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Abstract
In the realm of interpretability and out-of-
distribution generalization, the identifiability of
latent variable models has emerged as a captivat-
ing field of inquiry. In this work, we delve into
the identifiability of Markov Switching Models,
taking an initial stride toward extending recent
results to sequential latent variable models. We
develop identifiability conditions for first-order
Markov dependency structures, whose transition
distribution is parametrised via non-linear Gaus-
sians. Through empirical studies, we demonstrate
the practicality of our approach in facilitating
regime-dependent causal discovery and segment-
ing high-dimensional time series data.

1. Introduction
State-space models (SSMs) were a well-established ap-
proach in the early stages of probabilistic sequential mod-
elling (Lindgren, 1978; Poritz, 1982; Hamilton, 1989). Over
the recent years, recurrent neural networks have gained pop-
ularity over SSMs, thanks to the development of LSTMs
(Hochreiter & Schmidhuber, 1997) and GRUs (Cho et al.,
2014) that allow the modelling of longer-term dependencies.
More recently, Gu et al. (2022) has achieved promising re-
sults with structured state-spaces. From a data-generating
process perspective, these techniques can be framed as se-
quential latent variable models, such as the Variational Re-
current Neural Network (Chung et al., 2015) or other further
extensions (Li & Mandt, 2018; Babaeizadeh et al., 2018;
Saxena et al., 2021; Linderman et al., 2016; 2017). Sequen-
tial generative models have been combined with SSMs by
e.g. setting them as priors (Fraccaro et al., 2017; Dong et al.,
2020; Ansari et al., 2021; Smith et al., 2022). Despite these
efforts in incorporating more flexible priors and develop-
ing stabler training schemes, theoretical properties such as
identifiability or consistency are less studied, contrary to the
early literature on SSMs.

Identifiability is an important property in a wide variety of
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contexts; it, in general, establishes a one-to-one correspon-
dence between the data likelihood and the model parameters,
or an equivalence class of the latter. In causal inference (Pe-
ters et al., 2017), identifiability refers to whether the under-
lying causal structure can be estimated from observational
data. In ICA (Comon, 1994), we aim to identify the latent
sources and the mapping from the latents to the observed.
General nonlinear ICA is ill-defined (Hyvärinen & Pajunen,
1999). However, recent results show that identfiability can
be achieved using conditional priors (Khemakhem et al.,
2020). Moreover, in a framework for deep (non-temporal)
latent variable models, the required access to auxiliary vari-
ables can be relaxed using a mixture prior (Kivva et al.,
2022). Despite these developments, extending these results
to sequential models remains an open question with limited
understanding (Hälvä et al., 2021; Yao et al., 2022).

In this work, we consider the identifiability for Markov
Switching Models (MSMs) (Hamilton, 1989), an extension
of a Hidden Markov Model with autoregressive connec-
tions. Identifiable MSMs could serve as prior distributions
to enable identifiable sequential latent variable models. We
present conditions in which the conditional autorregressive
distribution is identifiable for the non-linear Gaussian case.
We validate our theoretical results with synthetic experi-
ments, and showcase the approach for high-dimensional
time-series segmentation. Notably, our results can achieve
identifiability for first-order regime-dependent causal dis-
covery in the absence of instantaneous effects, enabling us
to study time-dependent causal structures in climate data.

2. Theoretical considerations
2.1. Identifiable Markov Switching Models

Let xt ∈ Rd with t ∈ {1, . . . T} denote observed random
variables from a discrete time series following a Markov
Switching Model (MSM) (Hamilton, 1989). Such models
consider discrete latent random variables st ∈ {1, . . . ,K}
which condition the distribution of the observations. The
conditional distribution follows an autoregressive process.

pθ(x1:T ) =
∑
s1:T

p(s1:T )pθ(x1:T |s1:T ), (1)

pθ(x1:T |s1:T ) = pθ(x1|s1)
T∏

t=2

pθ(xt|xt−1, st), (2)
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where we consider first-order processes and the distribution
is parametrised by θ. Note that the distribution of the latent
states p(s1:T ) is not specified. Our goal is to explore the
assumptions on the model so that the transition distribution
family is identifiable. Below we discuss the Gaussian family
and defer the non-parametric case to Appendix B.2.

The MSM can be formulated as a finite mixture model
where ci = p(s1:T = {ai1, ai2, . . . , aiT }) represents the
probability of a Markov chain with i ∈ {1, . . . ,KT } and
pai

1:T
(x1:T ) = p(x1:T |s1:T = ai1:T ) denotes the joint prob-

ability given some trajectory i. Let us define the family of
initial and transition distributions

ΠA := {pa(x1)|a ∈ A},
PA := {pa(xt|xt−1)|a ∈ A}, |A| = K. (3)

Note PA incorporates the first-order Markov assumption.
Then, we denote the family of first-order MSMs as

HT (ΠA,PA) :=

{
KT∑
i=1

cipai
1
(x1)

T∏
t=2

pai
t
(xt|xt−1),

ait ∈ A, ai1:T ̸= aj1:T ,∀i ̸= j,

KT∑
i=1

ci = 1

}
. (4)

We define the identification ofHT (ΠA,PA) as follows.

Definition 2.1. The familyHT (ΠA,PA) that contains first-
order MSMs is said to be identifiable up to permutations,
when for p1(x1:T ) =

∑N
i=1 cipai

1
(x1)

∏T
t=2 pai

t
(xt|xt−1)

and p2(x1:T ) =
∑M

i=1 ĉipâi
1
(x1)

∏T
t=2 pâi

t
(xt|xt−1),

p1(x1:T ) = p2(x1:T ),∀x1:T ∈ RTd, if and only if M = N
and for each 1 ≤ i ≤ N there is some 1 ≤ j ≤M s.t.

1. ci = ĉj ;

2. if ait1 = ait2 for t1 ̸= t2, then âjt1 = âjt2 , t1, t2 ≥ 2;

3. pai
t
(xt|xt−1) = pâj

t
(xt|xt−1),∀t ≥ 2, xt,xt−1 ∈ Rd.

4. pai
1
(x1) = pâj

1
(x1) ∀x1 ∈ Rd.

We note that the 2nd requirement above eliminates the
permutation equivalence of e.g., (1, 2, 3, 2) and (3, 1, 2, 3)
which would be valid in the finite mixture case with vector
indexing. Yakowitz & Spragins (1968) proved the identi-
fiability result for finite mixtures by imposing linear inde-
pendence on a family of d-dimensional CDFs (see App. A
for a more formal statement). We extend this result to the
MSM family. First, we introduce the concept of linearly
independent functions under finite mixtures as follows.

Definition 2.2. A family of functions {fa(x)|a ∈ A} is
said to contain linearly independent functions under finite
mixtures, if for any A0 ⊂ A such that |A0| < +∞, the
functions in {fa(x)|a ∈ A0} are linearly independent.

This is a weaker requirement of linear independence on
function classes as it allows linear dependency by represent-
ing one function as the linear combination of infinitely many

other functions. Given the previous definition we have the
following result (see Appendix B.1 for the proof).

Theorem 2.3. Assume the functions in PT
A := ΠA ⊗

(⊗T
t=2PA) are linearly independent under finite mixtures,

then the distribution familyHT (ΠA,PA) is identifiable as
defined in Definition 2.1.

Therefore, we need to specify linearly independent distri-
bution families PT

A to construct identifiable MSMs, which
will be discussed in the next section.

2.2. Parametrisation via Gaussian distribution

We seek to define a parametric family of conditional distri-
butions for which functions in it are linearly independent.
To do so we define a Gaussian family as follows:

GA = {pa(xt|xt−1) = N (xt;m(xt−1, a),

Σ(xt−1, a))|a ∈ A,xt,xt−1 ∈ Rd}, (5)

where m(xt−1, a) and Σ(xt−1, a) define the mean and co-
variance matrix for the Gaussian. We further require the
following unique indexing assumption:

∀a ̸= a′ ∈ A, ∃xt−1 ∈ Rd, s.t.m(xt−1, a)

̸= m(xt−1, a
′) or Σ(xt−1, a) ̸= Σ(xt−1, a

′). (6)

In other words, for such xt−1 we have pa(xt|xt−1) and
pa′(xt|xt−1) as two different Gaussian distributions. To
achieve linear independence of the joint distributions and
prove identifiability in the sense of Definition 2.1, we also
need to introduce a family of initial distributions IA.

IA := {pa(x1) = N (x1;µ(a),Σ1(a))|a ∈ A}, (7)

where we also assume unique indexing for a ∈ A, i.e.,

a ̸= a′ ∈ A⇔ µ(a) ̸= µ(a′) or Σ1(a) ̸= Σ1(a
′). (8)

The above Gaussian distribution families paired with unique
indexing assumptions satisfy conditions which favour linear
independence of the joint distribution family.

Theorem 2.4. Define the following joint distribution family
under the non-linear Gaussian model

PT
A =

{
pa1,a2:T

(x1:T ) = pa1
(x1)

T∏
t=2

pat
(xt|xt−1),

at ∈ A, pa1
∈ IA, pat

∈ GA, t = 2, ..., T

}
, (9)

with GA, IA defined by Eqs. (5), (7) respectively. Assume:

(a1) Unique indexing for GA and IA: Eqs. (6), (8) hold;

(a2) Continuity for the conditioning input: distributions in
GA are continuous w.r.t. xt−1 ∈ Rd;

(a3) Zero-measure intersection in certain region: there ex-
ists a non-zero measure set X0 ⊂ Rd s.t. {xt−1 ∈
X0|m(xt−1, a) = m(xt−1, a

′),Σ(xt−1, a) =
Σ(xt−1, a

′)} has zero measure, for any a ̸= a′;
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Then, the joint distribution family contrains linearly inde-
pendent distributions for (x1:T−1,xT ) ∈ R(T−1)d × Rd.

See Appendix B.2 and B.3 for proofs. The strategy can
be summarised in 3 steps. (i) By using the conditional
first-order Markov assumption on pai

1:T
(x1:T ) we just

need to show conditions for the linear independence of
{pai

1:2
(x1:2)}, and then we prove T ≥ 3 by induction.

(ii) To satisfy the conditions for linear independence of
{pai

1:2
(x1:2)}, we specify conditions on {pai

t
(xt|xt−1)}

and {pai
1
(x1)} in non-parametric case. (iii) We show the

Gaussian family with (a1-a3) is a special case of the above.
The remaining question is how to parameterise the Gaussian
moments such that assumption (a3) holds.

Corollary 2.5. A Gaussian parametrisation of the con-
ditional distribution via multivariate analytic functions,
pa(xt|xt−1) = N (m(xt−1, a),Σ(xt−1, a)) with unique
indexing (Eq. 6), renders the MSM identifiable.

This allows parametrisations via polynomials, or even neural
networks with analytic activation functions (e.g. SoftPlus).

3. Estimation
Assume we have a dataset D with N sequences of length T
generated by Eq. 1, xn

1:T = {xn
1 , . . . ,x

n
T } ∼ D. Although

we do not impose any restrictions on the distribution of
the states, in this section we describe our implementation in
terms of a first-order stationary Markov chain as an example.
Our approach uses the expectation maximisation (EM) algo-
rithm, which is an efficient framework for maximising the
likelihood of mixture models (Bishop, 2006). Below we pro-
vide the M-step of the transition distribution parametrised
by neural networks and more details (including polynomial
parametrisations) can be found in Appendix B.4. Since for
this case the exact updates cannot be computed, we take a
Generalised EM (GEM) (Dempster et al., 1977) approach
where a gradient ascent step is performed

θnew ← θold+

η

N∑
n=1

T∑
t=2

K∑
k=1

γn
t,k∇θ log pθ(x

n
t |xn

t−1, s
n
t = k), (10)

where γn
t,k = pθ(s

n
t = k|xn

1:T ) and the update rule can be
computed using back-propagation.

This approach is well-established in the literature (Bengio &
Frasconi, 1994; Hälvä & Hyvarinen, 2020), and convergence
is guaranteed to a local maximum of the likelihood. To
ensure our method converges to the MLE solution, we will
assume N is large and use stochastic gradient ascent updates.

4. Related work
Markov Switching Models were first introduced by Poritz
(1982) as switching linear auto-regressive processes. This

family of state-space models re-use the forward-backward
recursions (Rabiner, 1989) for tractable posterior estima-
tion and have been studied decades ago for speech analysis
(Poritz, 1982; Ephraim & Roberts, 2005) and economics
(Hamilton, 1989). Frühwirth-Schnatter & Frèuhwirth-
Schnatter (2006) review standard estimation approaches
and applications of the MSM family. Although the majority
of the proposed approaches estimate the parameters using
tractable MLE solutions for their asymptotic properties,
identifiability for general high-order autoregressive MSMs
has not been proved. The main complication arises from
the explicit dependency on the observed variables, which
poses a great challenge to prove linear independence of
the joint distribution given the states under relaxed assump-
tions. To the best of our knowledge, identifiability has only
been explicitly studied for the first-order discrete case in An
et al. (2013). Here, the central assumption is stationarity
and ergodicity of the latent and observed variables, which
uniquely determines the joint probability of four consecutive
observations as shown by White (2001).

5. Experiments
Synthetic experiments We generate data according to
our assumptions and evaluate the estimated functions in
terms of the ground truth. For K components, the error is
computed in terms of the averaged L2 distance using the
permutation that gives lowest error. We use fixed covari-
ances and parametrise the transition means using random
cubic polynomials and networks with cosine or SoftPlus
activations. When increasing dimensions, we use locally
connected networks (Zheng et al., 2018) to encourage spar-
sity and generate stable samples. See App. C.1,C.4, and C.3
for details on the error computation, data and training.

Figure 1a shows increasing the sequence length generally re-
duces the L2 distance error, which is expected. Considering
the different function forms, we observe that the polyno-
mials are estimated with higher error for short sequences,
which could be caused by the high frequency components
from the cubic terms. Figure 1b, shows low parameter errors
even when increasing the number of dimensions and compo-
nents. The locally connected networks are implemented by
first sampling a random regime-dependent causal structure.
Therefore, we evaluate the estimated causal structure in Fig-
ure 1c, which we calculate via thresholding the averaged
Jacobian (see App. C.2 for details). The results show the
MSM with nonlinear transitions is able to maintain high
F1-scores, despite the differences in L2 distance when in-
creasing dimensions and states (1b). Although the approach
is restricted by first-order Markov assumptions, the synthetic
setting shows promising directions for causal discovery with
high-dimensional regime-dependent dynamics.

Regime-dependent causal discovery To motivate iden-
tifiable MSMs for regime-dependent causal discovery, we
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Figure 1: Synthetic experiment results. (a) L2 distance error using different transition functions with varying T . (b) L2
distance error and (c) averaged F1 score of nonlinear data (cosine activations) with increasing states and dimensions.
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Figure 2: Regime-dependent graphs generated assuming
(a) linear and (b) non-linear effects. Green and blue lines
indicate effects in summer and winter months respectively.

explore the task considered in Saggioro et al. (2020). The
data consists on monthly observations of El Niño Southern
Oscillation (ENSO) and All India Rainfall (AIR) from 1871
to 2016. We follow the settings in Saggioro et al. (2020)
and train our approach using linear and nonlinear (softplus
networks) transitions. The results are reported in Figure 2,
where we show the regime-dependent graphs of both mod-
els. Our approach captures regimes based on seasonality,
as one component is assigned to Summer months (from
May to September), and the other is assigned to Winter
months (from October to April). The weights of the regime-
dependent graphs denote the absolute value of the Jacobian
where we keep edges for values greater than 0.05. In the
linear case, we only observe an effect from ENSO to AIR
which occurs only during Summer. This result is consistent
with both Saggioro et al. (2020) and the literature (Webster
& Palmer, 1997), which suggest that ENSO has a direct ef-
fect on AIR during summer, but not in Winter. For nonlinear
transitions (fig. 2b), we observe the previous result along
with additional links which are not supported by evidence.
Since assuming non-linear effects is more flexible, our re-
sults suggest finding additional links imply the presence of
confounders that have influence on both variables, which
should be expected in scenarios with few observations.

Segmentation of dancing patterns We showcase that
our model can successfully segment high-dimensional and
non-linear data despite not considering any continous latent
variables compared to recent approaches (Dong et al., 2020;
Ansari et al., 2021). We consider salsa dancing sequences
from the CMU mocap data. Details on the data can be
found in Appendix C.6. Figure 3 illustrates our iMSM using
nonlinear (softplus networks) transitions in comparison to
KVAE (Fraccaro et al., 2017). Our model assigns differ-

Forward and
backward Turning around Double spinStanding in front

iM
SM

 (o
ur

s)
KV

AE

Figure 3: Posterior probability of a salsa dancing sequence
of our approach (iMSM) and KVAE (Fraccaro et al., 2017)
along with several patterns distinguished in the example.

ent dancing patterns into different states. For example, the
first part of the sequence consists on forward and backward
movements present in the majority of the training samples.
This pattern is repeated at the end, which KVAE fails to clas-
sify. In general, both approaches present some limitations.
For KVAE, the soft-switching mechanism creates a trade-off
between modelling non-linear transitions and confidence in
the component assignments. Our approach is limited by the
first-order Markov assumption on the conditioned transition
distribution, which prevents the model from learning high
order moments (such as acceleration) that would provide
richer features for higher-fidelity time series segmentations.

6. Conclusions
We present identifiability analysis regarding Markov Switch-
ing Models. Key to our contribution is the parametrisation
of the Gaussian mean via analytic functions, which establish
identifiability of the transition functions independently of
the marginal distribution of the states. We empirically verify
our theoretical results with synthetic experiments, and mo-
tivate our approach for regime-dependent causal discovery
and time series segmentation with real data.
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A. Non-parametric finite mixture models
We use the following existing result on identifiying finite mixtures (Yakowitz & Spragins, 1968), which introduces the
concept of linear independence to identification of finite mixtures. Specifically, consider a distribution family that contains
functions defined on x ∈ Rd:

FA := {Fa(x)|a ∈ A}

where Fa(x) is an d-dimensional CDF. Now consider the following finite mixture distribution family by linearly combining
the CDFs in F :

HA := {H(x) =

N∑
i=1

ciFai
(x)|N ∈ N+, ai ∈ A, ai ̸= aj ,∀i ̸= j,

N∑
i=1

ci = 1}.

Then we specify the definition of identifiable finite mixture family as follows:

Definition A.1. The finite mixture familyH is said to be identifiable up to permutations, when for any two finite mixtures
H1(x) =

∑M
i=1 ciFai

(x) and H2(x) =
∑M

i=1 ĉiFâi
(x), H1(x) = H2(x) for all x ∈ Rd, if and only if M = N and for

each 1 ≤ i ≤ N there is some 1 ≤ j ≤M such that ci = ĉj and Fai
(x) = Fâj

(x) for all x ∈ Rd.

Then Yakowitz & Spragins (1968) proved the identifiability result for finite mixtures. Recall, Def. 2.2 for linear independence
under finite mixtures, we state the following identifiability result

Proposition A.2. (Yakowitz & Spragins, 1968) The finite mixture distribution familyH is identifiable up to permutations,
iff. functions in F are linearly independent under finite mixtures.

B. Proofs
B.1. Proof of Theorem 2.3

Proposition A.2 can be directly generalised to CDFs defined on x1:T ∈ RTd. Furthermore, if we have a family of PDFs1,
e.g. PT

A := ΠA ⊗ (⊗T
t=2PA), with linearly independent components, then their corresponding Td-dimensional CDFs are

also linearly independent (and vice versa). Therefore we have the following result as a direct extension of Proposition A.2.

Proposition B.1. Consider the distribution family given by Eq. 4. Then the joint distribution inHT (ΠA,PA) is identifiable
up to permutations if and only if functions in PT

A are linearly independent under finite mixtures.

We now can prove Theorem 2.3.

Proof. From proposition B.1 we see that, PT
A being linearly independent implies identifiability up to permutation for

HT (ΠA,PA) in the finite mixture sense (Definition A.1). This means for p1(x1:T ) and p2(x1:T ) defined in Definition 2.1,
we have M = N and for every 1 ≤ i ≤ N , there exists 1 ≤ j ≤M such that ci = ĉj and

pai
1
(x1)

T∏
t=2

pai
t
(xt|xt−1) = pâj

1
(x1)

T∏
t=2

pâj
t
(xt|xt−1), ∀x1:T ∈ RTd.

This also indicates that pai
t
(xt|xt−1) = pâj

t
(xt|xt−1) for all t ≥ 2, xt,xt−1 ∈ Rd, which can be proved by noticing that

pa(xt|xt−1) are conditional PDFs. To see this, notice that as the joint distributions on x1:T are equal, then the marginal
distributions on x1:T−1 are also equal:

pai
1
(x1)

T−1∏
t=2

pai
t
(xt|xt−1) = pâj

1
(x1)

T−1∏
t=2

pâj
t
(xt|xt−1), ∀x1:T−1 ∈ R(T−1)d,

which immediately implies pai
T
(xT |xT−1) = pâj

T
(xT |xT−1),∀xT−1,xT ∈ Rd. Similar logic applies to the other time

indices t ≥ 1, which also implies pai
1
(x1) = pâj

1
(x1) for all x1 ∈ Rd.

1In this case we assume that the probability measures are dominated by the Lebesgue measure on RTd and the CDFs are differentiable.
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Lastly, if there exists t1 ̸= t2 such that ait1 = ait2 but âjt1 ̸= âjt2 , then the proved fact that, for any α,β ∈ Rd,

pâj
t1

(xt1 = β|xt1−1 = α) = pai
t1
(xt1 = β|xt1−1 = α)

= pai
t2
(xt2 = β|xt2−1 = α)

= pâj
t2

(xt2 = β|xt2−1 = α),

implies linear dependence of PA, which contradicts to the assumption that PT
A are linearly independent under finite mixtures.

We show the contradiction by assuming the case where Pt−1
A is linearly independent for some t > 1, and then we consider

the linear independence on Pt
A. We should have∑

i,j

γijpai
1:t−1

(x1:t−1)paj
t
(xt|xt−1) = 0, ∀x1:t ∈ R(t−1)d × Rd,

with γij = 0,∀i, j. We can swap the summations to observe that from linear dependence of PA, we can get γij ̸= 0,∀i and
some j such that

∑
j γijpaj

t
(xt|xt−1) = 0.

∑
i

∑
j

γijpaj
t
(xt|xt−1)

 pai
1:t−1

(x1:t−1) = 0, ∀x1:t ∈ R(t−1)d × Rd,

which satisfies the equation with γij ̸= 0 for some i and j and thus contradicts with the linear independence of Pt
A.

B.2. Proof of Theorem 2.4

As described in the main text, to prove identifiability in the sense of Definition 2.1, we require 4 steps. First, we need to
show linear independence of the conditional distribution family {p(x1:T |s1:T )}, which is why the result of Theorem 2.4
refers to the linear independence of Eq. (9), which is formulated as a finite mixture. Therefore, we aim to explore the
non-parametric case under some reasonable restrictions to the joint distribution family PT

A to obtain linear independence
under finite mixtures and render the MSM identifiable.

Following the strategy described in the main text, the second step requires us to start from linear independence results for
T = 2, and then extend to T > 2. First, we prove the following linear independence result.

Lemma B.2. Consider two families UI := {ui(y,x)|i ∈ I} and VJ := {vj(z,y)|j ∈ J} with x ∈ X ,y ∈ Rdy and
z ∈ Rdz . We further assume the following assumptions:

(b1) Positive function values: ui(y,x) > 0 for all i ∈ I, (y,x) ∈ Rdy ×X . Similar positive function values assumption
applies to VJ : vj(z,y) > 0 for all j ∈ J, (z,y) ∈ Rdz × Rdy .

(b2) Unique indexing: for UI , i ̸= i′ ∈ I ⇔ ∃ x,y s.t. ui(x,y) ̸= ui′(x,y). Similar unique indexing assumption applies
to VJ ;

(b3) Linear independence under finite mixtures on specific non-zero measure subsets for UI : for any non-zero measure
subset Y ⊂ Rdy , UI contains linearly independent functions under finite mixtures on (y,x) ∈ Y × X .

(b4) Linear independence under finite mixtures on specific non-zero measure subsets for VJ : there exists a non-zero measure
subset Y ⊂ Rdy , such that for any non-zero measure subsets Y ′ ⊂ Y and Z ⊂ Rdz , VJ contains linearly independent
functions under finite mixtures on (z,y) ∈ Z × Y ′;

(b5) Linear dependence under finite mixtures for subsets of functions in VJ implies repeating functions: for any β ∈ Rdy ,
any non-zero measure subset Z ⊂ Rdz and any subset J0 ⊂ J such that |J0| < +∞, {vj(z,y = β)|j ∈ J0} contains
linearly dependent functions on z ∈ Z only if ∃ j ̸= j′ ∈ J0 such that vj(z,β) = vj′(z,β) for all z ∈ Rdz .

(b6) Continuity for VJ : for any j ∈ J , vj(z,y) is continuous in y ∈ Rdy .
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Then for any non-zero measure subset Z ⊂ Rdz , UI ⊗ VJ := {vj(z,y)ui(y,x)|i ∈ I, j ∈ J} contains linear independent
functions defined on (x,y, z) ∈ X × Rdy ×Z .

Proof. Assume this sufficiency statement is false, then there exist a non-zero measure subset Z ⊂ Rdz , S0 ⊂ I × J with
|S0| < +∞ and a set of non-zero values {γij ∈ R|(i, j) ∈ S0}, such that∑

(i,j)∈S0

γijvj(z,y)ui(y,x) = 0, ∀(x,y, z) ∈ X × Rdy ×Z. (11)

Note that the choices of S0 and γij are independent of any x,y, z values, but might be dependent on Z . By assumptions
(b1), the index set S0 contains at least 2 different indices (i, j) and (i′, j′). In particular, S0 contains at least 2 different
indices (i, j) and (i′, j′) with j ̸= j′, otherwise we can extract the common term vj(z,y) out:

∑
(i,j)∈S0

γijvj(z,y)ui(y,x) = vj(z,y)

 ∑
i:(i,j)∈S0

γijui(y,x)

 = 0, ∀(x,y, z) ∈ X × Rdy ×Z,

and as there exist at least 2 different indices (i′, j) and (i, j) in S0, we have at least one i′ ̸= i, and the above equation
contradicts to assumptions (b1) - (b3).

Now define J0 = {j ∈ A|∃(i, j) ∈ S0} the set of all possible j indices that appear in S0, and from |S0| < +∞ we have
|J0| < +∞ as well. We rewrite the linear combination equation (Eq. (11)) for any β ∈ Rdy as

∑
j∈J0

 ∑
i:(i,j)∈S0

γijui(y = β,x)

 vj(z,y = β) = 0, ∀(x, z) ∈ X × Z. (12)

From assumption (b3) we know that the set Y0 := {β ∈ Rdy |
∑

i:(i,j)∈S0
γijui(y = β,x) = 0,∀x ∈ X} can only have

zero measure in Rdy . Write Y ⊂ Rdy the non-zero measure subset defined by assumption (b4), we have Y1 := Y\Y0 ⊂ Y
also has non-zero measure and satisfies assumption (b4). Combined with assumption (b1), we have for each β ∈ Y1, there
exists x ∈ X such that

∑
i:(i,j)∈S0

γijui(y = β,x) ̸= 0 for at least two j indices in J0. This means for each β ∈ Y1,
{vj(z,y = β)|j ∈ J0} contains linearly dependent functions on z ∈ Z . Now under assumption (b5), we can split the
index set J0 into subsets indexed by k ∈ K(β) as follows, such that within each index subset Jk(β) the functions with the
corresponding indices are equal:

J0 = ∪k∈K(β)Jk(β), Jk(β) ∩ Jk′(β) = ∅,∀k ̸= k′ ∈ K(β),

j ̸= j′ ∈ Jk(β) ⇔ vj(z,y = β) = vj′(z,y = β), ∀z ∈ Z.
(13)

Then we can rewrite Eq. (12) for any β ∈ Y1 as

∑
k∈K(β)

 ∑
j∈Jk(β)

∑
i:(i,j)∈S0

γijui(y = β,x)vj(z,y = β)

 = 0, ∀(x, z) ∈ X × Z. (14)

Recall from Eq. (13) that vj(z,y = β) and vj′(z,y = β) are the same functions on z ∈ Z iff. j ̸= j′ are in the same index
set Jk(β). This means if Eq. (11) holds, then for any β ∈ Y1, under assumptions (b1) and (b5),∑

j∈Jk(β)

∑
i:(i,j)∈S0

γijui(y = β,x) = 0, ∀x ∈ Rd, k ∈ K(β). (15)

Define C(β) = mink |Jk(β)| the minimum cardinality count for j indices in the Jk(β) subsets. Choose β∗ ∈
argminβ∈Y1

C(β):

1. We have C(β∗) < |J0| and |K(β∗)| ≥ 2. Otherwise for all j ̸= j′ ∈ J0 we have vj(z,y = β) = vj′(z,y = β) for
all z ∈ Z and β ∈ Y1, so that they are linearly dependent on (z,y) ∈ Z × Y1, a contradiction to assumption (b4) by
setting Y ′ = Y1.
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2. Now assume |J1(β∗)| = C(β∗) w.l.o.g.. From assumption (b5), we know that for any j ∈ J1(β
∗) and j′ ∈ J0\J1(β∗),

vj(z,y = β) = vj′(z,y = β) only on zero measure subset of Z at most. Then as |J0| < +∞ and Z ⊂ Rdz has
non-zero measure, there exist z0 ∈ Z and δ > 0 such that

|vj(z = z0,y = β∗)− vj′(z = z0,y = β∗)| ≥ δ, ∀j ∈ J1(β
∗),∀j′ ∈ J0\J1(β∗).

Under assumption (b6), there exists ϵ(j) > 0 such that we can construct an ϵ-ball Bϵ(j)(β
∗) using ℓ2-norm, such that

|vj(z = z0,y = β∗)− vj(z = z0,y = β)| ≤ δ/3, ∀β ∈ Bϵ(j)(β
∗).

Choosing a suitable 0 < ϵ ≤ minj∈J0 ϵ(j) (note that minj∈J0 ϵ(j) > 0 as |J0| < +∞) and constructing an ℓ2-
norm-based ϵ-ball Bϵ(β

∗) ⊂ Y1, we have for all j ∈ J1(β
∗), j′ ∈ J0\J1(β∗), j′ /∈ J1(β) for all β ∈ Bϵ(β

∗) due
to

|vj(z = z0,y = β)− vj′(z = z0,y = β)| ≥ δ/3, ∀β ∈ Bϵ(β
∗).

So this means for the split {Jk(β)} of any β ∈ Bϵ(β
∗), we have J1(β) ⊂ J1(β

∗) and therefore |J1(β)| ≤ |J1(β∗)|.
Now by definition of β∗ ∈ argminβ∈Y C(β) and |J1(β∗)| = C(β∗), we have J1(β) = J1(β

∗) for all β ∈ Bϵ(β
∗).

3. One can show that |J1(β∗)| = 1, otherwise by definition of the split (Eq. (13)) and the above point, there exists
j ̸= j′ ∈ J1(β

∗) such that vj(z,y = β) = vj′(z,y = β) for all z ∈ Z and β ∈ Bϵ(β
∗), a contradiction to

assumption (b4) by setting Y ′ = Bϵ(β
∗). Now assume that j ∈ J1(β

∗) is the only index in the subset, then the fact
proved in the above point that J1(β) = J1(β

∗) for all β ∈ Bϵ(β
∗) means∑

i:(i,j)∈S0

γijui(y = β,x) = 0, ∀x ∈ X , ∀β ∈ Bϵ(β
∗),

again a contradiction to assumption (b3) by setting Y = Bϵ(β
∗).

The above 3 points indicate that Eq. (15) cannot hold for all β ∈ Y1 (and therefore for all β ∈ Y) under assumptions (b3) -
(b6), therefore a contradiction is reached.

The previous result can be used show conditions for the linear independence of the joint distribution family PT
A in the

non-parametric case.
Theorem B.3. Define the following joint distribution family{

pa1,a2:T
(x1:T ) = pa1(x1)

T∏
t=2

pat(xt|xt−1), pa1 ∈ ΠA, pat ∈ PA, t = 2, ..., T

}
,

and assume ΠA and PA satisfy assumptions (b1)-(b6) as follows,

(c1) ΠA and PA satisfy (b1) and (b2): positive function values and unique indexing,

(c2) ΠA satisfies (b3), and

(c3) PA satisfies (b4)-(b6).

Then the following statement holds: For any T ≥ 2 and any subset X ⊂ Rd The joint distribution family contains linearly
independent distributions for (x1:T−1,xT ) ∈ R(T−1)d ×X .

Proof. We proceed to prove the statement by induction as follows.

(1) T = 2: The result can be proved using Lemma B.2 by setting in the proof, ui(y = x1,x = x0) = πi(x1), i ∈ A and
vj(z = x2,y = x1) = pj(x2|x1), j ∈ A.

(2) T > 2: Assume the statement holds for the joint distribution family when T = τ − 1. Note that we can write pa1:τ
(x1:τ )

as
pa1:τ (x1:τ ) = pa1,a2:τ−1(x1:τ−1)paτ (xτ |xτ−1).

Then the statement for T = τ can be proved using Lemma B.2 by setting ui(y = xτ−1,x = x1:τ−2) =
pa1:τ−1(x1:τ−1), i = a1:τ−1, and vj(z = xτ ,y = xτ−1) = paτ (xτ |xτ−1), j = aτ . Note that the family spanned with
pa1:τ−1(x1:τ−1), i = a1:τ−1 satisfies (b1) and (b2) from ΠB and PA directly, and (b3) from the induction hypothesis.
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With the result above, one can construct identifiable Markov Switching Models as long as the initial and transition
distributions are consistent with assumptions (c1)-(c3).

As described, in the final step of the proof we explore properties of the Gaussian transition and initial distribution families
(Eqs. (5) and (7) respectively). The unique indexing assumption of the Gaussian transition family (Eq. (6)) implies linear
independence as shown below.

Proposition B.4. Functions in GA are linearly independent on variables (xt,xt−1) if the unique indexing assumption
(Eq. (6)) holds.

Proof. Assume the statement is false, then there exists A0 ⊂ A and a set of non-zero values {γa|a ∈ A0}, such that∑
a∈A0

γaN (xt;m(xt−1, a),Σ(xt−1, a)) = 0, ∀xt,xt−1 ∈ Rd.

In particular, this equality holds for any xt−1 ∈ Rd, meaning that a weighted sum of Gaussian distributions (defined on xt)
equals to zero. Note that Yakowitz & Spragins (1968) proved that multivariate Gaussian distributions with different means
and/or covariances are linearly independent. Therefore the equality above implies for any xt−1

m(xt−1, a) = m(xt−1, a
′) and Σ(xt−1, a) = Σ(xt−1, a

′) ∀a, a′ ∈ A0, a ̸= a′,

a contradiction to the unique indexing assumption.

We now draw some connections from the previous Gaussian families to assumptions (b1-b6) in Lemma B.2.

Proposition B.5. The conditional Gaussian distribution family GA (Eq. (5), under the unique indexing assumption (Eq. (6),
satisfies assumptions (b1), (b2) and (b5) in Lemma B.2, if we define VJ := GA, z := xt and y := xt−1.

Proposition B.6. The initial Gaussian distribution family IA (Eq. (7), under the unique indexing assumption (Eq. (8),
satisfies assumptions (b1), (b2) and (b3) in Lemma B.2, if we define UI := IA,y := x1 and x = X = ∅.

To see why GA satisfies (b5), notice Gaussian densities are analytic in xt. Similar ideas apply to show that IA satisfies (b3).
With the previous results, we can prove Theorem 2.4 as follows.

Proof. Note that assumptions (b1) - (b3) and (b5) are satisfied due to Propositions B.5 and B.6, and assumptions (b6) and
(a2) are equivalent, and assumption (b4) holds due to assumption (a3). To show (a3) =⇒ (b4), We first define VJ := GA,
z := xt, and y := xt−1 from Prop. B.5. From (a3), Y := X0 and note that VJ contains linear independent functions on
(z,y) ∈M ⊂ Z × Y ifM ≠ Z ×D, where D denotes the set where intersection of moments happen within Y . Also by
(a3), D has measure zero and thus, (b4) holds since Y ′ is a non-zero measure set.

Then, the statement holds by Theorem B.3.

B.3. Proof of Corollary 2.5

Proof. Let m(·, a) : Rd → Rd be a multivariate analytic function, which allows a multivariate Taylor expansion. (a1) is
satisfied from our premise of unique indexing, and the corresponding Taylor expansion of m(·, a) implies (a2). Similar
logic applies to Σ(·, a). To show (a3), we note for any a ̸= a′ the set of intersection of moments, i.e. {x ∈ Rd|m(x, a) =
m(x, a′),Σ(xt−1, a) = Σ(xt−1, a

′)} can be separated as the intersection of the sets {x ∈ Rd|m(x, a) = m(x, a′)} and
{x ∈ Rd|Σ(xt−1, a) = Σ(xt−1, a

′)}. Wlog, the set {x ∈ Rd|m(x, a) = m(x, a′)} is the zero set of an analytic function
f := m(·, a) −m(·, a′). Proposition 0 in Mityagin (2015) shows that the zero set of a real analytic function on Rd has
zero measure unless f is identically zero. Hence, the intersection of moments has zero measure from our premise of unique
indexing.

Since (a1-a3) are satisfied, by Theorem 2.4 we have linear independence of the joint distribution family, which by Theorem
2.3 implies identifiability of the MSM in the sense of Def. 2.1.
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B.4. Estimation details

We provide additional details from the descritpions in the main text. For convenience, we denote the whole set of observations
and latent variables {xn

1:T }Nn=1 and {sn1:T }Nn=1 as X and S respectively.

Recall we formulate our method in terms of the expectation maximization (EM) algorithm. Given some arrangement of the
parameter values (θ′), the E-step computes the posterior distribution of the latent variables pθ′(S|X). This can then be used
to compute the expected log-likelihood of the complete data (latent variables and observations),

L(θ,θ′) := Epθ′ (S|X)

[
N∑

n=1

log pθ(x
n
1:T , s

n
1:T )

]
. (16)

Given a first-order stationary Markov chain, we denote the posterior probability pθ(s
n
t = k|X) as γn

t,k, and the joint posterior
of two consecutive states pθ(snt = k, snt−1 = l|X) as ξnt,k,l. For this case, the result is equivalent to the HMM case and can
be found in the literature, e.g. Bishop (2006). We can then compute a more explicit form of Eq. (16),

L(θ,θ′) =

N∑
n=1

K∑
k=1

γn
1,k log πk +

N∑
n=1

T∑
t=2

K∑
k=1

K∑
l=1

ξnt,k,l logQlk+

N∑
n=1

K∑
k=1

γn
1,k log pθ(x

n
1 |, sn1 = k) +

N∑
n=1

T∑
t=2

K∑
k=1

γn
t,k log pθ(x

n
t |xn

t−1, s
n
t = k), (17)

where π and Q denote the initial and transition distribution of the Markov chain. In the M-step, the previous expression is
maximised to calculate the update rules for the parameters, i.e. θnew = argmaxθ L(θ,θ′). The updates for π and Q are
also obtained using standard result for HMM inference (again see Bishop (2006)). Assuming Gaussian initial and transition
densities, we can also use standard literature results for updating the initial mean and covariance. For the transition densities,
we consider a family with fixed covariance matrices and only the means mθ(·, k) are dependent on the previous observation.
In this case, the standard results can also be used to update the covariances of the transition distributions. We drop the
subscript θ for convenience.

The updates for the mean parameters are dependent on the functions we choose. For multivariate polynomials of degree P ,
we can recover an exact M-step by transforming the mapping into a matrix-vector operation:

m(xt−1, k) =

C∑
c=1

Ak,cx̂c,t−1, x̂T
t−1 =

(
1 xt−1,1 . . . xt−1,d x2

t−1,1 xt−1,1xt−1,2 . . .
)
, (18)

where x̂t−1 ∈ RC denotes the polynomial features of xt−1 up to degree P . The total number of features is C =
(
P+d
d

)
and

the exact update for Ak is

Ak ←

(
N∑

n=1

T∑
t=2

γn
t,kxtx̂

T
t−1

)(
N∑

n=1

T∑
t=2

γn
t,kx̂t−1x̂

T
t−1

)−1

. (19)

In the main text we already discussed the case where the transition means are parametrised by neural networks.

C. Experiment details
C.1. L2 distance computation

Consider K components, where as described the evaluation is performed by computing the averaged sum of the distances
between the estimated function components. Since we have identifiability of the function forms up to permutations, we need
to compute distances with all the permutation configurations to resolve this indeterminacy. Therefore, we can quantify the
estimation error as follows

err := min
k=perm({1,...,K})

1

K

K∑
i=1

d(m(·, i), m̂(·, ki)), (20)
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where d(·, ·) denotes the L2 distance between functions. We compute an approximate L2 distance by evaluating the functions
on points sampled from a random region of Rd and averaging the euclidean distance, more specifically we sample 105 in the
[−1, 1]d interval for each evaluation.

d(f , g) :=

∫
x∈[−1,1]d

√∣∣∣∣f(x)− g(x)
∣∣∣∣2dx ≈ 1

105

105∑
i=1

√∣∣∣∣f (x(i)
)
− g

(
x(i)

) ∣∣∣∣2, x(i) ∼ Uniform([−1, 1]d)

(21)

Note that the cost of resolving the permutation inderterminacy has a cost of O(K!), which for K > 5 already poses some
problems in both monitoring performance during training and testing. To alleviate this computational cost, we take a greedy
approach, where for each estimated function component we pair it with the ground truth function with lowest L2 distance.
Note that this can return a suboptimal result when the functions are not estimated accurately, but the computational cost is
reduced to O(K2).

C.2. Averaged Jacobian and causal structure computation

Regarding regime-dependent causal discovery, our approach can be considered as a functional causal model-based method
(see Glymour et al. (2019) for the complete taxonomy). In such methods, the causal structure is usually estimated by
inspecting the parameters that encode the dependencies between data, rather than performing independence tests (Tank et al.,
2021). In the linear case, we can threshold the transition matrix to obtain an estimate of the causal structure (Pamfil et al.,
2020). The non-linear case is a bit more complex since the transition functions are not separable among variables, and the
Jacobian can differ considerably for different inputs values. With the help of locally connected networks, Zheng et al. (2018)
aim to encode the variable dependencies in the first layer, and perform similar thresholding as in linear case. To encourage
that the causal structure is captured in the first layer and prevent it from happening in the next ones, the weights in the first
layer are regularised with L1 loss to encourage sparsity, and all the weights in the network are regularised with L2 loss.

In our experiments, we observe this approach requires enormous finetuning with the potential to sacrifice the flexibility of
the network. Instead, we estimate the causal structure by thresholding the averaged absolute-valued Jacobian with respect to
a set of samples. We denote the Jacobian of m̂(x, k) as Jm̂(·,k)(x). To ensure that the Jacobian captures the effects for the
regime of interest, we use samples from the data set, and classify them with the posterior distribution. In other words, we
will create K sets of variables, where each set Xk with size NK = |Xk| contains variables that have been selected using
the posterior, i.e. x(i) ∈ Xk if k = argmax pθ(s(i)|X), where we use the index i to denote that x(i) is associated with s(i).
Then, for a given regime k, the matrix that encodes the causal structure Ĝk is expressed as

Ĝk := 1

(
1

Nk

Nk∑
i=1

∣∣∣Jm̂(·,k)

(
x(i)

)∣∣∣ > τ

)
, x(i) ∈ Xk, (22)

where 1(·) is an indicator function which equals to 1 if the argument is true and 0 otherwise. We τ = 0.05 in our experiments.
Finally, we evaluate the estimated K regime-dependent causal graphs can be evaluated in terms of the average F1-score over
components.

C.3. Training specifications

All the experiments are implemented in Pytorch (Paszke et al., 2019) and carried out on NVIDIA RTX 2080Ti GPUs. When
training polynomials (including the linear case), we use exact batched M-step updates with batch size 500 and train for a
maximum of 100 epochs and stop when the likelihood plateaus. When considering updates in the form of Eq. (10), e.g.
neural networks, we use ADAM optimizer (Kingma & Ba, 2015) with an initial learning rate 7 · 10−3 and decrease it by
a factor of 0.5 on likelihood plateau up to 2 times. We vary the batch size and maximum training time depending on the
number of states and dimensions. For instance, for K = 3 and d = 3, we use a batch size of 256 and train for a maximum
of 25 epochs. For other configurations, we decrease the batch size and increase the maximum training time to meet GPU
memory requirements. Similar to related approaches (Hälvä & Hyvarinen, 2020), we use random restarts to achieve better
parameter estimates.
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(a)

(b)

Figure 4: Function responses using 3 dimensions where we vary x2 and x3. Column i shows the response with respect to
the i-th dimension. The blue grid shows the ground truth function for (a) 3 states showing component 1, and (b) 10 states
showing component 6.

C.4. Synthetic experiments

For data generation, we sample N = 10000 sequences of length T = 200 in terms of a stationary first-order Markov
chain with K states. The transition matrix Q is set to maintain the same state with probability 90% and switch to the next
state with probability 10%, and the initial distribution π is the stationary distribution of Q. The initial distributions are
Gaussian components with means sampled from N (0, 0.72I) and the covariance matrix is 0.12I. The covariance matrices
of the transition distributions are fixed to 0.052I, and the mean transitions m(x, k), k = 1, . . . ,K are parametrised using
polynomials of degree P = 3 with random weights, random networks with cosine activations, or random networks with
softplus activations. For the locally connected networks (Zheng et al., 2018), we use cosine activation networks, and the
sparsity is set to allow 3 interactions per element on average. All neural networks consist on two-layer MLPs with 16 hidden
units.

In Figure 4, we show visualisations of some function responses for the experiment considering increasing variables and
states (figs. 1b and 1c). Recall that for K = 3 states and d = 3 dimensions we achieve 9 · 10−3 L2 distance error and the
responses in Figure 4a show low discrepancies with respect to the ground truth. Similar observations can be made with
K = 10 states in Figure 4b, where the L2 distance error is ·10−2.

C.5. ENSO-AIR experiment

The data consists on monthly observations of El Niño Southern Oscillation (ENSO) and All India Rainfall (AIR), starting
from 1871 to 2016. Following the setting in Saggioro et al. (2020), we more specifically we use the indicators Niño 3.4 SST
Index2 and All-India Rainfall precipitation3 respectively. In total, we have N = 1 samples with T = 1752 time steps, and
consider K = 2 components.

In the main text, we claim that our approach captures regimes based on seasonality. To visualise this, We group the posterior
distribution by month (fig. 5), where similar groupings arise from both models, and observe that one component is assigned
to Summer months (from May to September), and the other is assigned to Winter months (from October to April). To better

2Extracted from https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/.
3Extracted from https://climexp.knmi.nl/getindices.cgi?STATION=All-India_Rainfall&TYPE=p&WMO=

IITMData/ALLIN.

https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/
https://climexp.knmi.nl/getindices.cgi?STATION=All-India_Rainfall&TYPE=p&WMO=IITMData/ALLIN
https://climexp.knmi.nl/getindices.cgi?STATION=All-India_Rainfall&TYPE=p&WMO=IITMData/ALLIN
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Figure 6: Function responses of the ENSO-AIR experiment assuming (a) linear and (b) non-linear softplus networks. Each
row shows the function responses for Winter and Summer respectively.

illustrate the seasonal dependence present in this data. We show the function responses assuming linear and non-linear
(softplus networks) transitions in Figures 6a and 6b respectively. In the linear case, we observe that the function responses
on the ENSO variable are invariant across regimes. However, the response on the AIR variable varies accross regimes, as we
observe that the slope with respect to the ENSO input is zero in Winter, and increases slightly in Summer. This visualisation
is consistent with the results reported in the regime-dependent graph (fig. 2). In the nonlinear case, we now observe that the
responses of the ENSO variable are slightly different, but the slope differences in the responses of the AIR variable with
respect to the ENSO input are harder to visualise. The noticeable difference is that the self-dependency of the AIR variable
changes non-linearly across regimes, contrary to the linear case where the slope with respect to AIR input was constant.

C.6. Salsa experiment
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Figure 5: Posterior distribution grouped by month.

The data we consider for this experiment con-
sists on salsa dancing sequences from the
CMU mocap data4. Each trial consists of a
sequence with varying length, where the ob-
servations consists of the 3D positions of 41
joints of both participants. Following related
approaches (Dong et al., 2020), we use in-
formation of one of the participants, which
should be sufficient for capturing dynamics,
with a total of 41× 3 observations per frame.
Then, we subsample the data by a factor of 4,
normalise the data, and clip each sequence to
T = 200.

4Extracted from http://mocap.cs.cmu.edu/

http://mocap.cs.cmu.edu/
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