

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTI-RESOLUTION SKILLS FOR HRL AGENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Hierarchical reinforcement learning depends on temporally abstract actions to solve long-horizon tasks. We propose Multi-Resolution Skills (MRS), a simple and scalable approach that constructs a discrete set of skill modules, each specialized to predict subgoals at a fixed temporal horizon (e.g., 8, 16, 32, 64 steps). Skill encoders share parameters, causing a minimal increase in model size while allowing each module to generate plans at a distinct temporal resolution. A learned meta-controller selects among these resolution-specific skills based on the task context; the meta-controller and skill policies are trained jointly with a single end-to-end objective in a single training phase. We evaluate MRS on DeepMind Control Suite, Gym-Robotics, and long-horizon AntMaze tasks. While maintaining computational efficiency, MRS consistently outperforms single-resolution baselines, yields meaningful gains over the HRL baselines in long-horizon navigation, and remains competitive with the non-hierarchical state-of-the-art (SOTA) on standard benchmarks. Ablations show that the multi-resolution design drives the improvement, suggesting temporal partitioning of skills is a useful inductive bias for HRL.

1 INTRODUCTION

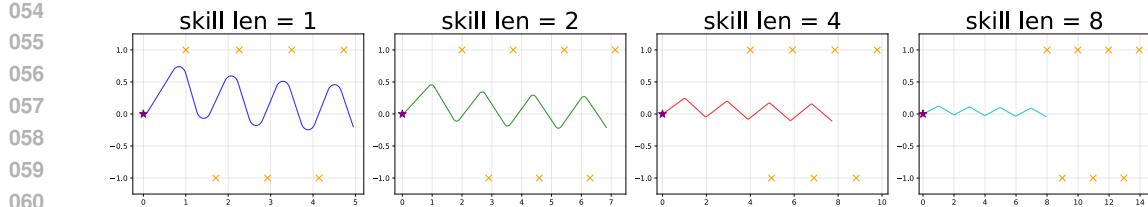
Solving long-horizon control problems remains a central challenge in reinforcement learning: agents must plan across multiple time scales while retaining the ability to execute precise short-term maneuvers. Hierarchical reinforcement learning (HRL) addresses this by learning temporally abstract actions or skills that reduce planning complexity Ajay et al. (2021); Li et al. (2022); Sharma et al. (2020); Hafner et al. (2022). A common approach in prior work is to discover skills or subgoals by partitioning the state space, often via a learned latent distribution and unsupervised objectives that promote diversity or state coverage Eysenbach et al. (2019); Jiang et al. (2022); Sharma et al. (2020). Such methods implicitly mix temporal and geometric structure in the learned skill space, but do not explicitly provide options at different temporal horizons.

We illustrate the complementary behaviors produced by subgoals at different horizons using a simple 2D toy simulation (Fig. 1): nearby subgoals cause rapid corrective deviations, enabling precise steering, while longer-horizon subgoals produce smoother but less precise transitions. Motivated by this observation, we propose *Multi-Resolution Skills* (MRS), an HRL framework that explicitly partitions subgoals along temporal scales. MRS constructs a discrete set of skill modules, each specialized to produce subgoals at a fixed temporal distance (for example, 8, 16, 32, and 64 steps). To limit parameter growth, the skill encoders share a common backbone and differ only in their final layers; separate skill policies and a learned meta-controller select and execute the chosen subgoal. Crucially, the meta-controller and the per-resolution skill policies are trained jointly with a single end-to-end optimization objective, enabling the agent to learn which temporal resolutions are helpful for a given task and context. [Video: <https://sites.google.com/view/multi-res-skills/home>]

We implement MRS atop the Director Hafner et al. (2022), a SOTA HRL agent that provides a practical method for learning hierarchical behaviors directly from pixels, and evaluate on DeepMind Control Suite, Gym-Robotics, and long-horizon AntMaze navigation tasks. With minimal parameter overhead, MRS consistently outperforms single-resolution baselines, produces meaningful improvements over the Director baseline on long-horizon navigation tasks, and remains competitive with DreamerV3 Hafner et al. (2023) (non-HRL SOTA) on standard DeepMind Control Suite benchmarks.

Our contributions are as follows:

- We introduce Multi-Resolution Skills (MRS), a simple HRL design that explicitly partitions skills by fixed temporal horizons with minimal increase in model size (Sec. 3.2).



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Simulation of a simple point agent (star) in a 2D grid that moves towards assigned goal positions (crosses). Goal updates every fixed number of steps K and alternates between $(x + l_i, 1)$ and $(x + l_i, -1)$, where x is the agent’s current x-position and $l_i \in \{1, 2, 4, 8\}$ is the skill length. Goal positions impact agent behavior based on their distance from the agent state. Closer goals lead to more controlled and precise movements, but can be susceptible to incorrect goals. Meanwhile, far-away goals cause less deviation, leading to smooth but imprecise movements.

- We present a single-phase, end-to-end training procedure in which a learned meta-controller chooses among resolution-specific skill policies, enabling dynamic interleaving of fine- and coarse-grained actions (Sec. 3.3).
- We empirically evaluate MRS on continuous-control and long-horizon navigation benchmarks, and provide ablations that attribute gains to multi-resolution control (Secs. 5.1, 5.2). MRS outperforms the Director at all tasks and matches DreamerV3 at most (which completely fails at some tasks).

2 BACKGROUND

2.1 DIRECTOR

The Director Hafner et al. (2022) is a recent SOTA model-based HRL agent composed of a world-model, worker, manager, and a Goal Variational AutoEncoder (VAE) Kingma et al. (2019). The world-model is implemented using the Recurrent State Space Module (RSSM) Hafner et al. (2019) that takes the environmental observations and constructs a state representation over time. The manager takes the state as input to yield a subgoal for the worker in the same state space (refreshed every K steps). The worker takes the current state and the subgoal state to output an environmental action. The authors note that directly outputting subgoals for the worker in the state space by the manager results in a high-dimensional continuous control problem. Therefore, the Goal VAE learns a reduced categorical latent representation for the states, and the manager takes the current state as input to output a latent variable, which is expanded into a state using the Goal VAE decoder. The Goal VAE enables the manager to operate in the reduced latent space by facilitating the recall of states. We implement MRS using Director as the base architecture, modifying only the *manager policy* and the *Goal VAE*.

Motivation: It should be noted that the Goal VAE allows predicting states irrespective of the current state, which means the manager can select a goal s_g unreachable by the worker. And by definition, the worker cannot reliably predict the right actions for unreachable goals. Therefore, given the current state, we propose constraining the search space to only nearby states, which can increase the search efficiency for appropriate goal states s_g . Furthermore, as mentioned in the Director paper and in our experiments with the Director, we observed that the worker rarely reaches the prescribed goal state s_g within an episode. The manager only learns to select the goals s_g so that they induce the proper actions from the worker that maximize the expected return, as evident in the manager’s training objective. Rather than prescribing a goal state and waiting for the worker to reach it, we found that the manager assigns the worker goals as a moving target that the worker constantly chases. Thus, the goal states s_g do not need to be strictly at the temporal length K (the goal refresh rate). In fact, in our experiments with different temporal skill lengths l , we found that $l > K$ works significantly better than $l = K$ for our tasks (Sec. 5.2). We simulated a simple 2D point agent to follow goals prescribed at different distances, illustrating the behavioral differences (Fig. 1). Additionally, the appropriate skill length can be highly task-dependent (Fig. 7). Thus, we propose a Multi-Resolution Skills (MRS) mechanism that learns skills or abstract actions at multiple temporal resolutions and mixes them appropriately. Note that we use *temporal* to refer to the temporal distance of the assigned goal, not the duration for which it is executed.

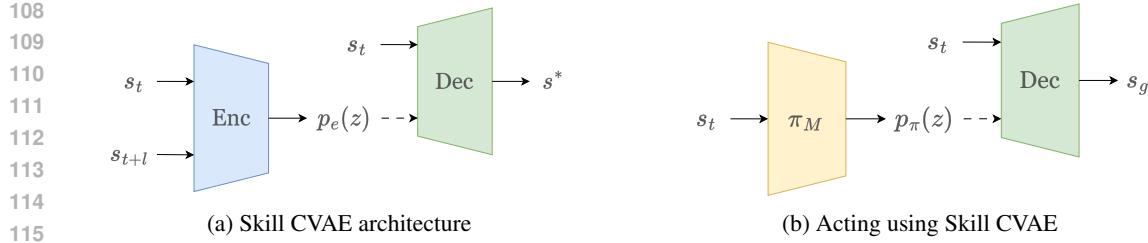


Figure 2: Illustrations of the abstract state transition-based control for the manager. Dashed arrows indicate sample propagation from the predicted distribution. (a) Skill CVAE, where the Encoder encodes initial and final states (s_t, s_{t+l}) to a latent skill space and the Decoder reconstructs the final state using the initial state s_t and a sampled skill variable. (b) The manager predicts the latent skills and then uses the Decoder to generate goals for the worker.

3 OUR METHOD

3.1 SKILLS AS ABSTRACT STATE TRANSITIONS

Given that the agent is at the state s_t , we want to constraint the goal predictions to states that can be achieved in l steps. To do this, we replace the Goal VAE with a Conditional VAE (CVAE) that learns to predict possible future states s_{t+l} conditioned on the current state s_t . The CVAE is learned online using the generated replay data. First, the replay trajectories are used to collect training examples as state pairs (s_t, s_{t+l}) , where s_{t+l} occurs l steps after s_t . Then, the CVAE parameterized by weights ϕ is trained to optimize the ELBO objective (Eq. 1). It should be noted that it is the worker that predicts actions leading the agent to the goal state. CVAE is merely a skill recall mechanism that learns the abstract actions possible under the current worker policy and then allows the manager to modulate the worker’s behavior predictably. Fig. 2 illustrates the skill-based architecture as a CVAE that learns skills online using the collected data (Fig. 2a). Fig. 2b shows how the manager can use the Skill CVAE during inference to generate sub-goals for the worker. Next, we present our method by scaling the concept of *skills* to multiple resolutions.

$$\mathcal{L}(\phi) = \|s_{t+l} - \text{Dec}_\phi(s_t, z)\|^2 + \beta \text{KL}[\text{Enc}_\phi(z|s_t, s_{t+l}) \parallel p(z)] \quad \text{where } z \sim \text{Enc}_\phi(z|s_t, s_{t+l}) \quad (1)$$

3.2 MULTI-RESOLUTION SKILLS

Ideally, we want the manager to be able to predict any state that the worker can directly reach as a goal state. Instead of learning a single CVAE, we can learn multiple CVAEs, each specific to a temporal resolution. However, this can significantly increase the model size, thereby increasing the memory capacity and causing an unfair comparison. Thus, we keep all but the last layer of the encoder, and all but the first layer of the decoder, shared. The sharing causes a minimal increase in model size but increases the recall with the resolution-specific input and output layers. Fig. 3a illustrates the Multi-Resolution Skill CVAE architecture. For training, state-pairs (s_t, s_{t+l_i}) at N different temporal resolutions $l_i \in \{l_0, l_1, \dots, l_N\}$ are extracted from the replay data. Each training example is processed using the shared and the resolution-specific Encoder-Decoder layers. Then the total loss is calculated as the sum of the ELBO objectives of each CVAE and is optimized in a single step (Eq. 2) (the use of common layers is implied in the equations and is not mentioned to maintain simplicity). This results in the common layers being trained for all examples and the resolution-specific layers being trained only on the relevant examples. We use a mixture of 8, 8-dim categoricals (8×8) as the prior distribution $p(z)$ for our CVAEs.

$$\mathcal{L}(\phi) = \sum_{i=0}^N \|s_{t+l_i} - \text{Dec}_\phi^i(s_t, z)\|^2 + \beta \text{KL}[\text{Enc}_\phi^i(z|s_t, s_{t+l_i}) \parallel p(z)] \quad \text{where } z \sim \text{Enc}_\phi^i(z|s_t, s_{t+l_i}) \quad (2)$$

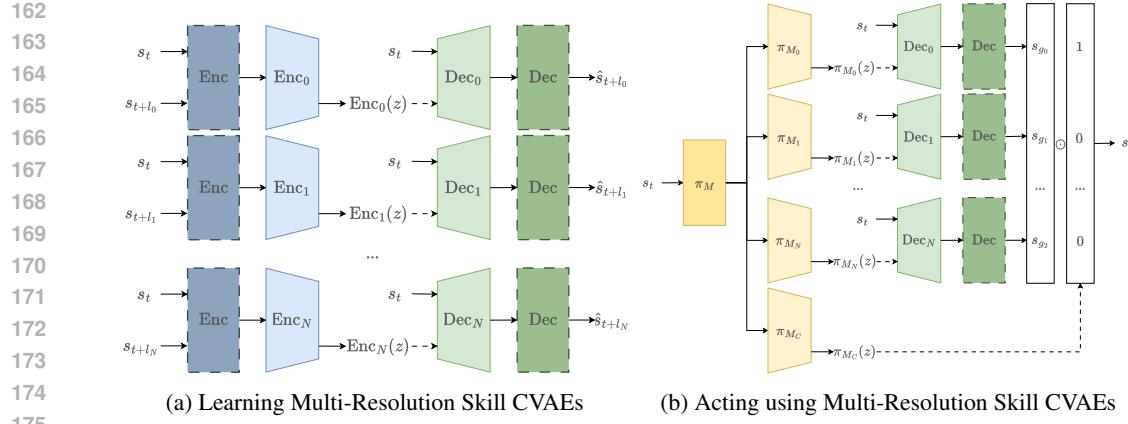


Figure 3: Architectures for learning and acting using Multi-Resolution Skills ($l_i \in \{l_0, l_1, \dots, l_N\}$). Dashed arrows indicate sample propagation from the predicted distribution. Dashed boundaries indicate shared layers. (a) Separate CVAEs are learnt for each temporal resolution l_i . The Enc and Dec modules represent the common layers of the Encoders and the Decoders, respectively. Each Enc_i is the resolution-specific encoder output layer, and each Dec_i is the resolution-specific decoder input layer. (b) The manager’s policy has $N + 1$ output heads. N skill heads π_{M_i} that predict the resolution-specific skill latents and choice head π_{M_C} that predicts an N -dimensional one-hot distribution. Samples from the skill latents are used to predict subgoals using the respective Decoders, then the choice sample from π_{M_C} selects one of the subgoals as s_g by gating.

3.3 MULTI-SKILL POLICY

The manager policy has $N + 1$ output heads, N heads corresponding to each Skill CVAE that predicts latent distributions over skills $\pi_{M_i}(z|s_t)$, and an additional ‘choice’ head that predicts a one-hot N -dim distribution $\pi_{M_C}(c|s_t)$ (Fig. 3b). The latent skill samples are used to predict subgoals using the corresponding decoders (Eq. 3). And the one-hot choice sample selects from the subgoals by gating (Eq. 4). Fig. 3b illustrates the process of worker subgoal prediction using the Multi-Resolution Skill CVAEs. It should be noted that only the final layer of the policy is split into multiple heads, which does not increase the model capacity, but increases the recall capacity. The MRS policy is learned such that each skill head becomes an expert at using the corresponding resolution skills for all states $s_t \in \mathbf{S}$ independently. And the choice head simultaneously learns to pick the best skill head for all states $s_t \in \mathbf{S}$.

$$s_g^{i,t} = Dec_{\phi}^i(z_{t,i}, s_t) \quad \text{where} \quad z_{t,i} \sim \pi_{M_i}(z_{t,i}|s_t) \quad (3)$$

$$s_g^t = \sum_{i=0}^{N-1} c_{t,i} \cdot s_g^{i,t} \quad \text{where} \quad c_t \sim \pi_{M_C}(c_t|s_t) \quad (4)$$

3.4 POLICY OPTIMIZATION

Like the Director Hafner et al. (2022), the MRS manager and the worker policies are implemented as Soft-Actor-Critics (SAC) and optimized using imagined trajectories. Imagination using the RSSM module helps cheaply generate on-policy data for training. The agent imagines a batch of T -step trajectories used to train both the manager and the worker. The returns are estimated using lambda returns, followed by policy update using policy gradients for the external and exploratory rewards. We briefly describe the common training steps below, followed by the exploratory objective (Sec. 3.4.1) and the policy gradients for our approach (Sec. 3.4.2). See Sec. B for full training and architecture details.

Manager: The manager is trained to maximize the external task and the exploratory rewards (Sec. 3.4.1). Since the manager works on a coarser temporal scale, an abstract trajectory of length T/K is extracted, corresponding to every K -th step, and the rewards are summed within each non-overlapping subsequence of length K . Then, separate lambda returns are computed for each reward type, which

216 are learned using individual critics. The manager’s policy is updated using policy gradients (3.4.2),
 217 using the weighted sum of advantages from both objectives.
 218

219 **Worker:** The worker is trained to maximize the goal rewards, calculated as the cosine-max similarity
 220 between the agent state s_t and the goal state s_g . The imagined trajectory is divided into K -step
 221 sub-trajectories, where the goal state s_g remains constant. The rewards and lambda returns are
 222 computed for the sub-trajectories to update the critic, followed by policy update using the SAC
 223 objective.
 224

3.4.1 EXPLORATORY LOSS

226 We aim to learn all possible abstract state transitions in the environment. Thus, we provide the
 227 manager with an additional exploratory reward that encourages it to discover novel state transitions.
 228 Since the Skills CVAE learns all possible abstract state transitions in the environment, we utilize the
 229 reconstruction error from the CVAE as a measure of novelty. This encourages the agent to repeat
 230 state transitions that are not yet well-learned by the CVAE. The exploratory reward $R_t^{\text{Expl}}(\tau)$ for the
 231 imagined trajectory τ of length T is computed as the reconstruction error of the state s_t conditioned
 232 on the starting state s_0 (Eq. 5). Since there are multiple CVAEs, we use the CVAE that best models
 233 the given state transition. Thus, the min of the reconstruction errors across all CVAEs is used as the
 234 reward.
 235

$$R_t^{\text{Expl}} = \min_i \|s_t - \text{Dec}_\phi^i(s_0, z_{t,i})\|^2 \quad \text{where } z_{t,i} \sim \text{Enc}_\phi^i(z|s_0, s_t) \quad (5)$$

3.4.2 POLICY GRADIENTS FOR MRS

239 For clarity, we defer the full step-by-step derivation to Appendix A; here we summarize the main
 240 result and the training objectives used in practice. Under the MRS sampling protocol (skill latents $z_{k,i}$
 241 from each skill head, a discrete choice c_k selecting one head, and worker actions conditioned on the
 242 chosen subgoal), the trajectory log-probability decomposes into manager terms (choice and per-head
 243 latent policies) and worker terms. Applying the log-derivative trick and standard policy-gradient
 244 manipulations (with temporal abstraction indexed by abstract step k with refresh interval K) yields
 245 the manager policy gradient of the form:
 246

$$\nabla_M J = \mathbb{E}_\tau \left[\sum_{k=0}^{\lfloor T/K \rfloor - 1} \left(\underbrace{\nabla_M \log \pi_{M_C}(c_k | s_{kK})}_{\text{Choice head}} + \sum_{i=0}^{N-1} \underbrace{c_{k,i} \nabla_M \log \pi_{M_i}(z_{k,i} | s_{kK})}_{\text{Skill head } i} \right) (G_k^\lambda - v_M(s_{kK})) \right]$$

251 Where G_k^λ are lambda-returns computed over abstract steps and v_M is the manager critic. In practice,
 252 each manager head (choice head and per-resolution skill heads) is optimized with an actor loss
 253 using the above advantage estimator plus an entropy regularizer, and the critic is trained with a
 254 squared-error target on G_k^λ (see Appendix B for exact loss definitions, variance-reduction details, and
 255 implementation notes). This compact formulation makes it clear that the manager gradient separates
 256 into a choice term and per-head terms (the $c_{k,i}$ factor for the skill head gradients effectively selects
 257 the active head), enabling joint, single-phase end-to-end optimization of the meta-controller and
 258 resolution-specific skill policies.
 259

4 ADDRESSING A CRITICAL FAILURE MODE

261 Previous skill discovery methods have mentioned difficulties learning skill primitives while acting
 262 using the same skills Hafner et al. (2022); Eysenbach et al. (2019). This is because, after the model
 263 learns a few reliable skills, it tends to repeat them, thereby getting stuck with suboptimal skills. This
 264 happens if the CVAEs prematurely converge before the policy; one way to force this is to increase the
 265 training data for the CVAE disproportionately. This causes the policy to collapse into a degenerate
 266 solution, as the CVAE predicts only the initially learned subgoals. For example, the quadruped
 267 embodiment can learn to stand, but freezes thereafter. For completeness of the solution, we make
 268 an additional modification that prevents this problem. In addition to the Skill CVAEs, we introduce
 269 another VAE that learns states unconditionally, similar to the Director. The unconditional VAE
 ($\text{Enc}_\psi^\infty, \text{Dec}_\psi^\infty$) predicts subgoal states s_g completely independent of any previous state s_t , imitating

270 learning ∞ -length skills. This helps the agent escape the collapse by allowing the manager to select
 271 temporally unconstrained goal states. Thus, if the skills CVAEs have collapsed, the manager can use
 272 this VAE to generate subgoals that the skill CVAE cannot yet, removing any need to balance policy
 273 and CVAE learning. Our results show that the agent initially uses the unconditional VAE but soon
 274 switches to Skill CVAEs (Fig. 5).

275 5 RESULTS

276 For generality, we use skill lengths $L = [64, 32, 16, 8, \infty]$ for all our experiments and keep the rest of
 277 the hyperparameters the same as the base architecture. Since we use multiple policy heads, the policy
 278 learning signal is split between the N skill heads and diluted by a factor of $N (= 5)$; thus, we increase
 279 training to every 8-th step rather than 16 (for MRS and the Director). The above configuration ensures
 280 that all performance changes are strictly due to the proposed architectural changes only (which allow
 281 recall of subgoal states at multiple temporal resolutions). We use a similar-sized DreamerV3 that
 282 trains every 2-nd step, making it 4 times more expensive.

283 We first evaluate the agent in a variety of standard benchmarks, including the DeepMind Control
 284 Suite and Gym-robotics tasks, to test its performance against the Director Hafner et al. (2022) (SOTA
 285 HRL) and DreamerV3 Hafner et al. (2023) (SOTA non-HRL) agents. Then, the agent is evaluated in
 286 long-horizon AntMaze tasks with sparse rewards to test whether the agent can learn solely using the
 287 exploratory objective. Finally, we conduct ablation studies to test the impact of dynamic interleaving
 288 of skills and also compare against skill discovery methods that also learn abstract actions without
 289 external rewards.

290 5.1 STANDARD BENCHMARKS

291 We compare our method with SOTA methods (Director Hafner et al. (2022) and DreamerV3 Hafner
 292 et al. (2023)) on several tasks in the DeepMind Control Suite (DMC) Tassa et al. (2018) and
 293 Gymnasium-Robotics de Lazcano et al. (2024).

294 **DeepMind Control Suite:** For DMC, each episode lasts for 1000 steps before terminating and
 295 provides positive dense rewards at each step. Fig. 4 shows the performance of our method compared
 296 to the baselines. The results show that our method outperforms Director at all tasks and matches
 297 DreamerV3’s performance in most cases. Thus, MRS closes the performance gap between Director
 298 and DreamerV3 while retaining the compute efficiency of Director and a similar model size. We also
 299 plot the evolution of the choice distribution during training (Fig. 5). A common trend in some tasks
 300 was that the manager initially preferred unconditional VAE, but later switched to skill CVAEs (Fig.
 301 5). This trend is similar to human behavior when learning new skills, e.g., body movements for a
 302 new sport. Initially, one might make crooked motions through a few identified advantageous body
 303 configurations, but repetitions develop skills and reduce future conscious effort Sanes (2003).

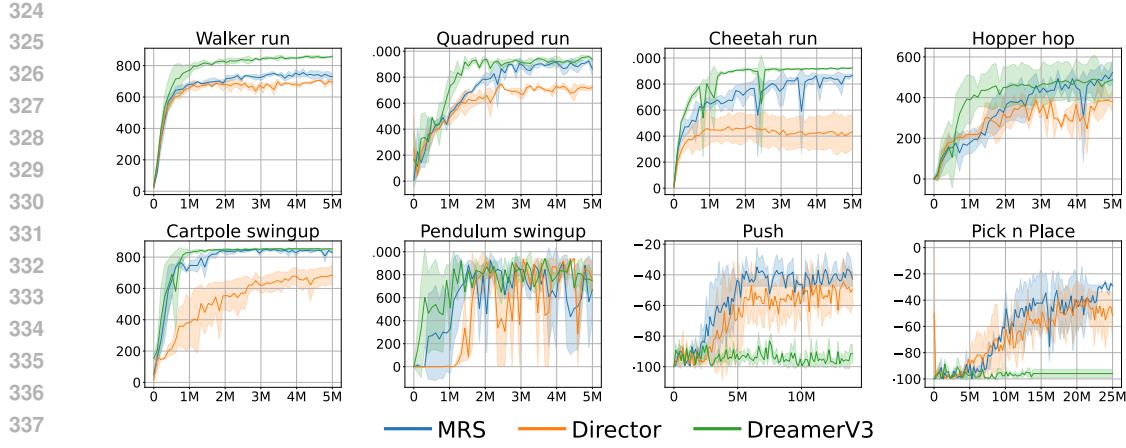
304 **Gym Robotics:** For Robotic tasks (*Push* and *Pick n Place*), each episode lasts for 100 steps and incurs
 305 an existence penalty of -1 each step. Thus, the rewards are sparse, but the task is of a much shorter
 306 horizon than the AntMaze. It can be seen that DreamerV3 completely fails at the task while Director
 307 and MRS perform well (Fig. 4). MRS edges out the Director slightly in terms of performance and
 308 convergence speed.

309 **Egocentric Ant:** We also tested our method on the Egocentric ant maze task, where the agent receives
 310 sparse rewards for reaching a goal location (1 on success and 0 otherwise). Each episode lasts 3000
 311 steps before terminating. Therefore, training is mainly done using exploratory rewards. The agent
 312 takes the proprioceptive observations and an egocentric camera image as inputs. While DreamerV2
 313 fails at the task, the Director and MRS solve it, with MRS receiving higher scores. This task takes
 314 extremely long to complete, so we take results from Hafner et al. (2022) for comparison (Fig. 6).

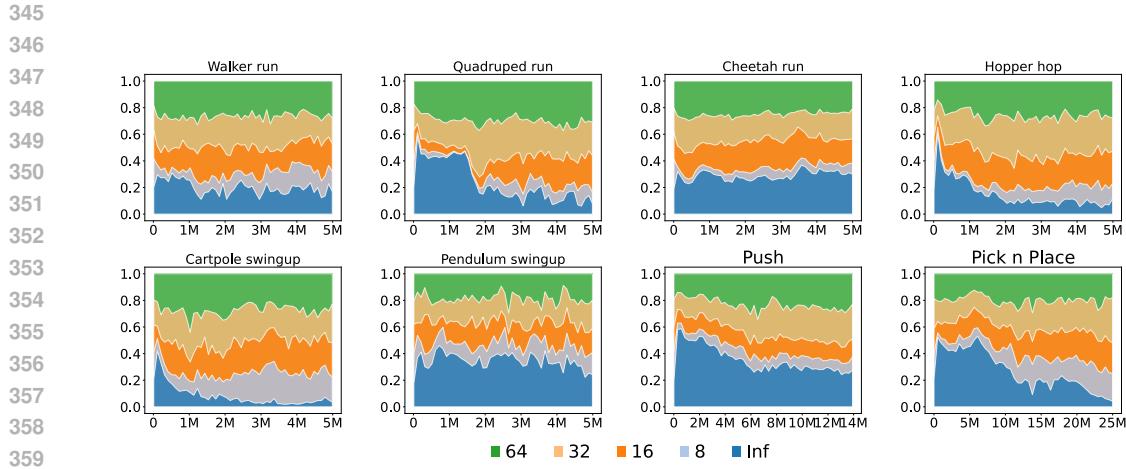
315 5.2 ABLATIONS

316 *How well do the individual skills perform, and is the dynamic skill interleaving useful?*

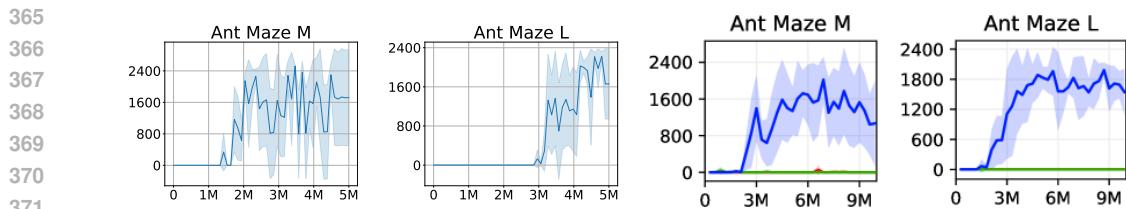
317 Our method trains individual expert policies for each skill CVAE, for all states $s_t \in \mathbf{S}$, and the choice
 318 head for selecting the best skill for all states $s_t \in \mathbf{S}$. In this context, we compare the following
 319 settings: the default choice mechanism, random choice, and using each skill module separately. The
 320 skill selection mechanism is modified in an already trained MRS agent to enforce the above settings.



339 Figure 4: Episode scores from MRS (ours), Director, and DreamerV3 (3 seeds per experiment).
340 The plot shows the total rewards (mean and standard deviation) received in an episode against the
341 environmental step. Both methods use the same common hyperparameters. The first *six* tasks are
342 from the DMC suite and the last *two* (Push and Pick n Place) are from the Gymnasium-Robotics
343 suite. It can be seen that MRS boosts performance of the base model noticeably in all cases while
344 maintaining the compute efficiency.



361 Figure 5: Stream graphs showing the evolution of the choice distribution during training averaged
362 across 3 seeds. A trend can be observed in some tasks where the manager initially focuses on
363 ∞ -length skills but gradually shifts to temporally constrained skills.



372 Figure 6: Episode rewards from the Egocentric Ant Maze task against the environmental step during
373 training (3 seeds). (Left) — MRS (Ours), (Right) Results taken from Hafner et al. (2022) that
374 compares: — Director, — Director with worker receiving external task reward, — DreamerV2. It
375 can be noticed that MRS reaches the peak performance (~ 2400) at around 3.5M steps (medium)
376 and 5M steps (large), while the Director reaches peak performance of ~ 1800 at 7M and 6M steps
377 respectively.

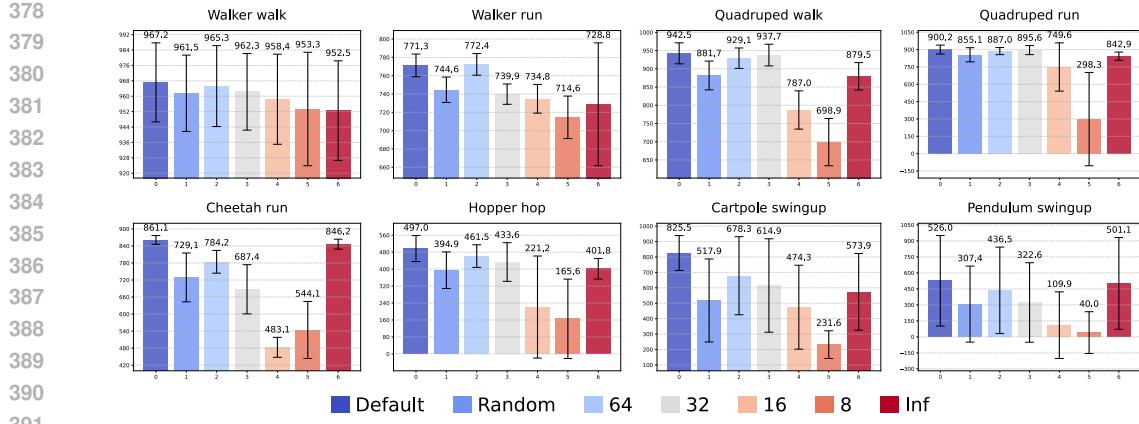


Figure 7: Final performance comparison between the settings: default choice mechanism, random selection, and the skills individually $[64, 32, 16, 8, \infty]$. The results are the mean and standard deviations of the episodic rewards across 100 evaluation runs.

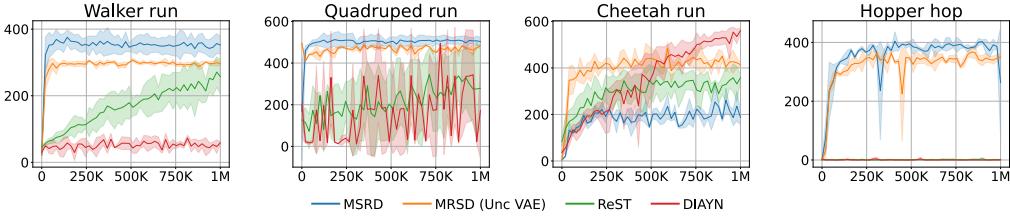


Figure 8: Performance comparison of agents fine-tuned for tasks after an exploration phase (3 seeds per experiment). The graphs show total episodic rewards (mean and standard deviation) against the global steps. The plots compare: MRS, MRS using exploratory rewards from the unconditional VAE, ReST, and DIAYN. Our agent is trained every 8-th step using image inputs, while DIAYN/ReST trains every step using the internal environmental proprioceptive state.

Fig. 7 shows the results for some DMC tasks where each skill score is averaged across 100 episodes. It can be seen that interleaving the skills using the proposed choice mechanism consistently yields the best results. It should also be seen that no individual skill performs well for all tasks; thus, using the choice policy π_{MC} can help automate skill selection. Another notable fact was that while the agent prefers the ∞ -length skills for the `cheetah_run` task (Fig. 5), the Director agent that only uses ∞ -length skills fails to perform (Fig. 4). Indicating necessity of multi-resolution skill interleaving.

Can the agent learn usable skills only using the exploratory objective?

We test whether MRS can learn skills independently of external rewards and then learn a policy to utilize these skills to perform a task. For this, we first train an agent for 3M environmental steps using only the exploratory objective. The agent learns interesting behaviors, such as backflips, headstands, somersaults (both forward and backward), etc. (Appendix C). Next, keeping all modules static, we fine-tune the manager policy and a fresh critic for the environmental task rewards for 1M environmental steps. We compare our method to two previous skills discovery methods: ReST Jiang et al. (2022) and DIAYN Eysenbach et al. (2019). Both methods maximize an information-theoretic objective to learn a set of distinct skills. Then, the skill that yields the maximum rewards for the external task is further fine-tuned. The original results on the methods are at the Gym embodiments of the same agents, so we use their respective parameters, including reward scaling. We also compare our exploratory objective against the Director's, which is computed as the reconstruction error using the unconditional VAE (Sec. 4). Fig. 8 shows the comparisons. It can be seen that our method performs well for all tasks except the `cheetah_run`, while other methods struggle to do so.

Are there any qualitative differences between states where certain skills are preferred over others?

We segregate states in a trajectory by the choice variable to manually verify if certain skill-lengths are consistently preferred over others in various situations (Sec. G). For example, the walker agent prefers 8-step skills either when the agent has both feet on the ground or in a fully extended stance,

432 and prefers 64-length skills in a mid-lunge stance (Fig. 18). We also observe that the agents prefer
 433 ∞ -length skills for less frequently visited states, such as being dropped at the episode start or when it
 434 mistakenly topples mid-episode. While we do not draw any parallels with the human running gait, it
 435 is clear that certain skills are preferred in certain situations.

437 6 RELATED WORK

439 **Hierarchical RL and options.** Hierarchical reinforcement learning (HRL) formalizes temporal
 440 abstraction by allowing agents to select temporally-extended actions or *options* instead of only
 441 primitive actions Sutton et al. (1999); Barto and Mahadevan (2003); Botvinick et al. (2009); Wiering
 442 and Van Otterlo (2012); Patera et al. (2021) Early ideas of feudal/manager-worker decomposition
 443 date back to Dayan and Hinton (1992); more recent neural instantiations include FeUDal Networks
 444 Vezhnevets et al. (2017) and Options-Critic style approaches that learn option-policies and termination
 445 conditions end-to-end Bacon et al. (2017). Manager-worker schemes have also been applied with
 446 goal-conditioned workers (e.g., HIRO) where a higher-level policy proposes subgoals and a lower-
 447 level controller is trained to reach them Nachum et al. (2018).

448 **Unsupervised skill discovery via mutual information.** A large body of work focuses on unsup-
 449ervised discovery of diverse skills by maximizing information between a latent skill variable and
 450 state trajectories or state pairs. Representative methods include DIAYN Eysenbach et al. (2019),
 451 DADS Sharma et al. (2020), InfoGAN-based approaches Kurutach et al. (2018), and OPAL Ajay et al.
 452 (2021); these methods differ in whether they maximize MI with single states, state pairs, or whole
 453 trajectories, and whether the learned skills are later used for planning or exploration. Variants such as
 454 ReST train skills sequentially to increase coverage Jiang et al. (2022). The principal advantage of
 455 these methods is their broad behavioral diversity without the need for external rewards; however, they
 456 do not provide an explicit mechanism to select temporal resolutions for subgoals on their own.

457 **Goal-conditioned, model-based and hybrid HRL.** More recent research combines learned skills
 458 or goal representations with model-based planning or learned world models to improve long-horizon
 459 performance Hafner et al. (2022); Li et al. (2022). These works demonstrate that compact goal
 460 representations and explicit subgoal prediction can facilitate planning; however, they typically do
 461 not explicitly partition skills into fixed temporal horizons. Our Multi-Resolution Skills (MRS)
 462 approach complements these lines by explicitly training resolution-specific skill heads (fixed temporal
 463 distances) and a learned meta-controller that selects among them in a single end-to-end phase; in
 464 this sense, MRS sits between unsupervised options discovery and goal-conditioned manager-worker
 465 HRL.

466 7 DISCUSSION & FUTURE WORK

468 We propose a novel skill discovery framework that explicitly partitions the state space by temporal
 469 resolution, enabling hierarchical control through multi-resolution skill modules. Our agent outper-
 470 forms Director with minimal architectural changes and achieves performance parity with DreamerV3
 471 on standard benchmarks with better training efficiency.

472 The key findings that emerge from our analysis are:

- 473 • **HRL Bottleneck:** Limited recall capacity for options can be a bottleneck for HRL agents.
 474 Simply increasing the number of distinct executable options available can increase perfor-
 475 mance 4.
- 476 • **Skill Interleaving Matters:** Ablation studies show that the skill-interleaving agent performs
 477 the best, and no single skill works best across all tasks (Fig. 7).
- 478 • **Reward-Agnostic Learning:** The agent successfully discovers usable skills without external
 479 rewards through latent space exploration (Figs. 6,8). We see a small limitation when our
 480 exploration rewards do not perform as well as the others at the `cheetah_run` task (Fig.
 481 4), indicating that no single reward scheme is sufficient for all tasks.

482 The architecture is highly flexible, allowing for the mixing of learned and deterministic skills, resulting
 483 in hybrid structures. The skills can also be used as abstract actions for goal-directed motion planning.
 484 The multi-head policy gradient formulation can also be easily extended to other RL algorithms.

486 REFERENCES
487

488 Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. {OPAL}: Offline
489 primitive discovery for accelerating offline reinforcement learning. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=V69LGwJ01IN>.

490

491

492 Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In *Proceedings of
493 the AAAI conference on artificial intelligence*, volume 31, 2017.

494

495 Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
496 *Discrete event dynamic systems*, 13(1):41–77, 2003.

497

498 Matthew M Botvinick, Yael Niv, and Andrew G Barto. Hierarchically organized behavior and its
499 neural foundations: A reinforcement learning perspective. *Cognition*, 113(3):262–280, 2009.

500

501 Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. *Advances in neural information
502 processing systems*, 5, 1992.

503

504 Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan
505 Terry. Gymnasium robotics, 2024. URL <http://github.com/Farama-Foundation/Gymnasium-Robotics>.

506

507 Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
508 need: Learning skills without a reward function. In *International Conference on Learning
509 Representations*, 2019. URL <https://openreview.net/forum?id=SJx63jRqFm>.

510

511 Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
512 Davidson. Learning latent dynamics for planning from pixels. In *International conference on
513 machine learning*, pages 2555–2565. PMLR, 2019.

514

515 Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning
516 from pixels. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
517 *Advances in Neural Information Processing Systems*, volume 35, pages 26091–26104. Curran Asso-
518 ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/a766f56d2da42cae20b5652970ec04ef-Paper-Conference.pdf.

519

520 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
521 through world models. *arXiv preprint arXiv:2301.04104*, 2023.

522

523 Zheyuan Jiang, Jingyue Gao, and Jianyu Chen. Unsupervised skill discovery via recurrent skill
524 training. *Advances in Neural Information Processing Systems*, 35:39034–39046, 2022.

525

526 Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. *Foundations
527 and Trends® in Machine Learning*, 12(4):307–392, 2019.

528

529 Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J Russell, and Pieter Abbeel. Learning planable
530 representations with causal infogan. *Advances in Neural Information Processing Systems*, 31,
531 2018.

532

533 Jinning Li, Chen Tang, Masayoshi Tomizuka, and Wei Zhan. Hierarchical planning through goal-
534 conditioned offline reinforcement learning. *IEEE Robotics and Automation Letters*, 7(4):10216–
535 10223, 2022. doi: 10.1109/LRA.2022.3190100.

536

537 Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
538 reinforcement learning. *Advances in neural information processing systems*, 31, 2018.

539

540 Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement
541 learning: A comprehensive survey. *ACM Comput. Surv.*, 54(5), jun 2021. ISSN 0360-0300. doi:
542 10.1145/3453160. URL <https://doi.org/10.1145/3453160>.

543

544 Jerome N Sanes. Neocortical mechanisms in motor learning. *Current opinion in neurobiology*, 13(2):
545 225–231, 2003.

540 Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
541 unsupervised discovery of skills. In *International Conference on Learning Representations*, 2020.
542 URL <https://openreview.net/forum?id=HJgLZR4KvH>.

543

544 Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction second edition.
545 *Adaptive computation and machine learning: The MIT Press, Cambridge, MA and London*, 2018.

546 Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
547 for temporal abstraction in reinforcement learning. *Artificial intelligence*, 112(1-2):181–211, 1999.

548

549 Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
550 Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. *arXiv preprint*
551 *arXiv:1801.00690*, 2018.

552

553 Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
554 Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
555 *International conference on machine learning*, pages 3540–3549. PMLR, 2017.

556

557 Marco A Wiering and Martijn Van Otterlo. Reinforcement learning. *Adaptation, learning, and*
558 *optimization*, 12(3):729, 2012.

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A DERIVATION OF POLICY GRADIENTS FOR MRS**
 595

596
 597 We first decompose the action prediction process to derive the policy gradient to train the manager and
 598 worker policies. Let an MRS agent be in state s_t at step t . Every K -th step, the manager refreshes the
 599 worker's goal. For clarity, let the abstract step be indexed by k , then at each abstract step ($t = kK$):

600
 601 1. Sample skill latents from the skill heads: $z_{k,0}, z_{k,1}, \dots, z_{k,N-1} \sim \prod_{i=0}^{N-1} \pi_{M_i}(z_{k,i}|s_{kK})$.
 602
 603 2. Sample a choice variable: $c_k \sim \pi_{M_C}(c_k|s_{kK})$.
 604
 605 3. Compute the selected subgoal: $s_g^k = \sum_{i=0}^{N-1} c_{k,i} \cdot \text{Dec}_\phi^i(s_{kK}, z_{k,i})$.
 606
 607 4. Predict the environmental actions using worker: $\pi_W(a_t|s_t, s_g^k)$

608
 609 Thus, the trajectory probability that starts at s_0 can be written as:

610
 611
 612
$$p(\tau) = p(s_0) \underbrace{\prod_{k=0}^{\lfloor T/K \rfloor - 1} \pi_{M_C}(c_k|s_{kK})}_{\text{Manager}} \underbrace{\prod_{i=0}^{N-1} \pi_{M_i}(z_{k,i}|s_{kK})^{c_{k,i}}}_{\text{Worker}} \underbrace{\prod_{t=0}^{T-1} \pi_W(a_t|s_t, s_g^{\lfloor t/K \rfloor})}_{\text{Worker}} \cdot \underbrace{p_T(s_{t+1}|a_t, s_t)}_{\text{State transition}} \quad (6)$$

613
 614 The components of the equation can be read as: the manager predicts the skills $(z_{k,0}, z_{k,1}, \dots, z_{k,N})$
 615 and choice c_k for every abstract step k , the worker predicts the action a_t at each step t using the
 616 subgoal $s_g^{\lfloor t/K \rfloor}$ for the duration, and the environmental state transition p_T . Here, the exponent $c_{k,i}$
 617 collapses the skill probabilities $\pi_{M_i}(z_{k,i}|s_{kK})$ of the unselected skill head to 1 as they do not affect
 618 the trajectory.

619
 620 We follow the policy gradient derivation from Sutton and Barto (2018). The aim is to compute
 621 $\nabla_\theta J$, where $J = \mathbb{E}_\tau[R(\tau)]$ is the expected reward and θ are the policy parameters. Using the
 622 standard log-derivative trick (Sutton and Barto (2018)), the objective can be written as maximizing
 623 the trajectory log-probability weighted by the expected reward:

624
 625
 626
$$\nabla_\theta J = \mathbb{E}_\tau[R(\tau) \cdot \nabla_\theta \log p(\tau)]$$

627
 628
 629 The gradient of the trajectory log-probability w.r.t. the manager parameters M is:

630
 631
 632
 633
 634
 635
$$\nabla_M \log p(\tau) = \sum_{k=0}^{\lfloor T/K \rfloor - 1} [\nabla_M \log \pi_{M_C}(c_k|s_{kK}) + \sum_{i=0}^{N-1} c_{k,i} \nabla_M \log \pi_{M_i}(z_{k,i}|s_{kK})]$$

636
 637
 638
 639 Therefore, the policy-gradient objective can be written as:

640
 641
 642
 643
$$\nabla_M J = \mathbb{E}_\tau[R(\tau) \cdot \sum_{k=0}^{\lfloor T/K \rfloor - 1} [\nabla_M \log \pi_{M_C}(c_k|s_{kK}) + \sum_{i=0}^{N-1} c_{k,i} \nabla_M \log \pi_{M_i}(z_{k,i}|s_{kK})]]$$

644
 645
 646
 647 Given these policy gradients, we construct the losses for each head as the sum of the policy gradient
 648 objective and an entropy maximization objective (Eq. 9,8), and sum them for the total loss (Eq. 10).

$$G_k^\lambda = R_k + \gamma((1-\lambda)v_M(s_{kK}) + \lambda G_{k+1}^\lambda) \quad (7)$$

$$\mathcal{L}(\pi_{M_c}) = -\mathbb{E}_\tau \sum_{k=0}^{\lfloor T/K \rfloor - 1} \log \pi_{M_c}(c_k | s_{kK}) (G_k^\lambda - v_M(s_{kK})) + \eta \mathbb{H}[\pi_{M_C}(c_k | s_{kK})] \quad (8)$$

$$\mathcal{L}(\pi_{M_i}) = -\mathbb{E}_\tau \sum_{k=0}^{\lfloor T \rfloor - 1} c_{k,i} \cdot \log \pi_{M_i}(z_{k,i} | s_{kK}) (G_k^\lambda - v_M(s_{kK})) + \eta \mathbb{H}[\pi_{M_i}(z_{k,i} | s_{kK})] \quad (9)$$

$$\mathcal{L}(\pi_M) = \mathcal{L}(\pi_{M_c}) + \sum_{i=0}^{N-1} \mathcal{L}(\pi_{M_i}) \quad (10)$$

$$\mathcal{L}(v_M) = \mathbb{E}_\tau \sum_{k=0}^{\lfloor T/K \rfloor - 1} (v_M(s_{kK}) - G_k^\lambda)^2 \quad (11)$$

Where G_k^λ is the lambda returns estimated using abstract trajectories (Eq. 7), v_M is the critic (Eq. 11). The policy maximizes the advantage $G_k^\lambda - v_M(s_{kK})$ instead of directly maximizing estimated rewards. Weighted entropic losses $\mathbb{H}[\cdot]$ encourage adequate exploration prior to convergence. The manager learns separate critics, and estimates separate returns and advantages for the external and exploratory rewards. And the total advantage is the weighted sum of exploratory and external advantages ($[1.0, 0.1]$) for our case).

B ARCHITECTURE & TRAINING DETAILS

B.1 WORKER

The worker is trained using K -step imagined rollouts ($\kappa \sim \pi_W$). Given the imagined trajectory κ , the rewards for the worker R_t^W are computed as the cosine_max similarity measure between the trajectory states s_t and the prescribed worker goal s_{wg} . First, discounted returns G_t^λ are computed as n -step lambda returns (Eq. 12). Then the Actor policy is trained using the SAC objective (Eq. 13) and the Critic is trained to predict the discounted returns (Eq. 14). The entropy for the worker and the manager is weighted to maintain a target entropy.

$$G_t^\lambda = R_{t+1}^W + \gamma_L((1-\lambda)v(s_{t+1}) + \lambda G_{t+1}^\lambda) \quad (12)$$

$$\mathcal{L}(\pi_W) = -\mathbb{E}_{\kappa \sim \pi_W} \sum_{t=0}^{H-1} \left[(G_t^\lambda - v_W(s_t)) \ln \pi_W(z|s_t) + \eta \mathcal{H}[\pi_W(z|s_t)] \right] \quad (13)$$

$$\mathcal{L}(v_W) = \mathbb{E}_{\kappa \sim \pi_W} \left[\sum_{t=0}^{H-1} (v_W(s_t) - G_t^\lambda)^2 \right] \quad (14)$$

B.2 IMPLEMENTATION DETAILS

We implement two functions: `policy` (Alg. 2) and `train` 1, using the hyperparameters shown in Table 1. The functions are implemented in Python/Tensorflow using XLA JIT compilation. The experiments on average take 2 days to run 5M steps on an NVIDIA RTX 5000.

	Name	Symbol	Value
702	Train batch size	B	16
703	Replay data length	-	64
704	Worker abstraction length	K	8
705	Explorer Imagination Horizon	T	16
706	Return Lambda	λ	0.95
707	Return Discount	γ	0.99
708	Skill resolutions	L	$\{64, 32, 16, 8, \infty\}$
709	Target entropy	η	0.5
710	KL loss weight	β	1.0
711	RSSM deter size	-	1024
712	RSSM stoch size	-	32×32
713	Optimizer	-	Adam
714	Learning rate (all)	-	10^{-4}
715	Adam Epsilon	-	10^{-6}
716	Weight decay (all)	-	10^{-2}
717	Activations	-	LayerNorm + ELU
718	MLP sizes	-	4×512
719	Train every	-	8
720	Parallel Envs	-	4

Table 1: Agent Hyperparameters

Algorithm 1: Multi-Resolution Skill Training

Input: Collected trajectories $\mathcal{D} = \{\tau_1, \dots, \tau_B\}$
Output: Updated world model wm , skill modules (Enc_ϕ, Dec_ϕ), manager π_M , worker π_W

```

732 // World Model Training
733    $wm.train(\mathcal{D})$                                      // See Hafner et al. (2019)
734 // Multi-Resolution Skill Learning
735    $\mathcal{L}_{skills} \leftarrow []$ 
736   for  $l_i \in \mathcal{L}$  do
737      $\{(s_t, s_{t+l_i})\} \leftarrow ExtractStatePairs(\mathcal{D}, l_i)$ 
738      $\mathcal{L}_i \leftarrow skill\_loss(s_t, s_{t+l_i})$            // CVAE loss (Eq. 1)
739      $\mathcal{L}_{skills}.append(\mathcal{L}_i)$ 
740    $update\_skills(sum(\mathcal{L}_{skills}))$ 
741 // Policy Optimization via Imagination
742    $\mathcal{S}_{init} \leftarrow \{s_0 \mid s_0 \in \tau, \tau \in \mathcal{D}\}$            // Initial states
743    $\hat{\tau} \leftarrow wm.imagine(\pi_{MRS}, \mathcal{S}_{init}, T)$  // Rollout imagined trajectories (Alg. 2)
744 // Reward Computation
745    $\hat{\tau}.r^{extr} \leftarrow r_{env}(\hat{\tau})$                          // Environment reward
746    $\hat{\tau}.r^{expl} \leftarrow expl\_rew(\hat{\tau})$                      // Exploration reward (Eq. 5)
747    $\hat{\tau}.r^{goal} \leftarrow cosine\_max(\hat{\tau}.s_t, \hat{\tau}.s_g^{[t/K]})$  // Goal achievement reward
748 // Hierarchical Policy Update
749    $\mathcal{T}_W \leftarrow split(\hat{\tau})$                                 // Worker-level transitions
750    $\mathcal{T}_M \leftarrow abstract(\hat{\tau})$                                 // Manager-level abstractions
751    $\mathcal{L}(\pi_M), \mathcal{L}(v_M) = manager\_loss(\mathcal{T}_M)$            // Eqs. 10,11
752    $update\_manager(\mathcal{L}(\pi_M), \mathcal{L}(v_M))$ 
753    $\mathcal{L}(\pi_W), \mathcal{L}(v_W) = worker\_loss(\mathcal{T}_W)$            // Eqs. 13,14
754    $update\_worker(\mathcal{L}(\pi_W), \mathcal{L}(v_W))$ 

```

C BEHAVIORS LEARNED VIA EXPLORATION

We observed some interesting behaviors that the MRS agent regularly exhibited, such as front flips, back flips, and jumps, while training solely with the exploratory loss. The intrinsic exploratory loss encourages the agent to perform novel state transitions (Sec. 3.4.1). Fig. 9 shows some of the learned movements.

D BROADER IMPACTS

D.1 POSITIVE IMPACTS

Our method's sample efficiency (training every 8 steps) could reduce computational costs for real-world robot training, thereby lowering environmental footprints. The imagination-based policy optimization mitigates hazards that can occur during learning. The skill-interleaving mechanism enables transparent agents with interpretable subgoals. The learned skills can be interleaved with rigorously tested safe skills, and the selection can be appropriately constrained to mitigate failures.

D.2 NEGATIVE IMPACTS AND MITIGATIONS

- **Inaccurate Training:** Imagination can cause incorrect learning. Mitigation: Rigorous testing using manual verification of world-model reconstructions against ground truths.
- **Malicious Use:** Hierarchical control could enable more autonomous adversarial agents. Mitigation: Advocate for gated release of policy checkpoints.

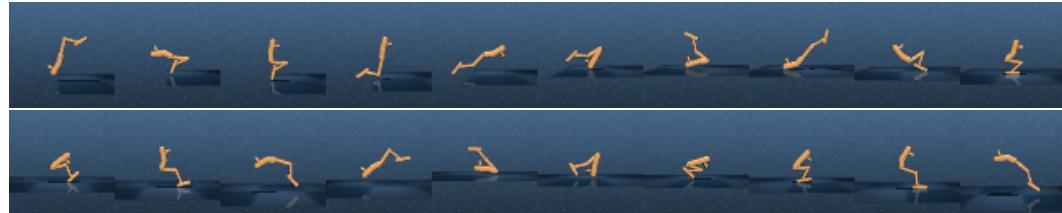
D.3 LIMITATIONS OF SCOPE

Our experiments focus on simulated tasks that do not involve human interaction. Real-world impacts require further study of reward alignment and failure modes.

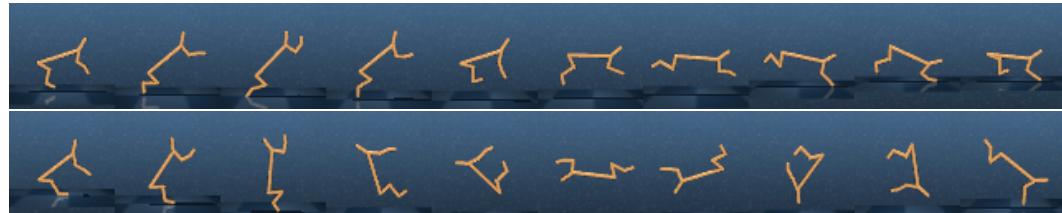
E. LLM USAGE

We used LLMs to refine the abstract, introduction, and background sections of our paper, primarily to polish the language.

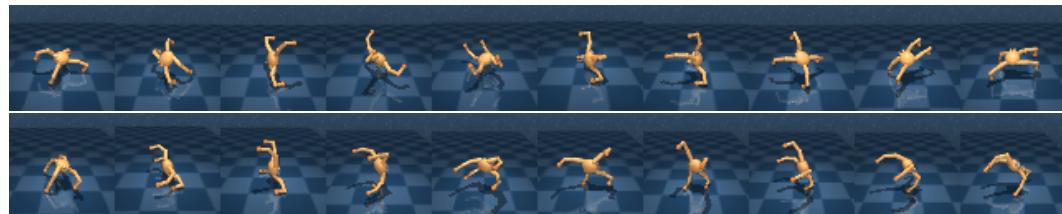
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826



(a) Hopper learns to use a front flip to stand, and back flips.



(b) Cheetah learns to leap forward and perform perfect back flips.



(c) Quadruped learning side rolls and walking on two legs.

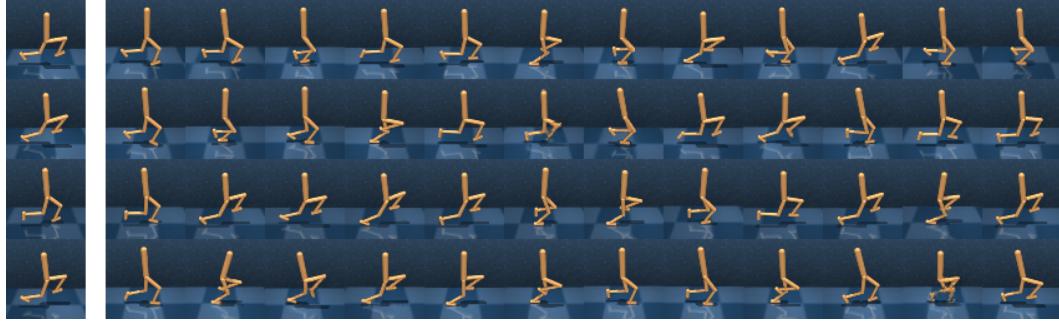
(d) Walker trying to headstand repeatedly and fast-forward tumbling using head and legs.

Figure 9: Samples of some movements learned and regularly performed by the agent optimized only for the exploratory loss.

855
856
857
858
859
860
861
862
863

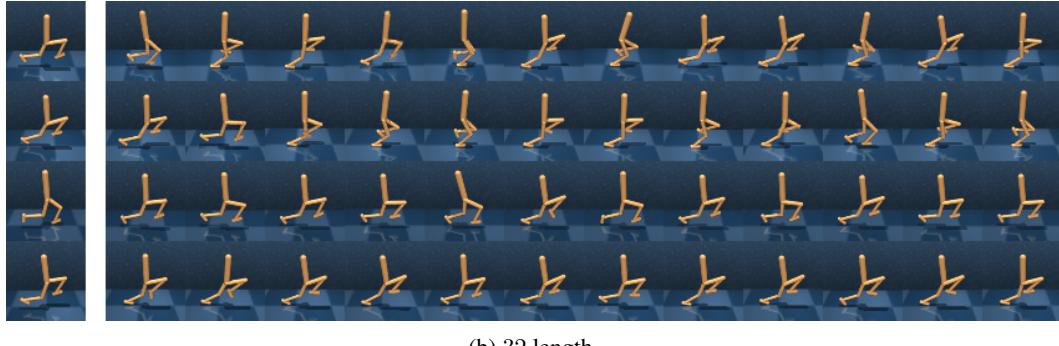
864 F SAMPLE GOALS USING SKILL CVAEs
865866 We generate some sample goals using each of the Skill CVAEs individually. The goals are generated
867 using a uniform prior $p(z)$ for the skills, and initial states s_t sampled from the replay database.
868 We use skills with temporal resolutions $[64, 32, 16, 8, \infty]$, but we omit the ∞ length skills, as they
869 correspond to simply learning all states independently and are not our contribution.
870871 F.1 DEFAULT OBJECTIVE
872873 The agent is trained using the default objective (weighted external and exploratory advantages). Since
874 we use a strong bias towards external reward ($[1.0, 0.1]$), the skills learned are biased towards the
875 goal states more appropriate for the objective. We sample the goals for tasks: `walker_run` (Fig.
876 10), `quadruped_run` (Fig. 11), `cheetah_run` (Fig. 12), and `hopper_hop` (Fig. 13).
877878 F.2 EXPLORATION ONLY
879880 The agent is optimized only for the exploration objective, which aims to maximize coverage of the
881 state transition space. We sample the goals per Skill CVAE for embodiments: `walker` (Fig. 14),
882 `quadruped` (Fig. 15), `cheetah` (Fig. 16), and `hopper` (Fig. 17) in the DMC suite Tassa et al.
883 (2018).
884885 G VISUALIZING CHOICE PREFERENCES FOR STATES
886887 To check if the agent exhibits any choice preferences for states, we run the agent for 5 episodes. Then
888 the states s_t visited by the agent are segregated by the choice (c_t) made by the agent and shown below.
889 The visualizations can help verify if there are any correlations between the agent state s_t and the
890 choice variable s_t . We sample the states for the tasks: `walker_run` (Fig. 18), `quadruped_run`
891 (Fig. 19), `cheetah_run` (Fig. 20), and `hopper_hop` (Fig. 21).
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930



(a) 64 length.

931
932
933
934
935
936
937
938
939
940
941
942

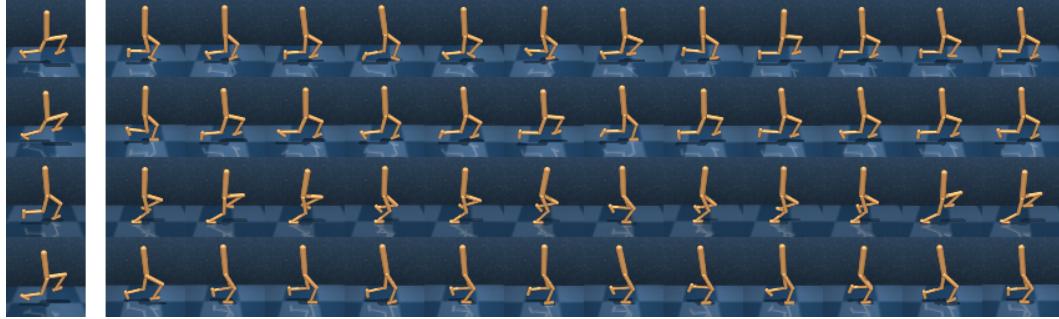


(b) 32 length.

943
944
945
946
947
948
949
950
951
952
953

(c) 16 length.

954
955
956
957
958
959
960
961
962
963
964



(d) 8 length.

965
966
967
968
969
970
971

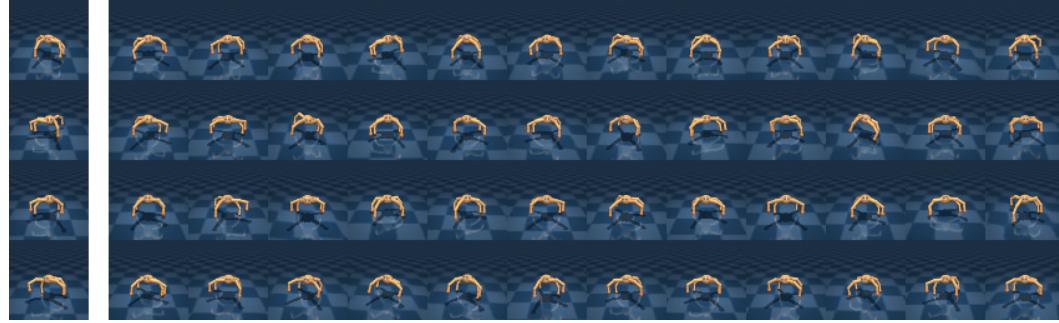
Figure 10: Sample goals from the `walker_run` task learned using the external and the exploratory rewards. The images on the left show the current state s_t , and the remaining images show the goal options generated by different skill CVAEs.

972

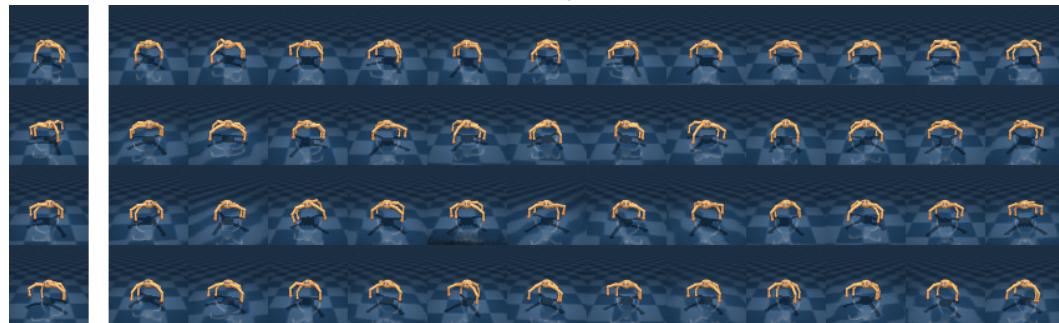
973

974

975

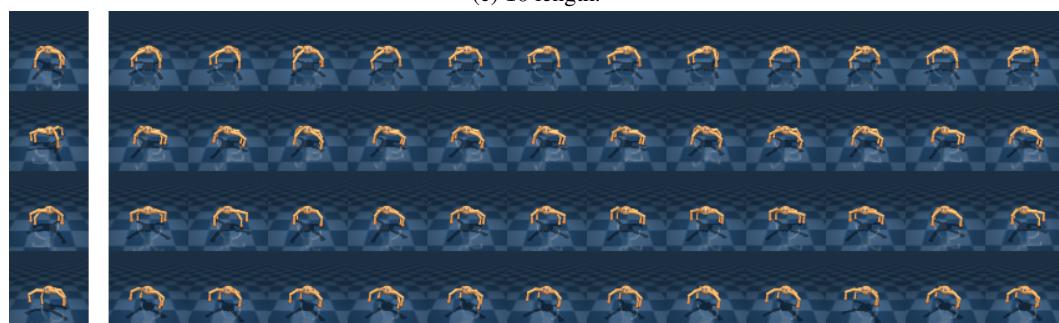


(a) 64 length.



(b) 32 length.

(c) 16 length.



(d) 8 length.

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

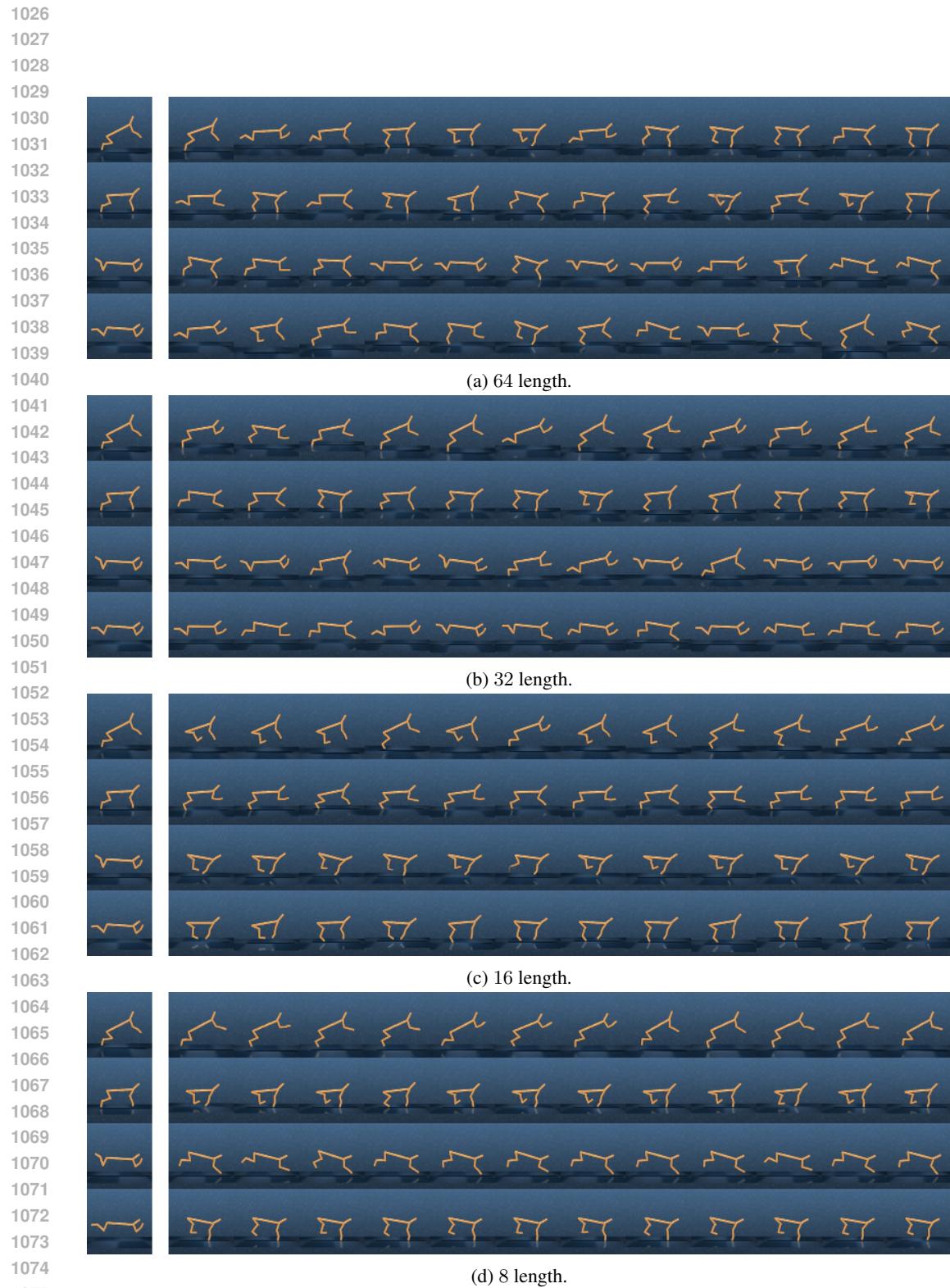
1022

1023

1024

1025

Figure 11: Sample goals from the quadruped_run task.

Figure 12: Sample goals from the `cheetah_run` task.

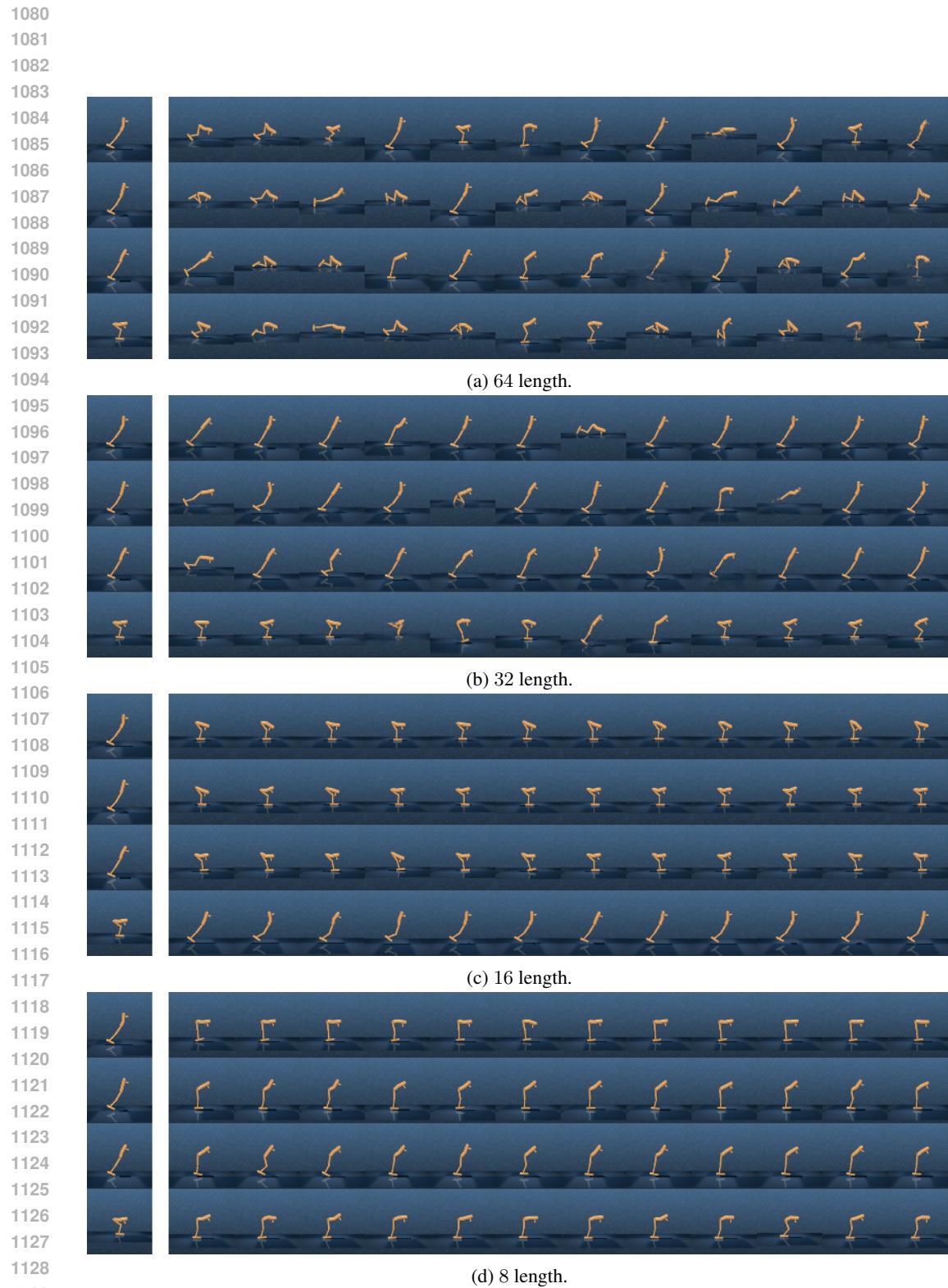
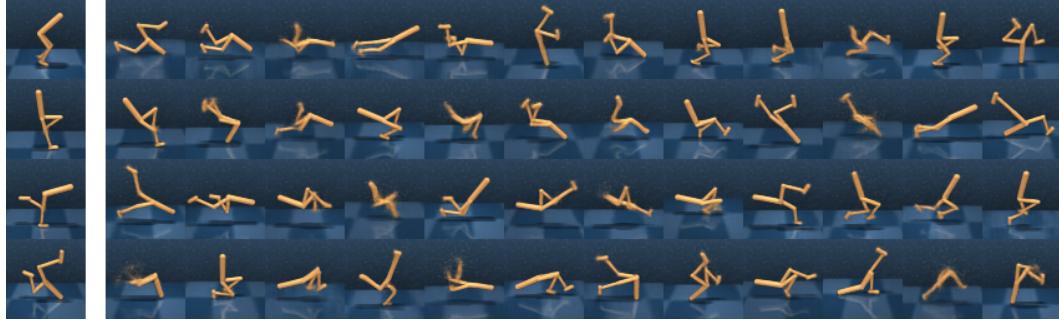


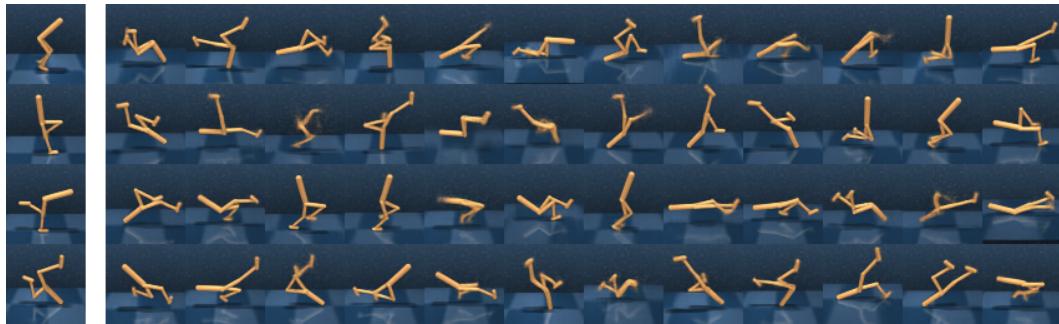
Figure 13: Sample goals from the hopper_hop task.

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146



(a) 64 length.

1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158



(b) 32 length.

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169

(c) 16 length.

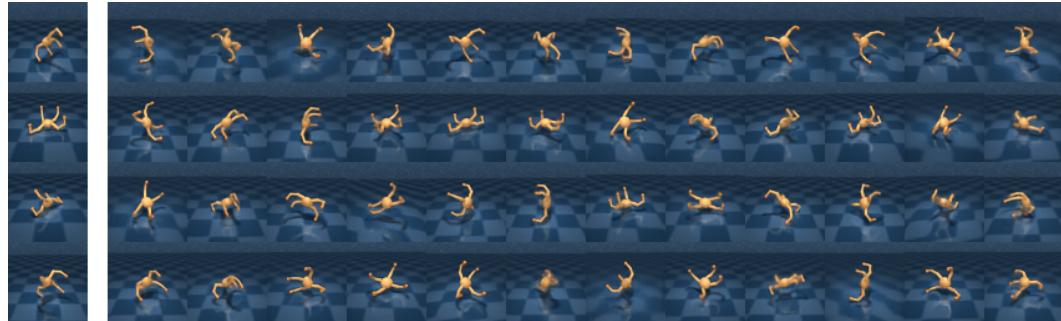
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180

(d) 8 length.

1181
1182
1183
1184
1185
1186
1187

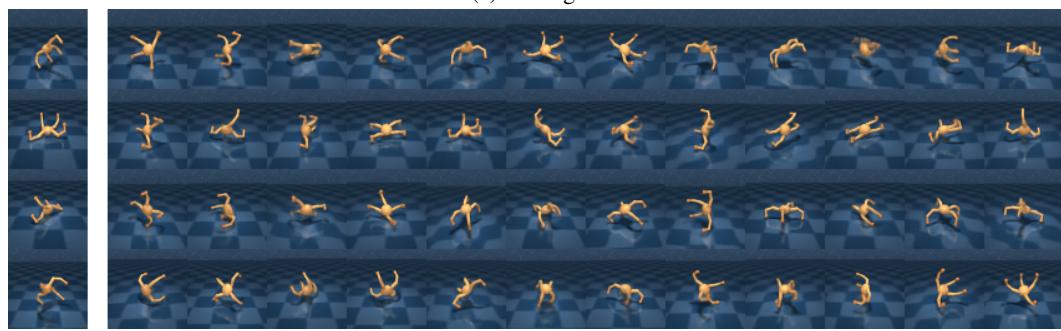
Figure 14: Sample goals learned using only the exploratory objective in a walker embodiment. The images on the left show the current state s_t , and the remaining images show the goal options generated by different skill CVAEs.

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201



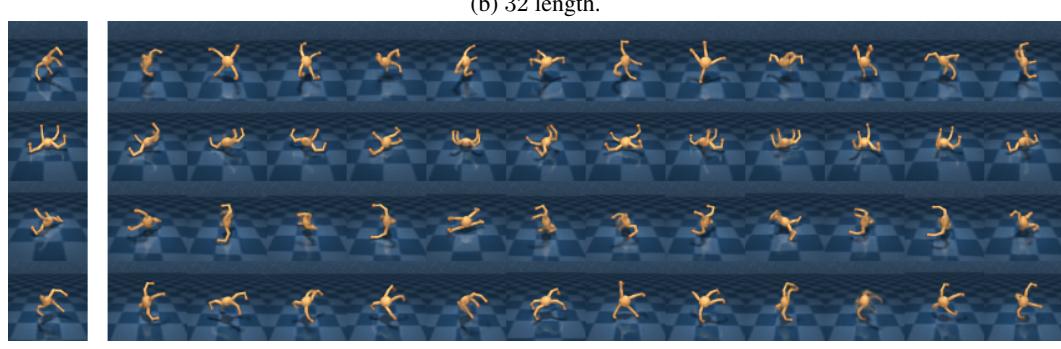
(a) 64 length.

1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212



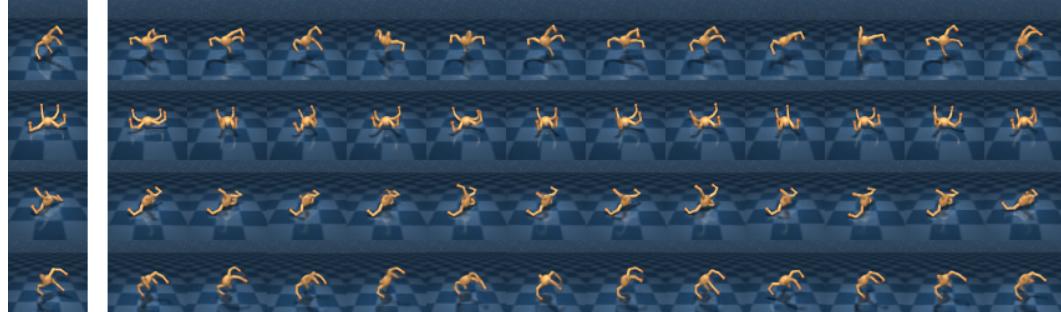
(b) 32 length.

1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224



(c) 16 length.

1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235

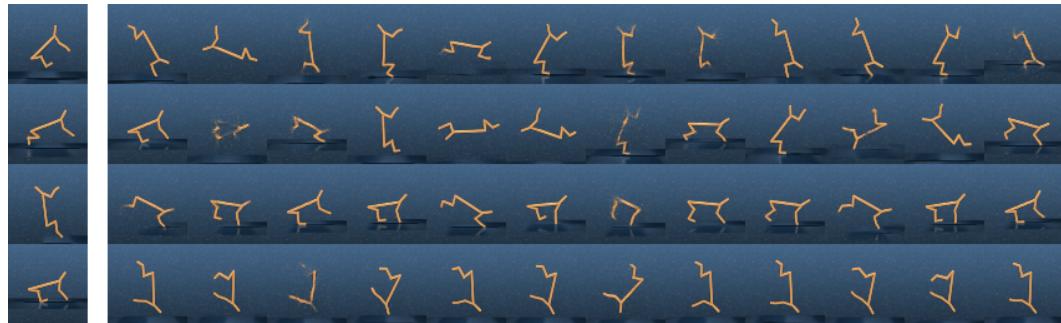


(d) 8 length.

1236
 1237
 1238
 1239
 1240
 1241

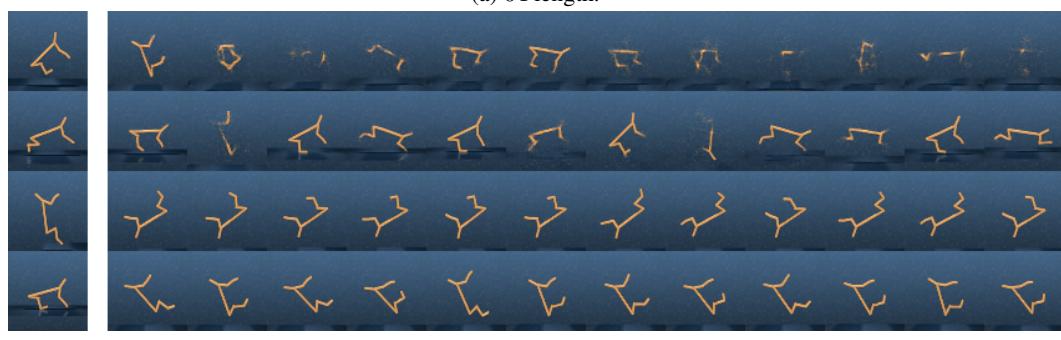
Figure 15: Sample goals from exploration as a quadruped.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255



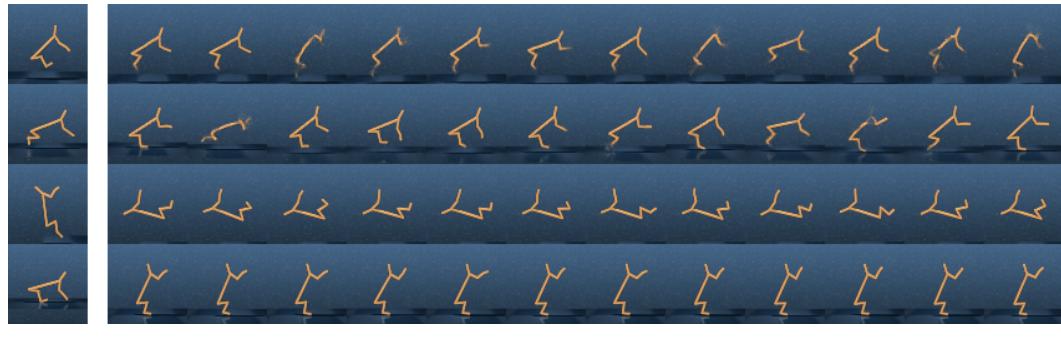
(a) 64 length.

1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267



(b) 32 length.

1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279



(c) 16 length.

1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291

(d) 8 length.

1292
1293
1294
1295

Figure 16: Sample goals from exploration as a cheetah.

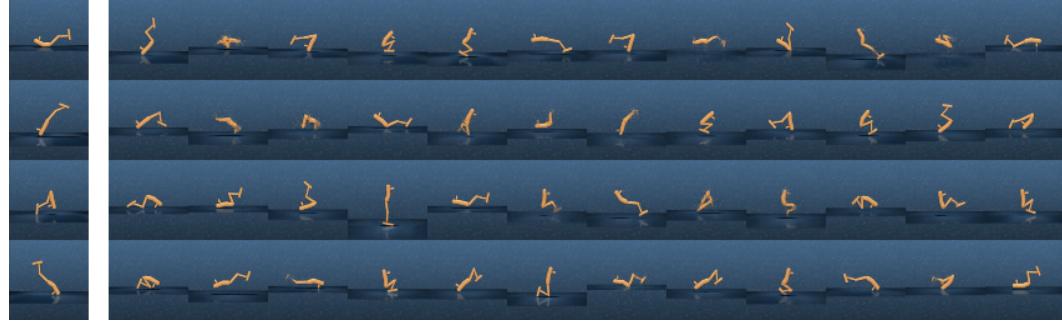
1296

1297

1298

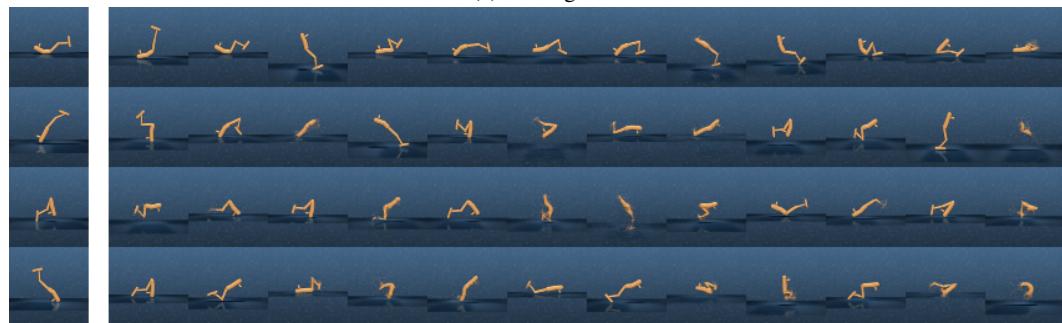
1299

1300



(a) 64 length.

1310



(b) 32 length.

1311

1312

1313

1314



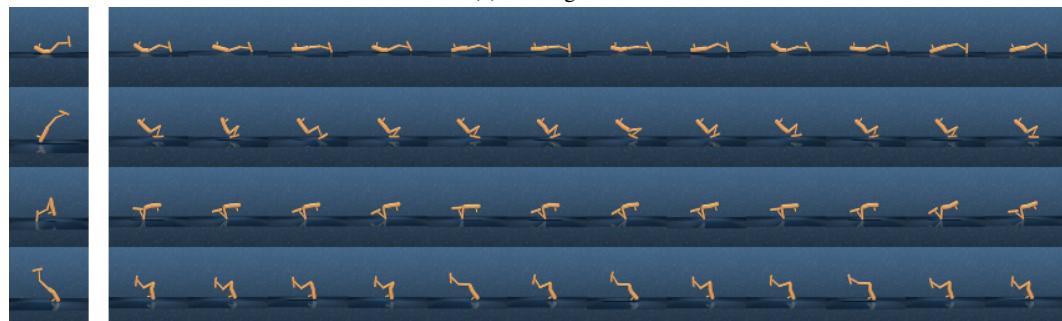
(c) 16 length.

1315

1316

1317

1318



(d) 8 length.

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

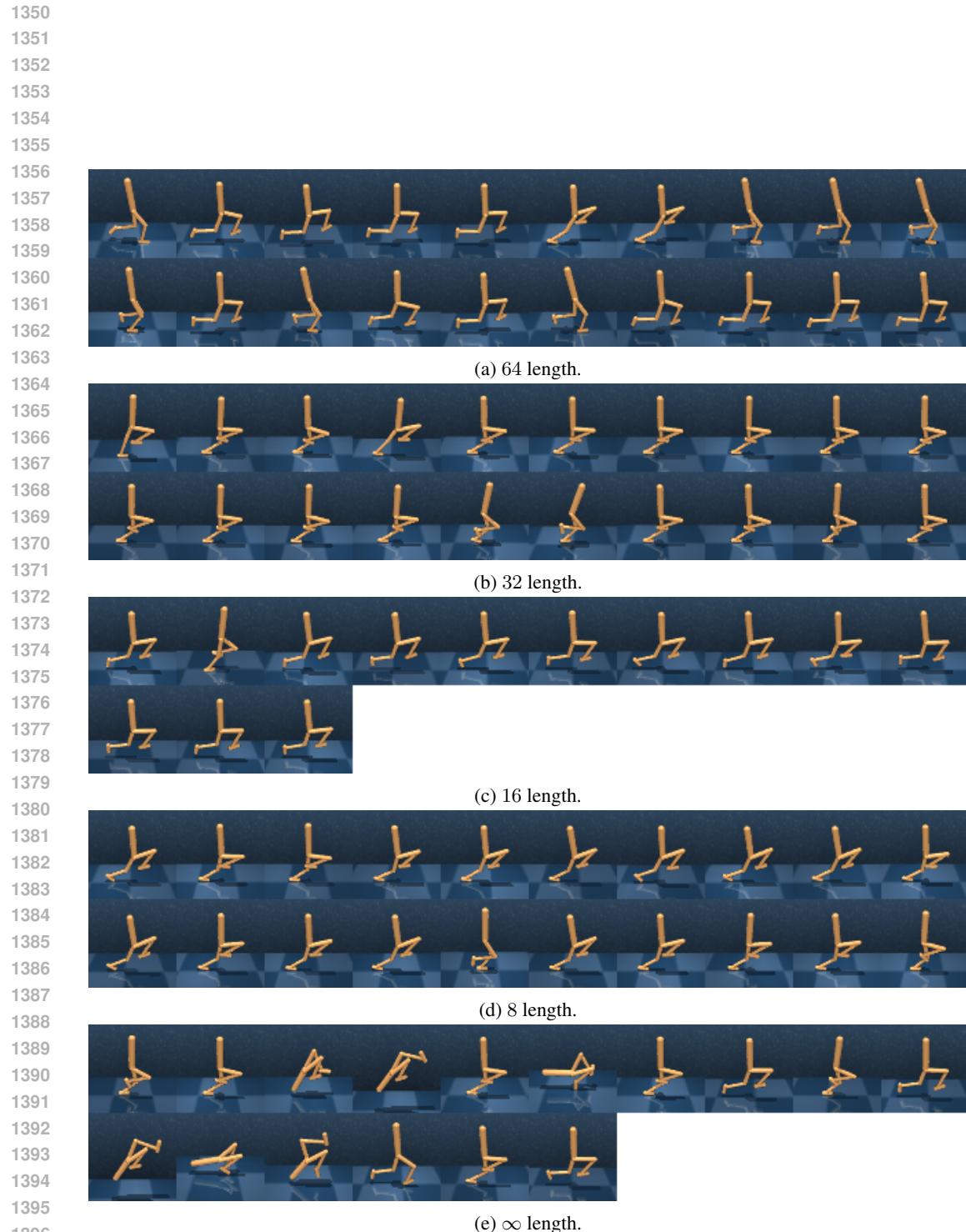
1346

1347

1348

1349

Figure 17: Sample goals from exploration as a Hopper.

Figure 18: States segregated by choice for the `walker_run` task.

1404

1405

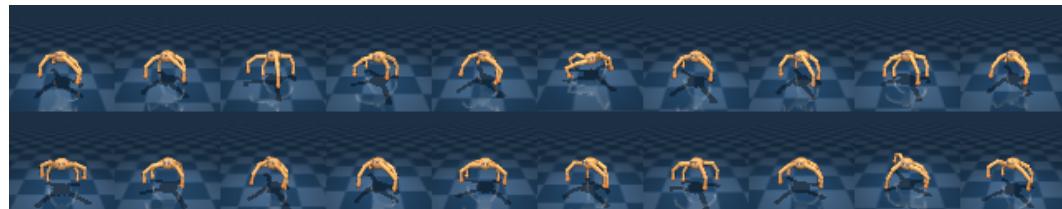
1406

1407

1408

1409

1410



(a) 64 length.

1411

1412

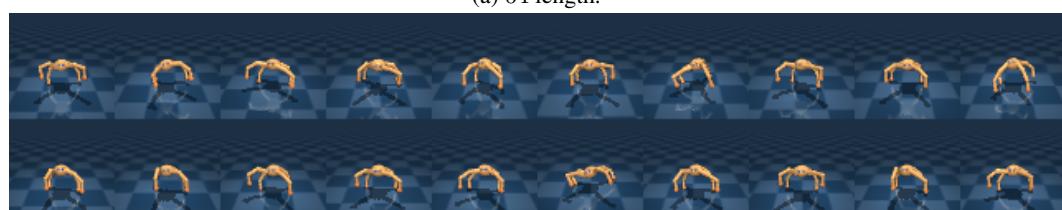
1413

1414

1415

1416

1417



(b) 32 length.

1418

1419

1420

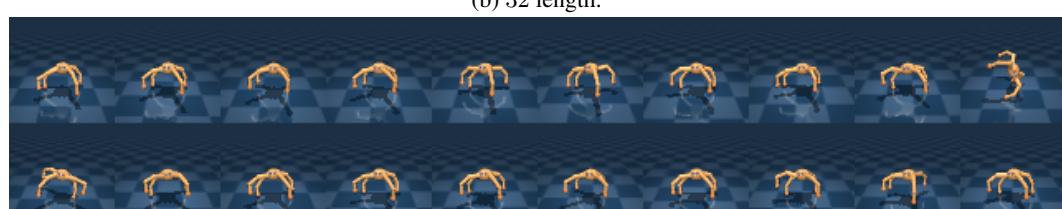
1421

1422

1423

1424

1425



(c) 16 length.

1426

1427

1428

1429

1430

1431

1432

1433

(d) 8 length.

1434

1435

1436

1437

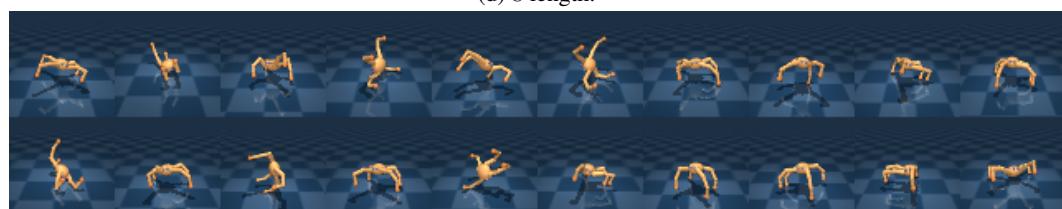
1438

1439

1440

1441

1442

(e) ∞ length.

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

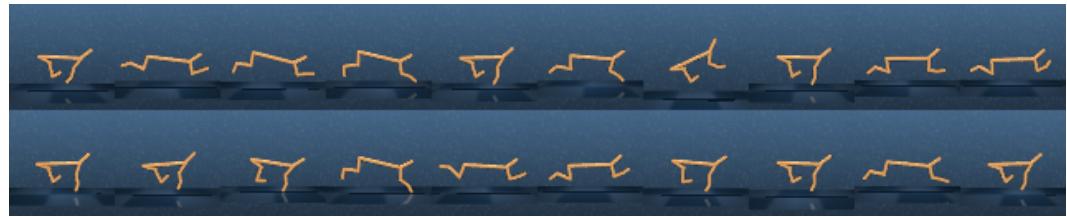
1501

1502

1503

1504

(a) 64 length.



(b) 32 length.

(c) 16 length.

(d) 8 length.

(e) ∞ length.Figure 20: States segregated by choice for the `cheetah_run` task.



Figure 21: States segregated by choice for the hopper_hop task.