

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DISTRIBUTIONALLY ROBUST CONDITIONAL CONFORMAL PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Conformal prediction (CP) constructs prediction sets with a marginal coverage guarantee of $1 - \alpha$, assuming the calibration distribution P_{XY} and test distribution Q_{XY} are identical. Under distribution shift, existing approaches align calibration and test conformal scores only at the marginal level, which helps preserve marginal coverage. However, ignoring their mismatched conditional score distributions can lead to poor conditional coverage at individual test inputs. In response, we introduce the conditional coverage gap (CCG) and its expectation over Q_X to quantify the robustness of the conditional guarantee. To study how a distribution shift is propagated from data to conformal scores, we use the Wasserstein distance between P_{XY} and Q_{XY} to bound the expected CCG. This bound implies that an invertible transformation between P_{XY} and Q_{XY} via Wasserstein minimization can promote robust conditional coverage. Lastly, we implement the idea by Branched Normalizing Flow (BNF), a two-branch structure where the X -branch transports test inputs from Q_X to P_X to obtain prediction sets with conditional guarantee on $P_{Y|X}$, and the Y -branch inversely maps these sets with preserved conditional guarantee on $Q_{Y|X}$. Extensive experiments on nine datasets demonstrate that BNF consistently reduces CCG with improved coverage robustness across various confidence levels under distribution shift.

1 INTRODUCTION

Due to data noise and lack of prior knowledge, prediction uncertainty hinders applications of AI in various safety-critical domains. Conformal Prediction (CP) yields a set of possible targets rather than a single prediction to accommodate prediction uncertainty (Vovk et al., 2005; Shafer & Vovk, 2007). We focus on CP for **regression** (Lei et al., 2017). Given a trained model h , a score function $s(X, Y) = |h(X) - Y|$ computes the residuals (conformal scores) of n calibration instances $\{(X_i, Y_i)\}_{i=1}^n$. Denoting τ the $\lceil(1 - \alpha)(n + 1)\rceil/n$ quantile of the conformal scores, a vanilla prediction set $C_M(X_{n+1})$ of a test input X_{n+1} contains all target values whose conformal scores are smaller than τ . Let P_{XY} and Q_{XY} be calibration and test distributions in space $\mathcal{X} \times \mathcal{Y}$, respectively. If the data are independent and identically distributed (i.i.d.) so that $P_{XY} = Q_{XY}$, the prediction set $C_M(X_{n+1})$ achieves the **marginal coverage guarantee** $\Pr(Y_{n+1} \in C_M(X_{n+1})) \geq 1 - \alpha$. However, since τ does not depend on the specific test input x , $C_M(X_{n+1})$ has constant size and lacks adaptiveness. To address the weakness, adaptive prediction set $C_A(X_{n+1})$ aims at **conditional coverage guarantee** $\Pr(Y_{n+1} \in C_A(X_{n+1}) \mid X_{n+1} = x) \geq 1 - \alpha, \forall x \in \mathcal{X}$, which provides more effective uncertainty quantification (Papadopoulos et al., 2011; Vovk, 2012).

In practice, a distribution shift ($P_{XY} \neq Q_{XY}$) can violate the i.i.d. assumption. For example, **multi-source domain generalization (MSDG)** considers Q_{XY} as a random mixture of multiple source distributions (Krueger et al., 2021). In this scenario, ensuring coverage guarantees becomes both important and challenging. Let P_V and Q_V be the calibration and test conformal score distributions in space \mathcal{V} , respectively. The difference between the cumulative probabilities of P_V and Q_V at τ can measure the validity of marginal coverage. Various upper bounds of the discrepancy between P_V and Q_V are proposed to estimate the potential deviation from the nominal marginal coverage (Barber et al., 2023; Xu et al., 2025). Nevertheless, since these existing methods align calibration and test conformal scores only at the marginal level, they offer no insight into how the scores are conditionally distributed at individual inputs. As a result, these methods are unable to assess the conditional coverage of $C_A(X_{n+1})$ under distribution shift (Figure 1(a)).

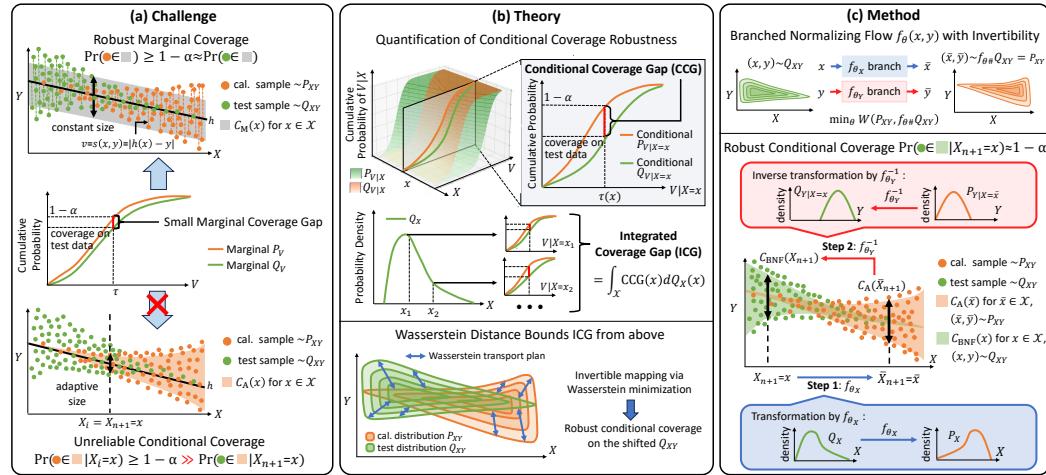


Figure 1: (a) Vanilla prediction set $C_M(x)$ has constant size and offers marginal coverage, which is robust if conformal score distributions P_V and Q_V have similar cumulative probabilities at τ . Adaptive prediction set $C_A(x)$ has input-dependent size and provides conditional guarantees for calibration inputs $X_i = x$ where $i = 1, \dots, n$, but may fail on non-i.i.d. test input $X_{n+1} = x$. The difference between P_V and Q_V can not capture the reliability of conditional coverage on the shifted test data; (b) Conditional coverage gap (CCG) measures $C_A(X_{n+1})$ validity at x by comparing $P_{V|X=x}$ and $Q_{V|X=x}$. Integrated coverage gap (ICG) is the expectation of CCG under Q_X for a holistic robustness measure. Wasserstein distance $W(P_{XY}, Q_{XY})$ bounds ICG to reveal how a distribution shift results in non-i.i.d. conformal scores. An invertible mapping between P_{XY} and Q_{XY} via Wasserstein minimization promotes robust conditional coverage; (c) Branched Normalizing Flow f_θ minimizes $W(f_{\theta\#}Q_{XY}, P_{XY})$, where $f_{\theta\#}Q_{XY}$ is a pushforward distribution. For inference, we first compute a normalized test input \bar{X}_{n+1} by f_{θ_X} and generate $C_A(\bar{X}_{n+1}) \subseteq \mathcal{Y}$ with conditional guarantee on P_{XY} . Then, $f_{\theta_Y}^{-1}$ inversely transforms the set to $C_{BNF}(X_{n+1}) \subseteq \mathcal{Y}$ with preserved conditional coverage on Q_{XY} .

We aim to ensure the conditional guarantee under distribution shifts with three key contributions.

1. **Quantification of conditional coverage robustness.** We define the conditional coverage gap (CCG) in the space of conditional conformal score distributions. We further define the integrated coverage gap (ICG) as the expected CCG under the test feature distribution (Figure 1(b), 1st plot).
2. **Upper bound by Wasserstein distance.** We bound ICG with the Wasserstein distance between calibration and test distributions to reveal how a distribution shift is propagated from $\mathcal{X} \times \mathcal{Y}$ to \mathcal{V} . This bound implies that an invertible mapping between calibration and test distributions via Wasserstein minimization can promote robust conditional coverage (Figure 1(b) 2nd plot).
3. **Branched Normalizing Flow (BNF).** We embed the Wasserstein bound into a branched structure, defined as $f_\theta(x, y) = (f_{\theta_X}(x), f_{\theta_Y}(y)) = (\bar{x}, \bar{y})$, to transform Q_{XY} to P_{XY} (Figure 1(c) 1st plot). The structure does not explicitly couple the transformations of x and y , so f_{θ_X} can compute the normalized test input without knowing the true label during inference. If the adaptive prediction set of the normalized input holds $1 - \alpha$ conditional coverage on calibration distribution, $f_{\theta_Y}^{-1}$ inversely transforms it with preserved guarantee on test distribution (Figure 1(c) 2nd plot).

To enhance the fitting ability of BNF, we propose a variant, called **Augmented BNF**, with implementation in Algorithm 1 under multi-source domain generalization (MSDG). Experiments on nine datasets cover both synthetic distribution shifts (Rana, 2013) and real-world challenges, including sales prediction across time series (Fanaee-T, 2013), traffic forecasting with mismatched data (Cui et al., 2019), medicine decision-making for different populations (Johnson et al., 2023; Pollard et al., 2018), and epidemic modeling over pandemic intervals (Deng et al., 2020). The results show that we effectively improve the robustness of the conditional guarantee.

2 BACKGROUND

2.1 ADAPTIVE CONFORMAL PREDICTION

Denote $X \in \mathcal{X} \subseteq \mathbb{R}^d$ and $Y \in \mathcal{Y} \subseteq \mathbb{R}$ the input and output random variables, respectively. With a trained regression model $h : \mathcal{X} \rightarrow \mathcal{Y}$, a score function $s : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{V} \subseteq \mathbb{R}$ outputs conformal scores

108 to assess how data conform to the model h . We denote $V \in \mathcal{V}$ the random variable of conformal score,
 109 typically defined as the absolute residual: $V = s(X, Y) = |h(X) - Y|$. With instances $\{(X_i, Y_i)\}_{i=1}^n$
 110 from a calibration distribution P_{XY} , split conformal prediction computes calibration conformal scores
 111 $V_i = s(X_i, Y_i)$ for $i = 1, \dots, n$ (Papadopoulos et al., 2002). For an instance (X_{n+1}, Y_{n+1}) from a test
 112 distribution Q_{XY} , a vanilla prediction set is given by $C_M(X_{n+1}) = \{y : s(X_{n+1}, y) \leq \tau, y \in \mathcal{Y}\}$,
 113 where τ is the $\lceil (1 - \alpha)(n + 1) \rceil / n$ quantile of $\{V_i\}_{i=1}^n$.¹ Under the i.i.d. assumption such that
 114 $P_{XY} = Q_{XY}$, $C_M(X_{n+1})$ provides **marginal coverage guarantee** that the probability of including
 115 the true test target Y_{n+1} by $C_M(X_{n+1})$ is at least $1 - \alpha$, namely, $\Pr(Y_{n+1} \in C_M(X_{n+1})) \geq 1 - \alpha$.

116 As τ is independent from test inputs, fixed-size prediction sets often underestimate uncertainty for
 117 hard samples and overestimate it for easy ones (Angelopoulos et al., 2022). Therefore, an adaptive
 118 prediction set $C_A(X_{n+1})$ aims at improving the guarantee under the condition where $X_{n+1} = x$,
 119 $\forall x \in \mathcal{X}$. Formally, denote $\tau(x)$ the $\lceil (1 - \alpha)(n_x + 1) \rceil / n_x$ quantile of $\{V_i : X_i = x, i = 1, \dots, n\}$,
 120 where n_x is the number of calibration samples satisfying $X_i = x$. Then, for $X_{n+1} = x$, an adaptive
 121 prediction set is given by

$$122 \quad C_A(X_{n+1}) = \{y : s(X_{n+1}, y) \leq \tau(x), y \in \mathcal{Y}\}, \quad (1)$$

123 and obtain **conditional coverage guarantee** (Vovk, 2012):

$$124 \quad \Pr(Y_{n+1} \in C_A(X_{n+1}) | X_{n+1} = x) \geq 1 - \alpha, \forall x \in \mathcal{X}. \quad (2)$$

125 However, the conditional guarantee is not practically achievable using finite calibration samples
 126 without regularity assumptions, such as Lipschitz continuity of $P_{Y|X=x}$ density (Foygel Barber et al.,
 127 2021). Hence, approximations of the conditional guarantee are extensively developed. Mondrian
 128 CP ensures $1 - \alpha$ coverage conditioned over input subspaces (Boström et al., 2021). Some methods
 129 estimate the conformal score distribution conditioned on specific test input x , for example, by
 130 weighting each V_i based on the proximity of X_i to x (Lin et al., 2021; Guan, 2023; Gibbs et al.,
 131 2023). Conformal training embeds a size-based loss in the training of the model h (Correia et al.,
 132 2024; Stutz et al., 2021; Bars & Humbert, 2025). Besides, advanced score functions are developed to
 133 facilitate conditional coverage in regression (Romano et al., 2019; Feldman et al., 2021). Generative
 134 models also show promise for enhancing adaptiveness, especially for multivariate output (Colombo,
 135 2024; Fang et al., 2025; Klein et al., 2025; Thurin et al., 2025).

136 2.2 CONFORMAL PREDICTION FOR MULTI-SOURCE DOMAIN GENERALIZATION

138 **Joint distribution shift** is a challenging non-i.i.d. situation where both covariate shift ($P_X \neq$
 139 Q_X) (Tibshirani et al., 2019) and concept shift ($P_{Y|X} \neq Q_{Y|X}$) (Sesia et al., 2023; Einbinder et al.,
 140 2022) can occur. Some existing works treat joint distribution shifts as perturbations on calibration
 141 data to keep marginal coverage (Gendler et al., 2021; Yan et al., 2024).

142 **Multi-source domain generalization (MSDG)** is a specific case of joint distribution shifts where the
 143 test distribution is in the convex hull of multiple source distributions. This scenario is extensively studied
 144 in domain adaptation theory (Zhang et al., 2019) and distributionally robust optimization (Sagawa
 145 et al., 2019). In the context of MSDG, conservative CP approaches ensure the marginal coverage
 146 under the worst-case shift (Cauchois et al., 2024; Zou & Liu, 2024). Recent work further regularizes
 147 the model h for a balance between the robustness of marginal coverage and prediction efficiency (Xu
 148 et al., 2025). A related area is federated CP (Lu et al., 2023; Wen et al., 2025), where robust CP is
 149 pursued across separated sources without data centralization.

150 Nevertheless, how joint distribution shifts undermine the conditional coverage guarantee remains
 151 unexplored. Therefore, we focus on developing a theoretical framework to assess the robustness of
 152 conditional coverage and propose a practical solution in the presence of multiple source domains.

154 3 THEORY

155 3.1 INTEGRATED COVERAGE GAP

158 Under the i.i.d. assumption: $(X_{n+1}, Y_{n+1}) \sim Q_{XY} = P_{XY}$, the conditional guarantee in Eq. (2)
 159 indicates that $s(X_{n+1}, Y_{n+1}) \leq \tau(x)$ occurs with probability of at least $1 - \alpha$ when $X_{n+1} = x$:

$$160 \quad \Pr(s(X_{n+1}, Y_{n+1}) \leq \tau(x) | X_{n+1} = x) \geq 1 - \alpha, \forall x \in \mathcal{X} \quad (3)$$

161 ¹Equivalently, τ can be defined as the $1 - \alpha$ quantile of $\{V_i\}_{i=1}^n \cup \{V_\infty\}$ (Vovk et al., 2005; Lei et al., 2017).

For brevity, let $P_{V|x}$ and $Q_{V|x}$ be the calibration and test conformal score distributions conditioned on an input x . Eq. (3) implies that $P_{V|x}$ and $Q_{V|x}$ hold the same cumulative probability at $\tau(x)$ when $P_{XY} = Q_{XY}$. Formally, denoting $F_{P_{V|x}}$ and $F_{Q_{V|x}}$ cumulative distribution functions (CDFs) of $P_{V|x}$ and $Q_{V|x}$, respectively, Eq. (3) indicates $F_{P_{V|x}}(\tau(x)) = F_{Q_{V|x}}(\tau(x)) \geq 1 - \alpha$.

To quantify how $P_{XY} \neq Q_{XY}$ impedes the conditional guarantee with $X_{n+1} = x$, we define **conditional coverage gap (CCG)** by

$$\text{CCG}(P, Q, x) = |F_{P_{V|x}}(\tau(x)) - F_{Q_{V|x}}(\tau(x))|. \quad (4)$$

CCG utilizes the two CDFs, $F_{P_{V|x}}$ and $F_{Q_{V|x}}$, to assess the coverage robustness of $C_A(X_{n+1})$ when $X_{n+1} = x$. A lower CCG value indicates higher robustness. However, since test inputs are drawn from Q_X , evaluating CCG at a single point x can not take $Q_X(x)$ at different x into account. To address this, **integrated coverage gap (ICG)** is defined as the expectation of CCG under Q_X by

$$\text{ICG}(P, Q) = \int_{\mathcal{X}} \text{CCG}(P, Q, x) dQ_X(x). \quad (5)$$

By integrating CCG over Q_X , ICG is a comprehensive metric for coverage robustness of adaptive prediction sets. A low ICG means that conditional coverage is consistently close to $1 - \alpha$ in \mathcal{X} .

3.2 UPPER BOUND BY WASSERSTEIN DISTANCE

We further explore how a distribution shift between P_{XY} and Q_{XY} in space $\mathcal{X} \times \mathcal{Y}$ is propagated to a shift between $P_{V|x}$ and $Q_{V|x}$ in space \mathcal{V} for all $x \in \mathcal{X}$.

Definition 1 (p -Wasserstein Distance between Population Distributions (Panaretos & Zemel, 2019)). *For any probability measures μ_X and ν_X defined on a metric space $(\mathcal{X}, d_{\mathcal{X}})$, where \mathcal{X} is a set and $d_{\mathcal{X}}$ is a metric on \mathcal{X} , the Wasserstein distance of order $p \geq 1$ between μ_X and ν_X is defined by*

$$W_p(\mu_X, \nu_X) = \inf_{\gamma \in \Gamma(\mu_X, \nu_X)} \left(\int_{\mathcal{X} \times \mathcal{X}} d_{\mathcal{X}}(x_1, x_2)^p d\gamma(x_1, x_2) \right)^{\frac{1}{p}},$$

where $\Gamma(\mu_X, \nu_X)$ is the set of all joint probability measures γ on $\mathcal{X} \times \mathcal{X}$ with marginals $\gamma(\mathcal{A} \times \mathcal{X}) = \mu_X(\mathcal{A})$ and $\gamma(\mathcal{X} \times \mathcal{B}) = \nu_X(\mathcal{B})$, \forall measurable sets $\mathcal{A}, \mathcal{B} \subseteq \mathcal{X}$.

The Wasserstein distance with $p = 1$ is denoted as W . An upper bound of the marginal coverage gap is proposed in (Xu et al., 2025). Let L be the Lebesgue density bound of $P_{V|x}$ for all $x \in \mathcal{X}$ (Ross, 2011). We derive

$$\text{CCG}(P, Q, x) \leq \sqrt{2L \cdot W(P_{V|x}, Q_{V|x})}. \quad (6)$$

Next, we explore how $W(P_{V|x}, Q_{V|x})$ arises from the difference in $P_{Y|x}$ and $Q_{Y|x}$ by Theorem 1.

Theorem 1. *Let μ_{XY} and ν_{XY} be probability measures in the metric space $(\mathcal{X} \times \mathcal{Y}, d_{\mathcal{XY}})$, where $d_{\mathcal{XY}}$ is the 2-product metric of $d_{\mathcal{X}}$ and $d_{\mathcal{Y}}$ such that $d_{\mathcal{XY}}((x_1, y_1), (x_2, y_2)) := \|(d_{\mathcal{X}}(x_1, x_2), d_{\mathcal{Y}}(y_1, y_2))\|_2$. Let $s : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{V}$ be a measurable function such that $s(x, y) = v$. In the metric space $(\mathcal{V}, d_{\mathcal{V}})$, denote μ_V the probability measure of $s(X, Y)$ for $(X, Y) \sim \mu_{XY}$. Also, let ν_V be the probability measure of $s(X, Y)$ for $(X, Y) \sim \nu_{XY}$. If s has a continuity constant κ at x such that $\frac{d_V(s(x, y_1), s(x, y_2))}{d_{\mathcal{Y}}(y_1, y_2)} \leq \kappa, \forall x \in \mathcal{X}$ and $\forall y_1, y_2 \in \mathcal{Y}$, the following inequality holds:*

$$W(\mu_{V|x}, \nu_{V|x}) \leq \kappa \cdot W(\mu_{Y|x}, \nu_{Y|x}). \quad (7)$$

A related theorem in (Xu et al., 2025) does not condition on a specific x . Since $\mathcal{V}, \mathcal{Y} \subseteq \mathbb{R}$, we can take the metrics $d_{\mathcal{V}}(\cdot, \cdot)$ and $d_{\mathcal{Y}}(\cdot, \cdot)$ as the absolute value of the difference. Therefore, according to Theorem 1, if the score function $s(X, Y)$ is continuous with a constant κ such that $\frac{|s(x, y_1) - s(x, y_2)|}{|y_1 - y_2|} \leq \kappa, \forall x \in \mathcal{X}, \forall y_1, y_2 \in \mathcal{Y}$, we can derive that

$$W(P_{V|x}, Q_{V|x}) \leq \kappa \cdot W(P_{Y|x}, Q_{Y|x}). \quad (8)$$

For an intuitive explanation, a smaller κ implies that the score function s becomes less responsive to changes in y conditioned on x . Consequently, a substantial distribution shift between $P_{Y|x}$ and $Q_{Y|x}$ will not result in a large $W(P_{V|x}, Q_{V|x})$. Combining Eq. (8) and Eq. (6), we obtain

$$\text{CCG}(P, Q, x) \leq \sqrt{2\kappa L \cdot W(P_{Y|x}, Q_{Y|x})}. \quad (9)$$

216 Besides, as $\sqrt{W(P_{Y|x}, Q_{Y|x})} \leq W(P_{Y|x}, Q_{Y|x}) + 1/4$,² we can bound ICG based on Eq. (9) by
 217

$$218 \quad \text{ICG}(P, Q) \leq \sqrt{2\kappa L} \left(\int_{\mathcal{X}} W(P_{Y|x}, Q_{Y|x}) dQ_X(x) + \frac{1}{4} \right). \quad (10)$$

220 Eq. (10) suggests that ICG is influenced by the Wasserstein distance $W(P_{Y|x}, Q_{Y|x})$ averaged over
 221 the test input distribution Q_X . However, this upper bound does not fully capture the distribution shift
 222 between P_{XY} and Q_{XY} , as it omits the effect of covariate shift, i.e., $P_X \neq Q_X$.

223 **Theorem 2.** *Let μ_{XY} and ν_{XY} be probability measures on the metric space $(\mathcal{X} \times \mathcal{Y}, d_{\mathcal{XY}})$.
 224 $\mu_{Y|x}$ and $\nu_{Y|x}$ are the corresponding conditional distributions of Y given $X = x$. A joint
 225 distribution shift occurs between μ_{XY} and ν_{XY} such that $\mu_X \neq \nu_X$ and $\mu_{Y|X} \neq \nu_{Y|X}$. De-
 226 note $\gamma_{XYXY}^* \in \Gamma(\mu_{XY}, \nu_{XY})$ the optimal transport plan of $W(\mu_{XY}, \nu_{XY})$ and $\gamma_{XX}^*(x_1, x_2) =$
 227 $\int_{\mathcal{Y}^2} d\gamma_{XYXY}^*(x_1, y_1, x_2, y_2)$. If $\exists \eta > 0$ such that*

$$228 \quad \int_{\mathcal{X}} W(\mu_{Y|x}, \nu_{Y|x}) d\nu_X(x) \leq \eta \int_{\mathcal{X} \times \mathcal{X}} W(\mu_{Y|x}, \nu_{Y|x}) d\gamma_{XX}^*(x, x), \quad (11)$$

230 the following inequality holds that

$$231 \quad \int_{\mathcal{X}} W(\mu_{Y|x}, \nu_{Y|x}) d\nu_X(x) \leq \eta \cdot W(\mu_{XY}, \nu_{XY}). \quad (12)$$

234 Changing the notations μ and ν into P and Q in Theorem 2, we establish an upper bound for the
 235 integrated conditional Wasserstein distance in Eq. (10) as follows

$$236 \quad \int_{\mathcal{X}} W(P_{Y|x}, Q_{Y|x}) dQ_X(x) \leq \eta \cdot W(P_{XY}, Q_{XY}). \quad (13)$$

238 Finally, combining Eq. (10) and Eq. (13), we deduce that

$$239 \quad \text{ICG}(P, Q) \leq \sqrt{2\kappa L} (\eta \cdot W(P_{XY}, Q_{XY}) + 1/4). \quad (14)$$

241 Eq. (14) states that ICG is bounded by $W(P_{XY}, Q_{XY})$, meaning that greater shifts in the joint
 242 distribution lead to a more significant decline in conditional coverage. However, the influence of
 243 $W(P_{XY}, Q_{XY})$ is moderated by scaling constants, which include κ , L , and η . The specific roles
 244 and particular implications of these constants for CP are detailed in Appendix B. The finite-sample
 245 behavior of $W(P_{XY}, Q_{XY})$ is examined in Appendix C.

246 4 METHOD

249 The upper bound in Eq. (14) provides a framework to ensure conditional coverage under distribution
 250 shift. Specifically, if a model f_{θ} transforms Q_{XY} via the Wasserstein transport plan to P_{XY} , we have

$$251 \quad (\bar{X}_{n+1}, \bar{Y}_{n+1}) := f_{\theta}(X_{n+1}, Y_{n+1}) \sim P_{XY}, \forall (X_{n+1}, Y_{n+1}) \sim Q_{XY}. \quad (15)$$

252 Therefore, the adaptive prediction set $C_A(\bar{X}_{n+1})$ constructed on the transformed input ensures
 253 conditional coverage with respect to P_{XY} . However, to achieve $1 - \alpha$ conditional coverage on Q_{XY}
 254 during inference, the model f_{θ} must satisfy two additional requirements:

255 (i) f_{θ} can inversely transform $C_A(\bar{X}_{n+1}) \subseteq \mathcal{Y}$ with preserved conditional guarantee on Q_{XY} ;
 256 (ii) f_{θ} should not explicitly couple the transformations of X_{n+1} and Y_{n+1} , since Y_{n+1} remains
 257 unknown during inference.

259 4.1 BRANCHED NORMALIZING FLOW

261 Normalizing flows are widely applied techniques for invertible mapping (Kobyzev et al., 2020;
 262 Papamakarios et al., 2021). A formal definition of normalizing flows is presented in Definition 2 with
 263 a demonstration in Figure 2.

264 **Definition 2** (Normalizing flows (Kobyzev et al., 2020)). *Let μ_X be a probability measure in \mathbb{R}^d . For
 265 a measurable and invertible function $g : \mathbb{R}^d \rightarrow \mathbb{R}^d$, ν_X is the pushforward measure of μ_X through g ,
 266 denoted as $\nu_X = g_{\#}\mu_X$, if $\nu_X(\mathcal{A}) = \mu_X(g^{-1}(\mathcal{A}))$ for every measurable set $\mathcal{A} \subseteq \mathbb{R}^d$. g is referred
 267 to as the generative flow, and $f = g^{-1}$ is known as the normalizing flow with $\mu_X = f_{\#}\nu_X$.*

268
 269 ²When $W(P_{Y|x}, Q_{Y|x}) \geq 1$, we refine Eq. (10) into $\text{ICG}(P, Q) \leq \sqrt{2\kappa L} \int_{\mathcal{X}} W(P_{Y|x}, Q_{Y|x}) dQ_X(x)$ by
 $\sqrt{W(P_{Y|x}, Q_{Y|x})} \leq W(P_{Y|x}, Q_{Y|x})$. This tightens Eq. (14) to $\text{ICG}(P, Q) \leq \sqrt{2\kappa L} \cdot \eta \cdot W(P_{XY}, Q_{XY})$.

To make f_θ meet the two requirements (i) and (ii), we introduce a special normalizing flow, called **Branched Normalizing Flow (BNF)**. For a sample (x, y) , BNF transforms it with a branched structure such that $f_\theta(x, y) = (f_{\theta_X}(x), f_{\theta_Y}(y)) = (\bar{x}, \bar{y})$. The invertibility of BNF allows that $f_\theta^{-1}(\bar{x}, \bar{y}) = (f_{\theta_X}^{-1}(\bar{x}), f_{\theta_Y}^{-1}(\bar{y})) = (x, y)$, enabling the inverse transformation of $C_A(\bar{X}_{n+1})$ and satisfying requirement (i). Besides, the parameters θ_X and θ_Y are not shared between branches, so BNF does not explicitly couple the mappings of x and y . Therefore, the normalized test input \bar{X}_{n+1} can be obtained without knowing Y_{n+1} during inference, fulfilling requirement (ii).

Consider a BNF that achieves $f_{\theta_X} \# Q_{XY} = P_{XY}$ so that $f_{\theta_X} \# Q_X = P_X$ and $f_{\theta_Y} \# Q_{Y|x} = P_{Y|\bar{x}}$ by

$$\min_{\theta} W(P_{XY}, f_{\theta} \# Q_{XY}). \quad (16)$$

Then, given a test input $X_{n+1} = x$, we normalize it as $\bar{X}_{n+1} = f_{\theta_X}(x) = \bar{x}$. Since $f_{\theta_X} \# Q_{XY} = P_{XY}$, the transformed true target $\bar{Y}_{n+1} = f_{\theta_Y}(Y_{n+1})$, together with \bar{X}_{n+1} , should follow the calibration distribution, i.e., $(\bar{X}_{n+1}, \bar{Y}_{n+1}) \sim P_{XY}$, as shown in Figure 1(c) 1st plot. Therefore, the adaptive prediction set of \bar{X}_{n+1} has the conditional guarantee:

$$\Pr(\bar{Y}_{n+1} \in C_A(\bar{X}_{n+1}) | \bar{X}_{n+1} = \bar{x}) \geq 1 - \alpha. \quad (17)$$

BNF then constructs a prediction set of the original input X_{n+1} by including all targets whose normalized counterparts lie in $C_A(\bar{X}_{n+1})$. Specifically, we define $C_{\text{BNF}}(X_{n+1})$ as follows:

$$C_{\text{BNF}}(X_{n+1}) = \{f_{\theta_Y}^{-1}(\bar{y}) : \bar{y} \in C_A(\bar{X}_{n+1})\}, \text{ where } \bar{X}_{n+1} = f_{\theta_X}(X_{n+1}). \quad (18)$$

Proposition 6 in Appendix D and the invertibility of the univariate function f_{θ_Y} imply that

$$\bar{Y}_{n+1} \in C_A(\bar{X}_{n+1}) \iff f_{\theta_Y}^{-1}(\bar{Y}_{n+1}) \in C_{\text{BNF}}(X_{n+1}). \quad (19)$$

Consequently, since $Y_{n+1} = f_{\theta_Y}^{-1}(\bar{Y}_{n+1})$, the conditional guarantee is inherited by $C_{\text{BNF}}(X_{n+1})$:

$$\Pr(Y_{n+1} \in C_{\text{BNF}}(X_{n+1}) | X_{n+1} = x) \geq 1 - \alpha. \quad (20)$$

Even if f_{θ_X} and f_{θ_Y} do not share parameters, Wasserstein minimization in Eq. (16) considers the dependency between them. Let $y = \phi(x)$ be the ground truth mapping function of P_{XY} . Since $(\bar{X}_{n+1}, \bar{Y}_{n+1}) \sim P_{XY}$, we have $\bar{Y}_{n+1} = \phi(\bar{X}_{n+1}) = \phi(f_{\theta_X}(X_{n+1}))$. Thereby, even if $f_{\theta_Y}^{-1}(\bar{Y}_{n+1})$ is not explicitly conditioned on X_{n+1} , it implicitly depends on X_{n+1} through the composition $\phi \circ f_{\theta_X}$. Further explanation with an illustrative example is provided in Appendix E.

4.2 ENHANCING EXPRESSIVENESS VIA GAUSSIAN NOISE AUGMENTATION

The monotonicity of the univariate f_{θ_Y} allows the equivalence in Eq. (19), but also limits its fitting ability. As a result, it struggles to optimize Eq. (16) for complex distributions, leading to unreliable conditional coverage, as shown in Appendix F.

To address this limitation, we adopt the augmentation technique proposed in (Huang et al., 2020) to gain higher expressiveness. Specifically, given a sample (x, y) , an augmented transformation of y is defined as $f_{\theta_Y}^{\text{aug}}(y; \varepsilon) = \bar{y}$, where ε is sampled from a Gaussian distribution $\mathcal{N}(0, 1)$. Meanwhile, f_{θ_X} is unchanged. We refer to this variant as **Augmented BNF**, defined as

$$f_{\theta}^{\text{aug}}(x, y, \varepsilon) = (f_{\theta_X}(x), f_{\theta_Y}^{\text{aug}}(y; \varepsilon)) = (\bar{x}, \bar{y}). \quad (21)$$

We implement Augmented BNF using Real NVP (Dinh et al., 2016; Huang et al., 2020), a representative coupling flow, with architectural details provided in Appendix H. Although $f_{\theta_Y}^{\text{aug}}(y; \varepsilon) = \bar{y}$ remains invertible, it does not build a monotonic relationship between y and \bar{y} . As a result, we can not rely on Eq. (19) to preserve the conditional guarantee. To address this issue, we propose an alternative approach to obtain a prediction set for test input X_{n+1} with a sampled noise ε_{n+1} by defining

$$C_{\text{BNF}}^{\text{aug}}(X_{n+1}) = \{y : f_{\theta_Y}^{\text{aug}}(y; \varepsilon_{n+1}) \in C_A(\bar{X}_{n+1})\}, \text{ where } \bar{X}_{n+1} = f_{\theta_X}(X_{n+1}). \quad (22)$$

Proposition 7 in Appendix D implies that $\bar{Y}_{n+1} \in C_A(\bar{X}_{n+1}) \iff Y_{n+1} \in C_{\text{BNF}}^{\text{aug}}(X_{n+1})$. Hence, based on Eq. (17), we conclude that

$$\Pr(Y_{n+1} \in C_{\text{BNF}}^{\text{aug}}(X_{n+1}) | X_{n+1} = x) \geq 1 - \alpha. \quad (23)$$

Conditioning the Y transformation on features, denoted by $f_{\theta_Y}^{\text{fea}}(y; x) = \bar{y}$, theoretically enhances expressiveness and inter-branch dependency as well. However, in practice, it exacerbates the curse of dimensionality, increasing the risk of overfitting with finite samples, as shown in Appendix G.

324

5 APPLICATION TO MULTI-SOURCE DOMAIN GENERALIZATION

325

326 In this work, we study joint distribution shift in multi-source domain generalization (MSDG) (Sagawa
327 et al., 2019), a widely explored setting in CP (Cauchois et al., 2024; Zou & Liu, 2024; Xu et al., 2025).
328 In MSDG, the test distribution is a random mixture within the convex hull of the source distributions.
329 Formally, given K source distributions D_{XY}^k for $k = 1, \dots, K$, we assume the test distribution satisfies

330
$$Q_{XY} \in \left\{ \sum_{k=1}^K \lambda_k D_{XY}^k : \lambda_1, \dots, \lambda_K \geq 0, \sum_{k=1}^K \lambda_k = 1 \right\}. \quad (24)$$
331

332 **Theorem 3.** Let $\{\nu_{XY}^k\}_{k=1}^K$ be probability measures defined on the metric space $(\mathcal{X} \times \mathcal{Y}, d_{\mathcal{XY}})$,
333 and let ν_{XY} lie in the convex hull of these measures, i.e., $\nu_{XY} = \sum_{k=1}^K \lambda_k \nu_{XY}^k$ with $\lambda_k \geq 0$ and
334 $\sum_{k=1}^K \lambda_k = 1$. For any probability measure μ_{XY} on $(\mathcal{X} \times \mathcal{Y}, d_{\mathcal{XY}})$, the following inequality holds:

335
$$W(\mu_{XY}, \nu_{XY}) \leq \sum_{k=1}^K \lambda_k W(\mu_{XY}, \nu_{XY}^k). \quad (25)$$
336

337 As outlined in (Cauchois et al., 2024; Xu et al., 2025), achieving coverage guarantee for each source
338 distribution ensures that the coverage on the test distribution is preserved. Inspired by the principle,
339 Theorem 3 suggests a surrogate objective for Augmented BNF by $\sum_{k=1}^K \lambda_k W(P_{XY}, f_\theta^{\text{aug}} \# D_{XY}^k)$.
340 Since the mixture weights $\{\lambda_k\}_{k=1}^K$ are unknown, we minimize the expectation assuming they are
341 uniformly distributed over the simplex:

342
$$\min_{\theta} 1/K \cdot \sum_{k=1}^K W(P_{XY}, f_\theta^{\text{aug}} \# D_{XY}^k). \quad (26)$$
343

344 We typically work with finite samples in practice. Let \mathcal{S}_{D^k} be the training set from the k -th source
345 distribution D_{XY}^k for $k = 1, \dots, n$. All training sets are of equal size. Based on the setup of
346 split conformal prediction, all training and calibration samples are from the same distribution, so
347 $P_{XY} = \sum_{k=1}^K |\mathcal{S}_{D^k}| / |\bigcup_{k=1}^K \mathcal{S}_{D^k}| \cdot D_{XY}^k = 1/K \cdot \sum_{k=1}^K D_{XY}^k$. Denote \mathcal{S}_P a calibration set from P_{XY} .
348 An empirical calibration distribution \widehat{P}_{XY} is constructed from \mathcal{S}_P , as introduced in Appendix C.

349 During training, for each $(x, y) \in \mathcal{S}_{D^k}$, we sample a noise ε from $\mathcal{N}(0, 1)$ and compute (\bar{x}, \bar{y})
350 using Eq. (21). All normalized pairs are collected in $\bar{\mathcal{S}}_{D^k}$ to construct the empirical pushforward
351 $f_\theta^{\text{aug}} \# \widehat{D}_{XY}^k$. Using $f_\theta^{\text{aug}} \# \widehat{D}_{XY}^k$ for $k = 1, \dots, K$ and \widehat{P}_{XY} , we approximate the objective in Eq. (26).

352 Moreover, even if the Augmented BNF
353 perfectly achieves $f_\theta^{\text{aug}} \# Q_{XY} = P_{XY}$ so
354 that $(\bar{X}_{n+1}, \bar{Y}_{n+1}) \sim P_{XY}$, constructing
355 a prediction set $C_A(\bar{X}_{n+1})$ that satisfies
356 the conditional guarantee under P_{XY} re-
357 mains challenging with finite samples, as
358 we introduced in Section 2.1.

359 In this work, we employ conformalized
360 quantile regression (CQR) (Romano et al.,
361 2019), which generates an adaptive pre-
362 diction set $C_{\text{CQR}}(\bar{X}_{n+1})$ to approximate
363 the $1 - \alpha$ conditional coverage specified in
364 Eq. (17). We briefly denote the algorithm
365 of CQR as

366
$$A_{\text{CQR}} \left(\bigcup_{k=1}^K \mathcal{S}_{D^k}, \mathcal{S}_P, \bar{X}_{n+1}, 1 - \alpha \right).$$
367

368 Crucially, the construction of $C_{\text{CQR}}(\bar{X}_{n+1})$
369 is independent of the Augmented BNF
370 training and can be seamlessly integrated
371 into our framework. Details of the CQR im-
372 plementation are provided in Appendix I.

373 Finally, given a test set \mathcal{S}_Q from Q_{XY} ,
374 we outline the combination of Augmented
375 BNF + CQR in Algorithm 1.

Algorithm 1 Augmented BNF + CQR under MSDG

Require: training sets \mathcal{S}_{D^k} for $k=1, \dots, K$; calibration set \mathcal{S}_P ; test set \mathcal{S}_Q ; N epochs; $1 - \alpha$ confidence;
Augmented BNF f_θ^{aug} ; CQR algorithm A_{CQR} .

Training Phase:
for $i=1$ to N epochs **do**
for $k=1$ to K **do**

Initialize $\bar{\mathcal{S}}_{D^k} \leftarrow \emptyset$
for each $(x, y) \in \mathcal{S}_{D^k}$ **do**
 $(\bar{x}, \bar{y}) = f_\theta^{\text{aug}}(x, y, \varepsilon)$, where $\varepsilon \sim \mathcal{N}(0, 1)$
 $\bar{\mathcal{S}}_{D^k} \leftarrow \bar{\mathcal{S}}_{D^k} \cup \{(\bar{x}, \bar{y})\}$
end for
end for

$$\min_{\theta} \frac{1}{K} \sum_{k=1}^K W \left(\widehat{P}_{XY}, f_\theta^{\text{aug}} \# \widehat{D}_{XY}^k \right)$$

end for
Inference Phase:
for x from \mathcal{S}_Q **do**
 $\bar{x} = f_{\theta_X}(x)$

$$C_{\text{CQR}}(\bar{x}) = A_{\text{CQR}} \left(\bigcup_{k=1}^K \mathcal{S}_{D^k}, \mathcal{S}_P, \bar{x}, 1 - \alpha \right)$$

Sample $\varepsilon \sim \mathcal{N}(0, 1)$

$$C_{\text{BNF}}^{\text{aug}}(x) = \{y : f_{\theta_Y}^{\text{aug}}(y; \varepsilon) \in C_{\text{CQR}}(\bar{x})\}$$

end for

378

6 EXPERIMENT

380

6.1 EXPERIMENTAL SETUP

382 We conduct Augmented BNF using the normflows library (Stimper et al., 2023). To estimate the
 383 empirical Wasserstein distance in Algorithm 1, we adopt the Sinkhorn algorithm (Cuturi, 2013;
 384 Knight, 2008) via the geomloss library (Feydy et al., 2019), with a brief review in Appendix J.

385 **Baselines.** Five methods are selected for a comprehensive comparison. Split CP (SCP) (Papadopoulos
 386 et al., 2002) guarantees marginal coverage under the i.i.d. assumption. Importance-Weighted CP
 387 (IW-CP) (Tibshirani et al., 2019) addresses covariate shifts. Worst-Case CP (WC-CP) conservatively
 388 ensures marginal coverage under joint distribution shift (Cauchois et al., 2024; Zou & Liu, 2024;
 389 Gandler et al., 2021). Wasserstein-Regularized CP (WR-CP) enhances the robustness of marginal
 390 coverage under MSDG (Xu et al., 2025). Lastly, CQR without Augmented BNF is included to
 391 demonstrate that CQR alone struggles to maintain valid conditional coverage under distribution shift.
 392 Further details on the baselines are provided in Appendix K with an illustrative example in Figure 10.

393 **Datasets.** We set $K = 3$ under both **synthetic** and **natural** distribution shifts. Synthetic shifts
 394 are introduced in the PTS dataset (Rana, 2013). For real-world applications, we consider (i) sales
 395 prediction over time with Bike Rental (Fanaee-T, 2013), (ii) multi-location traffic forecasting with
 396 Seattle-Loop (Cui et al., 2019), PEMSD4, and PEMSD8 (Bai et al., 2020), (iii) unbiased healthcare
 397 with MIMIC-IV (Johnson et al., 2023), eICU (Pollard et al., 2018), and data from a collaborating hos-
 398 pital, and (iv) epidemic modeling across pandemic phases with U.S. Influenza-like Illness (ILI) (Deng
 399 et al., 2020). Dataset details are in Appendix L.

400 **Evaluation metric.** The worst-slice coverage (WSC) (Cauchois et al., 2021) measures the minimal
 401 coverage over any sufficiently large slab in \mathcal{X} , serving as an empirical proxy for the robustness of
 402 conditional coverage, as reviewed in Appendix M. However, since WSC is evaluated only over a
 403 restricted subset of \mathcal{X} , it may fail to capture robustness across the entire space. Additionally, WSC
 404 captures only the minimal (i.e., most insufficient) coverage and overlooks regions where coverage
 405 may be overly conservative. To address these weaknesses, we propose **Average-slice coverage gap**
 406 (**ASCG**) as a practical metric to assess the robustness of conditional coverage. Since $X \in \mathcal{X} \subseteq \mathbb{R}^d$,
 407 each sample (x, y) can be represented as $(x^{(1)}, x^{(2)}, \dots, x^{(d)}, y)$. For each dimension $i \in \{1, \dots, d\}$,
 408 we partition the test set \mathcal{S}_Q into M equal-sized slices along the i -th feature dimension. Specifically, let
 409 $\tau_{(m-1)/M}$ and $\tau_{m/M}$ denote the $(m-1)/M$ and m/M quantiles of $\{x^{(i)} : (x^{(1)}, \dots, x^{(d)}, y) \in \mathcal{S}_Q\}$.
 Then, we define the m -th slice in dimension i as

$$410 \quad \mathcal{S}_{i,m} = \{(x^{(1)}, \dots, x^{(d)}, y) : x^{(i)} \in [\tau_{(m-1)/M}, \tau_{m/M}], (x^{(1)}, \dots, x^{(d)}, y) \in \mathcal{S}_Q\}. \quad (27)$$

412 Let $c_{i,m}$ denote the number of covered samples in the slice $\mathcal{S}_{i,m}$. The ASCG is defined as

$$413 \quad \text{ASCG} = \frac{1}{d} \sum_{i=1}^d \frac{1}{M} \sum_{m=1}^M \left| \frac{c_{i,m}}{|\mathcal{S}_{i,m}|} - (1 - \alpha) \right|. \quad (28)$$

416 If the coverage ratio $c_{i,m}/|\mathcal{S}_{i,m}|$ closely matches $1 - \alpha$ for all i and m , then conditional coverage is
 417 approximately satisfied and ASCG remains low.

419

6.2 ROBUST CONDITIONAL COVERAGE VIA AUGMENTED BNF

421 We evaluate the combination of Augmented BNF and CQR, along with five baseline methods, across
 422 10 independent trials for each dataset. The results are summarized in Figure 3, which presents box
 423 plots of coverage metrics under $1 - \alpha = 0.9$. For each trial, 100 random mixtures were generated
 424 as test sets, resulting in 1000 test performances per box. One can observe that Augmented BNF
 425 consistently achieves the lowest ASCG while maintaining marginal coverage close to 0.9, proving that
 426 Augmented BNF effectively normalizes shifted test distributions toward the calibration distribution,
 427 thereby enhancing conditional coverage robustness. We further examine the generalization ability of
 428 the Augmented BNF across varying sample sizes and K values in Appendix N.

429 Rather than fixing $1 - \alpha = 0.9$, we explore the performance of Augmented BNF across different
 430 confidence levels. We denote $\overline{\text{ASCG}}$ the mean ASCG over 10 trials across all dataset. Figure 4
 431 illustrates the results with $1 - \alpha$ varying from 0.1 to 0.9. The proposed method consistently achieves
 the most robust conditional coverage, maintaining the lowest $\overline{\text{ASCG}}$ over different confidence levels.

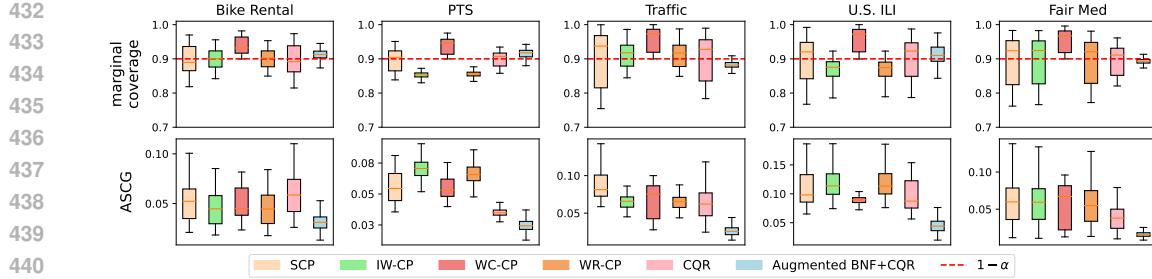


Figure 3: Marginal coverage and ASCG of Augmented BNF+CQR and five baselines with $1 - \alpha = 0.9$: the proposed method achieves the lowest ASCG and brings the marginal coverage close to the expected confidence.

Moreover, a consistent pattern emerges across all methods: ASCG tends to be higher in the mid-range of confidence levels and lower at both ends. At high confidence levels (e.g., $1 - \alpha = 0.9$), prediction intervals become wide enough to cover most possible outcomes, thereby resulting in small coverage gaps. Conversely, at low confidence levels (e.g., $1 - \alpha = 0.1$), prediction intervals are narrow and only need to capture a small subset of outcomes, making them inherently less sensitive to distribution shifts and again leading to lower coverage gaps. As a result, the coverage gap typically peaks at intermediate confidence levels, forming arch-shaped curves across the confidence spectrum from 0.1 to 0.9, as shown in Figure 4.

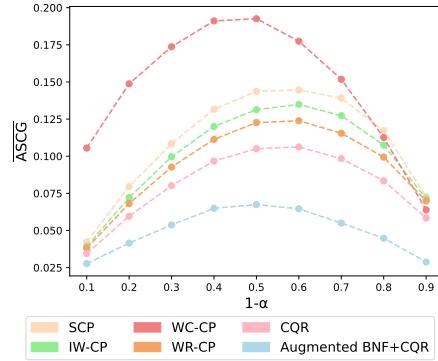


Figure 4: ASCG for $1 - \alpha$ from 0.1 to 0.9.

7 DISCUSSION

In practice, the loss in Eq. (26) can only be minimized empirically, and thus the transformed test distribution may not perfectly coincide with the calibration distribution. As a result, Augmented BNF cannot reduce the ASCG to zero or fully achieve the target $1 - \alpha$ marginal coverage in Figure 3. Hence, it is essential to assess how closely the attained coverage approaches $1 - \alpha$. Appendix O derives and validates marginal and conditional coverage lower bounds under imperfect transformation.

Moreover, prediction efficiency, quantified by prediction set size, is an important performance metric in CP. Reduced set size improves the likelihood of identifying the ground-truth value, while maintaining the nominal coverage level. Nevertheless, during inference, the sampled noise ε_{n+1} in Eq. (22) is source-agnostic, and thus the Y -branch $f_{\theta_Y}^{\text{aug}}$ cannot determine the originating source distribution of a new test sample. Consequently, the prediction set $C_{\text{BNF}}^{\text{aug}}(X_{n+1})$ must expand to encompass all potential sources in order to maintain valid coverage. To address this, we propose a variant, **Augment-Conditioned BNF**, which incorporates source-specific conditioning to effectively reduce prediction set size. Appendix P provides a detailed comparison of the two kinds of BNFs.

Lastly, this work focuses on the application of our method to MSDG. Other types of distribution shift remain unexplored. We discuss this limitation, along with additional considerations, in Appendix Q.

8 CONCLUSION

This work proposes the Conditional Coverage Gap (CCG) to evaluate the robustness of conditional coverage at a given test input, and defines the Integrated Coverage Gap (ICG) as its expectation over the test feature distribution. We bound ICG using the Wasserstein distance $W(P_{XY}, Q_{XY})$, capturing how distribution shift propagates from the data space to the conformal score space. To ensure $1 - \alpha$ conditional coverage under shift, we introduce the Branched Normalizing Flow (BNF). The invertibility of BNF enables mapping adaptive prediction sets from P_{XY} to Q_{XY} , while the branched structure allows input X_{n+1} transformation without needing Y_{n+1} at test time. BNF is applied to multi-source domain generalization (MSDG) with both synthetic and real-world distribution shifts, validating the effectiveness of our approach.

486 ETHICS STATEMENT
487488 All authors have carefully read and agree to abide by the ICLR Code of Ethics. In preparing this
489 work, we have reflected on possible ethical considerations, including issues of fairness, bias, privacy,
490 and potential societal impacts of our methods. We have made every effort to ensure that the research
491 was conducted responsibly and transparently, with appropriate acknowledgment of limitations and
492 scope. We emphasize that this study does not knowingly incorporate data or methods that would
493 compromise the rights, dignity, or safety of individuals or groups. In addition, we have considered
494 potential risks of misuse and have aimed to present our findings in a manner that minimizes the
495 likelihood of harmful applications.496
497 REPRODUCIBILITY STATEMENT
498499 We have taken deliberate steps to enhance the reproducibility of our work. The main text provides a
500 clear description of the models, evaluation protocols, and experimental setup. Where appropriate,
501 we have included further details in the appendix and supplementary materials to ensure that inde-
502 pendent researchers can replicate and verify our findings. Assumptions and methodological choices
503 are stated explicitly, and standard practices are followed to ensure comparability with prior work.
504 Hyperparameters, evaluation criteria, and other implementation details are carefully documented to
505 reduce ambiguity. Together, these measures are intended to support reproducibility, transparency, and
506 scientific rigor, while allowing the community to build upon and validate our contributions.507
508 REFERENCES509 Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley interdisciplinary reviews: 510 computational statistics*, 2(4):433–459, 2010.
511
512 Anastasios Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan. Uncertainty sets for
513 image classifiers using conformal prediction. *arXiv preprint arXiv:2009.14193*, 2020.
514
515 Anastasios N Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Conformal
516 risk control. *arXiv preprint arXiv:2208.02814*, 2022.
517
518 Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
519 network for traffic forecasting. *Advances in neural information processing systems*, 33:17804–
17815, 2020.
520
521 Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal
522 prediction beyond exchangeability. *The Annals of Statistics*, 51(2):816–845, 2023.
523
524 Batiste Le Bars and Pierre Humbert. On volume minimization in conformal regression, 2025. URL
https://arxiv.org/abs/2502.09985.
525
526 Henrik Boström, Ulf Johansson, and Tuwe Löfström. Mondrian conformal predictive distributions.
In *Conformal and Probabilistic Prediction and Applications*, pp. 24–38. PMLR, 2021.
527
528 Maxime Cauchois, Suyash Gupta, and John C Duchi. Knowing what you know: valid and validated
529 confidence sets in multiclass and multilabel prediction. *Journal of machine learning research*, 22
(81):1–42, 2021.
530
531 Maxime Cauchois, Suyash Gupta, Alnur Ali, and John C Duchi. Robust validation: Confident
532 predictions even when distributions shift. *Journal of the American Statistical Association*, pp.
533 1–66, 2024.
534
535 CDC. Pandemic Intervals Framework (PIF) — cdc.gov. https://www.cdc.gov/pandemic-flu/php/national-strategy/intervals-framework.html?CDC_AAref_Val=https://www.cdc.gov/flu/pandemic-resources/national-strategy/intervals-framework.html. [Accessed 28-04-2025].
536
537 Nicolo Colombo. Normalizing flows for conformal regression. *arXiv preprint arXiv:2406.03346*,
538 2024.

540 Alvaro Correia, Fabio Valerio Massoli, Christos Louizos, and Arash Behboodi. An information
 541 theoretic perspective on conformal prediction. *Advances in Neural Information Processing Systems*,
 542 37:101000–101041, 2024.

543

544 Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. Traffic graph convolutional
 545 recurrent neural network: A deep learning framework for network-scale traffic learning and
 546 forecasting. *IEEE Transactions on Intelligent Transportation Systems*, 2019.

547

548 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural*
 549 *information processing systems*, 26, 2013.

549

550 Lahav Dabah and Tom Tirer. On temperature scaling and conformal prediction of deep classifiers,
 551 2025. URL <https://arxiv.org/abs/2402.05806>.

552

553 Manoja Kumar Das. Multicenter studies: relevance, design and implementation. *Indian pediatrics*,
 554 59(7):571–579, 2022.

555

556 Songgaojun Deng, Shusen Wang, Huzefa Rangwala, Lijing Wang, and Yue Ning. Cola-gnn: Cross-
 557 location attention based graph neural networks for long-term ili prediction. In *Proceedings of the*
 558 *29th ACM international conference on information & knowledge management*, pp. 245–254, 2020.

559

560 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. *arXiv*
 561 *preprint arXiv:1605.08803*, 2016.

562

563 Richard Mansfield Dudley. The speed of mean glivenko-cantelli convergence. *The Annals of*
 564 *Mathematical Statistics*, 40(1):40–50, 1969.

565

566 Bat-Sheva Einbinder, Stephen Bates, Anastasios N Angelopoulos, Asaf Gendler, and Yaniv Romano.
 567 Conformal prediction is robust to label noise. *arXiv preprint arXiv:2209.14295*, 2, 2022.

568

569 Hadi Fanaee-T. Bike Sharing. UCI Machine Learning Repository, 2013. DOI:
 570 <https://doi.org/10.24432/C5W894>.

571

572 Zhenhan Fang, Aixin Tan, and Jian Huang. Contra: Conformal prediction region via normalizing
 573 flow transformation. In *The Thirteenth International Conference on Learning Representations*,
 574 2025.

575

576 Shai Feldman, Stephen Bates, and Yaniv Romano. Improving conditional coverage via orthogonal
 577 quantile regression. *Advances in neural information processing systems*, 34:2060–2071, 2021.

578

579 Jean Feydy. *Analyse de données géométriques, au delà des convolutions*. PhD thesis, Université
 580 Paris-Saclay, 2020.

581

582 Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouve, and Gabriel
 583 Peyré. Interpolating between optimal transport and mmd using sinkhorn divergences. In *The 22nd*
 584 *International Conference on Artificial Intelligence and Statistics*, pp. 2681–2690, 2019.

585

586 Irene Fonseca and Giovanni Leoni. *Modern methods in the calculus of variations: L^p spaces*.
 587 Springer Science & Business Media, 2007.

588

589 Rina Foygel Barber, Emmanuel J Candès, Aaditya Ramdas, and Ryan J Tibshirani. The limits of
 590 distribution-free conditional predictive inference. *Information and Inference: A Journal of the*
 591 *IMA*, 10(2):455–482, 2021.

592

593 Asaf Gendler, Tsui-Wei Weng, Luca Daniel, and Yaniv Romano. Adversarially robust conformal
 594 prediction. In *International Conference on Learning Representations*, 2021.

595

596 Subhankar Ghosh, Yuanjie Shi, Taha Belkhouja, Yan Yan, Jana Doppa, and Brian Jones. Probabilisti-
 597 cally robust conformal prediction. In *Uncertainty in Artificial Intelligence*, pp. 681–690. PMLR,
 598 2023.

599

600 Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional
 601 guarantees. *arXiv preprint arXiv:2305.12616*, 2023.

594 Leying Guan. Localized conformal prediction: A generalized inference framework for conformal
 595 prediction. *Biometrika*, 110(1):33–50, 2023.

596

597 Tiberiu Harko, Francisco SN Lobo, and Man Kwong Mak. Exact analytical solutions of the
 598 susceptible-infected-recovered (sir) epidemic model and of the sir model with equal death and
 599 birth rates. *Applied Mathematics and Computation*, 236:184–194, 2014.

600 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 601 recognition, 2015. URL <https://arxiv.org/abs/1512.03385>.

602

603 Chin-Wei Huang, Laurent Dinh, and Aaron Courville. Augmented normalizing flows: Bridging the
 604 gap between generative flows and latent variable models, 2020. URL <https://arxiv.org/abs/2002.07101>.

605

606 Xiaoyong Jin, Youngsuk Park, Danielle Maddix, Hao Wang, and Yuyang Wang. Domain adaptation
 607 for time series forecasting via attention sharing. In *International Conference on Machine Learning*,
 608 pp. 10280–10297. PMLR, 2022.

609 Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
 610 Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible
 611 electronic health record dataset. *Scientific data*, 10(1):1, 2023.

612

613 KM Ariful Kabir, Kazuki Kuga, and Jun Tanimoto. Analysis of sir epidemic model with information
 614 spreading of awareness. *Chaos, Solitons & Fractals*, 119:118–125, 2019.

615

616 Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
 617 Improved variational inference with inverse autoregressive flow. *Advances in neural information
 618 processing systems*, 29, 2016.

619

620 Danijel Kvaranovic, Kory D. Johnson, and Hannes Leeb. Adaptive, distribution-free prediction
 621 intervals for deep networks, 2020. URL <https://arxiv.org/abs/1905.10634>.

622

623 Michal Klein, Louis Bethune, Eugene Ndiaye, and Marco Cuturi. Multivariate conformal prediction
 624 using optimal transport, 2025. URL <https://arxiv.org/abs/2502.03609>.

625

626 Philip A Knight. The sinkhorn–knopp algorithm: convergence and applications. *SIAM Journal on
 627 Matrix Analysis and Applications*, 30(1):261–275, 2008.

628

629 Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and
 630 review of current methods. *IEEE transactions on pattern analysis and machine intelligence*, 43
 631 (11):3964–3979, 2020.

632

633 Zhifeng Kong and Kamalika Chaudhuri. The expressive power of a class of normalizing flow models,
 634 2020. URL <https://arxiv.org/abs/2006.00392>.

635

636 David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
 637 Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation
 638 (rex). In *International conference on machine learning*, pp. 5815–5826. PMLR, 2021.

639

640 Jing Lei and Larry Wasserman. Distribution-free prediction bands for non-parametric regression.
 641 *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 76(1):71–96, 2014.

642

643 Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry Wasserman. Distribution-free
 644 predictive inference for regression, 2017. URL <https://arxiv.org/abs/1604.04173>.

645

646 Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Locally valid and discriminative prediction intervals
 647 for deep learning models. *Advances in Neural Information Processing Systems*, 34:8378–8391,
 648 2021.

649

650 Charles Lu, Yaodong Yu, Sai Praneeth Karimireddy, Michael Jordan, and Ramesh Raskar. Federated
 651 conformal predictors for distributed uncertainty quantification. In *International Conference on
 652 Machine Learning*, pp. 22942–22964. PMLR, 2023.

653

654 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
 655 projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.

648 Henrik Olsson, Kimmo Kartasalo, Nita Mulliqi, Marco Capuccini, Pekka Ruusuvuori, Hemamali
 649 Samaratunga, Brett Delahunt, Cecilia Lindskog, Emiel AM Janssen, Anders Blilie, et al. Estimating
 650 diagnostic uncertainty in artificial intelligence assisted pathology using conformal prediction.
 651 *Nature communications*, 13(1):7761, 2022.

652 Victor M Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. *Annual review of*
 653 *statistics and its application*, 6(1):405–431, 2019.

654 Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
 655 machines for regression. In *Machine learning: ECML 2002: 13th European conference on machine*
 656 *learning Helsinki, Finland, August 19–23, 2002 proceedings* 13, pp. 345–356. Springer, 2002.

657 Harris Papadopoulos, Vladimir Vovk, and Alex Gammerman. Regression conformal prediction with
 658 nearest neighbours. *Journal of Artificial Intelligence Research*, 40:815–840, 2011.

659 George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
 660 Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. *Journal of*
 661 *Machine Learning Research*, 22(57):1–64, 2021.

662 Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao. Why and
 663 when can deep-but not shallow-networks avoid the curse of dimensionality: a review. *International*
 664 *Journal of Automation and Computing*, 14(5):503–519, 2017.

665 Tom J Pollard, Alistair EW Johnson, Jesse D Raffa, Leo A Celi, Roger G Mark, and Omar Badawi.
 666 The eicu collaborative research database, a freely available multi-center database for critical care
 667 research. *Scientific data*, 5(1):1–13, 2018.

668 Prashant Rana. Physicochemical Properties of Protein Tertiary Structure. UCI Machine Learning
 669 Repository, 2013. DOI: <https://doi.org/10.24432/C5QW3H>.

670 Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows, 2016.
 671 URL <https://arxiv.org/abs/1505.05770>.

672 Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression. *Advances*
 673 *in neural information processing systems*, 32, 2019.

674 Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive coverage.
 675 *Advances in Neural Information Processing Systems*, 33:3581–3591, 2020.

676 Nathan Ross. Fundamentals of stein’s method. 2011.

677 Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
 678 neural networks for group shifts: On the importance of regularization for worst-case generalization.
 679 *arXiv preprint arXiv:1911.08731*, 2019.

680 Matteo Sesia and Emmanuel J. Candès. A comparison of some conformal quantile regression
 681 methods. *Stat*, 9(1), January 2020. ISSN 2049-1573. doi: 10.1002/sta4.261. URL <http://dx.doi.org/10.1002/sta4.261>.

682 Matteo Sesia, YX Wang, and Xin Tong. Adaptive conformal classification with noisy labels. *arXiv*
 683 *preprint arXiv:2309.05092*, 2023.

684 Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction, 2007. URL <https://arxiv.org/abs/0706.3188>.

685 Ingo Steinwart and Andreas Christmann. Estimating conditional quantiles with the help of the pinball
 686 loss. 2011.

687 Vincent Stimper, David Liu, Andrew Campbell, Vincent Berenz, Lukas Ryll, Bernhard Schölkopf,
 688 and José Miguel Hernández-Lobato. normflows: A pytorch package for normalizing flows.
 689 *Journal of Open Source Software*, 8(86):5361, 2023. doi: 10.21105/joss.05361. URL <https://doi.org/10.21105/joss.05361>.

690 David Stutz, Ali Taylan Cemgil, Arnaud Doucet, et al. Learning optimal conformal classifiers. *arXiv*
 691 *preprint arXiv:2110.09192*, 2021.

702 Yue Sun, Chao Chen, Yuesheng Xu, Sihong Xie, Rick S Blum, and Parv Venkatasubramaniam.
 703 Reaction-diffusion graph ordinary differential equation networks: Traffic-law-informed speed
 704 prediction under mismatched data. The 12th International Workshop on Urban Computing, held in
 705 conjunction with ..., 2023.

706 Gauthier Thurin, Kimia Nadjahi, and Claire Boyer. Optimal transport-based conformal prediction,
 707 2025. URL <https://arxiv.org/abs/2501.18991>.

709 Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal
 710 prediction under covariate shift. *Advances in neural information processing systems*, 32, 2019.

712 Mustafa Turkyilmazoglu. A restricted epidemic sir model with elementary solutions. *Physica A: Statistical Mechanics and its Applications*, 600:127570, 2022.

714 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(11), 2008.

717 Vladimir Vovk. Conditional validity of inductive conformal predictors. In *Asian conference on machine learning*, pp. 475–490. PMLR, 2012.

719 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*, volume 29. Springer, 2005.

722 Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence of empirical measures in wasserstein distance. 2019.

724 Haifeng Wen, Hong Xing, and Osvaldo Simeone. Distributed conformal prediction via message passing, 2025. URL <https://arxiv.org/abs/2501.14544>.

727 Huajun Xi, Jianguo Huang, Kangdao Liu, Lei Feng, and Hongxin Wei. Does confidence calibration improve conformal prediction?, 2024. URL <https://arxiv.org/abs/2402.04344>.

729 Rui Xu, Chao Chen, Yue Sun, Parvathinathan Venkatasubramaniam, and Sihong Xie. Wasserstein-regularized conformal prediction under general distribution shift. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=aJ3tiX1Tu4>.

733 Ge Yan, Yaniv Romano, and Tsui-Wei Weng. Provably robust conformal prediction with improved efficiency. *arXiv preprint arXiv:2404.19651*, 2024.

736 Yachong Yang and Arun Kumar Kuchibhotla. Selection and aggregation of conformal prediction sets, 2024. URL <https://arxiv.org/abs/2104.13871>.

739 Hao Zeng, Kangdao Liu, Bingyi Jing, and Hongxin Wei. Parametric scaling law of tuning bias in conformal prediction, 2025. URL <https://arxiv.org/abs/2502.03023>.

741 Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm for domain adaptation. In *International conference on machine learning*, pp. 7404–7413. PMLR, 2019.

744 Xin Zou and Weiwei Liu. Coverage-guaranteed prediction sets for out-of-distribution data. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 17263–17270, 2024.

747

748

749

750

751

752

753

754

755

756 **A THE USE OF LARGE LANGUAGE MODELS**

757
 758 We acknowledge the use of a large language model (ChatGPT, OpenAI) for editorial assistance. Its
 759 role was limited to improving the readability of the manuscript by smoothing phrasing and correcting
 760 grammar. The research ideas, methodology, theoretical results, experiments, and technical writing
 761 were entirely conducted and authored by the researchers.

762
 763 **B INSIGHT INTO SCALING CONSTANTS OF THE ICG BOUND**

764
 765 We provide more intuitive explanations of the scaling constants in Eq. (14), clarifying their roles and
 766 implications for CP.

767 First, the term L , representing the Lebesgue density bound of $P_{V|x}$, captures the concentration of
 768 conformal scores at x . A higher L indicates that the calibration scores are tightly clustered around
 769 certain values of v , which makes the conditional coverage more sensitive to distribution shifts in test
 770 conformal scores. Hence, this highlights how the shape of the calibration conformal score distribution
 771 directly influences coverage robustness.

772 Second, κ provides an interpretation of how the score function $s(x, y)$ influences robustness under
 773 distribution shift. Specifically, the continuity constant $\kappa \geq (|s(x, y_1) - s(x, y_2)|)/(|y_1 - y_2|)$ for all
 774 $y_1, y_2 \in \mathcal{Y}, x \in \mathcal{X}$. It captures the sensitivity of the score function $s(x, y)$ to changes in the label
 775 y , given a fixed input x . A smaller κ implies that the conformal score is relatively insensitive to
 776 variations in the label, meaning that even under a large concept shift (i.e., large $W(P_{Y|x}, Q_{Y|x})$), the
 777 induced shift in conformal scores $W(P_{V|x}, Q_{V|x})$ remains small.

778 Lastly, the term η , introduced in Eq. (12), quantifies the extent to which the concept shift contributes
 779 to the overall joint distribution shift. A smaller η indicates that most of the distributional difference
 780 between P_{XY} and Q_{XY} does not stem from the difference between $P_{Y|x}$ and $Q_{Y|x}$ for $x \in \mathcal{X}$. In
 781 such cases, the impact of $W(P_{XY}, Q_{XY})$ on the coverage gap is limited, and accordingly, the upper
 782 bound in Eq. (14) becomes tighter.

783
 784 **C FINITE-SAMPLE APPROXIMATION OF WASSERSTEIN DISTANCE**

785 In practice, the population forms of calibration and test distributions are typically inaccessible, so we
 786 may approximate $W(P_{XY}, Q_{XY})$ based on empirical distributions.

787 **Definition 3** (p -Wasserstein Distance between Empirical Distributions (Panaretos & Zemel, 2019)).
 788 Let $\{x_i\}_{i=1}^n \sim \mu_X$ and $\{x'_j\}_{j=1}^m \sim \nu_X$ be i.i.d. samples from two distributions on a metric space
 789 $(\mathcal{X}, d_{\mathcal{X}})$. The Dirac measure ε_x is the point mass at $x \in \mathcal{X}$. The empirical measures are defined as

$$790 \hat{\mu}_X = \frac{1}{n} \sum_{i=1}^n \varepsilon_{x_i}, \quad \hat{\nu}_X = \frac{1}{m} \sum_{j=1}^m \varepsilon_{x'_j}.$$

791 $C \in \mathbb{R}^{n \times m}$ is a cost matrix where each element $C_{ij} = d_{\mathcal{X}}(x_i, x'_j)$ measures the distance between
 792 sample x_i from $\hat{\mu}_X$ and x'_j from $\hat{\nu}_X$. Let $\gamma \in \mathbb{R}^{n \times m}$ be a transportation plan matrix, where each
 793 $\gamma_{ij} \geq 0$ represents the mass transported from x_i to x'_j . The set of admissible transport plans is

$$794 \Gamma(\hat{\mu}_X, \hat{\nu}_X) = \left\{ \gamma \in \mathbb{R}_{\geq 0}^{n \times m} \mid \sum_{j=1}^m \gamma_{ij} = \frac{1}{n}, \sum_{i=1}^n \gamma_{ij} = \frac{1}{m} \right\}.$$

795 The p -Wasserstein distance between empirical distributions $\hat{\mu}_X$ and $\hat{\nu}_X$ is then given by

$$796 W_p(\hat{\mu}_X, \hat{\nu}_X) = \left(\min_{\gamma \in \Gamma(\hat{\mu}_X, \hat{\nu}_X)} \sum_{i=1}^n \sum_{j=1}^m \gamma_{ij} C_{ij}^p \right)^{1/p}.$$

797 Let \hat{P}_{XY} and \hat{Q}_{XY} be the empirical distributions based on n and m i.i.d. samples drawn from P_{XY}
 798 and Q_{XY} , respectively. Our goal is to bound the deviation between the empirical and population

810 Wasserstein distances, i.e., to analyze how $W(\hat{P}_{XY}, \hat{Q}_{XY})$ converges to $W(P_{XY}, Q_{XY})$ as n
 811 increases.

812 **Definition 4** (Upper Wasserstein Dimension (Dudley, 1969)). *Given a set $\mathcal{A} \subseteq \mathcal{X}$, the ϵ -covering
 813 number, denoted $\mathcal{N}_\epsilon(\mathcal{A})$, is the smallest n such that n closed balls, $\mathcal{U}_1, \dots, \mathcal{U}_n$, of diameter ϵ
 814 achieve $\mathcal{A} \subseteq \bigcup_{1 \leq i \leq n} \mathcal{U}_i$. For a distribution μ_X in \mathcal{X} , the (ϵ, ζ) -dimension is $d_\epsilon(\mu_X, \zeta) =$
 815 $-\log(\inf\{\mathcal{N}_\epsilon(\mathcal{A}) : \mu_X(\mathcal{A}) \geq 1 - \zeta\})/\log \epsilon$. The upper Wasserstein dimension with $p = 1$ is*

$$d_W(\mu_X) = \inf\{\varphi \in (2, \infty) : \limsup_{\epsilon \rightarrow 0} d_\epsilon(\mu_X, \epsilon^{\frac{\varphi}{\varphi-2}}) \leq \varphi\}. \quad (29)$$

816 **Theorem 4.** *Given a probability measure μ_X in space \mathcal{X} , let $\sigma > d_W(\mu_X)$. If $\hat{\mu}_X$ is an empirical
 817 measure corresponding to n i.i.d. samples from μ_X , $\exists \lambda \in \mathbb{R}$ such that $\mathbb{E}[W(\mu_X, \hat{\mu}_X)] \leq \lambda n^{-1/\sigma}$.
 818 Furthermore, for $t > 0$, $\Pr(W(\mu_X, \hat{\mu}_X) \geq \mathbb{E}[W(\mu_X, \hat{\mu}_X)] + t) \leq e^{-2nt^2}$ (Weed & Bach, 2019).*

819 **Theorem 5.** *Given probability measures μ_X and ν_X in space \mathcal{X} , let $\sigma_\mu > d_W(\mu_X)$ and $\sigma_\nu >$
 820 $d_W(\nu_X)$. Denote $\hat{\mu}_X$ and $\hat{\nu}_X$ empirical measures corresponding to n and m i.i.d. samples from μ_X
 821 and ν_X , respectively. For $t_\mu, t_\nu > 0$, $\exists \lambda_\mu, \lambda_\nu > 0$ with probability at least $(1 - e^{-2nt_\mu^2})(1 - e^{-2mt_\nu^2})$
 822 that*

$$|W(\mu_X, \nu_X) - W(\hat{\mu}_X, \hat{\nu}_X)| \leq \lambda_\mu n^{-1/\sigma_\mu} + \lambda_\nu m^{-1/\sigma_\nu} + t_\mu + t_\nu. \quad (30)$$

823 A related theorem is proposed in (Xu et al., 2025), though without accounting for the signs of λ_μ
 824 and λ_ν . Based on Theorem 5, if $\sigma_P > d_W(P_{XY})$ and $\sigma_Q > d_W(Q_{XY})$, for $t_P, t_Q > 0$, there are
 825 $\lambda_P, \lambda_Q > 0$ with a probability at least $(1 - e^{-2nt_P^2})(1 - e^{-2mt_Q^2})$ that

$$|W(P_{XY}, Q_{XY}) - W(\hat{P}_{XY}, \hat{Q}_{XY})| \leq \lambda_P n^{-1/\sigma_P} + \lambda_Q m^{-1/\sigma_Q} + t_P + t_Q. \quad (31)$$

826 As n and m increase, the bound in Eq. (31) decreases, thereby improving the approximation of
 827 the empirical Wasserstein distance. At the same time, the probability $(1 - e^{-2nt_P^2})(1 - e^{-2mt_Q^2})$
 828 increases, indicating that the bound holds with higher confidence.

D ADDITIONAL THEORETICAL STATEMENTS

D.1 SUPPORTING PROPOSITIONS

829 **Proposition 6.** *Let $f : \mathcal{X} \rightarrow \mathcal{Y}$ be an invertible univariate function, where $\mathcal{X}, \mathcal{Y} \subseteq \mathbb{R}$. Let
 830 $C = [y_{lo}, y_{hi}] \subseteq \mathcal{Y}$ be a closed interval. Then for any $y \in \mathcal{Y}$, the following equivalence holds:*

$$y \in C \iff f^{-1}(y) \in \{x \in \mathcal{X} : f(x) \in C\}.$$

831 *Proof.* Since f is an invertible univariate function, it must be strictly monotonic—either strictly
 832 increasing or strictly decreasing.

833 **Case 1:** Suppose f is strictly increasing. Then f^{-1} is also strictly increasing.

834 \Rightarrow If $y \in C = [y_{lo}, y_{hi}]$, then by monotonicity,

$$f^{-1}(y_{lo}) \leq f^{-1}(y) \leq f^{-1}(y_{hi}),$$

835 so $f^{-1}(y) \in [f^{-1}(y_{lo}), f^{-1}(y_{hi})]$. Since f is strictly increasing, this implies

$$[f^{-1}(y_{lo}), f^{-1}(y_{hi})] = \{x \in \mathcal{X} : f(x) \in C\}$$

836 and thus $f^{-1}(y) \in \{x \in \mathcal{X} : f(x) \in C\}$.

837 \Leftarrow If $f^{-1}(y) \in \{x \in \mathcal{X} : f(x) \in C\}$, then equivalently we can derive $y \in C$.

838 **Case 2:** Suppose f is strictly decreasing. Then f^{-1} is also strictly decreasing.

839 \Rightarrow If $y \in C = [y_{lo}, y_{hi}]$, then

$$f^{-1}(y_{lo}) \geq f^{-1}(y) \geq f^{-1}(y_{hi}),$$

840 so $f^{-1}(y) \in [f^{-1}(y_{hi}), f^{-1}(y_{lo})]$. Again, since f is decreasing,

$$[f^{-1}(y_{hi}), f^{-1}(y_{lo})] = \{x \in \mathcal{X} : f(x) \in C\},$$

841 which implies $f^{-1}(y) \in \{x \in \mathcal{X} : f(x) \in C\}$.

864 \Leftarrow If $f^{-1}(y) \in \{x \in \mathcal{X} : f(x) \in C\}$, then again $y \in C$.
 865

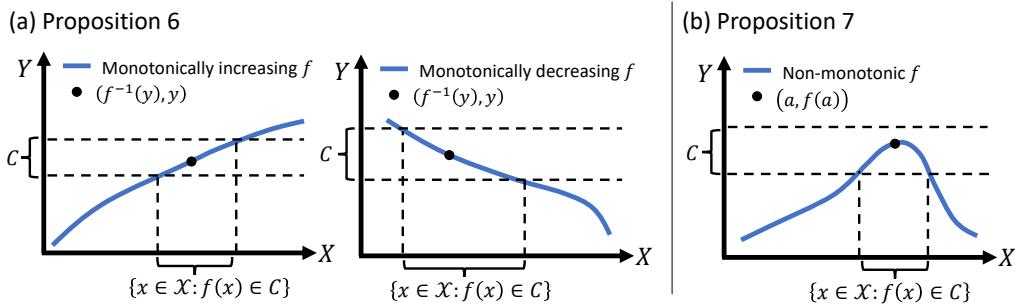
866 In either case, the equivalence holds. \square
 867

868 **Proposition 7.** Let $f : \mathcal{X} \rightarrow \mathcal{Y}$ be a univariate function, where $\mathcal{X}, \mathcal{Y} \subseteq \mathbb{R}$. Let $C \subseteq \mathcal{Y}$ be a closed
 869 interval. Then for $a \in \mathcal{X}$, it holds that:

$$870 \quad f(a) \in C \iff a \in \{x \in \mathcal{X} : f(x) \in C\}. \quad 871$$

872 *Proof.* The statement is a direct consequence of the definition of the set $\{x \in \mathcal{X} : f(x) \in C\}$. By
 873 definition, a belongs to this set if and only if $a \in \mathcal{X}$ and $f(a) \in C$. Since $a \in \mathcal{X}$ is already assumed,
 874 the condition reduces to: $f(a) \in C \iff a \in \{x \in \mathcal{X} : f(x) \in C\}$. \square
 875

876 We visualize Proposition 6 and Proposition 7 in Figure 5.
 877



888 Figure 5: Characterization of preimage membership under (a) monotonic and (b) non-monotonic functions.
 889

891 D.2 PROOF OF THEOREM 1

893 *Proof.* Let μ_{XY} and ν_{XY} be probability measures on the metric space $(\mathcal{X} \times \mathcal{Y}, d_{\mathcal{XY}})$, where
 894 $d_{\mathcal{XY}}((x_1, y_1), (x_2, y_2)) := \|(d_{\mathcal{X}}(x_1, x_2), d_{\mathcal{Y}}(y_1, y_2))\|_2$. Let $s : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{V}$ be a measurable
 895 function such that $s(x, y) = v$. In metric space $(\mathcal{V}, d_{\mathcal{V}})$, denote $\mu_{\mathcal{V}}$ the probability measure of
 896 $s(X, Y)$ for $(X, Y) \sim \mu_{XY}$. Also, let $\nu_{\mathcal{V}}$ be the probability measure of $s(X, Y)$ for $(X, Y) \sim \nu_{XY}$.
 897 Denote $\Gamma_{V|x} = \Gamma(\mu_{V|x}, \nu_{V|x})$ and $\Gamma_{Y|x} = \Gamma(\mu_{Y|x}, \nu_{Y|x})$. By Theorem 1 in (Xu et al., 2025), we
 898 derive

$$899 \quad W(\mu_{V|x}, \nu_{V|x}) = \inf_{\gamma \in \Gamma_{V|x}} \int_{\mathcal{V} \times \mathcal{V}} d_{\mathcal{V}}(v_1, v_2) d\gamma(v_1, v_2) \quad (32)$$

$$900 \quad = \inf_{\gamma \in \Gamma_{V|x}} \int_{\mathcal{Y} \times \mathcal{Y}} d_{\mathcal{V}}(s(x, y_1), s(x, y_2)) d\gamma(y_1, y_2).$$

903 Consider $\gamma^* \in \Gamma_{Y|x}$ is the optimal transport plan for $W(\mu_{Y|x}, \nu_{Y|x})$. However, γ^* is not necessarily
 904 optimal for obtaining $W(\mu_{V|x}, \nu_{V|x})$ in Eq. (32), so we have
 905

$$906 \quad W(\mu_{V|x}, \nu_{V|x}) \leq \int_{\mathcal{Y} \times \mathcal{Y}} d_{\mathcal{V}}(s(x, y_1) - s(x, y_2)) d\gamma^*(y_1, y_2). \quad (33)$$

909 Given that the function s is continuous with constant κ conditioned on x , we have $\frac{d_{\mathcal{V}}(s(x, y_1), s(x, y_2))}{d_{\mathcal{Y}}(y_1 - y_2)} \leq$
 910 $\kappa, \forall x \in \mathcal{X}, y_1, y_2 \in \mathcal{Y}$, so the following inequality holds that
 911

$$912 \quad \int_{\mathcal{Y} \times \mathcal{Y}} d_{\mathcal{V}}(s(x, y_1), s(x, y_2)) d\gamma^*(y_1, y_2) \leq \int_{\mathcal{Y} \times \mathcal{Y}} \kappa \cdot d_{\mathcal{Y}}(y_1, y_2) d\gamma^*(y_1, y_2) = \kappa \cdot W(\mu_{Y|x}, \nu_{Y|x}). \quad (34)$$

914 Finally, combining Eq. (33) and Eq. (34), we can conclude that
 915

$$916 \quad W(\mu_{V|x}, \nu_{V|x}) \leq \kappa \cdot W(\mu_{Y|x}, \nu_{Y|x}). \quad (35)$$

917 \square

918 D.3 PROOF OF THEOREM 2
919

920 *Proof.* Let μ_{XY} and ν_{XY} be probability measures on the metric space $(\mathcal{X} \times \mathcal{Y}, d_{\mathcal{XY}})$, where
921 $d_{\mathcal{XY}}((x_1, y_1), (x_2, y_2)) := \|(d_{\mathcal{X}}(x_1, x_2), d_{\mathcal{Y}}(y_1, y_2))\|_2$. A joint distribution shift results in $\mu_X \neq$
922 ν_X , $\mu_{Y|X} \neq \nu_{Y|X}$.

923 For any $\gamma_{XYXY} \in \Gamma(\mu_{XY}, \nu_{XY})$, denote $\gamma_{XX}(x_1, x_2) = \int_{\mathcal{Y}^2} d\gamma_{XYXY}(x_1, y_1, x_2, y_2)$. Thereby,
924 we can derive
925

$$\begin{aligned} & \int_{\mathcal{X}^2 \times \mathcal{Y}^2} d_{\mathcal{XY}}((x_1, y_1), (x_2, y_2)) d\gamma_{XYXY}(x_1, y_1, x_2, y_2) \\ & \geq \int_{\mathcal{X}^2 \times \mathcal{Y}^2} d_{\mathcal{Y}}(y_1, y_2) d\gamma_{XYXY}(x_1, y_1, x_2, y_2) \\ & \geq \int_{\mathcal{X}^2 \times \mathcal{Y}^2} d_{\mathcal{Y}}(y_1, y_2) I(x_1 = x_2) d\gamma_{XYXY}(x_1, y_1, x_2, y_2) \\ & = \int_{\mathcal{X}^2} \left(\int_{\mathcal{Y}^2} d_{\mathcal{Y}}(y_1, y_2) d\gamma_{YY|x_1x_2}(y_1, y_2) \right) I(x_1 = x_2) d\gamma_{XX}(x_1, x_2) \\ & = \int_{\mathcal{X}^2} \left(\int_{\mathcal{Y}^2} d_{\mathcal{Y}}(y_1, y_2) d\gamma_{YY|x_1x_1}(y_1, y_2) \right) d\gamma_{XX}(x_1, x_1). \end{aligned} \quad (36)$$

937 Consider $\gamma_{XYXY}^* \in \Gamma(\mu_{XY}, \nu_{XY})$ that satisfies
938

$$W(\mu_{XY}, \nu_{XY}) = \int_{\mathcal{X}^2 \times \mathcal{Y}^2} d_{\mathcal{XY}}((x_1, y_1), (x_2, y_2)) d\gamma_{XYXY}^*(x_1, y_1, x_2, y_2). \quad (37)$$

941 However, $\gamma_{YY|x_1x_1}^*$ is not necessarily the optimal transport plan of $W(\mu_{Y|x_1}, \nu_{Y|x_1})$, $\forall x_1 \in \mathcal{X}$, so
942

$$W(\mu_{Y|x_1}, \nu_{Y|x_1}) \leq \int_{\mathcal{Y}^2} d_{\mathcal{Y}}(y_1, y_2) d\gamma_{YY|x_1x_1}^*(y_1, y_2). \quad (38)$$

945 Therefore, after plugging Eq. (37) and Eq. (38) into Eq. (36) and simplifying x_1 as x , we obtain
946

$$W(\mu_{XY}, \nu_{XY}) \geq \int_{\mathcal{X}^2} W(\mu_{Y|x}, \nu_{Y|x}) d\gamma_{XX}^*(x, x). \quad (39)$$

948 Given $\eta > 0$ that satisfies
949

$$\eta \int_{\mathcal{X}^2} W(\mu_{Y|x}, \nu_{Y|x}) d\gamma_{XX}^*(x, x) \geq \int_{\mathcal{X}} W(\mu_{Y|x}, \nu_{Y|x}) d\nu_X(x), \quad (40)$$

952 we can consequently prove
953

$$\eta \cdot W(\mu_{XY}, \nu_{XY}) \geq \int_{\mathcal{X}} W(\mu_{Y|x}, \nu_{Y|x}) d\nu_X(x). \quad (41)$$

956 \square

957 We would like to further justify the necessity of introducing η to satisfy Eq. (40).
958

959 Considering $\int_{\mathcal{X}}^2 d\gamma_{XX}^*(x, x) = \int_{\mathcal{X}}^2 I(x_1 = x_2) d\gamma_{XX}^*(x_1, x_2)$, we denote
960

$$\psi(\mathcal{A}) = \gamma_{XX}^*(\{(x_1, x_2) \in \mathcal{X}^2 : x_1 = x_2 \in \mathcal{A}\}) = \gamma_{XX}^*(\mathcal{A} \times \mathcal{A}), \forall \mathcal{A} \subset \mathcal{X}. \quad (42)$$

962 As ν_X is a projection of γ_{XX}^* , we have $\nu_X(\mathcal{A}) = \gamma_{XX}^*(\mathcal{A} \times \mathcal{X}) \geq \psi(\mathcal{A})$. By the Radon-Nikodym
963 theorem (Fonseca & Leonii, 2007), there exists a density $\rho(x) \geq 0$ such that
964

$$\psi(\mathcal{A}) = \int_{\mathcal{A}} \rho(x) d\nu_X(x). \quad (43)$$

967 Since $\psi(\mathcal{A}) \leq \nu(\mathcal{A})$, we can derive $\int_{\mathcal{A}} \rho(x) d\nu_X(x) \leq \int_{\mathcal{A}} 1 d\nu_X(x)$ for all \mathcal{A} . This forces $\rho(x) \leq 1$
968 almost everywhere on ν_X . As a result, we conclude that
969

$$\int_{\mathcal{X}^2} W(\mu_{Y|x}, \nu_{Y|x}) d\psi(x) = \int_{\mathcal{X}} W(\mu_{Y|x}, \nu_{Y|x}) \rho(x) d\nu_X(x) \leq \int_{\mathcal{X}} W(\mu_{Y|x}, \nu_{Y|x}) d\nu_X(x). \quad (44)$$

971 Therefore, we introduce a constant η to reverse the inequality in Eq. (44).

972 D.4 PROOF OF THEOREM 3
973974 *Proof.* For each $k \in \{1, \dots, K\}$, denote $\gamma^k \in \Gamma(\mu_{XY}, \nu_{XY}^k)$ the optimal transport plan realizing
975 $W(\mu_{XY}, \nu_{XY}^k)$ such that
976

977
$$W(\mu_{XY}, \nu_{XY}^k) = \int_{\mathcal{X} \times \mathcal{Y}} d_{\mathcal{X} \mathcal{Y}}(x, y) d\gamma^k(x, y). \quad (45)$$

978

979 Given $\nu_{XY} = \sum_{k=1}^K \lambda_k \nu_{XY}^k$, let $\gamma^* = \sum_{k=1}^K \lambda_k \gamma^k$. Since the first marginal of γ^* is μ_{XY} and the
980 second marginal of γ^* is $\sum_{k=1}^K \lambda_k \nu_{XY}^k$, it follows that $\gamma^* \in \Gamma(\mu_{XY}, \nu_{XY})$. However, γ^* is not
981 necessarily optimal transport plan for $W(\mu_{XY}, \nu_{XY})$, we conclude that
982

983
$$984 W(\mu_{XY}, \nu_{XY}) = \inf_{\gamma \in \Gamma(\mu_{XY}, \nu_{XY})} \int_{\mathcal{X} \times \mathcal{Y}} d_{\mathcal{X} \mathcal{Y}}(x, y) d\gamma(x, y) \leq \int_{\mathcal{X} \times \mathcal{Y}} d_{\mathcal{X} \mathcal{Y}}(x, y) d\gamma^*(x, y) \quad (46)$$

985
986
$$= \sum_{k=1}^K \lambda_k \int_{\mathcal{X} \times \mathcal{Y}} d_{\mathcal{X} \mathcal{Y}}(x, y) d\gamma^k(x, y) = \sum_{k=1}^K \lambda_k W(\mu_{XY}, \nu_{XY}^k).$$

987

988 \square
989990 D.5 PROOF OF THEOREM 5
991992 *Proof.* Since the Wasserstein distance satisfies the triangle inequality, the distance $W(\mu_X, \nu_X)$ can
993 be related to the empirical distributions $\hat{\mu}_X$ and $\hat{\nu}_X$ as follows:

994
$$W(\mu_X, \nu_X) \leq W(\hat{\mu}_X, \mu_X) + W(\hat{\mu}_X, \nu_X) \leq W(\hat{\mu}_X, \mu_X) + W(\hat{\mu}_X, \hat{\nu}_X) + W(\hat{\nu}_X, \nu_X). \quad (47)$$

995

996 Given $\mathbb{E}[W(\mu, \hat{\mu}_X)] \leq \lambda_\mu n^{-1/\sigma_\mu}$ and $\mathbb{E}[W(\nu_X, \hat{\nu}_X)] \leq \lambda_\nu m^{-1/\sigma_\nu}$ from Theorem 4, with probabilities at least $1 - e^{-2nt_\mu^2}$ and $1 - e^{-2mt_\nu^2}$, respectively, we have
997
998

999
$$W(\mu_X, \hat{\mu}_X) \leq \lambda_\mu n^{-1/\sigma_\mu} + t_\mu; \quad (48)$$

1000
$$W(\nu_X, \hat{\nu}_X) \leq \lambda_\nu m^{-1/\sigma_\nu} + t_\nu.$$

1001

1002 It is reasonable to assume the two events in Eq. (48) are independent, so we can apply them to
1003 Eq. (47), and thus obtain

1004
$$W(\mu_X, \nu_X) - W(\hat{\mu}_X, \hat{\nu}_X) \leq \lambda_\mu n^{-1/\sigma_\mu} + \lambda_\nu m^{-1/\sigma_\nu} + t_\mu + t_\nu \quad (49)$$

1005

1006 with probability at least $(1 - e^{-2nt_\mu^2})(1 - e^{-2mt_\nu^2})$.
10071008 Since $\mathbb{E}[W(\mu, \hat{\mu}_X)]$ and $\mathbb{E}[W(\nu_X, \hat{\nu}_X)]$ are non-negative, it follows that $\lambda_\mu, \lambda_\nu \geq 0$. Given that t_μ and t_ν are also positive, the right-hand side of Eq. (49) is non-negative. Therefore, we can take the absolute value on both sides of Eq. (49) without changing the direction of the inequality, leading to Eq. (30). \square
10111012 E DEMONSTRATION OF IMPLICIT DEPENDENCY
10131014 We demonstrate that $f_{\theta_Y}^{-1}(\bar{Y}_{n+1})$ implicitly depends on X_{n+1} through the composition $\phi \circ f_{\theta_X}$, where
1015 $\phi : \mathcal{X} \rightarrow \mathcal{Y}$ is the ground truth mapping function under the calibration distribution P_{XY} . Consider a
1016 BNF f_θ is optimized by Wasserstein distance minimization in Eq. (16) such that $f_\theta \# Q_{XY} = P_{XY}$.
1017 Therefore, for a test sample $(X_{n+1}, Y_{n+1}) = (x, y) \sim Q_{XY}$, it holds that
1018

1019
$$(\bar{X}_{n+1}, \bar{Y}_{n+1}) = f_\theta(x, y) = (f_{\theta_X}(x), f_{\theta_Y}(y)) = (\bar{x}, \bar{y}) \sim P_{XY}.$$

1020

1021 As a result, $C_A(\bar{X}_{n+1})$ satisfies the conditional coverage guarantee under P_{XY} . Moreover, since
1022 $\bar{y} = \phi(\bar{x})$, we obtain

1023
$$f_{\theta_Y}^{-1}(\bar{y}) = f_{\theta_Y}^{-1}(\phi(\bar{x})) = f_{\theta_Y}^{-1}(\phi(f_{\theta_X}(x))),$$

1024

1025 which shows that the inverse transformation $f_{\theta_Y}^{-1}(\bar{y})$ used to construct $C_{BNF}(X_{n+1})$ inherently captures the dependency on $X_{n+1} = x$.
1026

We present an example to illustrate the dependency. Denote \mathcal{U} and \mathcal{N} uniform and Gaussian distributions, respectively. To introduce a distribution shift between P_{XY} and Q_{XY} , let

$$P_X = \mathcal{U}(0, 1), P_{Y|X} = \mathcal{N}(-0.5X, -0.3X^2 + 0.3X);$$

$$Q_X = \mathcal{U}(0, 0.8), Q_{Y|X} = \mathcal{N}(0.25X, -0.24X^2 + 0.24X).$$

Figure 6 shows how the inverse transformation $f_{\theta_Y}^{-1}$ preserve the conditional guarantee from $C_A(\bar{X}_{n+1})$ to $C_{\text{BNF}}(X_{n+1})$ through the implicit dependency on $X_{n+1} = x$.

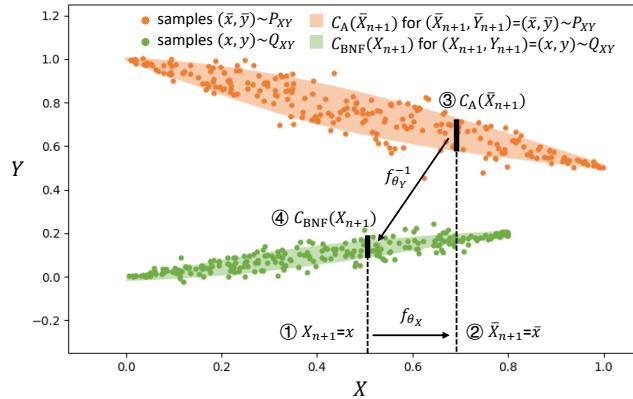


Figure 6: Preserving conditional coverage via implicit dependency on test input. The circled numbers indicate the sequential steps to obtain the corresponding values or prediction sets.

F COMPARISON BETWEEN NORMALIZING FLOW TECHNIQUES

The monotonicity of the univariate f_{θ_Y} allows us to take advantage of Proposition 6 to inversely transform $C_A(\bar{X}_{n+1})$ via Eq. (19). However, the monotonicity also limits the flexibility of f_{θ_Y} , restricting the class of distributions it can model. Here, we briefly introduce several normalizing flow techniques designed for one-dimensional transformations that often struggle to map complex distributions effectively, thereby motivating the design of Augmented BNF in Section 4.2. For a more comprehensive overview of normalizing flows, we refer to the survey by Kobyzev et al. (2020).

We begin with planar flow, a fundamental transformation that expands or contracts the input space along specific directions (Rezende & Mohamed, 2016). A planar flow is achieved by applying a linear transformation followed by a nonlinear activation, which dictates how the data is warped. To enhance expressiveness, normalizing flows are typically constructed as compositions of multiple sub-flows. We implement a BNF where each branch applies a sequence of 16 planar flows. LeakyReLU is used as the nonlinear activation function to preserve invertibility throughout the transformation.

Residual flow is built using residual connections (He et al., 2015). The output of a residual connection is the sum of the original input and a transformation generated by a neural network. For these residual connections to be invertible, the transformation must have a Lipschitz constant less than 1, ensuring that the transformation does not distort the data too much. We also construct a BNF where each branch consists of 16 residual connections. The neural network within each residual connection has an architecture consisting of an input layer, two hidden layers with 128 units each, and an output layer matching the input dimension.

Both planar flow and residual flow are capable of transforming one-dimensional data. In addition, autoregressive flow (Kingma et al., 2016; Papamakarios et al., 2021) offers an alternative approach by modeling each transformation step as conditioned on the preceding ones—meaning the transformation of each sample value explicitly depends on the values that came before it. This sequential dependency enables more flexible and expressive density estimation, particularly in one-dimensional settings. However, because BNF requires deterministic transformations that are independent of input ordering, autoregressive flow is not suitable for our approach.

We illustrate the performance of BNFs constructed using planar flow and residual flow in Figure 7 and compare them against the Augmented BNF, which is implemented using a standard coupling normalizing flow, Real NVP (Dinh et al., 2016). Detailed specifications for the Augmented BNF are provided in Appendix H. The results show that BNFs using univariate f_{θ_Y} struggle to transform complex distributions effectively, resulting in higher ASCG compared to the Augmented BNF.

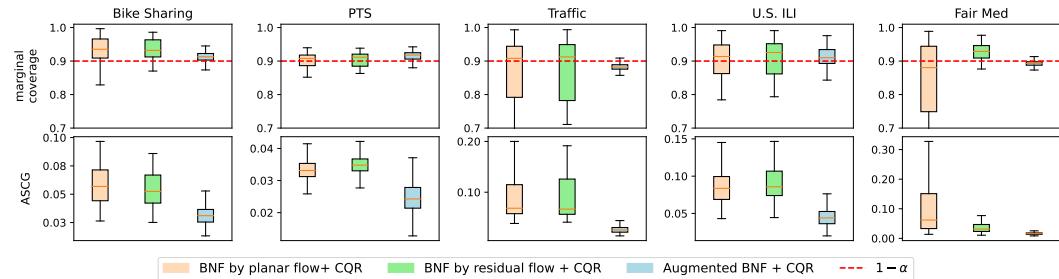


Figure 7: Marginal coverage and ASCG of BNFs constructed with planar and residual flows, compared with Augmented BNF at confidence level $1 - \alpha = 0.9$.

G EXACERBATED CURSE OF DIMENSIONALITY VIA FEATURE CONDITIONING

Feature-conditioned BNF, denoted by

$$f_{\theta}^{\text{fea}}(x, y) = (f_{\theta_X}(x), f_{\theta_Y}^{\text{fea}}(y; x)) = (\bar{x}, \bar{y}), \quad (50)$$

conditions the Y transformations on input features, while keeping f_{θ_X} unchanged. This design theoretically improves the model’s expressiveness and captures stronger dependencies between X and Y . However, it increases the input dimension of $f_{\theta_Y}^{\text{fea}}$ to $d + 1$, making the total input dimension of Feature-conditioned BNF $2d + 1$. As a result, the curse of dimensionality is exacerbated with a small sample-to-dimension ratio $|\mathcal{S}_{D^k}|/(2d + 1)$, making true distributions harder to estimate. In contrast, Augmented BNF maintains a more favorable ratio of $|\mathcal{S}_{D^k}|/(d + 2)$, as the input to $f_{\theta_Y}^{\text{aug}}$ is only two-dimensional. Consequently, with limited data, Feature-conditioned BNF tends to yield higher ASCG due to poor approximation.

Table 1: Feature-conditioned BNF holds a **small** sample-to-dimension ratio $|\mathcal{S}_{D^k}|/(2d + 1)$.

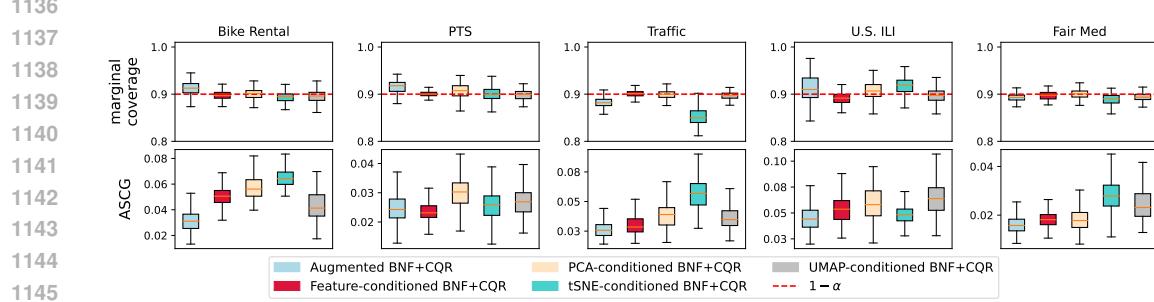
Dataset	Bike Rental	PTS	Traffic	U.S. ILI	Fair Med
d	4	9	3	2	2
$ \mathcal{S}_{D^k} $	2800	7500	2800	870	3000
$ \mathcal{S}_{D^k} /(d + 2)$	466.7	681.8	560.0	217.5	750.0
$ \mathcal{S}_{D^k} /(2d + 1)$	311.1	394.7	400.0	174.0	600.0

We report the small sample-to-dimension ratio of Feature-conditioned BNF in Table 1, and demonstrate its less robust conditional coverage in Figure 8, where its ASCG tend to be higher than that of Augmented BNF.

While projecting the original input x of $f_{\theta_Y}^{\text{fea}}(y; x)$ in Eq. (50) to a one-dimensional representation \tilde{x} (e.g., via PCA (Abdi & Williams, 2010), t-SNE (Van der Maaten & Hinton, 2008), or UMAP (McInnes et al., 2018)) can alleviate the curse of dimensionality, this dimensionality reduction inevitably discards information that may be crucial for accurately modeling the conditional distribution $P_{Y|x}$ of the calibration data. Consequently, $P_{Y|\tilde{x}}$ may fail to capture key dependencies in the true $P_{Y|x}$, limiting the effectiveness of conditioning the Y -branch on \tilde{x} .

In contrast, the augmented Y -branch $f_{\theta_Y}^{\text{aug}}(y; \varepsilon)$ in Augmented BNF can be viewed as conditioning on a simple one-dimensional Gaussian noise variable ε . Compared to ε , the projected feature \tilde{x} lacks sufficient stochasticity or variability to provide the model with the expressive flexibility needed to capture a broad family of distributions. As a deterministic and compressed summary of x , \tilde{x} is neither as informative as the original input nor as adaptable as a random noise input. As a result, conditioning

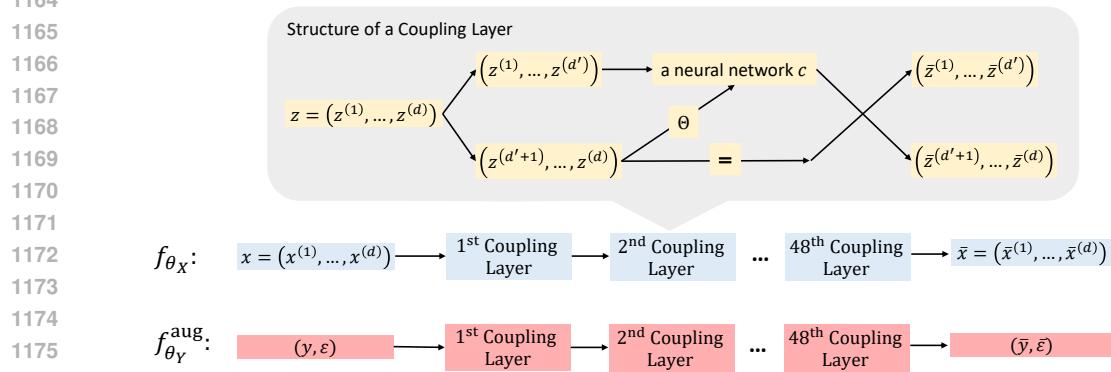
1134 on \tilde{x} is disadvantaged—it inherits neither the full structure of x nor the modeling freedom enabled by
 1135 stochastic conditioning on ε , as demonstrated in Figure 8.



1146 Figure 8: Performance comparison of conditioning the Y -branch on feature and its one-dimensional projection
 1147 obtained via PCA, t-SNE, and UMAP.

1149 H STRUCTURE OF AUGMENTED BNF VIA COUPLING FLOWS

1151 Both branches of Augmented BNF operate on multi-dimensional data, enabling the use of coupling
 1152 flows—a technique for modeling complex high-dimensional distributions. A coupling flow usually
 1153 consists of multiple coupling layers. In a coupling layer, the input is partitioned into two parts. One
 1154 part remains unchanged during the transformation, while the other is modified using a neural network
 1155 c , whose parameter Θ depends on the unchanged part. This setup ensures invertibility and allows for
 1156 flexible, learnable transformations. Afterward, a permutation step is applied for higher expressiveness.
 1157 In our implementation, each branch of Augmented BNF consists of a sequence of 48 coupling layers
 1158 based on Real NVP (Dinh et al., 2016), allowing the entire input to be progressively transformed. The
 1159 neural network c within each coupling layer follows a symmetric architecture with hidden layers of
 1160 sizes 64, 128, 256, 128, and 64, mapping from the input dimension to the output dimension. Figure 9
 1161 illustrates the structure of a coupling layer, using a random variable $Z \in \mathbb{R}^d$ with a realization z ,
 1162 and shows how both branches are constructed by stacking multiple coupling layers. The normalized
 1163 Gaussian noise $\bar{\varepsilon}$ is discarded after the transformation.



1177 Figure 9: Illustration of the coupling layer structure and the overall composition of Augmented BNF.

1180 I CONFORMALIZED QUANTILE REGRESSION

1182 Conformalized quantile regression (CQR) (Romano et al., 2019) first trains two regression models
 1183 with pinball loss at levels $1 - \alpha/2$ and $\alpha/2$, respectively, then calibrates the resulting intervals using
 1184 residuals on a separate calibration set. Under the assumption that test and calibration samples are
 1185 i.i.d., the calibrated intervals ensure conditional coverage with finite samples.

1186 For clarity, we introduce CQR in the context of sample normalization and multi-source domain
 1187 generalization. For a regression model h , the pinball loss (Steinwart & Christmann, 2011) at quantile

1188 level α for sample (x, y) is defined as
 1189

$$1190 \quad l_\alpha(h(x), y) = \begin{cases} \alpha(y - h(x)) & \text{if } y - h(x) > 0, \\ 1191 \quad (1 - \alpha)(h(x) - y) & \text{otherwise.} \end{cases} \quad (51)$$

1192 We denote $\mathcal{S}_D = \bigcup_{k=1}^K \mathcal{S}_{D^k}$ the union of all training sets. The models h_{hi} and h_{lo} are obtained by
 1193 optimizing the pinball loss in Eq (51) at quantile levels $1 - \alpha/2$ and $\alpha/2$ on \mathcal{S}_D , respectively. For
 1194 calibration instances $\{(X_i, Y_i)\}_{i=1}^n$ drawn from P_{XY} , conformal scores are defined as
 1195

$$1196 \quad V_i = \max \{h_{\text{lo}}(X_i) - Y_i, Y_i - h_{\text{hi}}(X_i)\}, \text{ for } i = 1, \dots, n. \quad (52)$$

1197 Let τ be the $\lceil (1 - \alpha)(n + 1) \rceil / n$ quantile of $\{V_i\}_{i=1}^n$. If a test sample $(X_{n+1}, Y_{n+1}) \sim Q_{XY}$ is
 1198 normalized to $(\bar{X}_{n+1}, \bar{Y}_{n+1}) \sim P_{XY}$, we construct an adaptive prediction set
 1199

$$1200 \quad C_{\text{CQR}}(\bar{X}_{n+1}) = [h_{\text{lo}}(\bar{X}_{n+1}) - \tau, h_{\text{hi}}(\bar{X}_{n+1}) + \tau]. \quad (53)$$

1201 Here, h_{lo} and h_{hi} predict the likely lower and upper ends, while τ adjusts the set based on how well
 1202 the predictions fit the calibration data. As proved in (Romano et al., 2019), C_{CQR} can empirically
 1203 approximate the conditional coverage guarantee described in Eq. (17). Extensions of CQR are
 1204 explored in (Kivanovic et al., 2020; Sesia & Candès, 2020), which modified the score function in
 1205 Eq. (52) for higher adaptiveness.
 1206

1207 J A BRIEF REVIEW OF THE SINKHORN ALGORITHM

1208 As we introduced in Definition 3, the Wasserstein distance between two empirical distributions $\hat{\mu}_X$
 1209 and $\hat{\nu}_X$ with $p = 1$ is given by
 1211

$$1212 \quad W(\hat{\mu}_X, \hat{\nu}_X) = \min_{\gamma \in \Gamma(\hat{\mu}_X, \hat{\nu}_X)} \sum_{i=1}^n \sum_{j=1}^m \gamma_{ij} C_{ij},$$

1215 where $C \in \mathbb{R}^{n \times m}$ is the cost matrix with entries $C_{ij} = d_X(x_i, x'_j)$, and $\Gamma(\hat{\mu}_X, \hat{\nu}_X)$ is the set of joint
 1216 distributions $\gamma \in \mathbb{R}_+^{n \times m}$ with marginals $\hat{\mu}_X$ and $\hat{\nu}_X$.
 1217

1218 To make this optimization problem more tractable, the Sinkhorn algorithm (Cuturi, 2013) introduces
 1219 an entropic regularization term:
 1220

$$1221 \quad W^\beta(\hat{\mu}_X, \hat{\nu}_X) = \min_{\gamma \in \Gamma(\hat{\mu}_X, \hat{\nu}_X)} \sum_{i=1}^n \sum_{j=1}^m \gamma_{ij} C_{ij} + \beta \sum_{i=1}^n \sum_{j=1}^m \gamma_{ij} \log \gamma_{ij},$$

1223 where $\beta > 0$ controls the strength of the regularization.
 1224

1225 This regularized objective is strictly convex and can be efficiently minimized via iterative matrix
 1226 scaling. Let $K = \exp(-C/\beta)$ be the Gibbs kernel. The scaling vectors $u \in \mathbb{R}^n$ and $v \in \mathbb{R}^m$ are
 1227 initialized to all ones and updated via
 1228

$$1228 \quad u \leftarrow \frac{1/n}{Kv}, \quad v \leftarrow \frac{1/m}{K^\top u},$$

1230 where divisions are element-wise. Once converged with small changes in u and v , the optimal
 1231 transport plan takes the form
 1232

$$\gamma^* = \text{diag}(u) K \text{diag}(v).$$

1233 This approach yields a differentiable approximation to the true Wasserstein distance, enabling its
 1234 integration into gradient-based optimization pipelines. We refer to (Cuturi, 2013; Knight, 2008;
 1235 Feydy, 2020) for more detailed studies about the Sinkhorn algorithm.
 1236

1237 K INTRODUCTION TO BASELINES

1239 Figure 10 highlights the distinctions between the baseline methods and the proposed approach. SCP
 1240 constructs prediction sets of fixed size and ensures only marginal coverage under i.i.d. assumptions,
 1241 rendering it ineffective under joint distribution shifts. IW-CP addresses only covariate shift and

causes its prediction intervals to contract in the example, because test features are distributed in regions where calibration data is concentrated. WC-CP accounts for worst-case distribution shifts, expanding prediction sets until $1 - \alpha$ marginal coverage is achieved on the test data, which can be inefficient. WR-CP improves upon this by regularizing the base predictive model through minimizing the Wasserstein distance between calibration and test conformal scores, producing more compact prediction sets while maintaining robust marginal coverage. All of these methods, however, focus exclusively on marginal coverage. CQR, a representative conditional conformal prediction method, fails to handle distributional shifts. In contrast, the proposed Augmented BNF transformation model learns an invertible mapping between calibration and test data, enabling robust conditional coverage even under non-i.i.d. conditions.

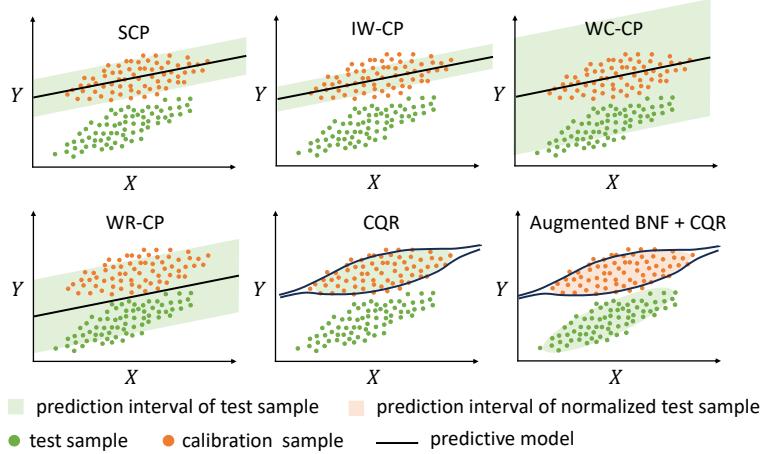


Figure 10: Comparison between baselines and the proposed method via a toy example. Augmented BNF effectively transforms the prediction intervals from the calibration distribution to the test distribution.

L INTRODUCTION TO DATASETS

L.1 DATA PREPARATION

We introduce the data preparation procedure shared across all datasets. We set $K = 3$, partitioning each dataset into three subsets, each exhibiting a distinct distribution shift. For each dataset, we conduct 10 independent sampling trials. In each trial, we first sample \mathcal{S}_{D^k} from subset k without replacement. Since calibration and training data typically share the same distribution in conformal prediction, \mathcal{S}_P is then sampled from the union of all K subsets, also without replacement. Finally, 100 different \mathcal{S}_Q sets are sampled as random mixtures from the remaining data. This procedure ensures that \mathcal{S}_{D^k} for $k = 1, \dots, K$, \mathcal{S}_P , and \mathcal{S}_Q are mutually disjoint. Since the Sinkhorn algorithm is more numerically stable when comparing empirical distributions with matching sample sizes, we set the calibration set and each training set to have equal sizes, i.e., $|\mathcal{S}_P| = |\mathcal{S}_{D^k}|$ for all $k = 1, \dots, K$. Experimental results are aggregated over the 10 trials for each dataset.

We also leverage a toy example from (Xu et al., 2025) to demonstrate joint distribution shift under multi-source domain generalization in Figure 11.

L.2 SYNTHETIC DISTRIBUTION SHIFTS

The Physicochemical Properties of Protein Tertiary Structure (PTS) dataset (Rana, 2013) contains 45,730 instances, with the target variable being the protein decoy size. It includes nine features: surface area, non-polar exposed area, fractional area of exposed non-polar residue, fractional area of exposed non-polar part, molecular mass weighted exposed area, average deviation, Euclidean distance, secondary structure penalty, and spatial distribution constraints. Raw data is split into three subsets based on the distribution of the secondary structure penalty, thereby introducing distribution shifts among the subsets. We also use the PTS dataset to perform ablation studies on the approximation

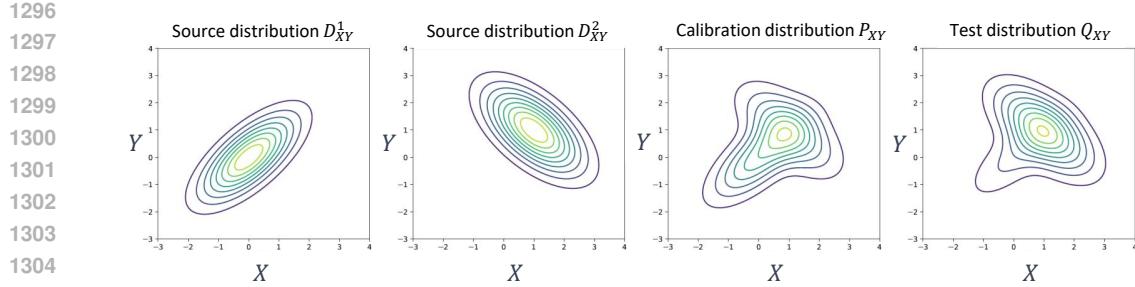


Figure 11: **Joint distribution shift under multi-source domain generalization.** The test distribution Q_{XY} is a random mixture of source distributions, while the calibration distribution P_{XY} is a fixed known mixture. As a result, joint distribution shift occurs since $P_{XY} \neq Q_{XY}$.

ability (with varying sample sizes) and generalization performance (with different numbers of source domains) of Augmented BNF.

1314 L.3 NATURAL DISTRIBUTION SHIFTS REFLECTING REAL-WORLD CHALLENGES

1316 **Generalized sales prediction over time-series** is crucial for risk-averse business decision-
 1317 making (Jin et al., 2022). Moreover, sales data typically exhibit strong periodic patterns, such
 1318 as seasonal or weekly fluctuations. Thus, effectively utilizing data from each sub-period to model a
 1319 robust and generalized sales pattern is critical for achieving reliable forecasts. This requires models
 1320 not only to capture short-term variations but also to generalize across different temporal domains,
 1321 where distribution shifts may occur naturally due to changes in consumer behavior, external events,
 1322 or market conditions. We consider the Bike Rental dataset (Fanaee-T, 2013) to reflect this challenge.
 1323 The dataset records hourly and daily rental counts from the Capital Bikeshare system during 2011
 1324 and 2012, along with associated weather and seasonal information. We partition the data based on
 1325 rental hours into three time intervals: [0,8] (midnight), [9,16] (daytime), and [17,23] (evening). For
 1326 prediction, we select continuous features including temperature, feeling temperature, humidity, and
 1327 wind speed. The target variable is the count of rental bikes.

1328 **Traffic speed prediction with mismatched data** focuses on transferring models trained on source
 1329 distributions (e.g., traffic patterns on regular days and at major intersections) to test distributions
 1330 exhibiting different characteristics (e.g., traffic patterns on special days and at minor intersections).
 1331 For example, recent work has proposed traffic-law-informed models based on reaction-diffusion
 1332 equations to provide generalized speed predictions (Sun et al., 2023). Nevertheless, enhancing the
 1333 reliability of uncertainty quantification under such distribution shifts remains a significant challenge.
 1334 The Seattle-Loop dataset contains traffic volume and speed data collected in Seattle throughout 2015,
 1335 recorded by sensors at 5-minute intervals (Cui et al., 2019). PEMSD4 includes traffic data from
 1336 29 roads in San Francisco collected between January and February 2018, while PEMSD8 covers 8
 1337 roads in San Bernardino from July to August 2016 (Bai et al., 2020). The task is to predict traffic
 1338 speed at the next time step based on current speed and volume measurements. With $K = 3$, we
 1339 select one representative intersection from each dataset. Due to varying local traffic patterns, natural
 1340 distribution shifts arise among the three locations. Our goal is to achieve strong generalization across
 1341 these locations, ensuring robust predictions on any test sites where traffic patterns resemble a random
 1342 mixture of the three selected intersections.

1343 **Fair medical decision-making for patients from different hospitals** is essential for ensuring
 1344 equitable healthcare outcomes. Variations in patient demographics, medical imaging scanners,
 1345 laboratory equipment, and clinical practices across hospitals can lead to distribution shifts in the
 1346 data. This phenomenon is commonly referred to as the multi-center issue (Das, 2022). Addressing
 1347 this challenge is essential for building predictive models that remain accurate and fair across diverse
 1348 healthcare institutions (Olsson et al., 2022). To validate the effectiveness of the proposed method
 1349 in this task, we collect patient data from a collaborating hospital. Additionally, we use the MIMIC-
 IV (Johnson et al., 2023) and eICU (Pollard et al., 2018) datasets to simulate data from two other
 hospitals. The goal is to fairly predict patients' ICU stay times based on their Apache scores and
 blood urea nitrogen (BUN) levels, ensuring reliable performance regardless of which center a patient

1350 originates from. We consider fair medical prediction to be achieved across the three data sources if
1351 the model exhibits comparable performance on random mixtures of the sources.
1352

1353 **Robust epidemic modeling across pandemic phases** can facilitate timely public health responses
1354 and resource planning. The U.S. Centers for Disease Control and Prevention (CDC) categorizes
1355 an epidemic period into three main phases: initiation, acceleration, and deceleration (CDC). Each
1356 of these phases exhibits distinct epidemiological characteristics, which lead to natural distribution
1357 shifts. Traditional forecasting methods typically rely on Susceptible-Infectious-Recovered (SIR)
1358 models (Harko et al., 2014; Kabir et al., 2019; Turkyilmazoglu, 2022) to predict the number of recently
1359 infected patients, aiming for robustness across the different pandemic phases. We demonstrate the
1360 application of the proposed method using the U.S. Influenza-like Illness (ILI) dataset (Deng et al.,
1361 2020), which contains weekly reports from the CDC on the number of ILI patients. The objective is
1362 to predict new infections for the upcoming week using both the weekly increase of infected patients
1363 and the cumulative infections for the year. The raw data is divided into three subsets based on the
1364 corresponding pandemic phases. We consider a forecasting model to be robust if its predictions
1365 remain reliable on random mixtures of data from the three phases.

1366 We further apply t-SNE (Van der Maaten & Hinton, 2008) to map the samples from each source into
1367 two dimensions, as shown in Figure 12. The visualization reveals clear distributional shifts between
1368 most sources. However, for some cases, such as the second and third sources in the Bike Rental
1369 and Fair Med setups, the distributions appear more similar. This slight overlap is not the result of
1370 manually creating similar data but arises naturally from the datasets themselves, which are collected
1371 from real-world scenarios.

1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

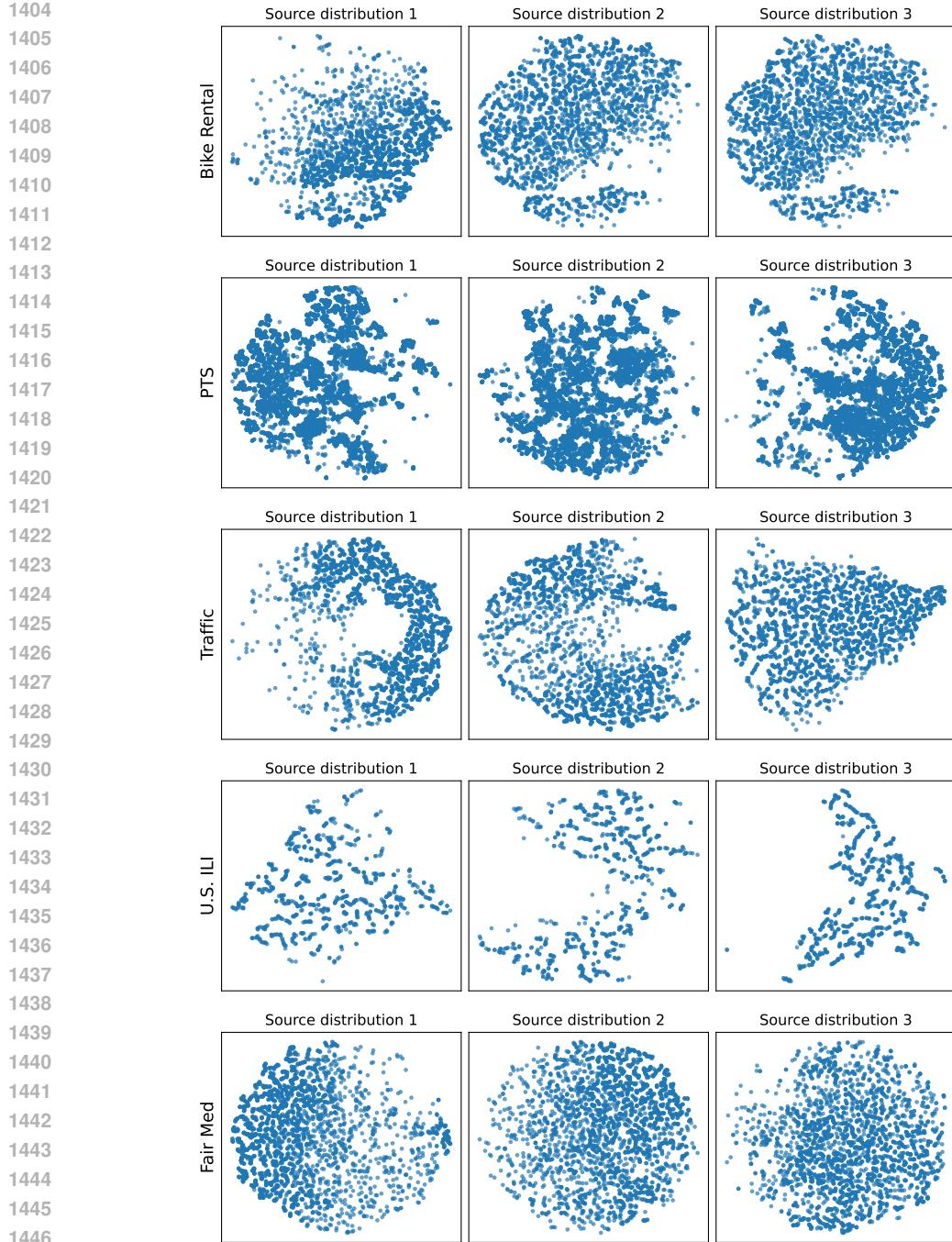


Figure 12: Empirical data distributions of source domains after applying t-SNE.

M CONDITIONAL COVERAGE EVALUATION METRIC

M.1 WORST-SLICE COVERAGE (WSC)

Worst-slice coverage (WSC) (Cauchois et al., 2021) quantifies the minimum empirical coverage over any slab $\mathcal{S} \subseteq \mathcal{X}$ that contains at least 10% of the test samples in \mathcal{S}_Q . Specifically, for any CP methods that produce a prediction set $C(x)$ given an input x , WSC is defined by

$$\text{WSC} = \inf_{\mathcal{S} \subseteq \mathcal{X}} \Pr(y \in C(x) | x \in \mathcal{S}), \text{ s.t. } \Pr(x \in \mathcal{S} | (x, y) \in \mathcal{S}_Q) \geq 0.1. \quad (54)$$

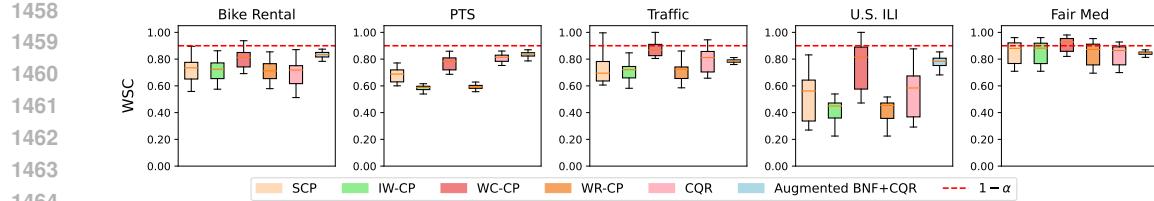
Figure 13: WSC of Augmented BNF+CQR and five baselines with $1 - \alpha = 0.9$.

Figure 13 reports the WSC performance of our method and baselines following the implementation of (Romano et al., 2020). Our approach consistently achieves WSC values close to the desired confidence level $1 - \alpha = 0.9$. Worst-Case CP (WC-CP) shows similarly high WSC, but a closer inspection reveals that this is largely driven by its conservative behavior, which produces substantial over-coverage, as illustrated in Figure 10.

This discrepancy arises because WSC, defined in Eq. (54), only evaluates the infimum slice coverage and therefore fails to penalize over-coverage. As also noted in (Romano et al., 2020), ensuring a high worst-case slice does not guarantee good conditional coverage across \mathcal{X} , particularly when different regions exhibit excessive coverage.

These limitations motivate our introduction of ASCG, which evaluates a richer family of subsets (Eq. (27)) and penalizes both under- and over-coverage from the target level $1 - \alpha$. As a result, ASCG provides a more comprehensive and balanced assessment of conditional coverage robustness.

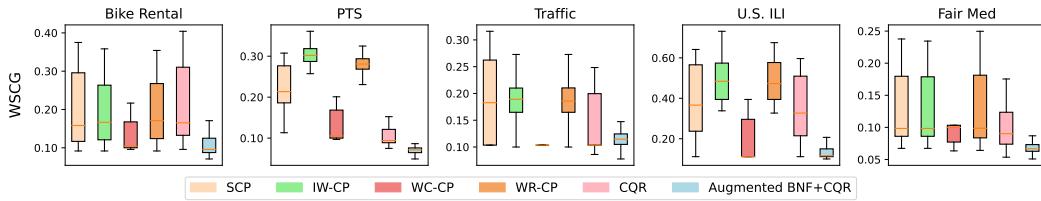
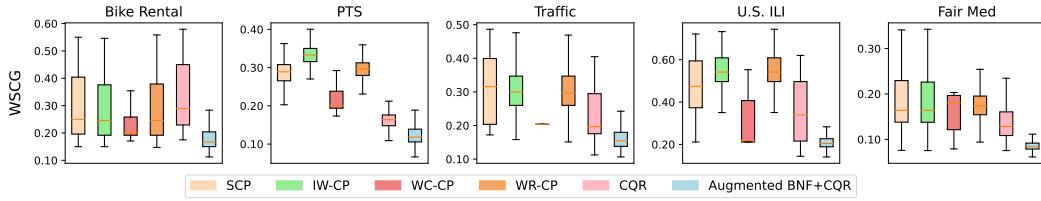
M.2 WORST-SLICE COVERAGE GAP (WSCG)

We propose a variant of WSC called worst-slice coverage gap (WSCG), quantified by

$$\text{WSCG} = \sup_{S \subseteq \mathcal{X}} |\Pr(y \in C(x) | x \in S) - (1 - \alpha)|, \text{ s.t. } \Pr(x \in S | (x, y) \in \mathcal{S}_Q) \geq 0.1. \quad (55)$$

By taking the maximum absolute difference from the desired confidence level $1 - \alpha$, WSCG captures both under-coverage and over-coverage in any sufficiently large slice of the input space. This makes it a more stringent and informative metric than WSC.

As illustrated in Figure 14, when $1 - \alpha = 0.9$, our method consistently achieves low WSCG values across datasets, demonstrating its robustness in maintaining conditional coverage even in the most challenging regions. Interestingly, we observe that WC-CP consistently attains a WSCG of 0.1 on the Traffic setup. This occurs because its conservative nature makes the coverage on individual slabs ranges between 0.8 and 1.0 on the Traffic setup, preventing the WSCG from exceeding 0.1. The conservativeness becomes even more evident when we reduce the target coverage to $1 - \alpha = 0.8$ in Figure 15. In that case, WC-CP has additional slack, and its WSCG correspondingly increases to 0.2.

Figure 14: WSCG of Augmented BNF+CQR and five baselines with $1 - \alpha = 0.9$.Figure 15: WSCG of Augmented BNF+CQR and five baselines with $1 - \alpha = 0.8$.

1512 M.3 MULTIVARIATE AVERAGE-SLICE COVERAGE GAP
1513

1514 While ASCG introduced in Eq. (28) computes coverage gaps only along one-dimensional slices, it
1515 does not fully capture potential failures in multivariate regions of the input space. Inspired by WSCG,
1516 we introduce a multivariate version of ASCG defined as

1517

1518

1519

$$\text{Multivariate ASCG} = \frac{1}{N_S} \sum_{S \subseteq \mathcal{X}} |\Pr(y \in C(x) \mid x \in S) - (1 - \alpha)|, \quad (56)$$

s.t. $\Pr(x \in S \mid (x, y) \in \mathcal{S}_Q) \geq 0.1,$

1520

1521

1522

1523

1524

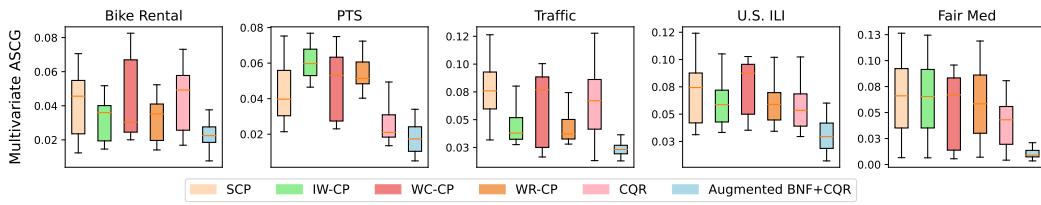
1525

1526

1527

1528

where N_S is the total number of multivariate slabs considered. We follow (Romano et al., 2020) by randomly generating 1000 slabs, and therefore set $N_S = 1000$. This multivariate ASCG generalizes the original ASCG metric by evaluating and aggregating coverage gaps across subsets formed in multivariate partitions of the feature space. As shown in Figure 16, our method maintains low multivariate ASCG values, demonstrating reliable conditional coverage even on complex multivariate partitions of the test space.

Figure 16: Multivariate ASCG of Augmented BNF+CQR and five baselines with $1 - \alpha = 0.9$.

N GENERALIZATION PERFORMANCE OF AUGMENTED BNF

N.1 VARIOUS K VALUES

To explore the generalization ability of Augmented BNF under varying numbers of source domains, we modified the sampling procedure in Appendix L by changing $K \in \{2, 3, 4, 8, 12\}$. For each value of K , we generated 10 independent trials using the PTS dataset to account for sampling variability. Augmented BNF combined with CQR was applied to each trial across confidence levels $1 - \alpha \in [0.1, 0.9]$, enabling a comprehensive evaluation. Figure 17 shows that increasing the number of source domains does not significantly degrade conditional coverage robustness, suggesting that Augmented BNF generalizes well even in the presence of greater domain heterogeneity.

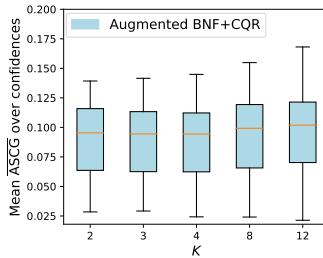


Figure 17: Generalization performance of Augmented BNF+CQR with different numbers of source domains.

N.2 DIFFERENT SAMPLE SIZES

Generative models may struggle to approximate underlying distributions when data are limited, especially in high dimensions (Kong & Chaudhuri, 2020; Poggio et al., 2017). To assess how sample

size affects the performance of Augmented BNF, we vary the number of training samples and perform 10 trials for each setting on the PTS dataset. For each trial, we apply Augmented BNF+CQR across $1 - \alpha$ from 0.1 to 0.9 and compute the mean $\overline{\text{ASCG}}$ over all confidence levels. As shown in Figure 18, the results reveal a clear trend: conditional coverage becomes more robust as the size of each training set increases.

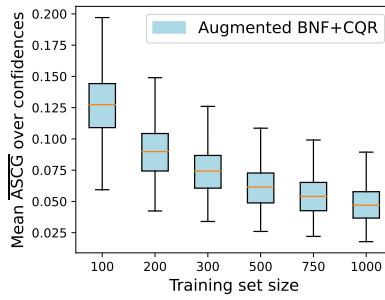


Figure 18: Impact of data availability on Augmented BNF approximation ability.

O COVERAGE LOWER BOUNDS UNDER IMPERFECT TRANSFORMATION

O.1 MARGINAL COVERAGE LOWER BOUND

We establish a marginal coverage lower bound by quantifying the alignment between the calibration conformal scores and those obtained from the transformed test distribution.

Marginal coverage gap can be defined as the discrepancy between the CDFs of P_V and Q_V at the calibration quantile τ (Xu et al., 2025). After applying the transformation f_θ^{aug} , the test distribution Q_{XY} is mapped to $f_\theta^{\text{aug}} \# Q_{XY}$, yielding the conformal score distribution $s_{\#}(f_\theta^{\text{aug}} \# Q_{XY})$, where s denotes the score function. The residual marginal coverage gap after transformation is therefore

$$|F_{P_V}(\tau) - F_{s_{\#}(f_\theta^{\text{aug}} \# Q_{XY})}(\tau)|, \quad (57)$$

with F denoting the CDF of the distribution indicated in the subscript.

This leads to the following lower bound on the marginal coverage of prediction sets produced by the Augmented BNF transformation model:

$$\Pr(Y_{n+1} \in C_{\text{BNF}}^{\text{aug}}(X_{n+1})) \geq 1 - \alpha - |F_{P_V}(\tau) - F_{s_{\#}(f_\theta^{\text{aug}} \# Q_{XY})}(\tau)|. \quad (58)$$

Within the multi-source domain generalization (MSDG) framework, the test distribution Q_{XY} is assumed to be a random mixture of source distributions $D_{XY}^k \#_{k=1}^K$. In this setting, we can bound the coverage gap as

$$|F_{P_V}(\tau) - F_{s_{\#}(f_\theta^{\text{aug}} \# Q_{XY})}(\tau)| \leq \sup_{k \in \{1, \dots, K\}} |F_{P_V}(\tau) - F_{s_{\#}(f_\theta^{\text{aug}} \# D_{XY}^k)}(\tau)|. \quad (59)$$

Consequently, we obtain the final marginal coverage lower bound under MSDG as

$$\Pr(Y_{n+1} \in C_{\text{BNF}}^{\text{aug}}(X_{n+1})) \geq 1 - \alpha - \sup_{k \in \{1, \dots, K\}} |F_{P_V}(\tau) - F_{s_{\#}(f_\theta^{\text{aug}} \# D_{XY}^k)}(\tau)|. \quad (60)$$

For validation, we compare the theoretical bound with the empirical marginal coverage observed across randomly sampled test distributions. The results, presented in Figure 19, show that the empirical coverage for most test distributions exceeds the proposed lower bound, thereby confirming the validity of Eq. (60). The closeness between $1 - \alpha$ and the bound further indicates that our method effectively aligns the calibration and test distributions.

O.2 CONDITIONAL COVERAGE LOWER BOUND

Next, we establish a conditional coverage lower bound that accounts for the imperfect alignment between calibration and test data induced by Augmented BNF.

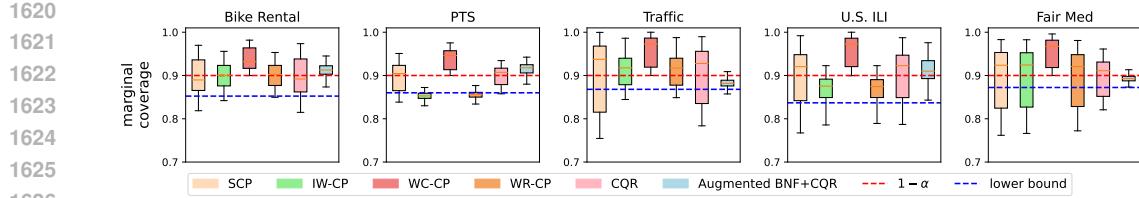


Figure 19: Empirical marginal coverage after transformation compared with the proposed lower bound.

First, even in the i.i.d. setting, exact conditional coverage is unattainable with finite samples (Vovk, 2012; Lei & Wasserman, 2014; Foygel Barber et al., 2021), as discussed in Section 2.1. For instance, Romano et al. (2019) explicitly note that CQR achieves conditional coverage only on the training data, not on unseen test samples. Likewise, the performance of LCP (Guan, 2023) is highly sensitive to the choice of kernel bandwidth, preventing finite-sample conditional coverage guarantees. Consequently, even under i.i.d. assumptions, the application of CQR can only guarantee that

$$\Pr(Y_{n+1} \in C_{\text{CQR}}(X_{n+1}) | X_{n+1} = x) \geq 1 - \alpha - \alpha_{\text{i.i.d.}}, \quad (61)$$

where $\alpha_{\text{i.i.d.}}$ reflects the approximation error introduced by CQR. This gap is an intrinsic limitation of existing conditional CP approaches.

Secondly, under distribution shift, for a test sample $(X_{n+1}, Y_{n+1}) \sim Q_{XY}$, we have

$$F_{P_{V|x}}(\tau(x, V_i : X_i = x_{i=1}^n)) \geq 1 - \alpha, \quad (62)$$

$$F_{Q_{V|x}}(\tau(x, V_i : X_i = x_{i=1}^n)) = \Pr(Y_{n+1} \in C_A(X_{n+1}) | X_{n+1} = x). \quad (63)$$

As a result, the Conditional Coverage Gap (CCG) defined in Eq. (4) leads to

$$\Pr(Y_{n+1} \in C_A(X_{n+1}) | X_{n+1} = x) \geq 1 - \alpha - \text{CCG}(P, Q, x) \quad (64)$$

Accounting for the approximation error $\alpha_{\text{i.i.d.}}$ from CQR, we can derive

$$\Pr(Y_{n+1} \in C_{\text{CQR}}(X_{n+1}) | X_{n+1} = x) \geq 1 - \alpha - \alpha_{\text{i.i.d.}} - \text{CCG}(P, Q, x) \quad (65)$$

To evaluate the expected conditional coverage across the test distribution, we take the expectation over $x \sim Q_X$ and obtain

$$\mathbb{E}_{x \sim Q_X} [\Pr(Y_{n+1} \in C_{\text{CQR}}(X_{n+1}) | X_{n+1} = x)] \geq 1 - \alpha - \alpha_{\text{i.i.d.}} - \text{ICG}(P, Q), \quad (66)$$

where the $\text{ICG}(P, Q)$ is defined in Eq. (5) as the expectation of $\text{CCG}(P, Q, x)$ over Q_X .

Finally, using our bound on $\text{ICG}(P, Q)$ in terms of the Wasserstein distance $W(P_{XY}, Q_{XY})$ in Eq. (13), we obtain a bound on the expected conditional coverage under distribution shift:

$$\begin{aligned} \mathbb{E}_{x \sim Q_X} [\Pr(Y_{n+1} \in C_{\text{CQR}}(X_{n+1}) | X_{n+1} = x)] &\geq 1 - \alpha - \alpha_{\text{i.i.d.}} \\ &\quad - \sqrt{2\kappa L} (\eta \cdot W(P_{XY}, Q_{XY}) + 1/4). \end{aligned} \quad (67)$$

Finally, the transformation by Augmented BNF lead to a more robust prediction set $C_{\text{BNF}}^{\text{aug}}(X_{n+1})$. We clarify the role of the remaining Wasserstein distance $W(P_{XY}, f_{\theta}^{\text{aug}} \# Q_{XY})$ by

$$\begin{aligned} \mathbb{E}_{x \sim Q_X} [\Pr(Y_{n+1} \in C_{\text{BNF}}^{\text{aug}}(X_{n+1}) | X_{n+1} = x)] &\geq 1 - \alpha - \alpha_{\text{i.i.d.}} \\ &\quad - \sqrt{2\kappa L} (\eta \cdot W(P_{XY}, f_{\theta}^{\text{aug}} \# Q_{XY}) + 1/4), \end{aligned}$$

where the term η can be obtained by substituting Q_{XY} and $Q_{Y|x}$ with $f_{\theta}^{\text{aug}} \# Q_{XY}$ and $f_{\theta_Y}^{\text{aug}} \# Q_{Y|x}$, respectively, in Eq. (13).

We denote $\alpha_{\text{trans}} = \sqrt{2\kappa L} (\eta \cdot W(P_{XY}, f_{\theta}^{\text{aug}} \# Q_{XY}) + 1/4)$ to quantify the remaining deviation induced by imperfect alignment between calibration and test distributions.

To evaluate the magnitude of α_{trans} , we compare the Average Slice Coverage Gap (ASCG) across a range of confidence levels $1 - \alpha \in [10\%, 90\%]$, under the following three settings: (1) CQR under the distribution shift, (2) Augmented BNF+CQR under distribution shift, and (3) CQR under i.i.d. condition. Figure 20 shows that the proposed transformation model effectively approximates the CQR under the i.i.d. condition. This suggests that α_{trans} is significantly smaller than $\alpha_{\text{i.i.d.}}$ with the remaining coverage gap primarily attributable to the approximation error of CQR itself.

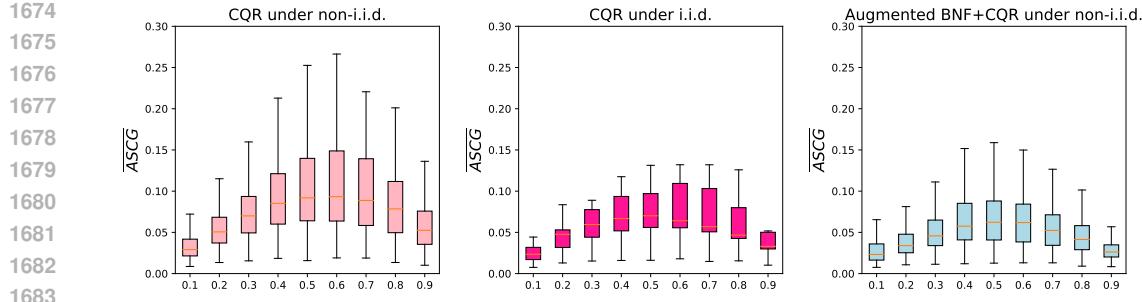


Figure 20: The transformation by Augmented BNF can effectively simulate the i.i.d. condition.

P PREDICTION EFFICIENCY UNDER SOURCE CONDITIONING

P.1 PREDICTION INEFFICIENCY BY AUGMENTED BNF

Augmented BNF uses Eq. (22) to obtain prediction sets on the test distribution Q_{XY} . During training, this augmented component ε of the Y branch $f_{\theta_Y}^{\text{aug}}$ in Eq. (21) is sampled from a single Gaussian distribution $\mathcal{N}(0, 1)$, making it independent of the training sample sources. As a result, the model learns a shared transformation for all training distributions D_{XY}^k for $k = 1, \dots, K$ to align with the calibration distribution P_{XY} .

At test time, this design leads to a key limitation: since ε_{n+1} is source-agnostic, the Y branch $f_{\theta_Y}^{\text{aug}}$ cannot infer which source distribution a new test sample originates from. As a result, the prediction set $C_{\text{BNF}}^{\text{aug}}(X_{n+1})$ must widen to account for all sources to ensure valid coverage. This behavior corresponds to a conditional worst-case strategy and inherently results in larger prediction sets.

The prediction inefficiency is reflected in Figure 21. The Augmented BNF produces noticeably larger prediction sets on Traffic, U.S. ILI, and Fair Med. This is due to the substantial variation in the conditional label distributions $D_{Y|x}^k$ within the three settings, such as significantly different supports, which leads to enlarged prediction sets.

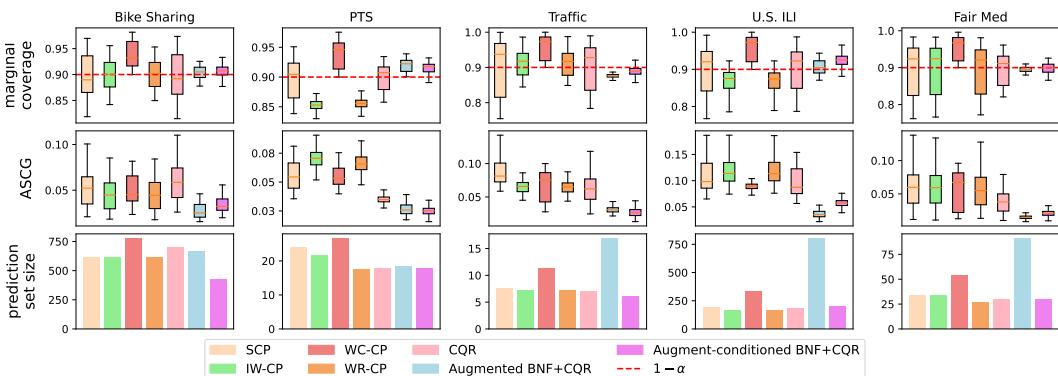


Figure 21: Prediction set size comparison. The standard Augmented BNF can produce large prediction sets, whereas the Augment-Conditioned variant significantly reduces set size while preserving coverage performance.

P.2 EFFICIENT PREDICTION BY AUGMENT-CONDITIONED BNF

To achieve smaller prediction sets, we propose **Augment-conditioned BNF**, denoted as $f_{\theta}^{\text{aug-cond}}$. In this design, the augmented component ε is sampled from a distinct Gaussian distribution \mathcal{N}^k if an instance (x, y) is from D_{XY}^k during training. In other words, ε serves not only to enhance expressiveness but also as a conditioning variable in $f_{\theta_Y}^{\text{aug-cond}}(y, \varepsilon)$. Consequently, during inference, if ε_{n+1} correctly captures the source of the test sample, we can construct a smaller prediction set

1728 $C_{\text{BNF}}^{\text{aug-cond}}(X_{n+1})$. Using a similar calculation as in Eq. (22), we derive
 1729

$$1730 \quad C_{\text{BNF}}^{\text{aug-cond}}(X_{n+1}) = \left\{ y : f_{\theta_Y}^{\text{aug-cond}}(y; \varepsilon_{n+1}) \in C_{\text{A}}(\bar{X}_{n+1}) \right\}, \text{ where } \bar{X}_{n+1} = f_{\theta_X}(X_{n+1}) \quad (68)$$

1731 As shown in Figure 21, Augment-conditioned BNF leads to significantly smaller prediction sets
 1732 compared to the standard Augmented BNF. Correia et al. (2024) also demonstrate that knowledge of
 1733 the test sample’s source can serve as valuable side information to improve prediction efficiency. Such
 1734 side information is often available in real-world applications. For instance, in multi-center healthcare
 1735 settings, models are required to generalize across different hospitals. In these scenarios, the center
 1736 at which a patient is admitted is typically known and can be used to tailor the prediction procedure.
 1737 Leveraging this information allows the model to generate tighter prediction sets while maintaining
 1738 valid coverage guarantees.

1739 We observe that the Augment-Conditioned BNF may exhibit slightly higher ASCG compared
 1740 to the standard Augmented BNF. That is attributed to data sparsity, caused by the use of more
 1741 distinct Gaussian distributions to model the data sources. As the number of Gaussians increases,
 1742 the samples become more dispersed, making it more challenging to learn the underlying population
 1743 distributions effectively. Hence, although the Augment-conditioned BNF yields smaller prediction
 1744 sets, it compromises robustness in coverage, revealing an inherent trade-off.

1745 Q LIMITATIONS

1746 Q.1 BEYOND MSDG: ALTERNATIVE FORMS OF JOINT DISTRIBUTION SHIFT

1747 In Section 5, we describe the implementation of Augmented BNF within the context of multi-source
 1748 domain generalization (MSDG), which represents a specific instance of joint distribution shift (Zou
 1749 & Liu, 2024; Xu et al., 2025). Beyond MSDG, various alternative formulations have been proposed
 1750 to characterize joint distribution shifts.

1751 **Statistical distance ball.** The space of test distribution Q_{XY} can be defined within a Wasserstein
 1752 ball centered at the source distribution P_{XY} :

$$1753 \quad \mathcal{B}(P_{XY}, r) = \{Q_{XY} : W(P_{XY}, Q_{XY}) \leq r\}, \quad \text{where } r \geq 0. \quad (69)$$

1754 The notion of a Wasserstein ball can be generalized using alternative divergence measures, such as
 1755 the Kullback–Leibler (KL) divergence (Cauchois et al., 2024).

1756 **Input perturbation.** Joint distribution shift can be modeled as a perturbation applied to the test input
 1757 X_{n+1} (Gendler et al., 2021; Ghosh et al., 2023; Yan et al., 2024). In this formulation, the perturbed
 1758 test input \tilde{X}_{n+1} is constrained within a neighborhood of the original input by a norm-bound:

$$1759 \quad \|\tilde{X}_{n+1} - X_{n+1}\| \leq r, \quad \text{where } r \geq 0. \quad (70)$$

1760 These two ways are closely related. For instance, sampling a collection of local pointwise perturbations
 1761 around calibration points can approximate a global statistical distance ball. Thereby, we can
 1762 replace the summation over K domains in Eq. (26) with a supremum over a ball $\mathcal{B}(P_{XY}, r)$ by

$$1763 \quad \min_{\theta} [\sup_{Q_{XY} \in \mathcal{B}(P_{XY}, R)} W(P_{XY}, f_{\theta}^{\text{aug}} \# Q_{XY})]. \quad (71)$$

1764 Although the supremum over all possible distributions is theoretically well-defined, it is computationally
 1765 intractable in practice; therefore, we approximate it following the two steps below:

1766 (i) Initialize Q_{XY} as empirical P_{XY} samples

1767 (ii) For fixed θ , find a perturbed batch of samples that maximizes the objective Wasserstein distance
 1768 but remains in $\mathcal{B}(P_{XY}, r)$.

1769 This represents a sample-based estimation of the supremum, which can be used to update θ . Further
 1770 refinement is necessary to make it effective in practice. A key challenge lies in identifying a perturbed
 1771 batch that maximizes the Wasserstein distance and remains within the specified ball. Several strategies
 1772 can be employed to address this. For instance, genetic algorithms may be used to search for high-risk
 1773 perturbations that maximize the divergence under the f_{θ}^{aug} .

1774 In this work, we do not propose a dedicated training algorithm for Augmented BNF to handle joint
 1775 distribution shifts expressed in the two alternative forms discussed above. Developing such methods
 1776 remains an important direction for future work.

1782 Q.2 ROOT-FINDING CHALLENGES
1783

1784 Unlike the original BNF, Augmented BNF does not employ a univariate monotonic transformation
1785 for the Y -branch. As a result, we cannot directly apply Eq. (18) to construct the prediction set.
1786 Instead, Augmented BNF relies on Eq. (22) to generate $C_{\text{BNF}}^{\text{aug}}(X_{n+1})$, which frames the construction
1787 as a root-finding problem. Specifically, let the interval endpoints of the calibrated set $C_A(\bar{X}_{n+1})$
1788 be denoted by y_{lo} and y_{hi} . Then, Eq. (22) requires solving a root-finding problem to identify the
1789 pre-images of these endpoints under the learned transformation. In particular, we need to find the
1790 values of y that satisfy the following equations

$$1791 \quad f_{\theta_Y}^{\text{aug}}(y; \varepsilon_{n+1}) = y_{\text{lo}}; \quad f_{\theta_Y}^{\text{aug}}(y; \varepsilon_{n+1}) = y_{\text{hi}}. \quad (72)$$

1793 While the coverage can be efficiently computed by checking whether $\bar{Y}_{n+1} \in C_A(\bar{X}_{n+1})$, as
1794 supported by Proposition 7, it is still crucial to develop a practical method for solving Eq. (72).

1796 Q.3 STOCHASTIC PREDICTION SETS
1797

1798 One practical drawback of Augmented BNF lies in its reliance on stochastic augmentation through
1799 a random noise $\varepsilon \sim \mathcal{N}(0, 1)$, which is used to modulate the Y -branch of the Augmented BNF in
1800 Eq. (21). While this augmentation introduces flexibility, it also introduces randomness into the
1801 transformation. As a result, in Eq. (22), the prediction set produced by Augmented BNF for the same
1802 input x is no longer deterministic. The set varies across different forward passes depending on the
1803 realization of ε .

1804 This stochasticity undermines one of the appealing features of standard conformal prediction: the
1805 deterministic and repeatable nature of the prediction set given a test point. In high-stakes domains,
1806 such randomness can lead to interpretability challenges or instability in downstream decisions. While
1807 one may average over multiple runs to approximate a stable prediction, this requires additional com-
1808 putational cost and still does not guarantee strict repeatability. This tradeoff between flexibility and
1809 determinism is a fundamental limitation when deploying Augmented BNF in sensitive applications.

1810 Q.4 ARCHITECTURAL INCOMPATIBILITY WITH ONE-DIMENSIONAL FEATURES
1811

1812 Another limitation of Augmented BNF stems from its architectural dependency on Real NVP (Dinh
1813 et al., 2016), a type of normalizing flow that is inherently designed for multi-dimensional trans-
1814 formations. Real NVP operates by alternating between dimensions of the input to apply affine
1815 coupling layers, as plotted in Figure 9. This necessitates a feature space \mathcal{X} of at least two dimensions.
1816 Consequently, Augmented BNF inherits this constraint: its architecture presumes that the input
1817 feature x is multivariate.

1818 In the case where x is one-dimensional, the affine coupling mechanism of Real NVP becomes
1819 undefined, rendering the model non-functional. As a result, Augmented BNF cannot be applied to
1820 tasks with univariate inputs. This presents a clear barrier for applying to domains, where no natural
1821 multivariate feature exists. One might consider artificially expanding x with noise or engineered
1822 features to satisfy the dimensionality requirement, just like the augmented Y -branch in Eq. (21).

1824 Q.5 TUNING BIAS
1825

1826 In Section 4.2, the calibration set \mathcal{S}_P participates in the training of the Augmented BNF, as described
1827 in Algorithm 1. However, this practice may undermine the rigor of conformal prediction, where
1828 calibration data is ideally held out from any training procedure. Despite this concern, similar strategies
1829 have been adopted in prior work (Angelopoulos et al., 2020; Dabah & Tirer, 2025; Xi et al., 2024;
1830 Yang & Kuchibhotla, 2024), often to simplify implementation. Notably, Zeng et al. (2025) identifies
1831 a parametric scaling law of tuning bias, showing that reusing calibration data introduces a bias that
1832 grows with model complexity and diminishes as the calibration set size increases.

1833 To adhere more closely to the theoretical foundations of conformal prediction, a more principled
1834 approach would involve randomly partitioning \mathcal{S}_P into two disjoint subsets: one used for training the
1835 Augmented BNF and another reserved exclusively for inference. Given the architectural complexity
and parameterization of the Augmented BNF, as detailed in Appendix H, such a split is particularly

1836 recommended to mitigate the risk of overfitting and maintain robust uncertainty guarantees. Nonethe-
1837 less, in scenarios where calibration data is scarce, striking a balance between theoretical soundness
1838 and practical effectiveness remains an open challenge.
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889