not guarantee strict repeatability. This tradeoff between flexibility and
determinism is a fundamental limitation when deploying Augmented BNF in sensitive applications.

Q.4 ARCHITECTURAL INCOMPATIBILITY WITH ONE-DIMENSIONAL FEATURES

Another limitation of Augmented BNF stems from its architectural dependency on Real NVP (Dinh
et al., 2016), a type of normalizing flow that is inherently designed for multi-dimensional trans-
formations. Real NVP operates by alternating between dimensions of the input to apply affine
coupling layers, as plotted in Figure 9. This necessitates a feature space X of at least two dimensions.
Consequently, Augmented BNF inherits this constraint: its architecture presumes that the input
feature x is multivariate.

In the case where x is one-dimensional, the affine coupling mechanism of Real NVP becomes
undefined, rendering the model non-functional. As a result, Augmented BNF cannot be applied to
tasks with univariate inputs. This presents a clear barrier for applying to domains, where no natural
multivariate feature exists. One might consider artificially expanding x with noise or engineered
features to satisfy the dimensionality requirement, just like the augmented Y -branch in Eq. (21).

Q.5 TUNING BIAS

In Section 4.2, the calibration set SP participates in the training of the Augmented BNF, as described
in Algorithm 1. However, this practice may undermine the rigor of conformal prediction, where
calibration data is ideally held out from any training procedure. Despite this concern, similar strategies
have been adopted in prior work (Angelopoulos et al., 2020; Dabah & Tirer, 2025; Xi et al., 2024;
Yang & Kuchibhotla, 2024), often to simplify implementation. Notably, Zeng et al. (2025) identifies
a parametric scaling law of tuning bias, showing that reusing calibration data introduces a bias that
grows with model complexity and diminishes as the calibration set size increases.

To adhere more closely to the theoretical foundations of conformal prediction, a more principled
approach would involve randomly partitioning SP into two disjoint subsets: one used for training the
Augmented BNF and another reserved exclusively for inference. Given the architectural complexity
and parameterization of the Augmented BNF, as detailed in Appendix H, such a split is particularly
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recommended to mitigate the risk of overfitting and maintain robust uncertainty guarantees. Nonethe-
less, in scenarios where calibration data is scarce, striking a balance between theoretical soundness
and practical effectiveness remains an open challenge.
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