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ABSTRACT

Signed connections are central to both artificial and biological intelligence, pos-
itive and negative weights in artificial networks, and excitatory and inhibitory
synapses in the brain, yet their representational role remains unclear. Here, we
investigate how signed weights shape visual representations in artificial and bio-
logical systems involved in object recognition. Using sign consistency as a proxy
for biological Dale’s law, which requires neurons to send either exclusively exci-
tatory or inhibitory outputs, we found that accuracy of ImageNet trained networks
positively correlated with the Dale index of their output layer. Ablation and feature
visualization reveal a functional segregation: removing positive inputs disrupts
object related, low frequency structure, while removing negative inputs mainly al-
ters background textures. This segregation is more pronounced in adversarially ro-
bust models, persists with unsupervised learning, and vanishes with non-rectified
activations. In intermediate layers, the most positive Dale-like channels encoded
localized, object-like features, whereas the most negative ones captured dispersed,
background features. We next performed in vivo feature visualization in monkey
ventral visual cortex (V1, V4, and IT) and fitted linear models using the input layer
to the neural networks classification units. These models reproduced features sim-
ilar to those preferred by the biological neurons. In the model neurons, removing
positive inputs altered representations more than removing negative ones. The
most Dale-like positively projecting units exhibited localized features, while the
negatively projecting units showed larger, more dispersed features, suited to car-
rying contextual input. Consistent with this, clearing the background around each
neuron’s preferred feature enhanced its response, likely by reducing inhibitory
drive, supporting inhibition as a contextual modulation of the excitatory feature.
Our results demonstrate that both artificial and biological vision systems segregate
features by weight sign: positive weights emphasize objects and low frequencies,
negative weights encode context. This shows the convergence of representational
strategies in brains and machines, yielding predictions for visual neuroscience.

1 INTRODUCTION

Brains and artificial neural networks (ANNs) both rely on signed connections. In biological cir-
cuits, Dale’s law states that neurons are either excitatory or inhibitory (Dale, 1935). Excitatory
neurons are thought to compute core visual features, while inhibitory neurons sharpen selectivity,
modulate context, and gate information flow (Isaacson & Scanziani, 2011). The primate ventral
visual stream supports object recognition (DiCarlo et al., 2012), and representations from V1 to IT
increase in complexity, paralleling hierarchies in convolutional neural networks (CNNs) (Yamins
et al., 2014; Güçlü & van Gerven, 2017). While early mechanisms such as lateral inhibition and
center-surround receptive fields are well charachterized, the excitatory–inhibitory organization of
higher ventral-stream areas remains less understood (Tamura et al., 2004), motivating the question
of whether information is segregated by connection sign in both artificial and biological vision.

ANNs also use positive and negative weights, loosely analogous to excitatory and inhibitory signals
but unconstrained by Dale’s law. Yet it remains unclear how deep networks divide visual information
across signed weights, particularly in object classification models where each output unit represents
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a category. Prior work suggests segregation by absolute weight strength (Li et al., 2023), , but
whether feature types such as foreground objects versus background context systematically separate
by weight sign is unknown. Here, we hypothesize that CNNs segregate visual information into
positive and negative inputs.

We test this hypothesis across diverse ImageNet-trained CNNs by analyzing weight sign organiza-
tion, ablating positive and negative inputs, and visualizing the resulting feature selectivity. We asses
feature segregation across network depth by analyzing Dale-like channels. We examine a range of
architectures and training regimes, including adversarially robust models, unsupervised models, and
networks with nonrectified (Tanh) activations.

For biological comparison, we fit linear models from ANN features to neural responses recorded
across the macaque ventral stream (V1, V4, IT) and use in vivo feature visualization and background
manipulations to probe inhibitory contributions. These analyses relate ANN-derived sign structure
to biological feature preferences.

Our results support an emerging principle: across artificial and biological vision systems, connection
sign organizes feature representation. Positive weights emphasize object-related, localized features,
whereas negative weights encode contextual, more dispersed structure. This connects classic ideas
rooted in Dale’s law with representational strategies in modern ANNs, generating mechanistic and
testable predictions for visual neuroscience.

2 RELATED WORK

Mechanistic interpretability of computer and biological vision There has been progress in mech-
anistic interpretability in ANNs from work using perspectives adapted from neuroscience circuit
dissection (Olah et al., 2020). This line of explainable AI research explains model behavior by dis-
secting smaller network subgraphs, revealing how relevant features arise from input weights and are
composed hierarchically. Such work has uncovered motifs involving positive and negative connec-
tions between related features, reminiscent of early visual system organization. New approaches
to address representations beyond single units rely on sparse dictionary learning, with early work
in vision (Olshausen & Field, 1996), an approach that has recently regained popularity in language
modeling (Cunningham et al., 2023), as well as in multimodal models (Pach et al., 2025). Some
studies also characterized object shape and texture biases in feature visualizations by reconstructing
images from sparse weight sets (Li et al., 2023). However, the systematic division between posi-
tive and negative inputs across the entire range of weight strengths, and its possible role in feature
segregation, remains underexplored and is a focus of this study.

Feature visualization by closed-loop optimization Characterizing learned representations is foun-
dational for both biological and artificial vision research. Feature visualization, i.e. optimizing for
images that strongly activate target units, was originally pioneered in the brain by hand (Hubel &
Wiesel, 1959), and later in silico by gradient ascent on pixels of neural networks (Erhan et al., 2009;
Nguyen et al., 2016a;b; Olah et al., 2017). Because gradients are unavailable when recording in vivo,
gradient-free black-box optimization techniques were developed for synthesizing preferred images
of biological neurons in real-time (Ponce et al., 2019; Xiao & Kreiman, 2020; Wang & Ponce, 2022).
These approaches constrain the search space via generative adversarial networks, promoting natu-
ralistic solutions (Nguyen et al., 2016a). Further methods involve first fitting a predictive network
to neural data and then using in silico gradient ascent (Bashivan et al., 2019; Walker et al., 2019).
While most prior studies use grayscale images, our study applies gradient-free visualization to color
images in both CNNs and primate recordings.

Robustness Neural networks are susceptible to adversarial attacks, where noise that is nearly imper-
ceptible by humans can be added to natural images, changing output classification (Szegedy et al.,
2014; Salman et al., 2020; Elsayed et al., 2018). Robust training, i.e. introducing adversarial per-
turbations during learning, improves resistance to such attacks and is hypothesized to align learned
representations more closely with primate visual processing. Prior work does not assess how robust-
ness impacts the organization of image representations after ablation of signed weights, which we
systematically investigate here.

Nonlinearity influence on representations Beyond training objectives, the role of activation func-
tions such as ReLU versus Tanh profoundly influences representational properties (Alleman et al.,
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2023), with ReLU inducing representations better aligned with input features and Tanh inducing
alignment with output features (labels). This prior work was done in small networks from a theo-
retical perspective; thus, the impact of rectification on the potential segregation of visual features at
practical scales is unknown and addressed by our study.

3 METHODS

An extended methods section is in the Appendix A.1.

Networks We performed our ablation studies in CNNs pretrained on the ImageNet dataset: AlexNet
(Krizhevsky et al., 2012), VGG16 (Simonyan & Zisserman, 2015), ResNet50 (He et al., 2015), and
robust ResNet50 models with robustness radii specified by the L∞ norm (L∞ ∈ {0.5, 1, 2, 4, 8};
Salman et al. 2020). Here, L∞ denotes the maximum-norm constraint used during adversarial train-
ing, i.e., ∥δ∥∞ ≤ ϵ, which bounds the maximum per-pixel perturbation by ϵ. To reduce computing
time, we used the imagenette dataset (noa, 2024) and the ImageNet macaque category. We also
tested 100 classes sampled by k-means on the output of ResNet50 (Figs. 12,13) For all networks, we
visualized the representations of the units in the fully-connected output layer (pre-softmax) matching
those classes under different ablation conditions.

Dale index We quantified Dale like structure with a Dale index for each outgoing channel per layer,
defined as the fraction of its weights that share the majority sign, D = max(p+, p−), where p+ and
p− are the proportions of positive and negative outgoing weights. The index ranges from 0.5 to 1
and measures sign consistency.

Ablation For each layer, we ablated positive and negative weights separately. Given a layer’s weight
matrix W , we defined the sets of positive weights P = {w ∈ W : w > 0} and negative weights
N = {w ∈ W : w < 0}. For each set S ∈ {P,N}, we sorted its elements in decreasing order of
absolute value. We then defined the ablation strength α ∈ [0, 1] as the fraction of the total magnitude
of S to remove. Specifically, we identified the smallest k satisfying

∑k
i=1 |wi| /

∑
w∈S |w| ≥ α,

where w1, w2, . . . are the sorted weights in S, and set those k weights to zero. Because α is a
normalized cumulative magnitude, it lies in [0, 1], and sweeping α from 0 to 1 removes none to all
of the positive (or negative) weights.

Feature visualization For each ablation condition, we performed feature visualization by optimiz-
ing a GAN latent code to create an activity-maximizing image. We used this closed-loop, zeroth-
order-search approach to allow comparison with our neuronal experiments, where gradient ascent
would not be possible. To increase the span of the stimulus space, we used two GANs: AlexNet
fc6 DeePSiM (Dosovitskiy & Brox, 2016) which can render textures and objects, and BigGAN
(Brock et al., 2019) that can render photo-realistic images with objects. For optimization, we used
a variant of covariance matrix adaptation evolutionary strategy or CMAES (Wang & Ponce, 2022;
Loshchilov, 2015). We optimized ten images per GAN, resulting in 20 feature visualizations per
output unit and ablation condition. Diverse visualizations better capture the multifaceted high-level
representations in CNNs (Nguyen et al., 2016b). For our examples, we show the best of the 20 vi-
sualizations, but used all for quantitative analyses. For visualizations of neural networks predicting
biological neuron responses, due to experimental time restrictions, we used five visualizations per
ablation condition, via DeePSim only. Our experiments are performed in a PC with Nvidia 4090
GPU, and each visualization takes about 3 mins.

Network training Both ResNet18 networks were trained using the FFCV library (Leclerc et al.,
2023) for 16 epochs on the ImageNet1K dataset. The top-5 classification accuracy was 0.797 for
the network with Tanh activations and 0.870 for the network with ReLU activations. Note that these
models were trained for only 16 epochs rather than the standard 90, so their accuracy underperforms
published benchmarks. However, they are suitable for our mechanistic analyses.

Visual cortex electrophysiology We recorded multi-unit (neuron microcluster) and occasional
single-unit activity from chronically implanted multielectrode arrays in V1, V4, and PIT of two
macaques. Animals fixated while 2–8° images were flashed briefly (100 ms ON, 150 ms inter-
stimulus interval). Neurons were driven with a 160-image stimulus set (diverseSet), constructed to
span a broad range of visual features derived from k-means clustering of AlexNet output layer over
the IN1K validation set and typical visual neuroscience image sets. For each session, we modeled
responses of a single neuron or multiunit using a one-component PLS regression between firing rates
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and AlexNet penultimate-layer activations, and used the resulting model for in silico ablations and
feature visualizations, validating visualizations in vivo within the same session.

4 RESULTS

4.1 PROXIMITY TO DALE’S LAW IN CNN OUTPUTS CORRELATES WITH ACCURACY

Figure 1: Dale index of output layer correlates with
top 1 accuracy on ImageNet1K CNNs. A. Training in-
creases Dale index of output layers. B. Network top 1
accuracy correlates with Dale index of the output layer.

A key challenge in comparing artificial
and biological circuits is that CNNs are
not constrained by Dale’s law. There-
fore, we asked whether the Dale index (our
measure of sign consistency) in the out-
put layer of diverse CNNs has any relation
to its performance. Dale index increased
from random initialization with training
(Fig 1A). Top 1 accuracy on ImageNet1K
positively correlated with the mean Dale
index of the output layer. Within a given
architecture, the Dale index increased with
network depth. And batchnorm training in
VGGs produced output layers with higher
Dale index. Thus, even without an ex-
plicit Dale constraint, these networks nat-
urally developed more sign consistent out-
put channels. This motivated us to exam-
ine the specific visual features carried by
positive versus negative weights.

4.2 OBJECT INFORMATION IS PREFERENTIALLY ENCODED BY POSITIVE WEIGHTS

Hypothesis Motivated by biological center-surround organization, where inhibitory surrounds con-
vey contextual information, we hypothesized that CNN output units trained for object recognition
segregate object features to positive weights and contextual features to negative weights.

Testing segregation by ablation and visualization. We examined this hypothesis in ImageNet-
pretrained CNNs using ablation and feature visualization. The overall ratio of positive to negative
input weights per unit was close to unity (Table 2), suggesting that both polarities may encode rel-
evant information. We then selectively ablated positive or negative input weights to class units and
visualized features across ablation strengths. Ablating positive weights greatly reduced the maxi-
mal achievable activation during feature visualization, whereas removing negative weights slightly
increased it (appendix Fig. 11). Visually, positive-weight ablation disrupted recognizable object
structure, while negative-weight ablation largely preserved object identity and instead altered back-
ground or color context (Figs. 2B, C). To quantify these effects, we compared image sets generated
before and after ablation using mean pairwise cosine similarity across an ensemble of readout CNNs.
Positive-weight ablation yielded substantially less similar representations, whereas negative-weight
ablation produced only minor shifts (Fig. 2D). These results replicated across 100 ImageNet classes
and with alternative metrics such as LPIPS (Zhang et al., 2018) (appendix Fig. 13), demonstrating
robustness and generality.

To quantify to what extent objects disappear from the preferred images under ablations, we evaluated
objectness using an object-detection network (YOLOv7 Wang et al. (2022)). Relative to baseline
objectness scores computed from intact visualizations, ablating positive weights reduced objectness,
whereas ablating negative weights had minimal impact (Fig. 2E). Analyzing spatial frequencies re-
vealed positive ablations majorly affected low frequencies (app. Fig. 14,15), consistent with the
objectness reduction. Together, these results show that in ImageNet-trained CNNs, removing posi-
tive input weights disrupts object features, while removing negative weights primarily alters context,
indicating that positive weights preferentially encode object features.

4.3 SEGREGATION DEPENDS ON RELU BUT NOT ON UNSUPERVISED PRETRAINING
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Figure 2: A. Schematic of feature visualization workflow in ANNs and brains. B. Preferred feature
changes for different ablation strengths of input weights to the macaque 373 output unit of AlexNet
(last fc layer of 1000 units before softmax). Images are the most activating images out of the 20
visualizations per ablation strength. Ablation strengths are below each image, and activation scores
are above. C. Changes in preferred features to different ablations of example AlexNet output units:
0 tench, 574 golf ball, and 482 cassette player. Notice the large image changes for positive ablations.
Same methods as in B. D. Representational similarity of intact vs input-ablated units across networks
tested, measured by the pairwise cosine similarity of control vs ablation images over an ensemble
of networks. Error bars are 95% confidence intervals over units, each unit is the mean of its 20
visualizations. The units correspond to the 10 imagenette categories ([0, 217, 482, 491, 497, 566,
569, 571, 574, 701]) plus the macaque category (373). E. Objectness scores across units per ablation
condition. As in D, we tested 11 units from the 1000-unit fully-connected output layer (pre-softmax)
of: AlexNet, VGG16, ResNet50, and robust ResNet50 (L∞ ∈ {0.5, 1, 2, 4, 8}). For each network,
we averaged over the objectness scores of 20 visualizations per unit and all units. The plot shows
the mean over previously described network averages. Error bars are 95% confidence interval over
network averages.

Figure 3: Ablation experiments (rows are features of three ex-
ample units, and responses, and representational similarity for all
11 classes) in A. Semisupervised networks, B. Vanilla ReLU su-
pervised network, and C. Network with a non-rectified activation
function Tanh, replacing all ReLUs in B.

To examine whether functional
segregation by weight sign re-
lies on supervised learning, we
analyzed a ResNet50 backbone
trained without supervision
(SimSiam from Chen & He
(2020)). After unsupervised
pretraining, the backbone was
frozen and a linear classifier
was trained on ImageNet-1K.
Feature ablation and visualiza-
tion revealed that this network
still allocated object features to
positive weights, although these
features disappeared at lower
ablation strengths than in fully
supervised CNNs (Fig. 3A,
appendix Fig. 18). Negative
input ablation had only a minor
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effect, suggesting that even
unsupervised representations
are organized so that positive weights convey most object-related features.

We hypothesized that this segregation depends on the rectifying ReLU activation, which forces unit
outputs to be non-negative and makes weight signs determine the direction of each contribution.
Prior work in toy networks shows that ReLU promotes alignment to the input space, whereas Tanh
promotes alignment to the output space (Alleman et al., 2023). To test the role of rectification, we
trained ResNet18 models with either ReLU or Tanh. As expected, the ReLU model showed clear
segregation, with the strongest disruptions arising from ablation of positive weights. In contrast,
the Tanh model showed similar representational changes across ablation types and preserved key
features even when either sign was removed (Fig. 3B,C). Thus, rectified activations are required for
strong segregation of object information into positive weights in CNNs.

Figure 4: Robust network ResNet50 L∞ = 8 shows a large change in preferred features upon input
ablation. Notice the white background in the negative-weight ablation condition.

4.4 ADVERSARIALLY ROBUST NETWORKS SHOW ENHANCED FEATURE SEGREGATION

Having established that both unsupervised pretraining and rectified activations support the segre-
gation of object and context information by weight sign, we next asked how this organization is
affected by other salient properties of deep vision networks. In particular, adversarially robust net-
works, which are trained to resist small targeted image perturbations (Szegedy et al., 2014; Madry
et al., 2019), are believed to better reflect aspects of biological vision and may therefore show distinc-
tive patterns of feature segregation. We examined whether and how adversarial robustness influences
the allocation of object and contextual information to positive and negative weights.

In robust ResNet50 networks, intact feature visualizations appeared more object-like, and ablation
of negative input weights reliably altered the background color, often rendering it white (Fig. 4).
This hinted at a stronger feature segregation than in vanilla networks. Quantitative analysis con-
firmed that as network robustness to adversarial attacks increased, so did the model’s vulnerability
to ablation, as measured by the difference in cosine similarity between control images and ablated
images (see ∆(cosine similarity) in Fig. 5). For ablation strenght of 1 (yellow/light lines), the dif-
ference increased with network robustness, and slopes in Table 1 indicate this trend holds across
ablation polarities and strengths. Moreover, the robustness effects translated to higher shape bias
in the benchmark by Geirhos et al. (2022), with negative ablations affecting more the texture than
the shape accuracy (Fig. 16). Overall, classification CNNs segregate object information to positive
weights and texture or background information to negative weights, and that adversarially robust
training further sharpens this sign-based segregation.

4.5 FEATURE SEGREGATION IS NOT EXCLUSIVE TO CLASS UNITS

To determine whether feature segregation by weight sign is present beyond the output layer, we
systematically analyzed intermediate and early layers of CNNs. We first searched for channels that
approximated Dale’s law, identifying those that predominantly provided positive or negative inputs
to their downstream units in each layer. For each convolutional layer, we calculated the sign con-
sistency of outgoing weights and ranked channels according to whether they sent mostly positive or
mostly negative signals forward. We then visualized the preferred features of these channels using
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Figure 5: Representational changes under in-
put ablation increase with robust training in
ResNet50. Top: cosine similarities to control.
Bottom: changes relative to control. Most abla-
tion strengths show significant correlations with
robustness.

Table 1: Spearman correlation of repre-
sentational change upon ablation vs ro-
bustness (L∞ norm)

type Positive Negative
ρ (pvalue) ρ (pvalue)

α

0.1 -0.17 (2e-1) -0.10 (4e-1)
0.2 -0.39 (1e-3) -0.21 (8e-2)
0.3 -0.34 (4e-3) -0.14 (3e-1)
0.4 -0.38 (1e-3) -0.34 (5e-3)
0.5 -0.47 (6e-5) -0.46 (9e-5)
0.6 -0.48 (3e-5) -0.34 (5e-3)
0.7 -0.51 (9e-6) -0.52 (6e-6)
0.8 -0.50 (2e-5) -0.49 (2e-5)
0.9 -0.48 (4e-5) -0.62 (2e-8)
1.0 -0.47 (6e-5) -0.57 (5e-7)

Figure 6: Preferred features of neuronal network models of visual neurons in the primate ventral
stream. Pos: are positive ablations, neg are negative ablations, number indicates ablation strength.
Shown are top 4 visualizations at 0, 0.5 and 1.0 ablation strenghts.

gradient-based methods with the Lucent library in PyTorch. Examining all five convolutional layers
of AlexNet, we found that feature segregation by sign emerged throughout the network. In the first
layer, channels with mostly positive weights responded to high-frequency achromatic edges, while
those with mostly negative weights responded to lower-frequency, colored edges and spots. In the
middle layers, positive channels tended to emphasize edges and detailed textures, whereas negative
channels often represented broader, colored, or background-like patterns. By the final convolutional
layer, channels with mostly negative weights produced features that resembled background elements
such as sky or grass, while channels with positive weights highlighted sharp, localized object frag-
ments like animal snouts and eyes (appendix Fig. 19). Altogether, our results show that feature
segregation by weight sign is not restricted to the output layer, but gradually develops throughout
the network. This pattern is reminiscent of Dale’s law in biological circuits, suggesting that artifi-
cial neural networks can develop sign-consistent and functionally distinct representations across all
layers, even in the absence of a biological constraint.

4.6 BIOLOGICAL MODELS BASED ON IMAGENET NETWORKS SEGREGATE LOCAL FEATURE
INFORMATION INTO POSITIVE WEIGHTS

The ventral stream in primates is responsible for object recognition, and artificial networks are the
best models of its function. We therefore wondered if the segregation of positive and negative inputs
we observed in networks might also occur in the brain. However, it is not currently possible to se-
lectively remove positive or negative synaptic inputs from real neurons the way we can in artificial
networks. To address this limitation, we fit linear models mapping CNN features to macaque ventral
stream neural responses, and applied feature visualization to both model units and in vivo data. This
allowed us to test feature segregation in biological representations and to generate testable neuro-
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Figure 7: Left: predicted and actual neuron responses of model to ablations. Images obtained from
positive ablations in the neuron models elicited a consistent activity drop on the biological neurons
modeled. Right: Representational change of model to ablations measured by our cosine similarity
metric on the neuron model feature visualizations upon ablation; and cortical population response to
the images obtained from feature visualization from ablation of model units, neurons were z-scored
before computing the population average. Plots show averages over 59 models, (35 for monkey C,
and 24 for monkey D), shaded regions are the 95% C.I of the mean. For all plots the positive ablation
condition was statistically different to the control.

science predictions. We recorded neural activity from V1, V4, and IT cortex in two monkeys, using
a diverse set of images and modeled each neuron’s response using partial least squares regression
with activations from the penultimate layer of AlexNet (4096 units). 1 We then applied our ablation
and visualization protocol to these neuron models (see appendix for validation A.4) and showed
the resulting images to the monkey during the same session. First, images from intact models reli-
ably drove biological neurons to firing rates more than one standard deviation above those observed
during natural image presentations (Fig.21, left), indicating out-of-distribution generalization. For
the subset of neurons in which we performed in vivo closed-loop feature visualization, we found
that the model’s preferred features often matched those of the neuron, providing additional valida-
tion (appendix Fig. 21, right). However, in vivo features were more spatially localized (procedure
in A.1), whereas in silico features exhibited greater spatial variation (rotated, mirrored, or repeated
versions). This likely reflects invariances, due to using a fully connected layer, that are not present in
our recorded neurons. Moreover, unlike the images from recognition units, images from the neuron
models did not resemble objects (appendix Fig. 21, Fig. 6).

Ablation experiments reveal sign-based segregation in neuron models. Ablation experiments
on these neuron models showed that removing positive input weights led to a significant decrease
in both predicted and observed firing rates, while removing negative weights had a smaller effect
(Fig. 7). This pattern was consistent across individual neurons and at the population level in the
ventral stream (Fig.7, rightmost). The population changes suggest that sign-based functional segre-
gation in model predictions translates to measurable changes across the ventral stream population
and perhaps perception.

Dale’s law inspired analysis. To bring our models closer to Dale’s law, we applied two approaches.
First, we tested whether neural responses could be predicted using only positive input weights, cor-
responding to receiving input exclusively from excitatory artificial neurons. This constraint reduced
both training and test accuracy relative to unconstrained models (appendix Fig. 22), indicating that
neuron models require both positive and negative inputs. Second, we identified Dale-like artificial
units that contributed mainly positive or negative weights to all output neuron models, defining pu-
tative excitatory and inhibitory inputs. Positive-weight units corresponded to smaller-scale edges
and localized spots, cleanly separated from the background, whereas negative-weight units aligned
with broader textures and larger patches (appendix Fig. 23). This pattern supports the idea that
inhibitory-like artificial inputs preferentially encode contextual or background structure, paralleling
inhibitory modulation in biological cortex.

Experimental manipulation of background as a test for inhibition. To further test this hypothe-
sis, we experimentally manipulated image backgrounds in vivo. In a subset of experiments, we pre-
sented altered images in which the background was cleared around the neuron’s preferred feature,

1Although using other layers could improve predictive accuracy, we selected the penultimate layer to di-
rectly test if inputs optimized for classification maintain weight sign-based segregation in biological neural
predictions.
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thereby reducing the putative inhibitory drive. As predicted, this manipulation resulted in increased
neuronal responses (appendix Fig. 24), providing functional support for the idea that inhibitory or
negative inputs are involved in contextual modulation and that their reduction can enhance feature
selectivity in high-level visual cortex. Together, these results suggest that functional segregation by
input sign extends to models of ventral stream neurons, providing concrete testable predictions for
future experiments targeting excitation and inhibition in visual cortex.

5 LIMITATIONS

Our results hold in the last layer units of multiple networks. Due to limited computing time, we did
not test all 1000 categories in as many networks as possible, our largest test consisted of 100 units.
While larger scale simulations will provide exhaustive evidence, we are confident our main claims
will stand. We limited our neuron recordings to a 160 image dataset for regressing neuron responses
via CNNs. While we observed good fits and recovered relevant feature to the neurons, more images
may improve the models, especially using larger-scale versions of our diverseSet. The neuroscience
results would need to follow Dale’s law to be mapped one-to-one to excitatory and inhibitory neu-
rons, but we make no claim to a perfect mapping in this work. The fundamental question of shape
vs texture, foreground vs background remains to be solved. We reconciled changes in frequency
structure with changes in objectness and visual representations and LPIPS image similarity. How-
ever, more work remains to understand the full extent of the segregation reported here. Solving this
problem for the visual cortex may provide better benchmarks for this task in AI.

6 DISCUSSION

Our study combined ablations with feature visualization guided by naturalistic image priors to re-
veal the functional segregation of class-level features in the output layer of ImageNet trained CNNs:
positive weights contribute object/shape/low frequency information, while negative weights con-
tribute background/contextual/texture information. This effect was enhanced in robust networks, it
was present in networks with unsupervised pretraining, but was absent in network trained with Tanh
instead of ReLU. Our results explain how the background contribution to classification observed in
(Xiao et al., 2020) emerges, backgrounds are primarily encoded by the negative inputs.

Importantly for neuroscience, the observed functional segregation in neuron model units in CNNs
hints at a functional segregation in the brain beyond the center-surround classically studied in V1.
And we crafted a diverse dataset for visual neuroscience recordings that is scalable. Neuron re-
sponses to a smaller but diverse set of naturalistic, colored images, with complex foregrounds and
backgrounds, led to models capturing relevant features obtained experimentally from the neuron.
Thus, using both model-based and model-free approaches revealed richer neuronal representations.
Preferred images from neuron models with positive input ablations elicited smaller average pop-
ulation responses of cortical neurons. This suggests that ablation in networks modeling neurons
holds potential as a method to control the population activity in the brain. To relate ablation-induced
changes in the images to the population responses is a future direction. This ablation based on the
natural division of positive and negative weights can be easily extended into arbitrary layers, e.g.,
using gradients to define positive and negative contributions to any arbitrary unit. And our ablation
approach proposes baselines for the functional differences between excitatory and inhibitory neu-
rons in higher cortical visual areas. The functional segregation has consequences for neural coding
and response selectivity. Our findings generate concrete predictions for future experiments using
advanced genetic or optogenetic tools to dissect excitation and inhibition in primate cortex. Under-
standing the circuit mechanism of biological vision could aid further understanding and development
of computer vision models. Interpretability is thus an important field for both AI and neuroscience.
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Umut Güçlü and Marcel A. J. van Gerven. Increasingly complex representations of natural
movies across the dorsal stream are shared between subjects. NeuroImage, 145:329–336, Jan-
uary 2017. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2015.12.036. URL https://www.
sciencedirect.com/science/article/pii/S1053811915011490.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition, December 2015. URL https://arxiv.org/abs/1512.03385v1.

D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the cat’s striate cortex. The
Journal of Physiology, 148(3):574–591, October 1959. ISSN 0022-3751. URL https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC1363130/.

Chou P. Hung, Gabriel Kreiman, Tomaso Poggio, and James J. DiCarlo. Fast Readout of Object
Identity from Macaque Inferior Temporal Cortex. Science, 310(5749):863–866, November 2005.
ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1117593. URL https://www.science.
org/doi/10.1126/science.1117593.

Jaewon Hwang, Andrew R. Mitz, and Elisabeth A. Murray. NIMH MonkeyLogic: Behavioral
control and data acquisition in MATLAB. Journal of Neuroscience Methods, 323:13–21, July
2019. ISSN 1872-678X. doi: 10.1016/j.jneumeth.2019.05.002.

Jeffry S. Isaacson and Massimo Scanziani. How Inhibition Shapes Cortical Activity. Neuron, 72(2):
231–243, October 2011. ISSN 0896-6273. doi: 10.1016/j.neuron.2011.09.027. URL https://
www.cell.com/neuron/abstract/S0896-6273(11)00879-8. Publisher: Elsevier.

Kohitij Kar, Jonas Kubilius, Kailyn Schmidt, Elias B. Issa, and James J. DiCarlo. Ev-
idence that recurrent circuits are critical to the ventral stream’s execution of core ob-
ject recognition behavior. Nature Neuroscience, 22(6):974–983, June 2019. ISSN 1546-
1726. doi: 10.1038/s41593-019-0392-5. URL https://www.nature.com/articles/
s41593-019-0392-5. Number: 6 Publisher: Nature Publishing Group.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep Con-
volutional Neural Networks. In Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012. URL https://papers.nips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander
Madry. FFCV: Accelerating Training by Removing Data Bottlenecks, June 2023. URL http:
//arxiv.org/abs/2306.12517. arXiv:2306.12517.

Tianqin Li, Ziqi Wen, Yangfan Li, and Tai Sing Lee. Emergence of Shape Bias
in Convolutional Neural Networks through Activation Sparsity. Advances in Neu-
ral Information Processing Systems, 36:71755–71766, December 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/hash/
e31c16c7b3e0ccee5159ae5443154fac-Abstract-Conference.html.

Ilya Loshchilov. LM-CMA: an Alternative to L-BFGS for Large Scale Black-box Optimization,
November 2015. URL http://arxiv.org/abs/1511.00221. arXiv:1511.00221 [cs,
math].

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards Deep Learning Models Resistant to Adversarial Attacks, September 2019. URL http:
//arxiv.org/abs/1706.06083. arXiv:1706.06083.

11

https://www.nature.com/articles/s41593-023-01442-0
https://www.nature.com/articles/s41593-023-01442-0
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1811.12231
https://www.sciencedirect.com/science/article/pii/S1053811915011490
https://www.sciencedirect.com/science/article/pii/S1053811915011490
https://arxiv.org/abs/1512.03385v1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363130/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363130/
https://www.science.org/doi/10.1126/science.1117593
https://www.science.org/doi/10.1126/science.1117593
https://www.cell.com/neuron/abstract/S0896-6273(11)00879-8
https://www.cell.com/neuron/abstract/S0896-6273(11)00879-8
https://www.nature.com/articles/s41593-019-0392-5
https://www.nature.com/articles/s41593-019-0392-5
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
http://arxiv.org/abs/2306.12517
http://arxiv.org/abs/2306.12517
https://proceedings.neurips.cc/paper_files/paper/2023/hash/e31c16c7b3e0ccee5159ae5443154fac-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/e31c16c7b3e0ccee5159ae5443154fac-Abstract-Conference.html
http://arxiv.org/abs/1511.00221
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.06083


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune. Synthesizing the
preferred inputs for neurons in neural networks via deep generator networks, November 2016a.
URL http://arxiv.org/abs/1605.09304. arXiv:1605.09304 [cs].

Anh Nguyen, Jason Yosinski, and Jeff Clune. Multifaceted Feature Visualization: Uncovering the
Different Types of Features Learned By Each Neuron in Deep Neural Networks, February 2016b.
URL https://arxiv.org/abs/1602.03616v2.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature Visualization. Distill, 2(11):e7,
November 2017. ISSN 2476-0757. doi: 10.23915/distill.00007. URL https://distill.
pub/2017/feature-visualization.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom In: An Introduction to Circuits. Distill, 5(3):e00024.001, March 2020. ISSN 2476-
0757. doi: 10.23915/distill.00024.001. URL https://distill.pub/2020/circuits/
zoom-in.

Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607–609, June 1996. ISSN 1476-
4687. doi: 10.1038/381607a0. URL https://www.nature.com/articles/381607a0.
Publisher: Nature Publishing Group.

Mateusz Pach, Shyamgopal Karthik, Quentin Bouniot, Serge Belongie, and Zeynep Akata. Sparse
Autoencoders Learn Monosemantic Features in Vision-Language Models, June 2025. URL
http://arxiv.org/abs/2504.02821. arXiv:2504.02821 [cs].

Carlos R. Ponce, Will Xiao, Peter F. Schade, Till S. Hartmann, Gabriel Kreiman, and Margaret S.
Livingstone. Evolving Images for Visual Neurons Using a Deep Generative Network Reveals
Coding Principles and Neuronal Preferences. Cell, 177(4):999–1009.e10, May 2019. ISSN 0092-
8674, 1097-4172. doi: 10.1016/j.cell.2019.04.005. URL https://www.cell.com/cell/
abstract/S0092-8674(19)30391-5. Publisher: Elsevier.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do Adver-
sarially Robust ImageNet Models Transfer Better?, December 2020. URL http://arxiv.
org/abs/2007.08489. arXiv:2007.08489 [cs, stat].

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition, April 2015. URL http://arxiv.org/abs/1409.1556. arXiv:1409.1556
[cs].

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks, February 2014. URL
http://arxiv.org/abs/1312.6199. arXiv:1312.6199 [cs].

Hiroshi Tamura, Hidekazu Kaneko, Keisuke Kawasaki, and Ichiro Fujita. Presumed Inhibitory
Neurons in the Macaque Inferior Temporal Cortex: Visual Response Properties and Functional
Interactions With Adjacent Neurons. Journal of Neurophysiology, 91(6):2782–2796, June 2004.
ISSN 0022-3077. doi: 10.1152/jn.01267.2003. URL https://journals.physiology.
org/doi/full/10.1152/jn.01267.2003. Publisher: American Physiological Society.

Edgar Y. Walker, Fabian H. Sinz, Erick Cobos, Taliah Muhammad, Emmanouil Froudarakis, Paul G.
Fahey, Alexander S. Ecker, Jacob Reimer, Xaq Pitkow, and Andreas S. Tolias. Inception loops
discover what excites neurons most using deep predictive models. Nature Neuroscience, 22(12):
2060–2065, December 2019. ISSN 1546-1726. doi: 10.1038/s41593-019-0517-x. URL https:
//www.nature.com/articles/s41593-019-0517-x. Publisher: Nature Publishing
Group.

Binxu Wang and Carlos R. Ponce. High-performance evolutionary algorithms for online neuron
control. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’22,
pp. 1308–1316, New York, NY, USA, July 2022. Association for Computing Machinery. ISBN
978-1-4503-9237-2. doi: 10.1145/3512290.3528725. URL https://dl.acm.org/doi/
10.1145/3512290.3528725.

12

http://arxiv.org/abs/1605.09304
https://arxiv.org/abs/1602.03616v2
https://distill.pub/2017/feature-visualization
https://distill.pub/2017/feature-visualization
https://distill.pub/2020/circuits/zoom-in
https://distill.pub/2020/circuits/zoom-in
https://www.nature.com/articles/381607a0
http://arxiv.org/abs/2504.02821
https://www.cell.com/cell/abstract/S0092-8674(19)30391-5
https://www.cell.com/cell/abstract/S0092-8674(19)30391-5
http://arxiv.org/abs/2007.08489
http://arxiv.org/abs/2007.08489
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.6199
https://journals.physiology.org/doi/full/10.1152/jn.01267.2003
https://journals.physiology.org/doi/full/10.1152/jn.01267.2003
https://www.nature.com/articles/s41593-019-0517-x
https://www.nature.com/articles/s41593-019-0517-x
https://dl.acm.org/doi/10.1145/3512290.3528725
https://dl.acm.org/doi/10.1145/3512290.3528725


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. YOLOv7: Trainable bag-
of-freebies sets new state-of-the-art for real-time object detectors, July 2022. URL https:
//arxiv.org/abs/2207.02696v1.

Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or Signal: The Role
of Image Backgrounds in Object Recognition, June 2020. URL http://arxiv.org/abs/
2006.09994. arXiv:2006.09994 [cs].

Will Xiao and Gabriel Kreiman. XDream: Finding preferred stimuli for visual neu-
rons using generative networks and gradient-free optimization. PLOS Computational
Biology, 16(6):e1007973, June 2020. ISSN 1553-7358. doi: 10.1371/journal.pcbi.
1007973. URL https://journals.plos.org/ploscompbiol/article?id=10.
1371/journal.pcbi.1007973. Publisher: Public Library of Science.
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A APPENDIX

A.1 EXTENDED METHODS

Networks The ablation studies were performed on CNNs pretrained on the ImageNet dataset:
AlexNet (Krizhevsky et al., 2012), VGG16 (Simonyan & Zisserman, 2015), ResNet50 (He et al.,
2015), and robustly-trained ResNet50 (L∞ ∈ {0.5, 1, 2, 4, 8}, Salman et al. (2020)). All these
networks end on a 1000-unit fully connected layer, each unit corresponding to one of the 1000
ImageNet categories. Neural networks were used in Pytorch.

ImageNet subsampling To reduce computing time, for most of the experiments, we used a subset
of ImageNet, the imagenette dataset (noa, 2024) and the macaque category, 11 classes in total. These
classes and their corresponding output units in each network trained on the 1000-class ImageNet
dataset are as follows: (0, tench), (207, English Springer), (482, cassette player), (491, chain saw),
(566, church), (569, French horn), (571, garbage truck), (574, gas pump), (701, golf ball), (970,
parachute), and (373, macaque). We visualized the representations of the output layer units of
those classes under different ablation conditions. For Fig. 12, to sample 100 diverse classes out
of the 1000 ImageNet classes, the 50k validation images were first clustered into 100 clusters via
agglomerative clustering of the L2 distance matrix from the 1000-d output features of ResNet50,
which was pre-trained on ImageNet. Then, one new unique class is selected from each cluster.

Ablation We used two ablation conditions: we ablated weights that were (1) only positive or (2)
only negative. We ablated weights cumulatively by first sorting the positive (or negative) weights
by their (absolute) decreasing value. We defined the ablation strength, α, as a fraction of the total
positive or total negative weights to a unit. We identified the top k weights necessary to reach the
silencing strength, i.e.,

∑k
i=1 wi ≤ α, and set them to zero. We covered the range of ablations from

0 to 1. For most experiments with ANNs, we used silencing strengths in 0.1 steps, from 0 (intact) to
1 (complete ablation).
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Figure 8: Schematic of feature visualization workflow in ANNs and brains. Optimizer is CMAES,
image generators are DeePSim fc6 or BigGAN.

Figure 9: Illustration of a diverse dataset construction using AlexNet output feature space. The em-
bedding is the output of the last layer before softmax of AlexNet, a vector space of 1000-dimensions.
Left: PCA showing the coverage of the feature space by the diverseSet 160, only for illustration pur-
poses. Right: images from diverseSet 160 used to fit neuron models.

Feature visualization For each ablation condition, we performed feature visualization by opti-
mizing a GAN latent code to create an activity-maximizing image Fig. 8. We used this closed-loop,
zeroth-order-search approach to allow comparison with our neuronal experiments, where gradient
ascent would not be possible. To increase the span of the stimulus space, we used two GANs:
AlexNet fc6 DeePSiM (Dosovitskiy & Brox, 2016) and BigGAN (Brock et al., 2019). For optimiza-
tion, we used a variant of covariance matrix adaptation evolutionary strategy or CMAES (Wang &
Ponce, 2022; Loshchilov, 2015). Initial conditions for the CMAES were given as standard deviation
of 3.0 for DeePSim, and 0.2 for BigGAN. Initial images for the algorithm were small norm vectors
for both GANs, close to the origin of the latent spaces. For BigGAN, we generated a fixed noise
vector by scaling a 128-dimensional truncated noise sample (-1.4, 1.4), and concatenated it with a
128-dimensional zero vector of the class embedding, to form the required 256-dimensional input
code. The remaining parameters are determined by the dimensionality of the search space of each
GAN. We optimized ten images per GAN, resulting in 20 feature visualizations per output unit and
ablation condition. Diverse visualizations better capture the multifaceted high-level representations
in CNNs (Nguyen et al., 2016b). For our examples, we show the best of the 20 visualizations, but
used all for quantitative analyses. For visualizations of neural networks predicting biological neuron
responses, due to experimental time restrictions, we used five visualizations per ablation condition,
via DeePSim only. Our experiments are performed in a PC with Nvidia 4090 GPU, and each visu-
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alization running 100 iterations takes about 3 mins. For in vivo experiments, we ran from 20 to 60
iterations of the AlexNet fc6 DeePSiM with the CMAES algorithm implemented in Matlab, linked
to our real-time spike-sorting data acquisition. The responses fed to the CMAES algorithm were the
average firing rate on the window 70-170 ms from image onset.

Feature analysis We computed image similarity using an ensemble of CNNs, including AlexNet,
ResNet50, and ResNet50 with robustness in L∞ ∈ {0.5, 1, 2, 4, 8}, inspired by (Feather et al.,
2023) And confirmed the results with LPIPS (Zhang et al., 2018) in the appendix. We computed
their activations and defined similarity as the average pairwise cosine similarity (LPIPS) between
control activity vs input-ablated activity. We averaged the results of the CNNs ensemble, resulting in
one quantity per ablation condition. We computed objectness as the maximum bounding box score
provided by YOLOv7 (Wang et al., 2022), this was averaged over visualizations per unit, units per
network, and then across networks.

Visual cortex electrophysiology We collected data from two animals (monkey C and monkey D),
each implanted chronically with floating multielectrode arrays (Microprobes for Life Sciences, MD)
of 32 or 16 channels (monkey C, N = 96 electrodes, monkey D, 64), in areas V1, V4 and posterior
inferotemporal cortex (PIT). All institutional procedures were followed. Channels were distributed
as (V1, V4, PIT): monkey C (32, 32, 32), monkey D (16, 16, 32). Some electrodes captured the
activity of single units, but most showed multi-unit activity (reflecting the pooled activity of micro-
clusters of neurons). The animals performed a simple fixation task, which required them to keep
their eyes on a 0.25-deg diameter spot at the center of the screen, within a square fixation window
measuring 0.5–1◦ per side. Images were presented for 100 milliseconds ON, 150-ms off, 4-5 images
per trial, after which the animal received water or juice. Images were presented to monkey C were
2 deg in size, and 4-8 deg for monkey D to match the receptive field centers of most channels in
all cortical areas (V1, V4 and PIT). Image presentation and data acquisition (electrophysiology, eye
tracking) were integrated by the MonkeyLogic2 software (Hwang et al., 2019) and OmniPlex Neu-
ral Recording Data Acquisition Systems (Plexon Inc.), interfaced through custom Matlab code. We
performed online spike sorting using the PlexControl client based on waveforms. We used ViewPixx
EEG monitors (ViewPixx Technologies), at a resolution of 1920x1080 pixels with 120 Hz refresh
rate. Eye tracking used ISCAN cameras (ISCAN Inc.). And reward was delivered using the DARIS
Control Module System (Crist Instruments).

Feature localization in vivo We conducted a perturbation-based localization to identify relevant
image regions from a feature visualization performed in vivo, where gradient information from the
animal brain is unavailable. We perturbed a circular region with a 50-pixel diameter within the
256-pixel image by randomly shuffling the pixels inside this circle, effectively disrupting the local
image structure while maintaining local contrast. We selected 30 such regions for perturbation at
random, excluding those that extended beyond the image boundaries. The modified images were
then presented to the monkey. We hypothesized that perturbing regions crucial for driving the neu-
ron response would lead to a decreased firing rate. To assess local image importance, we calculated
the normalized response change: the difference between the firing rate response to the intact image
and the firing rate response to the perturbed image, divided by the firing rate response to the intact
image. A normalized response change of 0.5 indicates the neuron response decreased by half due to
perturbation. To generate the localized response mask, we averaged the circular masks correspond-
ing to each perturbed region, weighted by their response change. This response mask was further
smoothed using a Gaussian kernel with a 30-pixel standard deviation. We defined relevant regions
as those causing a normalized response change of 0.5 or greater. Finally, we applied this mask to
the original feature visualization image to highlight the local features.

Image dataset We collected a reference image dataset to activate neurons in the monkey along
the hierarchy of V1, V4, and PIT. Because neurons vary in their preferred features, we constructed
a dataset spanning the image space as represented by the neural embedding of ImageNet-trained
AlexNet. The embedding is the output of the last layer before softmax of AlexNet, a vector space
of 1000-dimensions. The images from this dataset also spanned uniformly the 1000-dimensional
output space of a semi-supervised trained network, trained on a billion images, ResNet50SS (Yalniz
et al., 2019). To define this embedding space, we performed PCA on the output activations from
AlexNet to the 50k ImageNet validation images, we kept the top 300 components (accounting for
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about 95% of total explained variance). Then we partitioned the space into a defined number of
clusters k, according to the desired dataset size, using batched k-means to reduce computational
burden. After finding the k cluster centers, we could feed arbitrary images to the network, map
them to the PCA space, and then pick the nearest neighbors to the cluster centers from the desired
image space. In addition to the ImageNet validation set, we added other common neuroscience
datasets (Brady et al., 2008; Kar et al., 2019; Allen et al., 2022; Hung et al., 2005) to form our image
space. We selected k = 160 images, as a set that was diverse but small enough to be used in every
experimental session. We called this image dataset diverseSet .

Figure 10: Schematic of model fitting using the dataset diverseSet. 160 images were split into
train/test datasets (80/20).

Models fit on neuronal activity We recorded responses of neurons in the ventral stream to a 160
image dataset, our diverseSet Fig. 10. We relied on a small dataset to fit neuron responses and
perform feature visualizations within the same experimental session. We performed partial least-
squares linear (PLS) regression (80/20 train/test split) between the neuron responses to images and
the activations of the penultimate layer of AlexNet. We used one component for the PLS regression.
We selected one neuron or microcluster per experimental session, fitted a model, and performed the
ablation and feature visualizations in silico for that model. We selected the best fitted neuron per
session, based on the r2 on the 20 % held out test set, usually in the range of 0.15 to 0.5. When
time allowed, we also performed the feature visualization of the modeled neuron in vivo using a
gradient-free approach (Ponce et al., 2019), within the same experimental session. To test whether
features learned by the model were relevant to the biological neuron, we recorded the neuronal
responses to the preferred images of the model. We then analyzed the representational similarity
of the model features under ablations using ANNs. And analyzed the responses of the biological
neuron populations from V1, V4 and IT.

A.2 SUPPORTING RESULTS
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Table 2: Ratio of positive to negative weights. We divided the sum of positive weights by the sum
of the absolute values of the negative weights.

MODEL RATIO (MEAN ± STD)

AlexNet 1.03 ± 0.08
VGG16 1.01 ± 0.09
ResNet50 1.00 ± 0.06
ResNet50 (L∞ = 0.5) 1.00 ± 0.05
ResNet50 (L∞ = 1) 0.99 ± 0.05
ResNet50 (L∞ = 2) 1.00 ± 0.04
ResNet50 (L∞ = 4) 1.00 ± 0.05
ResNet50 (L∞ = 8) 1.01 ± 0.05

Table 3: Dale index of the final classification layer before and after training, and trained Top1
accuracy.

Model Untrained DI Trained DI ∆ DI Top1 Acc

alexnet 0.5126 0.5461 +0.0335 56.52
densenet121 0.5125 0.5567 +0.0442 74.43
densenet169 0.5126 0.5590 +0.0464 75.60
densenet201 0.5126 0.5601 +0.0475 76.90
resnet18 0.5128 0.5905 +0.0778 69.76
resnet34 0.5130 0.5923 +0.0793 73.31
resnet50 0.5125 0.6004 +0.0879 80.86
resnet101 0.5126 0.5998 +0.0872 81.89
resnet152 0.5127 0.6007 +0.0880 82.28
vgg11 0.5123 0.5570 +0.0447 69.02
vgg11 bn 0.5123 0.5737 +0.0614 70.37
vgg13 0.5125 0.5583 +0.0457 69.93
vgg13 bn 0.5125 0.5747 +0.0622 71.59
vgg16 0.5126 0.5606 +0.0480 71.59
vgg16 bn 0.5126 0.5761 +0.0635 73.36
vgg19 0.5129 0.5619 +0.0490 72.38
vgg19 bn 0.5129 0.5748 +0.0619 74.22
inception v3 0.5127 0.5597 +0.0470 77.29

A.3 DALE’S LAW INSPIRED ANALYSIS OF INTERMEDIATE FEATURES

To determine if weight segregation of features occurs beyond the output layer, we visualized fea-
ture representations that predominantly provide negative or positive inputs to subsequent layers in
AlexNet. We calculated sign consistency by averaging spatial weights and determining the fre-
quency of positive and negative weights across output channels. The visualization of sign-consistent
input features was conducted using the Lucent library in PyTorch, leveraging gradient-descent chan-
nel activity maximization. We focused on AlexNet’s intermediate layers, examining the top and
bottom sign-consistent features for each input channel.

Layer Details:

Conv1: Conv2d(3, 64, kernel size=(11, 11), stride=(4, 4), padding=(2, 2))
Conv2: Conv2d(64, 192, kernel size=(5, 5), stride=(1, 1), padding=(2, 2))
Conv3: Conv2d(192, 384, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
Conv4: Conv2d(384, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
Conv5: Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))

Features that contributed mostly positive weights differed from the features contributing mainly
negative weights, with object vs background arising with increasing depth. This positive vs negative
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Figure 11: Mean activation scores of units used in ablation experiments. For all networks, units
scores come from the last fully-connected layer, with 1000 units, before the softmax. The units
correspond to the 10 imagenette categories ([0, 217, 482, 491, 497, 566, 569, 571, 574, 701])
plus the macaque category (373). Error bars are 95% confidence intervals over units (categories
tested), where each unit response is the mean of its 20 visualizations. Control refers to the feature
visualizations in the intact networks for the same units, we extended it as a horizontal line to ease
visual comparisons to the different ablation strengths.

weight split is evident even in the first layer, where low-frequency color features are contrasted with
high-frequency black-and-white features.
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Figure 12: Functional segregation holds in a 10x larger dataset. 100 classes out of the 1000 Im-
ageNet categories were selected by clustering the 50k validation images embedded in the 1000-d
output space of ResNet50 picking one class per cluster. Thus, we now have 10x more data points
that should span the representational space of the output layer we study. Consistent with the smaller
dataset, the main object features degrade into more uniform background images upon positive abla-
tion. Here we show examples from 10 of the 100 classes.

A.4 BIOLOGICAL NEURON MODELS

For each recording session, we selected the best model for further analysis, based on predictive
accuracy (mean test r2 = 0.27± 0.10 SD across sessions). The fitted models included both positive
and negative input weights, with a mean ratio of 1.17 for the sum of positive to negative absolute
weights (Fig. 20). Our final dataset comprised (V1, V4, pIT): (7, 5, 23) neurons in Monkey C and
(1, 5, 18) in Monkey D, with the majority of data from pIT cortex.
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Figure 13: Functional segregation holds in a 10x larger dataset with LPIPS (Zhang et al., 2018) as
representational similarity measure. We measured the representational similarity of the images as 1 -
LPIPS among control images and between control images and ablation images (Fig. 12). We average
results per class, and show the mean and 95% C.I. across the 100 classes. The representational
similarity degrades upon positive input ablations, confirming results obtained from the imagenette
dataset.

Figure 14: Functional segregation of frequency content. We measured the radial power spectrum for
control and ablation images of different networks. We average results per class, and show the mean
and 95% C.I. across the 11 classes. Low frequencies degrade upon positive input ablations, while
negative ablations overlap with control spectra.

Figure 15: Functional segregation of frequency content. We measured the radial power spectrum for
control and ablation images of different networks. We average results per condition and per network,
and show the ratio of control to ablated spectra. The mean and 95% C.I. are across networks. Low
frequencies degrade upon positive input ablations, while negative ablations overlap with control
spectra but slightly enhance low frequencies.
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Figure 16: Functional segregation of shape vs texture. We measured robustness effect on shape
vs texture encoding in ResNet50 using the shape/texture bias benchmark (Geirhos et al., 2022).
Robustness induces a shift from texture to shape, and negative ablations disrupt more strongly the
texture encoding of robust networks.
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Figure 17: Functional segregation of background vs foreground. We measured the accuracy on
the background challenge (Xiao et al., 2020). Robustness increases the role of negative weights
in encoding backgrounds but below the chance level. Counterintuitive results show either sign can
solve this challenge in AlexNet and VGG.
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Figure 18: Feature visualizations of ablation experiments in a network pretrained with unsupervised
learning. ResNet50SimSiam (Chen & He, 2020). The unsupervised network with frozen weights
was coupled to a fully connected layer, only this layer was fine-tuned to classify ImageNet1000.
Network units changed starting with small positive weight ablations, see unit 574 golf ball. Smaller
changes are visible upon negative weight ablations, however object relevant features remain. Overall
behavior is consistent with CNNs trained directly on ImageNet1000 classification.
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Figure 19: Layer Conv5 from Conv4: Features contributing mainly negative weights resemble back-
grounds, such as patches of sky and grass, and sometimes face-like features (e.g., in the tench class),
highlighted in orange borders. Positive weights align with localized object-like fragments, such as
snouts and eyes of animals, and sharp spotted textures vs the blurry spotted textures for negative
weights. Layer Conv4 from Conv3: Negative features still incorporate some background elements
like ground or grass textures (orange borders), together with some spiral, square and blurry textures.
Positive features exhibit more heterogeneous textures and higher frequency details, without evident
background-like textures. Layer Conv2 from Conv1: Positive weights carry high-frequency edges
mostly without color, while negative weights include lower frequency edge features and spotted tex-
tures with color, overall more spatially coarse. Channel index from the visualized features is shown
as a list below each panel.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 20: Left: Distribution of the model weights from neuronal fits with AlexNet penultimate layer
features. Each model maps 4096 parameters from penultimate layer of AlexNet to the response of
one biological neuron. Models use positive and negative weights. Model weights were normalized
by their standard deviation to plot them on the same scale, for sake of visualization. Right: Ratio
of total positive to total negative weights, per neuron model. Models use slightly larger positive
weights with a mean of 1.17 and std of 0.17. Model numbers: 35 for monkey C, and 24 for monkey
D.

Figure 21: Neuron model units recover features relevant for the biological neurons. Left: Responses
vs predicted responses of neurons to the training images, and the extrapolated features visualized
from the intact models, which are extrapolations because the training data did not cover those high
response ranges. Permutation t-test of neuron responses shows higher responses to images from
model features than the natural images of the training dataset (diverseSet). Right: three neuron
examples that show the feature visualization of the preferred feature of the neuron masked by the
full-width at half-maximum obtained from perturbations to the image, and to their right the five
feature visualizations of the intact model with the real neuron responses to those images on top.
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Figure 22: Using negative weights improves neuron models obtained via Lasso regression. Lasso
regression models were fit with and without the positive constraint, over a 5-fold cross validation.
Models were a linear regression from the 4096 features to a single neuron, over all neurons modeled
from both animals. Left: performance on the training set measured by r2 score. Middle: r2 perfor-
mance on the test set. Right: Model improvement by using positive and negative weights vs using
only positive weights given by the difference in r2 on the test set. Unconstrained models perform
better than the positively constrained model, across the range of L1 penalties (sparseness penalty)
tested, suggesting negative inputs from artificial network features are useful to predict biological
neuron responses.

Figure 23: Features that had positive or negative weights in most of the neurons models ( 91%
of the 56 neurons, binomial test p = 5.09e−10). These features are the closest approximation to
features respecting Dale’s law from our models. Left: best of 20 feature visualizations for the
features with positive weights across neurons, feature index is on top of the image. Features are from
the penultimate fc layer post ReLU, containing 4096 units. Right: best feature visualization from
the negatively weighted features across neurons. Positively weighted features contain more local
features like curved edges, while negative features contain textures or larger image patches. Sign
consistency tested for statistical significance against the Bernoulli distribution of 0.5 probability
with Bonferroni correction for testing 4096 features.
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Figure 24: Clearing the background around the images obtained via closed-loop visualization can
further boost responses in real-time recordings. Examples of 3 neurons in 2 monkeys.

Figure 25: Weight dynamics vs Dale index. Convergence rate of outgoing weights measured by
cosine similarity to final weights, as time to reach 90% of the final similarity. Each dot is one output
channel for all layers in ResNet18 trained over 16 epochs. Color indicates proportion of negative
signs. There is no obvious correlation. However, high Dale index channels mature within narrower
time windows than more mixed channels.
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