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ABSTRACT

A core principle in both artificial and biological intelligence is the use of signed
connections: positive and negative weights in artificial networks, and excitatory
and inhibitory synapses in the brain. While both systems develop representations
for diverse tasks, it is unclear whether positive and negative signals serve distinct
representational roles or whether all representations require a balanced mixture
of both. This is a fundamental question for mechanistic interpretability in neu-
roscience and Al. Here, we investigate how signed weights shape visual repre-
sentations in artificial and biological systems involved in object recognition. In
ImageNet-trained neural networks, ablation and feature visualization reveal that
removing positive inputs disrupts object features, while removing negative inputs
preserves foreground representations but affects background textures. This segre-
gation is more pronounced in adversarially robust models, persists with unsuper-
vised learning, and vanishes with non-rectified activations. To better approximate
the excitation versus inhibition segregation observed in biology (Dale’s law), we
identified channels that projected predominantly positive or negative weights to
the next layer. In early and intermediate layers, positive-projecting channels en-
code localized, object-like features, while negative-projecting channels encode
more dispersed, background-like features. Motivated by these findings, we per-
formed feature visualization in vivo in neurons in monkey visual cortex, across
the ventral stream (V1, V4, and IT). We also fitted linear models using the input
layer to classification units studied in ANNs that contained features alike those
preferred by the biological neurons. We replicated ablation experiments in these
model neuron units and found, as with class units, that removing positive inputs
altered representations more than removing negative ones. Notably, some units
closely approached Dale’s law: the positively projecting units exhibited local-
ized features, while the negatively projecting units showed larger, more dispersed
features. Furthermore, we increased in vivo neuron responses by clearing the
image background around the preferred feature, likely by reducing inhibitory in-
puts, providing concrete predictions for circuit neuroscientists to test. Our results
demonstrate that both artificial and biological vision systems segregate features
by weight sign: positive weights emphasize objects, negative weights encode con-
text. This emergent organization offers a new perspective on interpretability and
the convergence of representational strategies in brains and machines, with impor-
tant predictions for visual neuroscience.

1 INTRODUCTION

Computations in both brains and machines rely on positive and negative connections: synapses in
the brain and weights in artificial neural networks (ANNs). In biological neural circuits, cell types
are genetically and anatomically distinct (Zeng| |2022), with excitatory neurons that increase activity
in their targets and inhibitory neurons that decrease it. By Dale’s law, each neuron transmits either
excitatory or inhibitory signals to all its postsynaptic partners, with few exceptions. Functionally,
excitatory neurons are thought to compute core visual features, while inhibitory neurons sharpen
selectivity, modulate context, and gate information flow.
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The primate ventral visual stream, extending from V1 to IT, is responsible for object recognition.
Along the ventral stream neuronal representations become progressively more complex, similar to
how features in convolutional neural networks (CNNs) in artificial vision increase in complexity
with layer depth. In early vision, from retina to V1, mechanisms such as lateral inhibition (center-
surround receptive fields) are well understood. However, the functional organization of excitatory
and inhibitory inputs at higher stages of the ventral stream remains poorly characterized. This moti-
vates us to investigate whether analogous principles, particularly the division of information by the
sign of connections, apply to high-level representations in both artificial and biological vision.

ANNs compute with positive and negative weights, analogous to excitation and inhibition in the
brain, but without the strict constraint imposed by Dale’s law. Despite this parallel, the way visual
information is distributed between positive and negative weights in deep networks is not well under-
stood, especially in object classification models, where each output unit is selective for a category.
Some work has suggested that information is segregated by absolute weight strength (Li et al.| | 2023)),
but it is unclear whether different kinds of visual features, such as foreground/object and back-
ground/context, are systematically divided by weight sign. Because classification CNNs are good
models of the ventral stream, we hypothesize that CNN units might also segregate different kinds
of visual information into their positive and negative input weights, resembling excitation/inhibition
principles of the brain.

We systematically test this hypothesis in diverse ImageNet-trained CNNs by ablating positive and
negative input connections and visualizing resulting feature selectivity. We further analyze layer-by-
layer channel contributions, inspired by Dale’s law, to assess whether feature segregation manifests
consistently throughout network depth. To probe the robustness and limits of these findings, we
examine a variety of architectures and training regimes, including adversarially robust and unsuper-
vised models, and networks with non-rectified (Tanh) activations.

For biological comparison, we fit linear models from ANN features to neural responses recorded
across the macaque ventral stream (V1, V4, IT). We further use in vivo feature visualization and
manipulate background context to directly test circuit-level predictions involving inhibitory inputs.
While some of our biological results are model-based and primarily correlative, their convergence
with artificial networks motivates new mechanistic predictions for circuit neuroscience.

Our results support an emerging principle: across both artificial and biological vision systems, the
sign of input connections organizes feature representation, with positive weights emphasizing ob-
jects (localized features) and negative weights modulating context (dispersed features). These find-
ings connect the classic foundation of Dale’s law in neuroscience with the representational strategies
of modern artificial intelligence, offering new mechanistic insights and experimentally testable pre-
dictions for visual processing.

2 RELATED WORK

Mechanistic interpretability of computer and biological vision There has been progress in
mechanistic interpretability in ANNs from work using perspectives adapted from neuroscience cir-
cuit dissection (Olah et al.,[2020). This line of explainable Al research explains model behavior by
dissecting smaller network subgraphs, revealing how relevant features arise from input weights and
are composed hierarchically. Such work has uncovered motifs involving positive and negative con-
nections between related features, reminiscent of early visual system organization. New approaches
to address representations beyond single units rely on sparse dictionary learning, with early work
in vision (Olshausen & Field, [1996), an approach that has recently regained popularity in language
modeling (Cunningham et al., [2023), as well as in multimodal models (Pach et al., [2025). Some
studies also characterized object shape and texture biases in feature visualizations by reconstructing
images from sparse weight sets (Li et al., 2023)). However, the systematic division between posi-
tive and negative inputs across the entire range of weight strengths, and its possible role in feature
segregation, remains underexplored and is a focus of this study.

Feature visualization by closed-loop optimization Characterizing learned representations is
foundational for both biological and artificial vision research. Feature visualization, i.e. optimiz-
ing for images that strongly activate target units, was originally pioneered in the brain by hand
(Hubel & Wiesel, [1959), and later in silico by gradient ascent on pixels of neural networks (Erhan
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et al.l 2009} Nguyen et al 2016ajb; Olah et al., 2017). Because gradients are unavailable when
recording in vivo, gradient-free black-box optimization techniques were developed for synthesizing
preferred images of biological neurons in real-time (Ponce et al., [2019; |Xiao & Kreiman) [2020;
Wang & Poncel 2022)). These approaches constrain the search space via generative adversarial net-
works, promoting naturalistic solutions (Nguyen et al.,|2016a). Further methods involve first fitting
a predictive network to neural data and then using in silico gradient ascent (Bashivan et al., 2019;
Walker et al., |2019). While most prior studies use grayscale images, our study applies gradient-free
visualization to color images in both CNNs and primate recordings.

Robustness Neural networks are susceptible to adversarial attacks, where noise that is nearly im-
perceptible by humans can be added to natural images, changing output classification (Szegedy
et al., |2014; [Salman et al.| [2020; [Elsayed et al., |2018). Robust training, i.e. introducing adversar-
ial perturbations during learning, improves resistance to such attacks and is hypothesized to align
learned representations more closely with primate visual processing. Prior work does not assess
how robustness impacts the organization of image representations after ablation of signed weights,
which we systematically investigate here.

Nonlinearity influence on representations Beyond training objectives, the role of activation
functions such as ReLU versus Tanh profoundly influences representational properties (Alleman
et al., [2023), with ReLU inducing representations better aligned with input features and Tanh in-
ducing alignment with output features (labels). This prior work was done in small networks from a
theoretical perspective; thus, the impact of rectification on the potential segregation of visual features
at practical scales is unknown and addressed by our study.

3 METHODS

An extended methods section is in the Appendix [A.T]

Networks We performed our ablation studies in CNNs pretrained on the ImageNet dataset:
AlexNet (Krizhevsky et al.|, 2012), VGG16 (Simonyan & Zisserman, [2015)), ResNet50 (He et al.,
2015), and robust ResNet50 (L, € {0.5,1,2,4,8}, [Salman et al|(2020)). To reduce comput-
ing time, we used the imagenette dataset (noal |2024) and the ImageNet macaque category. For all
networks, we visualized the representations of the units in the fully-connected output layer (pre-
softmax) matching those classes under different ablation conditions.

Ablation We ablated weights that were either (1) only positive or (2) only negative. We used a

cumulative approach: we first sorted the positive (or negative) weights by their (absolute) decreasing

value. Then, we defined a fraction of the total positive or total negative weights to ablate « (ablation
k .

% < @, and set them to zero. We covered

i

strength), identifying the top k£ weights such that
the range of ablations from O to 1.

Feature visualization For each ablation condition, we performed feature visualization by optimiz-
ing a GAN latent code to create an activity-maximizing image. We used this closed-loop, zeroth-
order-search approach to allow comparison with our neuronal experiments, where gradient ascent
would not be possible. To increase the span of the stimulus space, we used two GANs: AlexNet
fc6 DeePSiM (Dosovitskiy & Brox, 2016) which can render textures and objects, and BigGAN
(Brock et al., [2019) that can render photo-realistic images with objects. For optimization, we used
a variant of covariance matrix adaptation evolutionary strategy or CMAES (Wang & Ponce| 2022}
Loshchilov, [2015). We optimized ten images per GAN, resulting in 20 feature visualizations per
output unit and ablation condition. Diverse visualizations better capture the multifaceted high-level
representations in CNNs (Nguyen et al.,[2016b)). For our examples, we show the best of the 20 vi-
sualizations, but used all for quantitative analyses. For visualizations of neural networks predicting
biological neuron responses, due to experimental time restrictions, we used five visualizations per
ablation condition, via DeePSim only. Our experiments are performed in a PC with Nvidia 4090
GPU, and each visualization takes about 3 mins.
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Network training Both ResNet18 networks were trained using the FFCV library
for 16 epochs on the ImageNet1K dataset. The top-5 classification accuracy was 0.797 for
the network with Tanh activations and 0.870 for the network with ReLU activations. Note that these
models were trained for only 16 epochs rather than the standard 90, so their accuracy underperforms
published benchmarks. However, they are suitable for our mechanistic analyses.

4 RESULTS
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Figure 1: A. Schematic of feature visualization workflow in ANNs and brains. B. Preferred feature
changes for different ablation strengths of input weights to the macaque 373 output unit of AlexNet
(last fc layer of 1000 units before softmax). Images are the most activating images out of the 20
visualizations per ablation strength. Ablation strengths are below each image, and activation scores
are above. C. Changes in preferred features to different ablations of example AlexNet output units:
0 tench, 574 golf ball, and 482 cassette player. Notice the large image changes for positive ablations.
Same methods as in B. D. Representational similarity of intact vs input-ablated units across networks
tested, measured by the pairwise cosine similarity of control vs ablation images over an ensemble
of networks. Error bars are 95% confidence intervals over units, each unit is the mean of its 20
visualizations. The units correspond to the 10 imagenette categories ([0, 217, 482, 491, 497, 566,
569, 571, 574, 701]) plus the macaque category (373). E. Objectness scores across units per ablation
condition. As in D, we tested 11 units from the 1000-unit fully-connected output layer (pre-softmax)
of: AlexNet, VGG16, ResNet50, and robust ResNet50 (L., € {0.5,1,2,4,8}). For each network,
we averaged over the objectness scores of 20 visualizations per unit and all units. The plot shows
the mean over previously described network averages. Error bars are 95% confidence interval over
network averages.
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4.1 OBJECT INFORMATION IS PREFERENTIALLY ENCODED BY POSITIVE WEIGHTS

Hypothesis In both biological and artificial visual systems, excitation and inhibition—or, analo-
gously, positive and negative weights—may organize visual representations into distinct subspaces.
Inspired by center-surround receptive field structure, where inhibitory surrounds provide contextual
information, we hypothesized that output units of CNNs trained for object recognition segregate
object information to positive weights and background/contextual information to negative weights.

Testing segregation by ablation and visualization. We examined this hypothesis in ImageNet-
pretrained CNNs using ablation and feature visualization. Despite minor variation in input weight
distributions across units and architectures, we found that the overall ratio of positive to negative in-
put weights per unit is close to unity (Table [2), suggesting that, in principle, both polarities may
encode relevant information. We then selectively ablated positive or negative input weights to
class units and visualized the resulting features at multiple ablation strengths. Ablating positive
input weights substantially reduced the maximal activation achievable during feature visualization,
whereas ablating negative inputs produced a slight increase (see appendix Fig.[T0). Visual inspec-
tion revealed that ablating positive weights typically altered and degraded the recognizable object
structure in preferred images, while ablating negative weights preserved object identity but slightly
altered background or color context (Figs.[I| B, C). To quantify these changes in the representations,
we compared image sets generated before and after ablation using mean pairwise cosine similarity
over an ensemble of readout CNNs. Positive-weight ablation produced representations markedly
less similar to the intact state, whereas negative-weight ablation resulted in much smaller changes
(Fig. [[| D). These findings replicated over a 10-fold larger dataset of 100 ImageNet classes and us-
ing alternative metrics such as LPIPS (Zhang et al 2018) (appendix Fig. [I2), adding robustness
and generality. To specifically quantify to what extent objects disappear from the preferred images
under ablations, we used an object-detection network (YOLOvV7; Wang et al.| (2022)). Relative to
a baseline objectness score obtained from visualizations of intact units, we found that ablation of
positive weights decreased the objectness score (Fig. [T] E). Together, in ImageNet-trained CNNs,
removing positive input weights disrupts object features, while removing negative weights mainly
affects context, indicating a bias toward object encoding in positive weights.
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Figure 2: Ablation experiments (rows are features, responses, and representational similarity) in
A. Semisupervised networks, B. Vanilla ReLLU supervised network, and C. Network with a non-
rectified activation function Tanh, replacing all ReLUs in B.
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4.2 SEGREGATION DEPENDS ON RELU BUT NOT ON UNSUPERVISED PRETRAINING

To examine whether functional segregation of object and context information by weight sign de-
pends on supervised learning, we analyzed a ResNet50 backbone trained without supervision (Sim-
Siam from |Chen & He| (2020)). After unsupervised pretraining, weights were frozen and a fully
connected layer was added and trained for supervised classification on ImageNet1K. Feature abla-
tion and visualization revealed that this network still allocated object features to positive weights,
although these features disappeared at lower ablation strengths than in fully supervised CNNs
(Fig. A, appendix Fig. [[3). Negative input ablation had only a minor effect, suggesting that even
unsupervised representations are organized so that positive weights convey most object-related fea-
tures.

We hypothesized that the structure of this segregation may depend on the rectifying ReLU activation,
which restricts unit outputs to non-negative values and causes the weights to define the direction of
each contribution. Related work in toy networks has shown that ReLU causes alignment to input
space, while Tanh leads to alignment to output space (Alleman et al.| 2023)). To directly test the effect
of rectification, we trained ResNet18 models with either ReLLU or Tanh activations. As expected,
the ReLU network showed robust segregation because the most pronounced changes occurred with
ablation of positive weights. In contrast, the Tanh network without rectification showed similar
representational changes for both ablation types and retained relevant features when either set of
inputs was ablated (Fig. 2] B, C). These results demonstrate that rectified activations are necessary
for a strong segregation of object information into positive weights in CNNs.

Robust training induces stronger feature segregation
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Figure 3: Robust network ResNet50 L., = 8 shows a large change in preferred features upon input
ablation. Notice the white background in the negative-weight ablation condition.

4.3 ADVERSARIALLY ROBUST NETWORKS SHOW ENHANCED FEATURE SEGREGATION

Having established that both unsupervised pretraining and rectified activations support the segre-
gation of object and context information by weight sign, we next asked how this organization is
affected by other salient properties of deep vision networks. In particular, adversarially robust net-
works, which are trained to resist small targeted image perturbations (Szegedy et al.| 2014 Madry
et al.,2019), are believed to better reflect aspects of biological vision and may therefore show distinc-
tive patterns of feature segregation. We examined whether and how adversarial robustness influences
the allocation of object and contextual information to positive and negative weights.

In robust ResNet50 networks, intact feature visualizations appeared more object-like, and ablation
of negative input weights reliably altered the background color, often rendering it white (Fig. [3).
This hinted at a stronger feature segregation than in vanilla networks. Quantitative analysis con-
firmed that as network robustness to adversarial attacks increased, so did the model’s vulnerability
to ablation, as measured by the difference in cosine similarity between control images and ablated
images (see A(cosine similarity) in Fig. ). For ablation strenght of 1 (yellow/light lines), the dif-
ference increased with network robustness, and slopes in Table |I| indicate this trend holds across
ablation polarities and strengths. Overall, classification CNNs segregate object information to posi-
tive weights and texture or background information to negative weights, and that adversarially robust
training further sharpens this sign-based segregation.
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4.4 FEATURE SEGREGATION IS NOT EXCLUSIVE TO CLASS UNITS

To determine whether feature segregation by weight sign is present beyond the output layer, we
systematically analyzed intermediate and early layers of CNNs. We first searched for channels that
approximated Dale’s law, identifying those that predominantly provided positive or negative inputs
to their downstream units in each layer. For each convolutional layer, we calculated the sign con-
sistency of outgoing weights and ranked channels according to whether they sent mostly positive or
mostly negative signals forward. We then visualized the preferred features of these channels using
gradient-based methods with the Lucent library in PyTorch. Examining all five convolutional layers
of AlexNet, we found that feature segregation by sign emerged throughout the network. In the first
layer, channels with mostly positive weights responded to high-frequency achromatic edges, while
those with mostly negative weights responded to lower-frequency, colored edges and spots. In the
middle layers, positive channels tended to emphasize edges and detailed textures, whereas negative
channels often represented broader, colored, or background-like patterns. By the final convolutional
layer, channels with mostly negative weights produced features that resembled background elements
such as sky or grass, while channels with positive weights highlighted sharp, localized object frag-
ments like animal snouts and eyes (appendix Fig. [[4). Altogether, our results show that feature
segregation by weight sign is not restricted to the output layer, but gradually develops throughout
the network. This pattern is reminiscent of Dale’s law in biological circuits, suggesting that artifi-
cial neural networks can develop sign-consistent and functionally distinct representations across all
layers, even in the absence of a biological constraint.
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Figure 6: Left: predicted and actual neuron responses of model to ablations. Images obtained from
positive ablations in the neuron models elicited a consistent activity drop on the biological neurons
modeled. Right: Representational change of model to ablations measured by our cosine similarity
metric on the neuron model feature visualizations upon ablation; and cortical population response to
the images obtained from feature visualization from ablation of model units, neurons were z-scored
before computing the population average. Plots show averages over 59 models, (35 for monkey C,
and 24 for monkey D), shaded regions are the 95% C.I of the mean. For all plots the positive ablation
condition was statistically different to the control.

4.5 BIOLOGICAL MODELS BASED ON IMAGENET NETWORKS SEGREGATE LOCAL FEATURE
INFORMATION INTO POSITIVE WEIGHTS

The ventral stream in primates is responsible for object recognition, and artificial networks are the
best models of its function. We therefore wondered if the segregation of positive and negative inputs
we observed in networks might also occur in the brain. However, it is not currently possible to se-
lectively remove positive or negative synaptic inputs from real neurons the way we can in artificial
networks. To address this limitation, we fit linear models mapping CNN features to macaque ventral
stream neural responses, and applied feature visualization to both model units and in vivo data. This
allowed us to test feature segregation in biological representations and to generate testable neuro-
science predictions. We recorded neural activity from V1, V4, and IT cortex in two monkeys, using
a diverse set of images and modeled each neuron’s response using partial least squares regression
with activations from the penultimate layer of AlexNet (4096 units). ['| We then applied our ablation
and visualization protocol to these neuron models (see appendix for validation and showed
the resulting images to the monkey during the same session. First, images from intact models reli-
ably drove biological neurons to firing rates more than one standard deviation above those observed
during natural image presentations (Fig[T6] left), indicating out-of-distribution generalization. For
the subset of neurons in which we performed in vivo closed-loop feature visualization, we found
that the model’s preferred features often matched those of the neuron, providing additional valida-
tion (appendix Fig. right). However, in vivo features were more spatially localized (procedure
in @ whereas in silico features exhibited greater spatial variation (rotated, mirrored, or repeated
versions). This likely reflects invariances, due to using a fully connected layer, that are not present in
our recorded neurons. Moreover, unlike the images from recognition units, images from the neuron
models did not resemble objects (appendix Fig.[16] Fig. [5).

Ablation experiments reveal sign-based segregation in neuron models. Ablation experiments
on these neuron models showed that removing positive input weights led to a significant decrease
in both predicted and observed firing rates, while removing negative weights had a smaller effect
(Fig. [6). This pattern was consistent across individual neurons and at the population level in the
ventral stream (Fig[6] rightmost). The population changes suggest that sign-based functional segre-
gation in model predictions translates to measurable changes across the ventral stream population
and perhaps perception.

Dale’s law inspired analysis. To incorporate more biologically realistic constraints, we examined
two approaches that move our models closer to Dale’s law. First, we investigated whether neural re-
sponses could be accurately predicted using only positive input weights, which would correspond to
receiving input exclusively from excitatory artificial neurons. This led to a reduction in both training

! Although using other layers could improve predictive accuracy, we selected the penultimate layer to di-
rectly test if inputs optimized for classification maintain weight sign-based segregation in biological neural
predictions.
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and test accuracy compared to unconstrained models (appendix Fig.[I7). This show neuron models
need both positive and negative inputs. Second, we identified artificial units that consistently con-
tributed either positive or negative weights to all output neuron models, defining putative excitatory
and inhibitory inputs as in the brain. We found that positive weights corresponded to smaller-scale
edges and localized spots, clearly segregated from the background, while negative weights mapped
onto broader textures and larger patches (appendix Fig. [I8). This pattern supports the hypothesis
that inhibitory-like artificial inputs may serve to modulate responses to background or contextual
features, similar to the role of inhibition in biological cortex.

Experimental manipulation of background as a test for inhibition. To further test this hypoth-
esis, we experimentally manipulated image backgrounds in vivo. In a subset of experiments, we pre-
sented altered images in which the background was cleared around the neuron’s preferred feature,
thereby reducing the putative inhibitory drive. As predicted, this manipulation resulted in increased
neuronal responses (appendix Fig. [I9), providing functional support for the idea that inhibitory or
negative inputs are involved in contextual modulation and that their reduction can enhance feature
selectivity in high-level visual cortex. Together, these results suggest that functional segregation by
input sign extends to models of ventral stream neurons, providing concrete testable predictions for
future experiments targeting excitation and inhibition in visual cortex.

5 LIMITATIONS

Our results hold in the last layer units of multiple networks. Due to limited computing time, we
did not test all 1000 categories in as many networks as possible, our largest test consisted of 100
units. While larger scale simulations will provide exhaustive evidence, we are confident our main
claims will stand. We limited our neuron recordings to a 160 image dataset for regressing neuron
responses via CNNs. While we observed good fits and recovered relevant feature to the neurons,
more images may improve the models, especially using larger-scale versions of our diverseSet. The
neuroscience results would need to follow Dale’s law to be mapped one-to-one to excitatory and
inhibitory neurons, but we make no claim to a perfect mapping in this work.

6 DISCUSSION

Our study combined ablations with feature visualization guided by naturalistic image priors to reveal
the functional segregation of class-level features in the output layer of ImageNet trained CNNs:
positive weights contribute object information, while negative weights contribute background or
contextual information. This effect was enhanced in robust networks, it was present in networks
with unsupervised pretraining, but was absent in network trained with Tanh instead of ReLU. Our
results explain how the background contribution to classification observed in (Xiao et al., 2020)
emerges, backgrounds are primarily encoded by the negative inputs.

Importantly for neuroscience, the observed functional segregation in neuron model units in CNNs
hints at a functional segregation in the brain beyond the center-surround classically studied in V1.
And we crafted a diverse dataset for visual neuroscience recordings that is scalable. Neuron re-
sponses to a smaller but diverse set of naturalistic, colored images, with complex foregrounds and
backgrounds, led to models capturing relevant features obtained experimentally from the neuron.
Thus, using both model-based and model-free approaches revealed richer neuronal representations.
Preferred images from neuron models with positive input ablations elicited smaller average pop-
ulation responses of cortical neurons. This suggests that ablation in networks modeling neurons
holds potential as a method to control the population activity in the brain. To relate ablation-induced
changes in the images to the population responses is a future direction. This ablation based on the
natural division of positive and negative weights can be easily extended into arbitrary layers, e.g.,
using gradients to define positive and negative contributions to any arbitrary unit. And our ablation
approach proposes baselines for the functional differences between excitatory and inhibitory neu-
rons in higher cortical visual areas. The functional segregation has consequences for neural coding
and response selectivity. Our findings generate concrete predictions for future experiments using
advanced genetic or optogenetic tools to dissect excitation and inhibition in primate cortex. Under-
standing the circuit mechanism of biological vision could aid further understanding and development
of computer vision models. Interpretability is thus an important field for both Al and neuroscience.
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A APPENDIX

A.1 EXTENDED METHODS

Networks The ablation studies were performed on CNNs pretrained on the ImageNet dataset:
AlexNet (Krizhevsky et al.|, 2012), VGG16 (Simonyan & Zisserman, [2015)), ResNet50 (He et al.,
2015), and robustly-trained ResNet50 (L., € {0.5,1,2,4,8}, [Salman et al.| (2020)). All these
networks end on a 1000-unit fully connected layer, each unit corresponding to one of the 1000
ImageNet categories. Neural networks were used in Pytorch.

ImageNet subsampling To reduce computing time, for most of the experiments, we used a subset
of ImageNet, the imagenette dataset (noa,|2024) and the macaque category, 11 classes in total. These
classes and their corresponding output units in each network trained on the 1000-class ImageNet
dataset are as follows: (0, tench), (207, English Springer), (482, cassette player), (491, chain saw),
(566, church), (569, French horn), (571, garbage truck), (574, gas pump), (701, golf ball), (970,
parachute), and (373, macaque). We visualized the representations of the output layer units of
those classes under different ablation conditions. For Fig. [T} to sample 100 diverse classes out
of the 1000 ImageNet classes, the 50k validation images were first clustered into 100 clusters via
agglomerative clustering of the L2 distance matrix from the 1000-d output features of ResNet50,
which was pre-trained on ImageNet. Then, one new unique class is selected from each cluster.

Ablation We used two ablation conditions: we ablated weights that were (1) only positive or (2)
only negative. We ablated weights cumulatively by first sorting the positive (or negative) weights
by their (absolute) decreasing value. We defined the ablation strength, o, as a fraction of the total
positive or total negative weights to a unit. We identified the top k weights necessary to reach the
silencing strength, i.e., Zle w; < a, and set them to zero. We covered the range of ablations from
0 to 1. For most experiments with ANNs, we used silencing strengths in 0.1 steps, from 0 (intact) to
1 (complete ablation).

Closed-loop neural activity maximization
Electrophysiology in:

IT cortex artificial networks
iy .

OR &/ l@aa

Iﬂ il Mgy Firing rates
Synthesized o ] OR t
images Optimize preferred images o
f I : Artificial neuron
mage generator
g %4.. » response
optimizer Y

generative networks

Figure 7: Schematic of feature visualization workflow in ANNs and brains. Optimizer is CMAES,
image generators are DeePSim fc6 or BigGAN.

Feature visualization For each ablation condition, we performed feature visualization by opti-
mizing a GAN latent code to create an activity-maximizing image Fig. [/| We used this closed-loop,
zeroth-order-search approach to allow comparison with our neuronal experiments, where gradient
ascent would not be possible. To increase the span of the stimulus space, we used two GANSs:
AlexNet fc6 DeePSiM (Dosovitskiy & Brox,[2016) and BigGAN (Brock et al., 2019)). For optimiza-
tion, we used a variant of covariance matrix adaptation evolutionary strategy or CMAES (Wang &
Ponce), 2022} [Loshchilovl, 2015)). Initial conditions for the CMAES were given as standard deviation
of 3.0 for DeePSim, and 0.2 for BigGAN. Initial images for the algorithm were small norm vectors
for both GANS, close to the origin of the latent spaces. For BigGAN, we generated a fixed noise
vector by scaling a 128-dimensional truncated noise sample (-1.4, 1.4), and concatenated it with a
128-dimensional zero vector of the class embedding, to form the required 256-dimensional input
code. The remaining parameters are determined by the dimensionality of the search space of each
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AlexNet output
feature space (PCA)

Figure 8: Illustration of a diverse dataset construction using AlexNet output feature space. The em-
bedding is the output of the last layer before softmax of AlexNet, a vector space of 1000-dimensions.
Left: PCA showing the coverage of the feature space by the diverseSet 160, only for illustration pur-
poses. Right: images from diverseSet 160 used to fit neuron models.

GAN. We optimized ten images per GAN, resulting in 20 feature visualizations per output unit and
ablation condition. Diverse visualizations better capture the multifaceted high-level representations
in CNNs (Nguyen et all, 2016b). For our examples, we show the best of the 20 visualizations, but
used all for quantitative analyses. For visualizations of neural networks predicting biological neuron
responses, due to experimental time restrictions, we used five visualizations per ablation condition,
via DeePSim only. Our experiments are performed in a PC with Nvidia 4090 GPU, and each visu-
alization running 100 iterations takes about 3 mins. For in vivo experiments, we ran from 20 to 60
iterations of the AlexNet fc6 DeePSiM with the CMAES algorithm implemented in Matlab, linked
to our real-time spike-sorting data acquisition. The responses fed to the CMAES algorithm were the
average firing rate on the window 70-170 ms from image onset.

Feature analysis We computed image similarity using an ensemble of CNNss, including AlexNet,
ResNet50, and ResNet50 with robustness in Lo, € {0.5,1,2,4,8}, inspired by
And confirmed the results with LPIPS (Zhang et al. [2018) in the appendix. We computed
their activations and defined similarity as the average pairwise cosine similarity (LPIPS) between
control activity vs input-ablated activity. We averaged the results of the CNNs ensemble, resulting in
one quantity per ablation condition. We computed objectness as the maximum bounding box score
provided by YOLOv7 (Wang et al, 2022)), this was averaged over visualizations per unit, units per
network, and then across networks.

Visual cortex electrophysiology We collected data from two animals (monkey C and monkey D),
each implanted chronically with floating multielectrode arrays (Microprobes for Life Sciences, MD)
of 32 or 16 channels (monkey C, N = 96 electrodes, monkey D, 64), in areas V1, V4 and posterior
inferotemporal cortex (PIT). All institutional procedures were followed. Channels were distributed
as (V1, V4, PIT): monkey C (32, 32, 32), monkey D (16, 16, 32). Some electrodes captured the
activity of single units, but most showed multi-unit activity (reflecting the pooled activity of micro-
clusters of neurons). The animals performed a simple fixation task, which required them to keep
their eyes on a 0.25-deg diameter spot at the center of the screen, within a square fixation window
measuring 0.5-1° per side. Images were presented for 100 milliseconds ON, 150-ms off, 4-5 images
per trial, after which the animal received water or juice. Images were presented to monkey C were
2 deg in size, and 4-8 deg for monkey D to match the receptive field centers of most channels in
all cortical areas (V1, V4 and PIT). Image presentation and data acquisition (electrophysiology, eye
tracking) were integrated by the MonkeyLogic2 software (Hwang et all [2019) and OmniPlex Neu-
ral Recording Data Acquisition Systems (Plexon Inc.), interfaced through custom Matlab code. We
performed online spike sorting using the PlexControl client based on waveforms. We used ViewPixx
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EEG monitors (ViewPixx Technologies), at a resolution of 1920x1080 pixels with 120 Hz refresh
rate. Eye tracking used ISCAN cameras (ISCAN Inc.). And reward was delivered using the DARIS
Control Module System (Crist Instruments).

Feature localization in vivo We conducted a perturbation-based localization to identify relevant
image regions from a feature visualization performed in vivo, where gradient information from the
animal brain is unavailable. We perturbed a circular region with a 50-pixel diameter within the
256-pixel image by randomly shuffling the pixels inside this circle, effectively disrupting the local
image structure while maintaining local contrast. We selected 30 such regions for perturbation at
random, excluding those that extended beyond the image boundaries. The modified images were
then presented to the monkey. We hypothesized that perturbing regions crucial for driving the neu-
ron response would lead to a decreased firing rate. To assess local image importance, we calculated
the normalized response change: the difference between the firing rate response to the intact image
and the firing rate response to the perturbed image, divided by the firing rate response to the intact
image. A normalized response change of 0.5 indicates the neuron response decreased by half due to
perturbation. To generate the localized response mask, we averaged the circular masks correspond-
ing to each perturbed region, weighted by their response change. This response mask was further
smoothed using a Gaussian kernel with a 30-pixel standard deviation. We defined relevant regions
as those causing a normalized response change of 0.5 or greater. Finally, we applied this mask to
the original feature visualization image to highlight the local features.

Image dataset We collected a reference image dataset to activate neurons in the monkey along
the hierarchy of V1, V4, and PIT. Because neurons vary in their preferred features, we constructed
a dataset spanning the image space as represented by the neural embedding of ImageNet-trained
AlexNet. The embedding is the output of the last layer before softmax of AlexNet, a vector space
of 1000-dimensions. The images from this dataset also spanned uniformly the 1000-dimensional
output space of a semi-supervised trained network, trained on a billion images, ResNet50SS
2019). To define this embedding space, we performed PCA on the output activations from
AlexNet to the 50k ImageNet validation images, we kept the top 300 components (accounting for
about 95% of total explained variance). Then we partitioned the space into a defined number of
clusters k, according to the desired dataset size, using batched k-means to reduce computational
burden. After finding the k cluster centers, we could feed arbitrary images to the network, map
them to the PCA space, and then pick the nearest neighbors to the cluster centers from the desired
image space. In addition to the ImageNet validation set, we added other common neuroscience
datasets (Brady et al, 2008}, [Kar et al., 2019} Allen et al.} 2022} [Hung et al.},[2005)) to form our image
space. We selected £ = 160 images, as a set that was diverse but small enough to be used in every
experimental session. We called this image dataset diverseSer .

Neuron responses

IT cortex
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8\
network % i _/neuron
O
output 3 responses
/ o o
A A mel O .
Iy DU input weights
- — positive w
negative w

Network responses

Figure 9: Schematic of model fitting using the dataset diverseSet. 160 images were split into
train/test datasets (80/20).
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Models fit on neuronal activity We recorded responses of neurons in the ventral stream to a 160
image dataset, our diverseSet Fig. [9] We relied on a small dataset to fit neuron responses and
perform feature visualizations within the same experimental session. We performed partial least-
squares linear (PLS) regression (80/20 train/test split) between the neuron responses to images and
the activations of the penultimate layer of AlexNet. We used one component for the PLS regression.
We selected one neuron or microcluster per experimental session, fitted a model, and performed the
ablation and feature visualizations in silico for that model. We selected the best fitted neuron per
session, based on the r2 on the 20 % held out test set, usually in the range of 0.15 to 0.5. When
time allowed, we also performed the feature visualization of the modeled neuron in vivo using a
gradient-free approach (Ponce et al |2019), within the same experimental session. To test whether
features learned by the model were relevant to the biological neuron, we recorded the neuronal
responses to the preferred images of the model. We then analyzed the representational similarity
of the model features under ablations using ANNs. And analyzed the responses of the biological
neuron populations from V1, V4 and IT.

A.2 SUPPORTING RESULTS

Table 2: Ratio of positive to negative weights. We divided the sum of positive weights by the sum
of the absolute values of the negative weights.

MODEL RATIO (MEAN =+ STD)
AlexNet 1.03 £ 0.08
VGG16 1.01 £0.09
ResNet50 1.00 £ 0.06

ResNet50 (Lo, = 0.5) 1.00 + 0.05
ResNet50 (Lo = 1) 0.99 £ 0.05
ResNet50 (Lo = 2) 1.00 £ 0.04
ResNet50 (Lo = 4) 1.00 £ 0.05
ResNet50 (Lo = 8) 1.01 £ 0.05

Responses to preferred images upon input ablation

alexnet vgglé resnet50 resnet50_linf0.5
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Figure 10: Mean activation scores of units used in ablation experiments. For all networks, units
scores come from the last fully-connected layer, with 1000 units, before the softmax. The units
correspond to the 10 imagenette categories ([0, 217, 482, 491, 497, 566, 569, 571, 574, 701])
plus the macaque category (373). Error bars are 95% confidence intervals over units (categories
tested), where each unit response is the mean of its 20 visualizations. Control refers to the feature
visualizations in the intact networks for the same units, we extended it as a horizontal line to ease
visual comparisons to the different ablation strengths.
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ResNet50 last fc layer units: 10x larger dataset, 100 new imagenet classes
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Figure 11: Functional segregation holds in a 10x larger dataset. 100 classes out of the 1000 Im-
ageNet categories were selected by clustering the 50k validation images embedded in the 1000-d
output space of ResNet50 picking one class per cluster. Thus, we now have 10x more data points
that should span the representational space of the output layer we study. Consistent with the smaller
dataset, the main object features degrade into more uniform background images upon positive abla-
tion. Here we show examples from 10 of the 100 classes.

(strength: 0.0,
score: 30.19)

none

A.3 DALE’S LAW INSPIRED ANALYSIS OF INTERMEDIATE FEATURES

To determine if weight segregation of features occurs beyond the output layer, we visualized fea-
ture representations that predominantly provide negative or positive inputs to subsequent layers in
AlexNet. We calculated sign consistency by averaging spatial weights and determining the fre-
quency of positive and negative weights across output channels. The visualization of sign-consistent
input features was conducted using the Lucent library in PyTorch, leveraging gradient-descent chan-
nel activity maximization. We focused on AlexNet’s intermediate layers, examining the top and
bottom sign-consistent features for each input channel.

Layer Details:

Convl: Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
Conv2: Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
Conv3: Conv2d(192, 384, kernel _size=(3, 3), stride=(1, 1), padding=(1, 1))
Conv4: Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
Conv5: Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
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Figure 12: Functional segregation holds in a 10x larger dataset with LPIPS (Zhang et al.,|2018) as
representational similarity measure. We measured the representational similarity of the images as 1
- LPIPS among control images and between control images and ablation images. We average results
per class, and show the mean and 95% C.I. across the 100 classes. The representational similarity
degrades upon positive input ablations, confirming results obtained from the imagenette dataset.

Features that contributed mostly positive weights differed from the features contributing mainly
negative weights, with object vs background arising with increasing depth. This positive vs negative
weight split is evident even in the first layer, where low-frequency color features are contrasted with
high-frequency black-and-white features.
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Figure 13: Feature visualizations of ablation experiments in a network pretrained with unsupervised
learning. ResNet50SimSiam (Chen & Hel [2020). The unsupervised network with frozen weights
was coupled to a fully connected layer, only this layer was fine-tuned to classify ImageNet1000.
Network units changed starting with small positive weight ablations, see unit 574 golf ball. Smaller
changes are visible upon negative weight ablations, however object relevant features remain. Overall

behavior is consistent with CNNs trained directly on ImageNet1000 classification.
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Visualizing top input channels with sign consistent weights
in internal layers of AlexNet

Features from Conv4 to Conv5
Top positive Conv4 features Top negative Conv4 features
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Figure 14: Layer Conv5 from Conv4: Features contributing mainly negative weights resemble back-
grounds, such as patches of sky and grass, and sometimes face-like features (e.g., in the tench class),
highlighted in orange borders. Positive weights align with localized object-like fragments, such as
snouts and eyes of animals, and sharp spotted textures vs the blurry spotted textures for negative
weights. Layer Conv4 from Conv3: Negative features still incorporate some background elements
like ground or grass textures (orange borders), together with some spiral, square and blurry textures.
Positive features exhibit more heterogeneous textures and higher frequency details, without evident
background-like textures. Layer Conv2 from Convl: Positive weights carry high-frequency edges
mostly without color, while negative weights include lower frequency edge features and spotted tex-
tures with color, overall more spatially coarse. Channel index from the visualized features is shown
as a list below each panel.
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A.4 BIOLOGICAL NEURON MODELS
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Figure 15: Left: Distribution of the model weights from neuronal fits with AlexNet penultimate layer
features. Each model maps 4096 parameters from penultimate layer of AlexNet to the response of
one biological neuron. Models use positive and negative weights. Model weights were normalized
by their standard deviation to plot them on the same scale, for sake of visualization. Right: Ratio
of total positive to total negative weights, per neuron model. Models use slightly larger positive
weights with a mean of 1.17 and std of 0.17. Model numbers: 35 for monkey C, and 24 for monkey
D.
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Figure 16: Neuron model units recover features relevant for the biological neurons. Left: Responses
vs predicted responses of neurons to the training images, and the extrapolated features visualized
from the intact models, which are extrapolations because the training data did not cover those high
response ranges. Permutation t-test of neuron responses shows higher responses to images from
model features than the natural images of the training dataset (diverseSet). Right: three neuron
examples that show the feature visualization of the preferred feature of the neuron masked by the
full-width at half-maximum obtained from perturbations to the image, and to their right the five
feature visualizations of the intact model with the real neuron responses to those images on top.

For each recording session, we selected the best model for further analysis, based on predictive
accuracy (mean test 72 = 0.27 £ 0.10 SD across sessions). The fitted models included both positive
and negative input weights, with a mean ratio of 1.17 for the sum of positive to negative absolute
weights (Fig. @) Our final dataset comprised (V1, V4, pIT): (7, 5, 23) neurons in Monkey C and
(1, 5, 18) in Monkey D, with the majority of data from pIT cortex.
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Lasso regression performance using only positive weights or no constraint
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Figure 17: Using negative weights improves neuron models obtained via Lasso regression. Lasso
regression models were fit with and without the positive constraint, over a 5-fold cross validation.
Models were a linear regression from the 4096 features to a single neuron, over all neurons modeled
from both animals. Left: performance on the training set measured by 2 score. Middle: 2 perfor-
mance on the test set. Right: Model improvement by using positive and negative weights vs using
only positive weights given by the difference in 72 on the test set. Unconstrained models perform
better than the positively constrained model, across the range of L1 penalties (sparseness penalty)
tested, suggesting negative inputs from artificial network features are useful to predict biological
neuron responses.

Features from neuron models, AlexNet 4096 RelLU fc layer
Positively weighted Negatively weighted for >90% neuron models

Figure 18: Features that had positive or negative weights in most of the neurons models ( 91%
of the 56 neurons). These features are the closest approximation to features respecting Dale’s law
from our models. Left: best of 20 feature visualizations for the features with positive weights across
neurons, feature index is on top of the image. Features are from the penultimate fc layer post ReLU,
containing 4096 units. Right: best feature visualization from the negatively weighted features across
neurons. Positively weighted features contain more local features like curved edges, while negative
features contain textures or larger image patches. Sign consistency tested for statistical significance
against the Bernoulli distribution of 0.5 probability with Bonferroni correction for testing 4096

features.
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Background clearing can enhance neuron responses to the original feature visualization
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Figure 19: Clearing the background around the images obtained via closed-loop visualization can
further boost responses in real-time recordings. Examples of 3 neurons in 2 monkeys.
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