
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MULTI-RESOLUTION SKILLS FOR HRL AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Hierarchical reinforcement learning depends on temporally abstract actions to
solve long-horizon tasks. We propose Multi-Resolution Skills (MRS), a simple and
scalable approach that constructs a discrete set of skill modules, each specialized
to predict subgoals at a fixed temporal horizon (e.g., 8, 16, 32, 64 steps). Skill en-
coders share parameters, causing a minimal increase in model size while allowing
each module to generate plans at a distinct temporal resolution. A learned meta-
controller selects among these resolution-specific skills based on the task context;
the meta-controller and skill policies are trained jointly with a single end-to-end
objective in a single training phase. We evaluate MRS on DeepMind Control Suite,
Gym-Robotics, and long-horizon AntMaze tasks. While maintaining computa-
tional efficiency, MRS consistently outperforms single-resolution baselines, yields
meaningful gains over the HRL baselines in long-horizon navigation, and remains
competitive with the non-hierarchical state-of-the-art (SOTA) on standard bench-
marks. Ablations show that the multi-resolution design drives the improvement,
suggesting temporal partitioning of skills is a useful inductive bias for HRL.

1 INTRODUCTION

Solving long-horizon control problems remains a central challenge in reinforcement learning: agents
must plan across multiple time scales while retaining the ability to execute precise short-term
maneuvers. Hierarchical reinforcement learning (HRL) addresses this by learning temporally abstract
actions or skills that reduce planning complexity Ajay et al. (2021); Li et al. (2022); Sharma et al.
(2020); Hafner et al. (2022). A common approach in prior work is to discover skills or subgoals by
partitioning the state space, often via a learned latent distribution and unsupervised objectives that
promote diversity or state coverage Eysenbach et al. (2019); Jiang et al. (2022); Sharma et al. (2020).
Such methods implicitly mix temporal and geometric structure in the learned skill space, but do not
explicitly provide options at different temporal horizons.

We illustrate the complementary behaviors produced by subgoals at different horizons using a simple
2D toy simulation (Fig. 1): nearby subgoals cause rapid corrective deviations, enabling precise steer-
ing, while longer-horizon subgoals produce smoother but less precise transitions. Motivated by this
observation, we propose Multi-Resolution Skills (MRS), an HRL framework that explicitly partitions
subgoals along temporal scales. MRS constructs a discrete set of skill modules, each specialized
to produce subgoals at a fixed temporal distance (for example, 8, 16, 32, and 64 steps). To limit
parameter growth, the skill encoders share a common backbone and differ only in their final layers;
separate skill policies and a learned meta-controller select and execute the chosen subgoal. Crucially,
the meta-controller and the per-resolution skill policies are trained jointly with a single end-to-end op-
timization objective, enabling the agent to learn which temporal resolutions are helpful for a given task
and context. [Video: https://sites.google.com/view/multi-res-skills/home]

We implement MRS atop the Director Hafner et al. (2022), a SOTA HRL agent that provides a practical
method for learning hierarchical behaviors directly from pixels, and evaluate on DeepMind Control
Suite, Gym-Robotics, and long-horizon AntMaze navigation tasks. With minimal parameter overhead,
MRS consistently outperforms single-resolution baselines, produces meaningful improvements over
the Director baseline on long-horizon navigation tasks, and remains competitive with DreamerV3
Hafner et al. (2023) (non-HRL SOTA) on standard DeepMind Control Suite benchmarks.

Our contributions are as follows:

• We introduce Multi-Resolution Skills (MRS), a simple HRL design that explicitly partitions
skills by fixed temporal horizons with minimal increase in model size (Sec. 3.2).

1

https://sites.google.com/view/multi-res-skills/home

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Simulation of a simple point agent (star) in a 2D grid that moves towards assigned goal
positions (crosses). Goal updates every fixed number of steps K and alternates between (x+ li, 1)
and (x + li,−1), where x is the agent’s current x-position and li ∈ {1, 2, 4, 8} is the skill length.
Goal positions impact agent behavior based on their distance from the agent state. Closer goals lead
to more controlled and precise movements, but can be susceptible to incorrect goals. Meanwhile,
far-away goals cause less deviation, leading to smooth but imprecise movements.

• We present a single-phase, end-to-end training procedure in which a learned meta-controller
chooses among resolution-specific skill policies, enabling dynamic interleaving of fine- and
coarse-grained actions (Sec. 3.3).

• We empirically evaluate MRS on continuous-control and long-horizon navigation bench-
marks, and provide ablations that attribute gains to multi-resolution control (Secs. 5.1,5.2).
MRS outperforms the Director at all tasks and matches DreamerV3 at most (which com-
pletely fails at some tasks).

2 BACKGROUND

2.1 DIRECTOR

The Director Hafner et al. (2022) is a recent SOTA model-based HRL agent composed of a world-
model, worker, manager, and a Goal Variational AutoEncoder (VAE) Kingma et al. (2019). The
world-model is implemented using the Recurrent State Space Module (RSSM) Hafner et al. (2019)
that takes the environmental observations and constructs a state representation over time. The manager
takes the state as input to yield a subgoal for the worker in the same state space (refreshed every K
steps). The worker takes the current state and the subgoal state to output an environmental action.
The authors note that directly outputting subgoals for the worker in the state space by the manager
results in a high-dimensional continuous control problem. Therefore, the Goal VAE learns a reduced
categorical latent representation for the states, and the manager takes the current state as input to
output a latent variable, which is expanded into a state using the Goal VAE decoder. The Goal VAE
enables the manager to operate in the reduced latent space by facilitating the recall of states. We
implement MRS using Director as the base architecture, modifying only the manager policy and the
Goal VAE.

Motivation: It should be noted that the Goal VAE allows predicting states irrespective of the current
state, which means the manager can select a goal sg unreachable by the worker. And by definition,
the worker cannot reliably predict the right actions for unreachable goals. Therefore, given the current
state, we propose constraining the search space to only nearby states, which can increase the search
efficiency for appropriate goal states sg . Furthermore, as mentioned in the Director paper and in our
experiments with the Director, we observed that the worker rarely reaches the prescribed goal state
sg within an episode. The manager only learns to select the goals sg so that they induce the proper
actions from the worker that maximize the expected return, as evident in the manager’s training
objective. Rather than prescribing a goal state and waiting for the worker to reach it, we found that
the manager assigns the worker goals as a moving target that the worker constantly chases. Thus,
the goal states sg do not need to be strictly at the temporal length K (the goal refresh rate). In fact,
in our experiments with different temporal skill lengths l, we found that l > K works significantly
better than l = K for our tasks (Sec. 5.2). We simulated a simple 2D point agent to follow goals
prescribed at different distances, illustrating the behavioral differences (Fig. 1). Additionally, the
appropriate skill length can be highly task-dependent (Fig. 7). Thus, we propose a Multi-Resolution
Skills (MRS) mechanism that learns skills or abstract actions at multiple temporal resolutions and
mixes them appropriately. Note that we use temporal to refer to the temporal distance of the assigned
goal, not the duration for which it is executed.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Skill CVAE architecture (b) Acting using Skill CVAE

Figure 2: Illustrations of the abstract state transition-based control for the manager. Dashed arrows
indicate sample propagation from the predicted distribution. (a) Skill CVAE, where the Encoder
encodes initial and final states (st, st+l) to a latent skill space and the Decoder reconstructs the final
state using the initial state st and a sampled skill variable. (b) The manager predicts the latent skills
and then uses the Decoder to generate goals for the worker.

3 OUR METHOD

3.1 SKILLS AS ABSTRACT STATE TRANSITIONS

Given that the agent is at the state st, we want to constraint the goal predictions to states that can be
achieved in l steps. To do this, we replace the Goal VAE with a Conditional VAE (CVAE) that learns
to predict possible future states st+l conditioned on the current state st. The CVAE is learned online
using the generated replay data. First, the replay trajectories are used to collect training examples as
state pairs (st, st+l), where st+l occurs l steps after st. Then, the CVAE parameterized by weights ϕ
is trained to optimize the ELBO objective (Eq. 1). It should be noted that it is the worker that predicts
actions leading the agent to the goal state. CVAE is merely a skill recall mechanism that learns the
abstract actions possible under the current worker policy and then allows the manager to modulate
the worker’s behavior predictably. Fig. 2 illustrates the skill-based architecture as a CVAE that learns
skills online using the collected data (Fig. 2a). Fig. 2b shows how the manager can use the Skill
CVAE during inference to generate sub-goals for the worker. Next, we present our method by scaling
the concept of skills to multiple resolutions.

L(ϕ) = ∥st+l − Decϕ(st, z)∥2 + βKL[Encϕ(z|st, st+l) ∥ p(z)] where z ∼ Encϕ(z|st, st+l)
(1)

3.2 MULTI-RESOLUTION SKILLS

Ideally, we want the manager to be able to predict any state that the worker can directly reach as
a goal state. Instead of learning a single CVAE, we can learn multiple CVAEs, each specific to a
temporal resolution. However, this can significantly increase the model size, thereby increasing
the memory capacity and causing an unfair comparison. Thus, we keep all but the last layer of the
encoder, and all but the first layer of the decoder, shared. The sharing causes a minimal increase
in model size but increases the recall with the resolution-specific input and output layers. Fig. 3a
illustrates the Multi-Resolution Skill CVAE architecture. For training, state-pairs (st, st+li) at N
different temporal resolutions li ∈ {l0, l1, ..., lN} are extracted from the replay data. Each training
example is processed using the shared and the resolution-specific Encoder-Decoder layers. Then
the total loss is calculated as the sum of the ELBO objectives of each CVAE and is optimized in
a single step (Eq. 2) (the use of common layers is implied in the equations and is not mentioned
to maintain simplicity). This results in the common layers being trained for all examples and the
resolution-specific layers being trained only on the relevant examples. We use a mixture of 8, 8-dim
categoricals (8× 8) as the prior distribution p(z) for our CVAEs.

L(ϕ) =
N∑
i=0

∥∥st+li − Deciϕ(st, z)
∥∥2+βKL[Enciϕ(z|st, st+li) ∥ p(z)] where z ∼ Enciϕ(z|st, st+li)

(2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Learning Multi-Resolution Skill CVAEs (b) Acting using Multi-Resolution Skill CVAEs

Figure 3: Architectures for learning and acting using Multi-Resolution Skills (li ∈ {l0, l1, ..., lN}).
Dashed arrows indicate sample propagation from the predicted distribution. Dashed boundaries
indicate shared layers. (a) Separate CVAEs are learnt for each temporal resolution li. The Enc and
Dec modules represent the common layers of the Encoders and the Decoders, respectively. Each
Enci is the resolution-specific encoder output layer, and each Deci is the resolution-specific decoder
input layer. (b) The manager’s policy has N + 1 output heads. N skill heads πMi

that predict
the resolution-specific skill latents and choice head πMC

that predicts an N -dimensional one-hot
distribution. Samples from the skill latents are used to predict sug-goals using the respective Decoders,
then the choice sample from πMC

selects one of the sub-goals as sg by gating.

3.3 MULTI-SKILL POLICY

The manager policy has N +1 output heads, N heads corresponding to each Skill CVAE that predicts
latent distributions over skills πMi

(z|st), and an additional ’choice’ head that predicts a one-hot
N -dim distribution πMC

(c|st) (Fig. 3b). The latent skill samples are used to predict subgoals using
the corresponding decoders (Eq. 3). And the one-hot choice sample selects from the subgoals by
gating (Eq. 4). Fig. 3b illustrates the process of worker subgoal prediction using the Multi-Resolution
Skill CVAEs. It should be noted that only the final layer of the policy is split into multiple heads,
which does not increase the model capacity, but increases the recall capacity. The MRS policy is
learned such that each skill head becomes an expert at using the corresponding resolution skills for
all states st ∈ S independently. And the choice head simultaneously learns to pick the best skill head
for all states st ∈ S.

si,tg = Deciϕ(zt,i, st) where zt,i ∼ πMi
(zt,i|st) (3)

stg =

N−1∑
i=0

ct,i.s
i,t
g where ct ∼ πMC

(ct|st) (4)

3.4 POLICY OPTIMIZATION

Like the Director Hafner et al. (2022), the MRS manager and the worker policies are implemented as
Soft-Actor-Critics (SAC) and optimized using imagined trajectories. Imagination using the RSSM
module helps cheaply generate on-policy data for training. The agent imagines a batch of T -step
trajectories used to train both the manager and the worker. The returns are estimated using lambda
returns, followed by policy update using policy gradients for the external and exploratory rewards. We
briefly describe the common training steps below, followed by the exploratory objective (Sec. 3.4.1)
and the policy gradients for our approach (Sec. 3.4.2). See Sec. B for full training and architecture
details.

Manager: The manager is trained to maximize the external task and the exploratory rewards (Sec.
3.4.1). Since the manager works on a coarser temporal scale, an abstract trajectory of length T/K is
extracted, corresponding to every K-th step, and the rewards are summed within each non-overlapping
subsequence of length K. Then, separate lambda returns are computed for each reward type, which

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

are learned using individual critics. The manager’s policy is updated using policy gradients (3.4.2),
using the weighted sum of advantages from both objectives.

Worker: The worker is trained to maximize the goal rewards, calculated as the cosine-max similarity
between the agent state st and the goal state sg. The imagined trajectory is divided into K-step
sub-trajectories, where the goal state sg remains constant. The rewards and lambda returns are
computed for the sub-trajectories to update the critic, followed by policy update using the SAC
objective.

3.4.1 EXPLORATORY LOSS

We aim to learn all possible abstract state transitions in the environment. Thus, we provide the
manager with an additional exploratory reward that encourages it to discover novel state transitions.
Since the Skills CVAE learns all possible abstract state transitions in the environment, we utilize the
reconstruction error from the CVAE as a measure of novelty. This encourages the agent to repeat
state transitions that are not yet well-learned by the CVAE. The exploratory reward RExpl

t (τ) for the
imagined trajectory τ of length T is computed as the reconstruction error of the state st conditioned
on the starting state s0 (Eq. 5). Since there are multiple CVAEs, we use the CVAE that best models
the given state transition. Thus, the min of the reconstruction errors across all CVAEs is used as the
reward.

RExpl
t = min

i

∥∥st − Deciϕ(s0, zt,i)
∥∥2 where zt,i ∼ Enciϕ(z|s0, st) (5)

3.4.2 POLICY GRADIENTS FOR MRS

For clarity, we defer the full step-by-step derivation to Appendix A; here we summarize the main
result and the training objectives used in practice. Under the MRS sampling protocol (skill latents zk,i
from each skill head, a discrete choice ck selecting one head, and worker actions conditioned on the
chosen subgoal), the trajectory log-probability decomposes into manager terms (choice and per-head
latent policies) and worker terms. Applying the log-derivative trick and standard policy-gradient
manipulations (with temporal abstraction indexed by abstract step k with refresh interval K) yields
the manager policy gradient of the form:

∇MJ = Eτ

[⌊T/K⌋−1∑
k=0

(
∇M log πMC

(ck |skK)︸ ︷︷ ︸
Choice head

+

N−1∑
i=0

ck,i∇M log πMi(zk,i |skK)︸ ︷︷ ︸
Skill head i

)(
Gλ
k−vM (skK)

)]

Where Gλ
k are lambda-returns computed over abstract steps and vM is the manager critic. In practice,

each manager head (choice head and per-resolution skill heads) is optimized with an actor loss
using the above advantage estimator plus an entropy regularizer, and the critic is trained with a
squared-error target on Gλ

k (see Appendix B for exact loss definitions, variance-reduction details, and
implementation notes). This compact formulation makes it clear that the manager gradient separates
into a choice term and per-head terms (the ck,i factor for the skill head gradients effectively selects
the active head), enabling joint, single-phase end-to-end optimization of the meta-controller and
resolution-specific skill policies.

4 ADDRESSING A CRITICAL FAILURE MODE

Previous skill discovery methods have mentioned difficulties learning skill primitives while acting
using the same skills Hafner et al. (2022); Eysenbach et al. (2019). This is because, after the model
learns a few reliable skills, it tends to repeat them, thereby getting stuck with suboptimal skills. This
happens if the CVAEs prematurely converge before the policy; one way to force this is to increase the
training data for the CVAE disproportionately. This causes the policy to collapse into a degenerate
solution, as the CAVE predicts only the initially learned subgoals. For example, the quadruped
embodiment can learn to stand, but freezes thereafter. For completeness of the solution, we make
an additional modification that prevents this problem. In addition to the Skill CVAEs, we introduce
another VAE that learns states unconditionally, similar to the Director. The unconditional VAE
(Enc∞ψ ,Dec∞ψ) predicts subgoal states sg completely independent of any previous state st, imitating

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

learning∞-length skills. This helps the agent escape the collapse by allowing the manager to select
temporally unconstrained goal states. Thus, if the skills CVAEs have collapsed, the manager can use
this VAE to generate subgoals that the skill CVAE cannot yet, removing any need to balance policy
and CVAE learning. Our results show that the agent initially uses the unconditional VAE but soon
switches to Skill CVAEs (Fig. 5).

5 RESULTS

For generality, we use skill lengths L = [64, 32, 16, 8,∞] for all our experiments and keep the rest of
the hyperparameters the same as the base architecture. Since we use multiple policy heads, the policy
learning signal is split between the N skill heads and diluted by a factor of N(= 5); thus, we increase
training to every 8-th step rather than 16 (for MRS and the Director). The above configuration ensures
that all performance changes are strictly due to the proposed architectural changes only (which allow
recall of subgoal states at multiple temporal resolutions). We use a similar-sized DreamerV3 that
trains every 2-nd step, making it 4 times more expensive.

We first evaluate the agent in a variety of standard benchmarks, including the DeepMind Control
Suite and Gym-robotics tasks, to test its performance against the Director Hafner et al. (2022) (SOTA
HRL) and DreamerV3 Hafner et al. (2023) (SOTA non-HRL) agents. Then, the agent is evaluated in
long-horizon AntMaze tasks with sparse rewards to test whether the agent can learn solely using the
exploratory objective. Finally, we conduct ablation studies to test the impact of dynamic interleaving
of skills and also compare against skill discovery methods that also learn abstract actions without
external rewards.

5.1 STANDARD BENCHMARKS

We compare our method with SOTA methods (Director Hafner et al. (2022) and DreamerV3 Hafner
et al. (2023)) on several tasks in the DeepMind Control Suite (DMC) Tassa et al. (2018) and
Gymnasium-Robotics de Lazcano et al. (2024).

DeepMind Control Suite: For DMC, each episode lasts for 1000 steps before terminating and
provides positive dense rewards at each step. Fig. 4 shows the performance of our method compared
to the baselines. The results show that our method outperforms Director at all tasks and matches
DreamerV3’s performance in most cases. Thus, MRS closes the performance gap between Director
and DreamerV3 while retaining the compute efficiency of Director and a similar model size. We also
plot the evolution of the choice distribution during training (Fig. 5). A common trend in some tasks
was that the manager initially preferred unconditional VAE, but later switched to skill CVAEs (Fig.
5). This trend is similar to human behavior when learning new skills, e.g., body movements for a
new sport. Initially, one might make crooked motions through a few identified advantageous body
configurations, but repetitions develop skills and reduce future conscious effort Sanes (2003).

Gym Robotics: For Robotic tasks (Push and Pick n Place), each episode lasts for 100 steps and incurs
an existence penalty of −1 each step. Thus, the rewards are sparse, but the task is of a much shorter
horizon than the AntMaze. It can be seen that DreamerV3 completely fails at the task while Director
and MRS perform well (Fig. 4). MRS edges out the Director slightly in terms of performance and
convergence speed.

Egocentric Ant: We also tested our method on the Egocentric ant maze task, where the agent receives
sparse rewards for reaching a goal location (1 on success and 0 otherwise). Each episode lasts 3000
steps before terminating. Therefore, training is mainly done using exploratory rewards. The agent
takes the proprioceptive observations and an egocentric camera image as inputs. While DreamerV2
fails at the task, the Director and MRS solve it, with MRS receiving higher scores. This task takes
extremely long to complete, so we take results from Hafner et al. (2022) for comparison (Fig. 6).

5.2 ABLATIONS

How well do the individual skills perform, and is the dynamic skill interleaving useful?

Our method trains individual expert policies for each skill CVAE, for all states st ∈ S, and the choice
head for selecting the best skill for all states st ∈ S. In this context, we compare the following
settings: the default choice mechanism, random choice, and using each skill module separately. The
skill selection mechanism is modified in an already trained MRS agent to enforce the above settings.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Episode scores from MRS (ours), Director, and DreamerV3 (3 seeds per experiment).
The plot shows the total rewards (mean and standard deviation) received in an episode against the
environmental step. Both methods use the same common hyperparameters. The first six tasks are
from the DMC suite and the last two (Push and Pick n Place) are from the Gymnasium-Robotics
suite. It can be seen that MRS boosts performance of the base model noticiably in all cases while
maintaining the compute efficiency.

Figure 5: Stream graphs showing the evolution of the choice distribution during training averaged
across 3 seeds. A trend can be observed in some tasks where the manager initially focuses on
∞-length skills but gradually shifts to temporally constrained skills.

Figure 6: Episode rewards from the Egocentric Ant Maze task against the environmental step during
training (3 seeds). (Left) — MRS (Ours), (Right) Results taken from Hafner et al. (2022) that
compares: — Director, — Director with worker receiving external task reward, — DreamerV2. It
can be noticed that MRS reaches the peak performance (∼ 2400) at around 3.5M steps (medium)
and 5M steps (large), while the Director reaches peack performance of ∼ 1800 at 7M and 6M steps
respectively.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 7: Final performance comparison between the settings: default choice mechanism, random
selection, and the skills individually [64, 32, 16, 8,∞]. The results are the mean and standard
deviations of the episodic rewards across 100 evaluation runs.

Figure 8: Performance comparison of agents fine-tuned for tasks after an exploration phase (3 seeds
per experiment). The graphs show total episodic rewards (mean and standard deviation) against the
global steps. The plots compare: MRS, MRS using exploratory rewards from the unconditional VAE,
ReST, and DIAYN. Our agent is trained every 8-th step using image inputs, while DIAYN/ReST
trains every step using the internal environmental proprioceptive state.

Fig. 7 shows the results for some DMC tasks where each skill score is averaged across 100 episodes.
It can be seen that interleaving the skills using the proposed choice mechanism consistently yields the
best results. It should also be seen that no individual skill performs well for all tasks; thus, using the
choice policy πMC

can help automate skill selection. Another notable fact was that while the agent
prefers the∞-length skills for the cheetah_run task (Fig. 5), the Director agent that only uses
∞-length skills fails to perform (Fig. 4). Indicating necessity of multi-resolution skill interleaving.

Can the agent learn usable skills only using the exploratory objective?

We test whether MRS can learn skills independently of external rewards and then learn a policy to
utilize these skills to perform a task. For this, we first train an agent for 3M environmental steps
using only the exploratory objective. The agent learns interesting behaviors, such as backflips,
headstands, somersaults (both forward and backward), etc. (Appendix C). Next, keeping all modules
static, we fine-tune the manager policy and a fresh critic for the environmental task rewards for 1M
environmental steps. We compare our method to two previous skills discovery methods: ReST Jiang
et al. (2022) and DIAYN Eysenbach et al. (2019). Both methods maximize an information-theoretic
objective to learn a set of distinct skills. Then, the skill that yields the maximum rewards for the
external task is further fine-tuned. The original results on the methods are at the Gym embodiments
of the same agents, so we use their respective parameters, including reward scaling. We also compare
our exploratory objective against the Director’s, which is computed as the reconstruction error using
the unconditional VAE (Sec. 4). Fig. 8 shows the comparisons. It can be seen that our method
performs well for all tasks except the cheetah_run, while other methods struggle to do so.

Are there any qualitative differences between states where certain skills are preferred over others?

We segregate states in a trajectory by the choice variable to manually verify if certain skill-lengths
are consistently preferred over others in various situations (Sec. G). For example, the walker agent
prefers 8-step skills either when the agent has both feet on the ground or in a fully extended stance,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

and prefers 64-length skills in a mid-lunge stance (Fig. 18). We also observe that the agents prefer
∞-length skills for less frequently visited states, such as being dropped at the episode start or when it
mistakenly topples mid-episode. While we do not draw any parallels with the human running gait, it
is clear that certain skills are preferred in certain situations.

6 RELATED WORK

Hierarchical RL and options. Hierarchical reinforcement learning (HRL) formalizes temporal
abstraction by allowing agents to select temporally-extended actions or options instead of only
primitive actions Sutton et al. (1999); Barto and Mahadevan (2003); Botvinick et al. (2009); Wiering
and Van Otterlo (2012); Pateria et al. (2021) Early ideas of feudal/manager–worker decomposition
date back to Dayan and Hinton (1992); more recent neural instantiations include FeUdal Networks
Vezhnevets et al. (2017) and Options-Critic style approaches that learn option-policies and termination
conditions end-to-end Bacon et al. (2017). Manager–worker schemes have also been applied with
goal-conditioned workers (e.g., HIRO) where a higher-level policy proposes subgoals and a lower-
level controller is trained to reach them Nachum et al. (2018).

Unsupervised skill discovery via mutual information. A large body of work focuses on unsu-
pervised discovery of diverse skills by maximizing information between a latent skill variable and
state trajectories or state pairs. Representative methods include DIAYN Eysenbach et al. (2019),
DADS Sharma et al. (2020), InfoGAN-based approaches Kurutach et al. (2018), and OPAL Ajay et al.
(2021); these methods differ in whether they maximize MI with single states, state pairs, or whole
trajectories, and whether the learned skills are later used for planning or exploration. Variants such as
ReST train skills sequentially to increase coverage Jiang et al. (2022). The principal advantage of
these methods is their broad behavioral diversity without the need for external rewards; however, they
do not provide an explicit mechanism to select temporal resolutions for subgoals on their own.

Goal-conditioned, model-based and hybrid HRL. More recent research combines learned skills
or goal representations with model-based planning or learned world models to improve long-horizon
performance Hafner et al. (2022); Li et al. (2022). These works demonstrate that compact goal
representations and explicit subgoal prediction can facilitate planning; however, they typically do
not explicitly partition skills into fixed temporal horizons. Our Multi-Resolution Skills (MRS)
approach complements these lines by explicitly training resolution-specific skill heads (fixed temporal
distances) and a learned meta-controller that selects among them in a single end-to-end phase; in
this sense, MRS sits between unsupervised options discovery and goal-conditioned manager–worker
HRL.

7 DISCUSSION & FUTURE WORK

We propose a novel skill discovery framework that explicitly partitions the state space by temporal
resolution, enabling hierarchical control through multi-resolution skill modules. Our agent outper-
forms Director with minimal architectural changes and achieves performance parity with DreamerV3
on standard benchmarks with better training efficiency.

The key findings that emerge from our analysis are:

• HRL Bottleneck: Limited recall capacity for options can be a bottleneck for HRL agents.
Simply increasing the number of distinct executable options available can increase perfor-
mance 4.

• Skill Interleaving Matters: Ablation studies show that the skill-interleaving agent performs
the best, and no single skill works best across all tasks (Fig. 7).

• Reward-Agnostic Learning: The agent successfully discovers usable skills without external
rewards through latent space exploration (Figs. 6,8). We see a small limitation when our
exploration rewards do not perform as well as the others at the cheetah_run task (Fig.
4), indicating that no single reward scheme is sufficient for all tasks.

The architecture is highly flexible, allowing for the mixing of learned and deterministic skills, resulting
in hybrid structures. The skills can also be used as abstract actions for goal-directed motion planning.
The multi-head policy gradient formulation can also be easily extended to other RL algorithms.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. {OPAL}: Offline
primitive discovery for accelerating offline reinforcement learning. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
V69LGwJ0lIN.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13(1):41–77, 2003.

Matthew M Botvinick, Yael Niv, and Andew G Barto. Hierarchically organized behavior and its
neural foundations: A reinforcement learning perspective. Cognition, 113(3):262–280, 2009.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural information
processing systems, 5, 1992.

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan
Terry. Gymnasium robotics, 2024. URL http://github.com/Farama-Foundation/
Gymnasium-Robotics.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=SJx63jRqFm.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pages 2555–2565. PMLR, 2019.

Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning
from pixels. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 26091–26104. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/a766f56d2da42cae20b5652970ec04ef-Paper-Conference.pdf.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Zheyuan Jiang, Jingyue Gao, and Jianyu Chen. Unsupervised skill discovery via recurrent skill
training. Advances in Neural Information Processing Systems, 35:39034–39046, 2022.

Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. Foundations
and Trends® in Machine Learning, 12(4):307–392, 2019.

Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J Russell, and Pieter Abbeel. Learning plannable
representations with causal infogan. Advances in Neural Information Processing Systems, 31,
2018.

Jinning Li, Chen Tang, Masayoshi Tomizuka, and Wei Zhan. Hierarchical planning through goal-
conditioned offline reinforcement learning. IEEE Robotics and Automation Letters, 7(4):10216–
10223, 2022. doi: 10.1109/LRA.2022.3190100.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement
learning: A comprehensive survey. ACM Comput. Surv., 54(5), jun 2021. ISSN 0360-0300. doi:
10.1145/3453160. URL https://doi.org/10.1145/3453160.

Jerome N Sanes. Neocortical mechanisms in motor learning. Current opinion in neurobiology, 13(2):
225–231, 2003.

10

https://openreview.net/forum?id=V69LGwJ0lIN
https://openreview.net/forum?id=V69LGwJ0lIN
http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/Farama-Foundation/Gymnasium-Robotics
https://openreview.net/forum?id=SJx63jRqFm
https://proceedings.neurips.cc/paper_files/paper/2022/file/a766f56d2da42cae20b5652970ec04ef-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a766f56d2da42cae20b5652970ec04ef-Paper-Conference.pdf
https://doi.org/10.1145/3453160

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=HJgLZR4KvH.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction second edition.
Adaptive computation and machine learning: The MIT Press, Cambridge, MA and London, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International conference on machine learning, pages 3540–3549. PMLR, 2017.

Marco A Wiering and Martijn Van Otterlo. Reinforcement learning. Adaptation, learning, and
optimization, 12(3):729, 2012.

11

https://openreview.net/forum?id=HJgLZR4KvH

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A DERIVATION OF POLICY GRADIENTS FOR MRS

We first decompose the action prediction process to derive the policy gradient to train the manager and
worker policies. Let an MRS agent be in state st at step t. Every K-th step, the manager refreshes the
worker’s goal. For clarity, let the abstract step be indexed by k, then at each abstract step (t = kK):

1. Sample skill latents from the skill heads: zk,0, zk,1, ..., zk,N−1 ∼ ΠN−1
i=0 πMi

(zk,i|skK).

2. Sample a choice variable: ck ∼ πMC
(ck|skK).

3. Compute the selected subgoal: skg =
∑N−1
i=0 ck,i · Deciϕ(skK , zk,i).

4. Predict the environmental actions using worker: πW (at|st, skg)

Thus, the trajectory probability that starts at s0 can be written as:

p(τ) = p(s0)

⌊T/K⌋−1∏
k=0

πMC
(ck|skK)

N−1∏
i=0

πMi
(zk,i|skK)ck,i

︸ ︷︷ ︸
Manager

T−1∏
t=0

πW (at|st, s⌊t/K⌋
g)︸ ︷︷ ︸

Worker

· pT (st+1|at, st)︸ ︷︷ ︸
State transition

(6)

The components of the equation can be read as: the manager predicts the skills (zk,0, zk,1, ..., zk,N)
and choice ck for every abstract step k, the worker predicts the action at at each step t using the
subgoal s⌊t/K⌋

g for the duration, and the environmental state transition pT . Here, the exponent ck,i
collapses the skill probabilities πMi

(zk,i|skK) of the unselected skill head to 1 as they do not affect
the trajectory.

We follow the policy gradient derivation from Sutton and Barto (2018). The aim is to compute
∇θJ , where J = Eτ [R(τ)] is the expected reward and θ are the policy parameters. Using the
standard log-derivative trick (Sutton and Barto (2018)), the objective can be written as maximizing
the trajectory log-probability weighted by the expected reward:

∇θJ = Eτ [R(τ) · ∇θ log p(τ)]

The gradient of the trajectory log-probability w.r.t. the manager parameters M is:

∇M log p(τ) =

⌊T/K⌋−1∑
k=0

[∇M log πMC
(ck|skK) +

N−1∑
i=0

ck,i∇M log πMi(zk,i|skK)]

Therefore, the policy-gradient objective can be written as:

∇MJ = Eτ [R(τ) ·
⌊T/K⌋−1∑
k=0

[∇M log πMC
(ck|skK) +

N−1∑
i=0

ck,i∇M log πMi
(zk,i|skK)]]

Given these policy gradients, we construct the losses for each head as the sum of the policy gradient
objective and an entropy maximization objective (Eq. 9,8), and sum them for the total loss (Eq. 10).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Gλ
k = Rk + γ((1− λ)vM (skK) + λGλ

k+1) (7)

L(πMc
) = −Eτ

⌊T/K⌋−1∑
k=0

log πMc
(ck|skK)(Gλ

k − vM (skK)) + ηH[πMC
(ck|skK)] (8)

L(πMi
) = −Eτ

⌊T/K⌋−1∑
k=0

ck,i · log πMi
(zk,i|skK)(Gλ

k − vM (skK)) + ηH[πMi
(zk,i|skK)] (9)

L(πM) = L(πMc) +

N−1∑
i=0

L(πMi) (10)

L(vM) = Eτ
⌊T/K⌋−1∑
k=0

(vM (skK)−Gλ
k)

2 (11)

Where Gλ
k is the lambda returns estimated using abstract trajectories (Eq. 7), vM is the critic (Eq.

11). The policy maximizes the advantage Gλ
k − vM (skK) instead of directly maximizing estimated

rewards. Weighted entropic losses H[·] encourage adequate exploration prior to convergence. The
manager learns separate critics, and estimates separate returns and advantages for the external and
exploratory rewards. And the total advantage is the weighted sum of exploratory and external
advantages (([1.0, 0.1]) for our case).

B ARCHITECTURE & TRAINING DETAILS

B.1 WORKER

The worker is trained using K-step imagined rollouts (κ ∼ πW). Given the imagined trajectory κ,
the rewards for the worker RWt are computed as the cosine_max similarity measure between the
trajectory states st and the prescribed worker goal swg. First, discounted returns Gλ

t are computed as
n-step lambda returns (Eq. 12). Then the Actor policy is trained using the SAC objective (Eq. 13)
and the Critic is trained to predict the discounted returns (Eq. 14). The entropy for the worker and the
manager is weighted to maintain a target entropy.

Gλ
t = RWt+1 + γL((1− λ)v(st+1) + λGλ

t+1) (12)

L(πW) = −Eκ∼πW

H−1∑
t=0

[
(Gλ

t − vW (st)) lnπW (z|st) + ηH[πW (z|st)]
]

(13)

L(vW) = Eκ∼πW

[
H−1∑
t=0

(vW (st)−Gλ
t)

2

]
(14)

B.2 IMPLEMENTATION DETAILS

We implement two functions: policy (Alg. 2) and train 1, using the hyperparameters shown
in Table 1. The functions are implemented in Python/Tensorflow using XLA JIT compilation. The
experiments on average take 2 days to run 5M steps on an NVIDIA RTX 5000.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Name Symbol Value
Train batch size B 16

Replay data length - 64
Worker abstraction length K 8

Explorer Imagination Horizon T 16
Return Lambda λ 0.95
Return Discount γ 0.99
Skill resolutions L {64, 32, 16, 8,∞}
Target entropy η 0.5
KL loss weight β 1.0

RSSM deter size - 1024
RSSM stoch size - 32× 32

Optimizer - Adam
Learning rate (all) - 10−4

Adam Epsilon - 10−6

Weight decay (all) - 10−2

Activations - LayerNorm + ELU
MLP sizes - 4× 512
Train every - 8
Prallel Envs - 4

Table 1: Agent Hyperparameters

Algorithm 1: Multi-Resolution Skill Training
Input: Collected trajectories D = {τ1, ..., τB}
Output: Updated world model wm, skill modules (Encϕ,Decϕ), manager πM , worker πW
// World Model Training
wm.train(D) // See Hafner et al. (2019)

// Multi-Resolution Skill Learning
Lskills ← []
for li ∈ L do
{(st, st+li)} ← ExtractStatePairs(D, li)
Li ← skill_loss(st, st+li) // CVAE loss (Eq. 1)
Lskills.append(Li)

update_skills(sum(Lskills))

// Policy Optimization via Imagination
Sinit ← {s0 | s0 ∈ τ, τ ∈ D} // Initial states
τ̂ ← wm.imagine(πMRS,Sinit, T) // Rollout imagined trajectories (Alg.
2)

// Reward Computation
τ̂ .rextr ← renv(τ̂) // Environment reward
τ̂ .rexpl ← expl_rew(τ̂) // Exploration reward (Eq. 5)

τ̂ .rgoal ← cosine_max(τ̂ .st, τ̂ .s
⌊t/K⌋
g) // Goal achievement reward

// Hierarchical Policy Update
TW ← split(τ̂) // Worker-level transitions
TM ← abstract(τ̂) // Manager-level abstractions
L(πM),L(vM) = manager_loss(TM) // Eqs. 10,11
update_manager(L(πM),L(vM))
L(πW),L(vW) = worker_loss(TW) // Eqs. 13,14
update_worker(L(πW),L(vW))

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2: Multi-Resolution Skill Policy (πMRS)
Input: Observation ot, Agent state (t, st−1, at−1, sg)
Output: Action at, New agent state (t+ 1, st, at, sg)

st ← wm(ot, st−1, at−1) // World model state update

if t mod K = 0 then
// Manager updates goal every K steps
(z0, z1, ..., zN−1, c) ∼ πM (st) // Sample skill latent z and choice c

{sig}N−1
i=0 ← {Deciϕ(st, zi)}N−1

i=0 // Generate candidate goals

sg ←
∑N−1
i=0 ci · sig // Select goal using choice vector c

else
sg ← sg // Persist previous goal

// Worker policy execution
at ←Workerπ(st, sg) // Generate action for current goal

Return at, (t+ 1, st, at, sg)

C BEHAVIORS LEARNED VIA EXPLORATION

We observed some interesting behaviors that the MRS agent regularly exhibited, such as front flips,
back flips, and jumps, while training solely with the exploratory loss. The intrinsic exploratory loss
encourages the agent to perform novel state transitions (Sec. 3.4.1). Fig. 9 shows some of the learned
movements.

D BROADER IMPACTS

D.1 POSITIVE IMPACTS

Our method’s sample efficiency (training every 8 steps) could reduce computational costs for real-
world robot training, thereby lowering environmental footprints. The imagination-based policy
optimization mitigates hazards that can occur during learning. The skill-interleaving mechanism
enables transparent agents with interpretable subgoals. The learned skills can be interleaved with
rigorously tested safe skills, and the selection can be appropriately constrained to mitigate failures.

D.2 NEGATIVE IMPACTS AND MITIGATIONS

• Inaccurate Training: Imagination can cause incorrect learning. Mitigation: Rigorous
testing using manual verification of world-model reconstructions against ground truths.

• Malicious Use: Hierarchical control could enable more autonomous adversarial agents.
Mitigation: Advocate for gated release of policy checkpoints.

D.3 LIMITATIONS OF SCOPE

Our experiments focus on simulated tasks that do not involve human interaction. Real-world impacts
require further study of reward alignment and failure modes.

E LLM USAGE

We used LLMs to refine the abstract, introduction, and background sections of our paper, primarily to
polish the language.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Hopper learns to use a front flip to stand, and back flips.

(b) Cheetah learns to leap forward and perform perfect back flips.

(c) Quadruped learning side rolls and walking on two legs.

(d) Walker trying to headstand repeatedly and fast-forward tumbling using head and legs.

Figure 9: Samples of some movements learned and regularly performed by the agent optimized only
for the exploratory loss.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F SAMPLE GOALS USING SKILL CVAES

We generate some sample goals using each of the Skill CVAEs individually. The goals are generated
using a uniform prior p(z) for the skills, and initial states st sampled from the replay database.
We use skills with temporal resolutions [64, 32, 16, 8,∞], but we omit the∞ length skills, as they
correspond to simply learning all states independently and are not our contribution.

F.1 DEFAULT OBJECTIVE

The agent is trained using the default objective (weighted external and exploratory advantages). Since
we use a strong bias towards external reward ([1.0, 0.1]), the skills learned are biased towards the
goal states more appropriate for the objective. We sample the goals for tasks: walker_run (Fig.
10), quadruped_run (Fig. 11), cheetah_run (Fig. 12), and hopper_hop (Fig. 13).

F.2 EXPLORATION ONLY

The agent is optimized only for the exploration objective, which aims to maximize coverage of the
state transition space. We sample the goals per Skill CVAE for embodiments: walker (Fig. 14),
quadruped (Fig. 15), cheetah (Fig. 16), and hopper (Fig. 17) in the DMC suite Tassa et al.
(2018).

G VISUALIZING CHOICE PREFERENCES FOR STATES

To check if the agent exhibits any choice preferences for states, we run the agent for 5 episodes. Then
the states st visited by the agent are segregated by the choice (ct) made by the agent and shown below.
The visualizations can help verify if there are any correlations between the agent state st and the
choice variable st. We sample the states for the tasks: walker_run (Fig. 18), quadruped_run
(Fig. 19), cheetah_run (Fig. 20), and hopper_hop (Fig. 21).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) 64 length.

(b) 32 length.

(c) 16 length.

(d) 8 length.

Figure 10: Sample goals from the walker_run task learned using the external and the exploratory
rewards. The images on the left show the current state st, and the remaining images show the goal
options generated by different skill CVAEs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) 64 length.

(b) 32 length.

(c) 16 length.

(d) 8 length.

Figure 11: Sample goals from the quadruped_run task.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) 64 length.

(b) 32 length.

(c) 16 length.

(d) 8 length.

Figure 12: Sample goals from the cheetah_run task.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) 64 length.

(b) 32 length.

(c) 16 length.

(d) 8 length.

Figure 13: Sample goals from the hopper_hop task.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) 64 length.

(b) 32 length.

(c) 16 length.

(d) 8 length.

Figure 14: Sample goals learned using only the exploratory objective in a walker embodiment.
The images on the left show the current state st, and the remaining images show the goal options
generated by different skill CVAEs.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) 64 length.

(b) 32 length.

(c) 16 length.

(d) 8 length.

Figure 15: Sample goals from exploration as a quadruped.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) 64 length.

(b) 32 length.

(c) 16 length.

(d) 8 length.

Figure 16: Sample goals from exploration as a cheetah.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(a) 64 length.

(b) 32 length.

(c) 16 length.

(d) 8 length.

Figure 17: Sample goals from exploration as a Hopper.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) 64 length.

(b) 32 length.

(c) 16 length.

(d) 8 length.

(e) ∞ length.

Figure 18: States segregated by choice for the walker_run task.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(a) 64 length.

(b) 32 length.

(c) 16 length.

(d) 8 length.

(e) ∞ length.

Figure 19: States segregated by choice for the quadruped_run task.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(a) 64 length.

(b) 32 length.

(c) 16 length.

(d) 8 length.

(e) ∞ length.

Figure 20: States segregated by choice for the cheetah_run task.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(a) 64 length.

(b) 32 length.

(c) 16 length.

(d) 8 length.

(e) ∞ length.

Figure 21: States segregated by choice for the hopper_hop task.

29

	Introduction
	Background
	Director

	Our Method
	Skills As Abstract State Transitions
	Multi-Resolution Skills
	Multi-Skill Policy
	Policy Optimization
	Exploratory Loss
	Policy Gradients For MRS

	Addressing A Critical Failure Mode
	Results
	Standard Benchmarks
	Ablations

	Related Work
	Discussion & Future Work
	Derivation of Policy Gradients for MRS
	Architecture & Training Details
	Worker
	Implementation Details

	Behaviors Learned via Exploration
	Broader Impacts
	Positive Impacts
	Negative Impacts and Mitigations
	Limitations of Scope

	LLM Usage
	Sample Goals using Skill CVAEs
	Default Objective
	Exploration Only

	Visualizing Choice Preferences for States

