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Abstract

This paper delves into the relationship between001
the surface form of a mathematical problem and002
its solvability by large-scale language models.003
We found that subtle alterations in the surface004
form can significantly impact the answer distri-005
bution and the solve rate, exposing the language006
model’s lack of robustness and sensitivity to007
the surface form in reasoning through complex008
problems. To improve the mathematical reason-009
ing performance, we propose Self-Consistency-010
over-Paraphrases (SCoP), which diversifies rea-011
soning paths from specific surface forms of the012
problem. We evaluate our approach on four013
mathematics reasoning benchmarks over three014
large language models and show that SCoP015
improves mathematical reasoning performance016
over vanilla self-consistency, particularly for017
problems initially deemed unsolvable. Finally,018
we provide additional experiments and discus-019
sion regarding problem difficulty and surface020
forms, including cross-model difficulty agree-021
ment and paraphrasing transferability, Variance022
of Variations (VOV) for language model evalu-023
ation, the data difficulty map, and more.024

1 Introduction025

While large-scale language models (LLMs) have026

taken the NLP landscape by storm, outperforming027

the state-of-the-art in various tasks, their ability to028

reason through complex problems such as math-029

ematics remains a bottleneck (Rae et al., 2022;030

Srivastava et al., 2023; Liang et al., 2023). The031

performance of language models in solving math-032

ematical problems is sometimes paradoxical and033

distanced from human intelligence: they can solve034

problems that are challenging for humans but can035

also struggle with seemingly simple ones. This036

raises a question: what factors contribute to the037

difficulty of a math problem for an LLM?038

Specifically, the information in a math problem039

can be divided into two types. The first is the se-040

mantics information, which involves the content,041

complexity, and knowledge involved in the math 042

problem. The second is the surface forms, i.e., 043

how the questions, assumptions, and constraints 044

are described in the math problem. Intuitively, one 045

would believe that the semantics information is the 046

primary determining factor of the difficulty of the 047

math problem, and that the surface form should 048

only have a marginal impact at best, because as 049

long as it is clear, the way the problem is described 050

would not change the actual solution. Would this 051

be the case for LLMs? 052

In this paper, we delve into the relationship be- 053

tween the problem’s surface form and its solvability 054

with respect to the language model. Specifically, 055

we follow the self-consistency setting (Wang et al., 056

2022) to sample multiple answers to the same math 057

problem and compute solve rate as the percentage 058

of correct answers. Our primary finding is that, 059

counter-intuitively, subtle alterations in the surface 060

form of a math problem can significantly impact 061

the answer distribution and solve rate. Consider 062

an example in Figure 1, where the left and right 063

panels contain an identical math problem described 064

in two different ways. However, from left to right, 065

the solve rate increases from 5% to 100%, with 066

all reasoning paths leading to the correct answer - 067

what initially appears to be a difficult problem to 068

the language model unreasonably transforms into 069

an effortlessly solvable one. This phenomenon ex- 070

poses the language model’s lack of robustness and 071

sensitivity to the surface form in reasoning through 072

complex problems. 073

Motivated by this finding, we explore improv- 074

ing the mathematical reasoning performance of the 075

language model by diversifying reasoning paths 076

from specific surface forms of the problem. We 077

leverage the language model’s paraphrasing ability 078

to generate surface forms with identical semantics1 079

1Rigorously, the surface forms can be regarded as “quasi-
paraphrases that convey approximately the same meaning
using different words” (Bhagat and Hovy, 2013).
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Lauren is saving 20% of every paycheck. How many more 

years does Lauren need to work if she plans to save for a 

retirement period of 20 years, live with 40% of her current 

annual salary, and her current salary is $100,000?

If Lauren is saving 20% of her current salary of $100,000, 

how many additional years does she need to work if she 

intends to save for a retirement period of 20 years and live 

off 40% of her current annual salary?

Answer
Distribution:

Majority Vote: 
1.54 (years) ✗

Solve Rate: 5%

Majority Vote: 
40 (years) ✓

Solve Rate: 100%

Answer
Distribution:
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Chain-of-Thoughts + Self-Consistency Reasoning

Figure 1: A comparison of the answer distribution and solve rate between surface form variations of a math word
problem from GSM8K, when prompted to GPT-3.5-turbo using Self-Consistency, with 40 sampled reasoning paths.
Solve rate can vary dramatically between surface forms with equivalent semantics.

and propose Self-Consistency-over-Paraphrases080

(SCoP), which consists of two steps: ❶ For each081

math problem, generate K paraphrase using an082

LLM; and ❷ Ask the LLM to generate N/K rea-083

soning paths for each paraphrase, and then select084

the most consistent answer among the N answers.085

The intuition is that if a problem exhibits a low086

solve rate and ineffective reasoning paths due to087

its original surface form, introducing diversity in088

its surface forms can be beneficial. We also intro-089

duced in-context exemplars to the language model090

when paraphrasing, which are the paraphrases that091

obtain a solve rate improvement over their original092

problem, aiming to generate surface forms with093

the same semantics yet a higher solve rate through094

language models in context learning abilities (Min095

et al., 2022; Brown et al., 2020).096

We evaluate our approach on four mathe-097

matics reasoning benchmarks: GSM8K (Cobbe098

et al., 2021), AQuA (Ling et al., 2017),099

MATH (Hendrycks et al., 2021), and MMLU-100

Math (Hendrycks et al., 2020), over three large101

language models: LLaMA-2-70b (Touvron et al.,102

2023), GPT-3.5-turbo and GPT-4 (OpenAI, 2023).103

Our experiments show that SCoP improves mathe-104

matical reasoning performance over the traditional105

Self-Consistency method, particularly for problems106

initially deemed unsolvable. In additional exper-107

iments, we show that the difficulty ranks across108

language models are positively correlated, with109

higher agreement within the GPT model family110

and simpler datasets. The rank alignment of diffi-111

culty may influence the transferability of the para-112

phrases. Moreover, we propose Variance of Vari-113

ations (VOV), a metric for evaluating language114

model robustness against surface form variations. 115

Finally, we explain why SCoP could work by defin- 116

ing a data difficulty map based on the entropy of 117

answer distribution and the solve rate and bring 118

discussions with qualitative examples. 119

2 Problem Difficulty and Surface Forms 120

In this section, we present our pilot study of the 121

impact of surface form on LLMs’ ability to solve 122

the problem. In all our studies, we follow the self- 123

consistency setting (Wang et al., 2022), which ex- 124

tends over chain-of-thought (Wei et al., 2022) by 125

using sampling decoding to generate a variety of 126

reasoning paths. From this setting, we quantify the 127

difficulty of a problem w.r.t a language model by its 128

solve rate, which is the proportion of the reasoning 129

paths that lead to the correct answer. When the 130

solve rate exceeds 50%, a majority vote guarantees 131

the correct answer. Note the solve rate measures 132

the difficulty of a single problem input and is also 133

a model-dependent metric. 134

To study how surface form impacts the solve 135

rate, we use the math word problem from the 136

GSM8K dataset (Cobbe et al., 2021). For each 137

math problem, we generate a paraphrase using 138

GPT-3.5-turbo2 (detailed instructions are shown in 139

Appendix C). We then compare the solve rates of 140

the original problem and the paraphrase solved by 141

GPT-3.5-turbo using self-consistency with N = 40 142

and a temperature of 0.7. 143

Our finding is that the solve rate varies signifi- 144

cantly across the surface forms. Figure 1 shows an 145

example with the original problem on the left and 146

the paraphrased one on the right. In the original 147

2https://platform.openai.com/docs/models/gpt-3-5
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Figure 2: GSM8K - solve rate difference - from original
to one of the random naive paraphrase.

problem, the reasoning paths result in a disarrayed148

answer distribution, with merely 5% achieving the149

correct answer “40” and the aggregated answer150

“1.54” (20%). In contrast, the solve rate of the para-151

phrase problem is 100%. We have identified many152

more such examples with drastic improvement in153

solve rate, presented in Table 6.154

We further calculate the histogram of the solve155

rate changes in the paraphrased problem compared156

to the original one, shown in Figure 2. As can be157

observed, the distribution is heavy-tail, with 11.7%158

of the paraphrases resulting in over 25% absolute159

improvement in solve rate and with 13% resulting160

in over 25% absolute deterioration.161

This phenomenon exposes the language model’s162

deficiency in robustness and sensitivity to a com-163

prehensive problem’s surface form. It suggests that164

the challenge of some problems may not be due to165

the model’s limitations, but rather the ineffective166

generation of reasoning paths from certain surface167

forms. Therefore, can we take advantage of this168

phenomenon to improve language model reasoning169

through surface form modifications, mirroring the170

way paraphrasing aids a student’s cognitive and171

problem-solving processes (Swanson et al., 2019)?172

3 Self-Consistency over Paraphrases173

Motivated by the findings in Section 2, we pro-174

pose a framework, called Self-Consistency-over-175

Paraphrases (SCoP), which leverages the LLMs176

to generate paraphrases of math problems to im-177

prove their ability in solving them.178

3.1 Framework Overview179

As shown in Figure 3, SCoP consists of two steps.180

• Step 1: Paraphrase. Prompt the LLM to gen-181

erate K paraphrases of the original problem. For182

notational ease, denote p as the original problem,183

and
⋃K

k=1{qk} as the K paraphrases.184

• Step 2: Solve. For each paraphrase, we ask the185

Chain-of-Thought (CoT)
aggregate

P ✗

1

2

3

4

LM

Paraphrases

CoT  ✓

Exemplars

P LM
Q1

Q2

LM

LM

1

2

3

4

paths answer
SC

SCoP (Ours)

Figure 3: A comparison between Self-Consistency and
our SCoP. SCoP splits N reasoning paths over K in-
context learned paraphrases, instead of devoting all N
reasoning paths to the single original problem P . The
final answer is selected by aggregating all reasoning
paths from these paraphrases with a majority vote.

LLM to generate N/K reasoning paths, and thus 186

the total number of generated answers is N . We 187

then select the most consistent answer across the 188

N reasoning paths as the final answer. 189

The intuition behind SCoP is that if a problem 190

exhibits a low solve rate and ineffective reasoning 191

paths due to its original surface form, introducing 192

diversity in its surface forms would be beneficial. 193

There are two important notes regarding SCoP. 194

First, when we increase K, the total number of 195

reasoning paths N is held fixed, which separates 196

the effect of increasing the diversity of reasoning 197

paths from increasing the number of reasoning 198

paths. This also ensures a fair comparison with 199

other self-consistency baselines. 200

Second, there are two procedures in SCoP that 201

involve an LLM, one to generate paraphrases (Step 202

1) and one to generate answers (Step 2). We use 203

the same LLM to perform both tasks. In this way, 204

we can ensure that any performance improvement 205

of SCoP is due to the diversity of paraphrasing it- 206

self, rather than cross-sharing of knowledge across 207

different LLMs. In addition, there is no human an- 208

notation, training, fine-tuning, or auxiliary models 209

involved in our SCoP framework. 210

3.2 Paraphrase Generation 211

The paraphrase generation in Step 1 is crucial to 212

the success of SCoP. In this work, we explore two 213

paraphrase generation methods. 214

Naïve. The naïve approach instructs the language 215

model to generate K paraphrases of the math prob- 216

lem. However, this could generate many para- 217

phrases with worse solve rate, because the solve 218
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Algorithm 1 Paraphrase Exemplar Search
1: Input: Training data Dtr , Nshot, margin δ. Init. Candi-

dates list C.
2: for step t in {1, 2, . . . , T} do
3: if Length(C) = Nshot then
4: break
5: Sample a problem p from Dtr without replacement.
6: Compute solve rate SR(p)
7: Obtain K Paraphrases {q1, . . . , qK} of p.
8: for k = 1 to K do
9: Compute solve rate SR(qk)

10: if SR(qk) >= SR(p) + δ then
11: Add {p, qk} to Candidates list C.
12: break

rate change has high variability in both directions219

(as shown in Figure 2).220

In-Context Learning. To increase the chance221

of generating ‘good’ paraphrases, we propose an222

in-context learning approach3, where we obtain223

Nshot ‘good’ paraphrases as the in-context exem-224

plars (marked as [Exemplars] in Figure 3). The225

‘good’ paraphrases are formally defined as para-226

phrases that contribute to a solve rate improvement227

(by a preset margin δ) over the original problem.228

To obtain the ‘good’ paraphrases, we first generate229

some candidate paraphrases using the aforemen-230

tioned naïve approach on a small number of math231

problems with labeled answers. We then compute232

the solve rate of the original problem and the para-233

phrases and select those whose improvement is234

over the margin δ. The detailed algorithm is pre-235

sented in Algorithm 1.236

4 Experiments237

In this section, we will describe our experiment238

results evaluating the effectiveness of SCoP, as well239

as additional studies on how SCoP works.240

4.1 Experimental Settings241

Datasets We evaluate our approach on the fol-242

lowing public mathematics reasoning benchmarks:243

• GSM8K (Cobbe et al., 2021) contains 8.5K lin-244

guistically diverse grade school-level math ques-245

tions with moderate difficulties.246

• AQuA (Ling et al., 2017) consists of 100K al-247

gebraic word problems, including the questions,248

the possible multiple-choice options, and natural249

language answer rationales from GMAT and GRE.250

• MATH (Hendrycks et al., 2021) is a competition251

mathematics dataset containing 12,500 problems252

3An alternative can be automatic prompt engineering, see
Appendix B.

with challenging concepts such as Calculus, Linear 253

Algebra, Statistics, and Number Theory. 254

• MMLU (Hendrycks et al., 2020) is a compre- 255

hensive dataset containing various subjects. We 256

specifically utilized the mathematics section of the 257

dataset, which comprises college and high-school- 258

level mathematics, statistics, and abstract algebra. 259

Language Models We utilize three popular 260

LLMs trained with RLHF (Ouyang et al., 2022): 261

LLaMA-2 (70B) (Touvron et al., 2023), an open- 262

source LLM by Meta AI, GPT-3.5-turbo (version 263

0613), and GPT-4 (OpenAI, 2023), accessed via 264

the OpenAI API. All experiments are conducted in 265

zero-shot or few-shot settings, without training or 266

fine-tuning the language models. We choose the 267

temperature T = 0.7 and Top-p = 1.0 for sam- 268

pling decoding for all three language models. The 269

total number of reasoning paths N we sample for 270

each problem is 40, following Wang et al. (2022). 271

Implementation Details For paraphrase gen- 272

eration (Step 1), we evaluate the two afore- 273

mentioned schemes ❶ Naïve: We use the tem- 274

plate “ Paraphrase the following math problem: 275

{question}” to prompt the language model to 276

paraphrase the original problem; ❷ In-Context 277

Learning (ICLpara): We randomly select a set of 8 278

paraphrase exemplars by Algorithm 1 with margin4 279

δ = 0.3. The details of the prompt templates are 280

available in Appendix C. 281

For answer generation (Step 2), we also im- 282

plement two schemes: ❶ Zero-Shot Chain-of- 283

Thought (CoT) (Kojima et al., 2023), which ap- 284

pends “Let’s think step by step.” to the question 285

text; and ❷ Four-Shot CoT, where we append four- 286

shot in-context examples with CoT to the LLM 287

when solving the math problems. Note that the 288

in-context examples for answer generation are dif- 289

ferent in functionality and format from the ones for 290

ICLpara. 291

4.2 Main Results 292

Zero-Shot CoT Table 1 illustrates the perfor- 293

mance of SCoP under the zero-shot CoT setting, 294

compared with the vanilla self-consistency (SC), 295

using LLaMA-2-70b and GPT-3.5-turbo. We vary 296

the number of paraphrases K across {1, 2, 4, 8} 297

while keeping the total number of reasoning paths 298

4We performed an ablation study of the margin effect on a
separate development sets and found that using an extremely
large margin can damage performance. See Appendix A.
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GPT-3.5-Turbo LLaMA-2-70b
GSM8K AQuA MATH MMLU GSM8K AQuA MATH MMLU

HPR (%) 31.33 42.52 68 64 52 76.3 98.2 82.4
SC 76.33 (24.47) 66.93 (22.22) 59.0 (39.71) 52.8 (26.25) 58.67 (20.51) 40.47 (21.95) 10.53 (8.93) 32.8 (17.37)

k = 1 72.23 (27.66) 63.39 (28.89) 55.0 (37.50) 48.4 (27.5) 51.0 (28.21) 38.14 (26.83) 24.56 (23.21) 27.2 (20.21)
SCoP k = 2 76.0 (34.04) 65.75 (28.89) 56.5 (39.71) 52.8 (32.5) 54.33 (26.92) 39.53 (25.0) 29.82 (28.57) 29.6 (22.28)
(Naïve) k = 4 77.67 (36.17) 67.32 (29.81) 57.5 (38.97) 56.0 (36.25) 55.67 (32.05) 41.4 (25.61) 31.58 (30.36) 32.02 (24.87)

k = 8 79.33 (39.36) 68.11 (33.52) 59.5 (43.38) 55.6 (33.75) 60.33 (33.33) 41.4 (25.61) 28.07 (26.79) 35.6 (27.98)
k = 1 77.85 (38.98) 66.43 (29.81) 54.0 (36.76) 52.5 (32.56) 58.67 (39.92) 42.91 (29.84) 24.68 (22.50) 34.6 (23.74)

SCoP k = 2 80.51 (39.24) 68.50 (31.67) 57.5 (39.13) 55.5 (34.11) 59.33 (36.31) 43.70 (30.37) 23.45 (21.24) 37.6 (26.26)
(ICLpara) k = 4 79.18 (38.27) 70.47 (35.37) 58.0 (41.18) 58.0 (39.53) 61.67 (40.48) 44.49 (30.37) 24.07 (21.87) 37.8 (26.52)

k = 8 80.18 (40.62) 69.69 (34.44) 60.0 (44.12) 56.5 (34.88) 63.33 (40.48) 46.46 (31.94) 26.52 (24.39) 37.6 (25.76)

Table 1: Accuracy of SCoP distributing N/K reasoning paths over K in {1, 2, 4, 8} paraphrases in Naïve and
ICLpara settings, against Self-Consistency (SC). Hard Problem Ratio (HPR%) represents the percentage of problems
with an original solve rate ≤ 0.5 by Self-Consistency (SC). Accuracy is reported for both Hard Problems (HPR%
≤ 0.5) (inside parentheses) and global accuracy across the entire dataset (outside parentheses).

Model GSM8K AQuA MATH MMLU
HPR (%) 56 75.2 95.2 81.6

LLaMA-2-70b Self-Consistency 61.11 (30.0) 44.09 (25.65) 13.41 (9.17) 34.40 (19.61)
SCoP (ICLpara, k = 8) 65.08 (38.57) 48.82 (33.51) 23.62 (20.18) 36.40 (26.96)
HPR (%) 22 36 75 62

GPT-3.5-Turbo Self-Consistency 80.0 (9.09) 70.0 (16.67) 51.6 (29.78) 54.4 (26.92)
SCoP (ICLpara, k = 8) 82.0 (36.36) 74.0 (27.78) 57.6 (38.22) 58.4 (36.54)
HPR (%) 4 18 58 38

GPT-4 Self-Consistency 98.0 (50.0) 84.0 (11.11) 64 (37.93) 74.0 (31.58)
SCoP (ICLpara, k = 8) 98.0 (50.0) 86.0 (33.33) 66 (41.38) 78.0( 57.89)

Table 2: A comparison of the performance (accuracy) between SC and SCoP (ICLpara paraphrasing, with k = 8)
using 4-shot in-context chain-of-thought exemplars over three language models. Accuracy is reported for both Hard
Problems (HPR% ≤ 0.5) (inside parentheses) and global accuracy across the entire dataset (outside parentheses).

fixed as 40. Due to resource constraints, we sam-299

pled 300 data points from each test set, except for300

AQuA, which contains 254 testing examples.301

The performance metric is the accuracy of the302

self-consistency answer. We also report the accu-303

racy over hard problems, defined as the problems304

whose original accuracy is below 50%. The accu-305

racies over all problems and hard problems are re-306

ported inside and outside parentheses respectively.307

HPR% (Hard Problem Ratio) denotes the percent-308

age of such hard problems.309

There are three general observations. First,310

SCoP with the two paraphrasing schemes both311

outperform the vanilla self-consistency baseline.312

Surprisingly, even the naïve paraphrasing can lead313

to performance improvement, despite the high314

chances of generating paraphrases with worse solve315

rate (see Figure 2). We will discuss a hypothesis316

in Section 5. Between the two schemes, ICLpara317

consistently outperforms Naïve. Second, the per-318

formance improvement generally increases as K319

increases. Third, more significant performance320

gain over LLaMA-2-70B.321

The results further indicate that MATH and322

MMLU are considerably more challenging than323

GSM8K and AQuA, as evidenced by their high 324

HPR% and low overall accuracy. Moreover, signif- 325

icant accuracy gains are from the original “Hard 326

Problems”, suggesting that changing surface forms 327

can solve the problems initially deemed unsolv- 328

able by self-consistency. Finally, when solving the 329

MATH dataset with LLaMA-2-70b, ICLpara under- 330

performs Naïve paraphrasing. We hypothesize that 331

the MATH problems present a significant challenge 332

for LLaMA-2-70b, making it difficult to effectively 333

learn paraphrasing from in-context examples. 334

Four-Shot CoT One caveat of the zero-shot CoT 335

results is that SCoP (ICLpara) has indirect access 336

to additional ground-truth information from in- 337

context exemplars. There is also a question of 338

whether the advantage of SCoP over SC will di- 339

minish as both are exposed to more examples. To 340

ensure a fair comparison and further validate the 341

effectiveness of SCoP, Table 2 shows results un- 342

der the four-shot CoT setting, where the baselines 343

also have access to some ground-truth answer in- 344

formation. Due to resource constraints, we eval- 345

uate GPT4 with 100 random samples from each 346

dataset. The results show that while four-shot CoT 347

can improve SC and SCoP in general (compared 348
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GPT3.5, GPT4 GPT3.5, LLaMA-2 GPT4, LLaMA-2
GSM8K 0.573** 0.649*** 0.445*
AQUA 0.543*** 0.227*** 0.314*
MATH 0.554*** 0.242* 0.433*
MMLU 0.313* 0.320*** 0.233

Table 3: Spearman’s rank correlation of original prob-
lems’ solve rate across language models.

with zero-shot CoT), SCoP still consistently out-349

performs SC over all three language models. The350

only exception is GPT4 on GSM8K, which already351

achieves near-perfect performance with SC, thus352

SCoP only achieves equivalent performance.353

4.3 Additional Studies354

Searching for Exemplars Since our in-context355

learning paraphrasing scheme requires access to356

ground-truth answers, we would like to study how357

many problems with ground-truth answers are358

needed. Figure 4 illustrates how many data points359

in the training set, on average, need to be sampled360

to obtain Nshot ‘good’ paraphrases (x-axis) with361

different margins. We can observe that, although362

satisfying a large margin requires more samples,363

it is relatively easy (typically every ±5 example)364

to find a sample that substantially improves solve365

rate after paraphrasing. This, again, indicates the366

sensitivity of the language model to surface form367

variations in mathematical reasoning.368

Difficulty Beliefs Across Language Models An369

intriguing question is how different language mod-370

els rank the difficulty of the problems. We measure371

the agreement between language models on prob-372

lem difficulty by Spearman’s rank correlation5 of373

the solve rate for original problems across four374

datasets. As shown in Table 3, the ranks of the375

difficulty (by solve rate) are all positively corre-376

lated. However, the degree of correlation varies,377

with higher agreement observed within the GPT378

model family and on simpler datasets.379

Paraphrase Transfer We investigate whether380

paraphrases from a stronger LLM can be trans-381

ferred to weaker ones and improve SCoP. Table 4382

demonstrates the paraphrase transfer performance383

of SCoP (Naïve, k = 8) on 100 randomly sam-384

pled data points from MMLU and GSM8K under385

the zero-shot CoT setting. In general, paraphrases386

produced by GPT-4 can be utilized by GPT3.5-387

turbo or LLaMA-2-70b for further performance388

5Using Python Scipy package.

Solver Paraphraser MMLU GSM8K
GPT-3.5 Self 50.0 78.0
GPT-3.5 GPT-4 54.0 84.0
LLaMA-2 Self 37.0 61.0
LLaMA-2 GPT-4 34.0 69.0

Table 4: Performance of SCoP (Naïve, k = 8) on MMLU
and GSM8K, with different paraphrasers.

GSM8K AQuA MATH MMLU

LLaMA2
Naïve 20.29 17.48 12.89 17.54
ICLpara 18.88 15.7 12.20 16.58

GPT-3.5
Naïve 20.61 16.13 15.75 16.86
ICLpara 16.18 10.74 15.59 15.57

GPT-4 ICLpara 9.69 11.46 16.96 21.26

Table 5: VOV values across datasets and language mod-
els, shown as standard deviation.

improvements, with an exception with LLaMA-2 389

on MMLU, where GPT4 and LLaMA-2 exhibit the 390

lowest Spearman rank correlation of solve rate. We 391

hypothesize that the benefits of transferring para- 392

phrases across models may depend on the agree- 393

ment in their beliefs of problem difficulty. 394

Variance of Variations In light of the consid- 395

erable variability observed in solve rates among 396

problem surface forms (Figure 2), we propose and 397

advocate Variance of Variations (VOV) for eval- 398

uating language models on reasoning robustness. 399

Let X(p) ∈ [0, 1] be the random variable repre- 400

senting the solve rates of various paraphrases of a 401

problem p. Then the VOV value of the dataset D 402

is then defined as: 403

VOV = Ep∼D[Var(X(p))] (1) 404

where Var(·) is the variance. A large value of VOV 405

indicates high variability in the language model’s 406

reasoning ability against problem surface forms. 407

We compute VOV using the solve rate for the k = 8 408

paraphrases and the original problem as X(p) for 409

each p. As shown in Table 5, while VOV decreases 410

when a robust model solves a more manageable 411

dataset (e.g., GPT-4 on GSM8K), and ICLpara gen- 412

erated paraphrases can generally reduce VOV, VOV 413

remains unreasonably high over more challenging 414

datasets and all language models. 415

Examples of ‘Good’ Paraphrases We provide 416

some qualitative examples comparing the solve 417

rates between the original problem and a para- 418

phrased version in Table 6. It is difficult to visually 419

tell what contributes to a good paraphrase. We will 420

publish these data to encourage future research. 421
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Figure 4: (a) GSM8K (b) AQuA (c) MATH (d) MMLU. The average number of data points in the training set
needed for obtaining Nshot exemplars at different margins.
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Figure 5: Data Difficulty Map for GSM8K using GPT3.5, with three types of changes from solving the original
problem to one of its random paraphrases: (a) Improvement, (b) Overconfidence, and (c) Uncertainty.

5 Discussion422

We have an intriguing observation that even the423

naïve scheme of generating math paraphrases can424

improve the overall accuracy. However, the naïve425

scheme has a significant chance of generating426

worse paraphrases. Why would aggregating over427

the mixture of better and worse paraphrases still428

significantly improve the performance?429

To explain this, Figure 5 shows three scatter plots430

of the solve rate against the entropy of answer dis-431

tributions. The outcome of solving each random432

paraphrase is represented as a black dot. As can be433

observed, the dots roughly form a triangular region.434

The top left corner represents the ideal case with435

high solve rates and high confidence. The bottom436

corners, on the other hand, represent two failure437

modes. The bottom right corner represents the case438

with low solve rates and low confidence, and the439

bottom left corner with low soft rates but high con-440

fidence (commonly known as over-confidence).441

The blue arrows in Figure 5(a) visualize the442

cases where the paraphrases improve the solve rate,443

and they mostly point to the top-left corner. The444

arrows in Figures 5(b) and (c) represent the cases445

where the paraphrases lower the solve rate, and we446

can observe that the arrows pointing to the bottom 447

right corner (yellow arrows in (b)) far outnumber 448

those to the bottom left corner (red arrows in (c)). 449

This indicates that while the ‘good’ paraphrases 450

would sharpen the answer distribution, the ‘bad’ 451

paraphrases mostly would flatten the distribution. 452

Since the final aggregated answer distribution is 453

predominantly influenced by the sharp distribu- 454

tions, the damage brought by the ‘bad’ paraphrases 455

is small compared to the benefit brought by the 456

‘good’ paraphrases, and thus the aggregate effect 457

across all the paraphrases is still positive. 458

6 Related Work 459

Mathematical Reasoning in LLMs The com- 460

plexity of mathematics necessitates System-2 rea- 461

soning, characterized by a slow, step-by-step cogni- 462

tive process (Kahneman, 2011). Numerous works 463

have sought to emulate this process in solving math- 464

ematics with LLMs (Wei et al., 2022; Wang et al., 465

2022; Kojima et al., 2023; Lightman et al., 2023; 466

Qiao et al., 2022). As a prominent framework, 467

chain-of-thought (Wei et al., 2022; Kojima et al., 468

2023) prompts the language model to generate a 469

sequence of reasoning steps instead of a direct an- 470

swer; Wang et al. (2022) extended chain-of-thought 471
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Problem Source Label SR Voted (F.)
Original: Jenna has 4 roommates. Each month the electricity bill is $100. How much will each
roommate pay per year for electricity, if they divide the share equally?

GSM8K "240"
0.15 "300" (0.8)

Paraphrased: Jenna shares an apartment with 4 other people. The electricity bill is $100 per month.
If they split the bill equally, how much will each roommate contribute towards the electricity bill in a year?

0.95 "240"

Original: Jenny goes to the florist to buy some flowers. Roses cost $2 each and $15 for a dozen.
If she bought 15 roses and arrived with five 5 dollar bills and they only have quarters for change,
how many quarters does she leave with?

GSM8K "16"

0.0 "20" (0.3)

Paraphrased: Jenny visits the flower shop to purchase flowers. She can buy roses individually for $2 each
or buy a dozen roses for $15. Jenny decides to buy 15 roses in total. She pays with five $5 bills and
the florist can only give her change in quarters. The question asks how many quarters Jenny receives as change.

0.55 "16"

Original: Assistants are needed to prepare for preparation. Each helper can make either 2 large cakes or
35 small cakes/hr. The kitchen is available for 3 hours and 20 large cakes & 700 small cakes are needed.
How many helpers are required?

AQUA B

0.2 A (0.25)

Paraphrased: Jenny visits the flower shop to purchase flowers. She can buy roses individually for $2 each
or buy a dozen roses for $15. Jenny decides to buy 15 roses in total. She pays with five $5 bills and
the florist can only give her change in quarters. The question asks how many quarters Jenny receives as change.
Options:[A)8,B)10,C)12,D)15,E)19]

0.8 B

Original: A starts a business with Rs.40,000. After 2 months, B joined him with Rs.60,000. C joined them after
some more time with Rs.120,000. At the end of the year, out of a total profit of Rs.375,000, C gets Rs.150,000
as his share. How many months after B joined the business, did C join?

AQUA B

0.1 C (0.4)

Paraphrased: A starts a business with Rs.40,000 and after 2 months, B joins with Rs.60,000. C joins the business
at some point later with Rs.120,000. At the end of the year, the total profit is Rs.375,000, and C receives
Rs.150,000 as their share. How many months after B joined the business did C join?
Options:[A)2,B)4,C)23,D)24,E)84]

0.45 B

Original: A star-polygon is drawn on a clock face by drawing a chord from each number to the fifth number
counted clockwise from that number. That is, chords are drawn from 12 to 5, from 5 to 10, from 10 to 3,
and so on, ending back at 12. What is the degree measure of the angle at each vertex in the star-polygon?

MATH "30"

0.05 "150" (0.4)

Paraphrased: What is the measure of the angle at each vertex in the star-polygon formed by drawing a
chord from each number on the clock face to the fifth number counted clockwise from that number?

0.5 "30"

Original: By partial fractions, 1
ax2+bx+c

= A

x−
−b+

√
b2 − 4ac

2a

+ B

x−
−b−

√
b2 − 4ac

2a

Find A+B.

MATH "0"

0.2 "1" (0.25)

Paraphrased: Find the sum of A and B in the expression
1

ax2+bx+c
= A

x−−b+
√

b2−4ac
2a

+ B

x−−b−
√

b2−4ac
2a

. *Note the LATEXcode was paraphrased from \frac to \dfrac. 0.65 "0"

Original: Statement 1 | For every positive integer n there is a cyclic group of order n.
Statement 2 | Every finite cyclic group contains an element of every order that divides the order of the group.

MMLU A

0.05 C (0.95)

Paraphrased: Statement 1 says that there exists a cyclic group of any positive integer n.
Statement 2 says that in any finite cyclic group, there is an element for every possible order that divides
the order of the group.
Options:[A)True,True, B)False,False, C)True,False, D)False,True]

0.5 A

Original: What is the probability that a randomly selected integer in the set {1, 2, 3, . . . , 100} is divisible by 2
and not divisible by 3? Express your answer as a common fraction.

MMLU D

0.25 A (0.4)

Paraphrased: What is the chance that if we randomly choose an integer from the set of numbers 1 to 100,
it will be divisible by 2 but not divisible by 3? Write your answer as a fraction.
Options:[A) 31

66, B) 17
66, C) 17

31, D) 17
50]

0.8 D

Table 6: Qualitative examples where the original problems and corresponding surface form variations exhibit
substantial solve rate difference using GPT-3.5-turbo.

by Self-Consistency, in which they replaced greedy472

decoding with sampling decoding to generate a473

variety of reasoning paths, with multiple paths po-474

tentially leading to the same answer from different475

angles. Other multi-step reasoning variations with476

verifiers exist (Lu et al., 2023; Besta et al., 2023;477

Yao et al., 2023); however, they are less related478

to our focus primarily on the language model’s479

internal ability to solve mathematical problems.480

Paraphrasing Variability Previous research on481

the impact of paraphrasing mathematical problems482

on their solvability by language learning models483

(LLMs) is limited. The study by (Gonen et al.,484

2022) explored how paraphrased instructions affect485

the performance of traditional NLP benchmarks.486

This sensitivity of instructive prompts has inspired487

further research in prompting learning (Shin et al.,488

2020; Zhou et al., 2023; Sordoni et al., 2023) and 489

in-context exemplar mechanisms (Min et al., 2022; 490

Brown et al., 2020; Ye and Durrett, 2022). How- 491

ever, our work focuses on the sensitivity of the 492

mathematical problem presentation itself instead 493

of the instruction or in-context examples. 494

7 Conclusions 495

This work highlights the variability in the solve rate 496

of large-scale language models to the surface form 497

of mathematical problems. Leveraging this, we 498

introduced the Self-Consistency-over-Paraphrases 499

(SCoP), which improves mathematical reasoning 500

performance over Self-Consistency. We hope our 501

findings will inspire the need for more robust lan- 502

guage models that can reason effectively regardless 503

of how a problem is presented. 504
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8 Limitations505

While we derive thorough conclusions about the506

relationship between the surface form of a mathe-507

matical problem and its solvability by large-scale508

language models with the effectiveness of SCoP509

and additional studies, one limitation is the need for510

a mechanism for identifying or generating surface511

forms that are easier to solve than others. Future512

research could address this by exploring the ratio-513

nalization of surface forms, i.e., determining the514

optimal form given the original one, using either a515

discriminative or a generative framework.516

9 Ethics Statement517

The datasets that we used in experiments are pub-518

licly available. In our work, we explore the relation-519

ship between the surface form of a mathematical520

problem and its solvability by large-scale language521

models. We do not expect any direct ethical con-522

cern from our work.523
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A Choose Margin656

We examine the effect of margin on selecting ex-657

emplars for in-context paraphrasing using GPT-3.5658

and separate dev-sets from GMS8K and MMLU,659

each with 250 data points. The results in Table 7660

show that a moderate margin outperforms a large661

one in SCOP, as the latter may decrease the diver-662

sity of exemplars.663

Margin MMLU (Dev, k = 8) GSM8K (Dev, k = 8)
SC/HPR% 53.20 (26.87) / 64 73.60 (21.43) / 33.6
0.2 55.60 (34.38) 75.20 (30.95)
0.3 56.80 (35.63) 74.80 (32.14)
0.4 55.20 (33.75) 75.60 (33.33)
0.5 53.60 (32.50) 74.40 (35.71)

Table 7: Ablation on the margin effect of exemplar
selection.

B APE alternatives664

A potential alternative to find an optimal prompt665

for paraphrasing is to use the Automatic Prompt666

Engineering (APE) settings (Zhou et al., 2023). We667

formulate the procedure into four steps:668

1. Present a set of input-output pairs where the669

inputs are the original problems and the out-670

puts are the paraphrased exemplars. Prompt671

the language model to generate C candidate672

instructions that could produce the outputs673

from the inputs.674

2. Prompt each candidate instruction to the lan-675

guage model to generate paraphrases for a676

batch size B of problems in the development677

set and compare the mean solve rate change678

before and after paraphrasing.679

3. Choose the instruction that maximizes the680

mean solve rate change.681

4. Repeat steps 1 - 3 E times.682

We implemented this procedure using GPT-3.5683

on the AQUA development set to obtain the instruc-684

tion (C = 15, B = 30, B = 0). We tested the per-685

formance in both AQUA (in-domain) and GSM8K686

(out-of-domain), comparing it with ICLpara. Al-687

though the in-domain AQUA performance was688

similar to ICLpara, the out-of-domain performance689

worsened and APE required more data than ICLpara.690

Therefore, this approach has yielded negative re-691

sults. The performance results are presented in692

Table 8.693

C Prompt Templates 694

We list the prompt templates used in the paper be- 695
low. 696

Naïve Paraphrasing

Paraphrase the following math problem: {target
problem}

697

ICL Paraphrasing

Paraphrase the following math problem: {input
problem}
Output: {Paraphrased exemplar}
(Repeat Nshot)

Paraphrase the following math problem: {target
problem}

698

APE Candidate Search

A student is completing a task that requires producing
a text output from a text input. The student receives
instruction about several rules that describe how to
produce the outputs given the inputs. What is the
instruction?

699

Best Candidate Found by APE

Reformat the input sentence to make it more clear
and concise. Ensure that all relevant information
from the input is retained in the output. Use proper
grammar and punctuation in the output. If there are
percentages or mathematical expressions in the input,
ensure they are accurately represented in the output.
Maintain the logical flow of information from the
input to the output. Ensure that the information is
effectively conveyed in a clear and understandable
manner when transforming the input into the output.

700

Few-shot Chain-of-thought

Question: At Academic Academy, to pass an algebra
test you must score at least 80. If there are 35
problems on the test, what is the greatest number you
can miss and still pass?
Answer Choices: A) 7 B) 28 C) 35 D) 8
Rationale: First, we need to find 80% of 35. We can
do this by multiplying 35 by 0.80: 35× 0.80 = 28.
So, if you get 28 problems correct, you will have
scored 80% on the test.
To find the greatest number you can miss and still
pass, subtract the number you can get correct from
the total number of problems:35− 28 = 7.

Therefore, the greatest number you can miss and still
pass is (A) 7.
(Repeat Nshot)

Question: {target problem}
701
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GSM8K AQUA
ICLpara APE ICLpara APE

SC 76.33 (24.47) 66.93 (22.22)
N/1 77.85 (38.98) 73.67 (34.04) 66.43 (29.81) 66.05 (28.97)
N/2 80.51(39.24) 76.33 (36.17) 68.50 (31.67) 66.84 (29.99)
N/4 79.18 (38.27) 77.67 (32.98) 70.47 (35.37) 70.78 (32.03)
N/8 80.18 (40.62) 79.0 (41.49) 69.69 (34.44) 69.20 (31.01)

Table 8: A comparison between the performance of APE and ICLpara paraphrasing.
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