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ABSTRACT

In an ever-changing world, incremental segmentation learning faces challenges
due to the need for pixel-level accuracy and the practical application of gradu-
ally obtained samples. While most existing methods excel in stability by freezing
model parameters or employing other regularization techniques to preserve the
distribution of old knowledge, these approaches often fall short of achieving sat-
isfactory plasticity. This phenomenon arises from the limited allocation of param-
eters for learning new knowledge. Meanwhile, in such a learning manner, the dis-
tribution of old knowledge cannot be optimized as new knowledge accumulates.
As a result, the feature distribution of newly learned knowledge overlaps with old
knowledge, leading to inaccurate segmentation performance on new classes and
insufficient plasticity. This issue prompts us to explore how both old and new
knowledge representations can be dynamically and simultaneously adjusted in the
feature space during incremental learning. To address this, we conduct a mathe-
matical structural analysis, which indicates that compressing the feature subspace
and promoting sparse distribution is beneficial in allocating more space for new
knowledge in incremental segmentation learning. Following compression princi-
ples, high-dimensional knowledge is projected into a lower-dimensional space in
a contracted and dimensionally reduced manner. Regarding sparsity, the exclu-
sivity of multiple peaks in Gaussian mixture distributions across different classes
is preserved. Through effective knowledge transfer, both up-to-date and long-
standing knowledge can dynamically adapt within a unified space, facilitating
efficient adaptation to continuously incoming and evolving data. Extensive ex-
periments across various incremental settings consistently demonstrate the signif-
icant improvements provided by our proposed method. In particular, regarding
the plasticity of in the incremental stage, our approach outperforms the state-of-
the-art method by 11.7% in MIoU scores for the challenging 10-1 setting. Source
code is available in the supplementary materials.

1 INTRODUCTION

Incremental learning, which mimics the dynamic nature of real-world data acquired progressively,
requiring adaptation to all previously encountered data, is widely applicable across various scenar-
ios, such as robot sensing, autonomous driving, and beyond. The primary objective is to acquire cur-
rent knowledge while retaining long-standing knowledge, without reliance on joint training (Masana
et al., 2020). Based on this objective, the stability-plasticity dilemma represents the core challenge
that incremental learning aims to overcome. Artificially fixing the parameters of previous learning
can ensure high stability (preventing catastrophic forgetting) but it frequently results in inadequate
plasticity (constraining the algorithm’s ability to acquire new knowledge). While the majority of
incremental approaches have concentrated on addressing incremental classification learning, recent
developments have broadened incremental learning to more intricate pixel-wise incremental seg-
mentation (Yuan & Zhao, 2023).

Several existing methods (Cha et al., 2021; Zhang et al., 2022b; Yang et al., 2023) for incremen-
tal segmentation have endeavored to resolve the stability-plasticity dilemma, achieving notable ad-
vancements in terms of performance. Particularly, they have attained stability levels comparable to
joint training accuracy. These effective strategies encompass a variety of methodologies, focusing
primarily on regularization-based, expanding architecture-based, and memory replay-based tech-
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Figure 1: Phenomenon and analysis of good stability and limited plasticity. Maintaining fixed old
knowledge results in overlapping subspaces, which hinders the formation of discriminative features
and leads to limited plasticity. Effectively reconstructing the feature distributions of both old and
new knowledge can promote better plasticity.

niques. While these diverse methods seek to preserve previously learned knowledge with minimal
modification, this constraint reduces flexibility for adapting to new knowledge and results in inade-
quate plasticity. In other words, for these methods, preserving old knowledge in an unchanged state
effectively combats catastrophic forgetting, but impairs the ability to assimilate new knowledge.

Whether by freezing a substantial portion of the model (Cha et al., 2021; Zhang et al., 2022b) or by
requiring model to optimize itself to the initial state of old knowledge in the incremental stage (Shan
et al., 2022; Yang et al., 2022; Wu et al., 2023), these methods induce subtle variations in the infor-
mation that affect old knowledge. Such learning manners result in overlapping category subspaces
during the incremental stage (see Figure 1 (a)), creating difficulties in generating discriminative
features for both new information and existing knowledge.

In this regard, we derive insights from the effects of representation distribution among different
categories. That is, we can mitigate the constraints imposed by preserving the invariance of old
knowledge in incremental segmentation. We endeavor to alleviate the overlap in subspace distribu-
tion and promote the formation of more discriminative features. Recent studies (Kim et al., 2024;
Wuerkaixi et al., 2024) indicate that dynamically adjusting learned knowledge is effective for do-
main incremental learning. However, in the field of incremental segmentation, most methods (Gong
et al., 2024; Yang et al., 2023) maintain the learned knowledge for good stability. Since it is more
challenging to achieve a balance between stability and plasticity using dynamic adjustment methods
due to the requirements of pixel-level precision. Allowing variability in subspace distributions for
both new and old knowledge leads to loosely coupled subspace distributions, which provide differ-
entiated feature information to maintain the stability and plasticity of the incremental segmentation,
as illustrated in Figure 1 (b) and Figure 1 (c).

Motivated by the observed phenomenon that excessive reliance on old knowledge leads to unsatisfied
plasticity, we propose a more realistic and challenging learning paradigm in this paper: enabling the
dynamic adaptation of parameters that affect knowledge retention, including both general knowledge
and class-specific knowledge. From a feature perspective, when encountering the embedding of fea-
ture distributions from new categories, maintaining the invariance of old categories often results in
inadequate discriminative feature representation, thereby constraining performance improvements,
as illustrated in the second row of Figure 2. To tackle this issue, we conduct mathematical analysis
and modeling of incremental segmentation, emphasizing the importance of introducing compres-
sion and sparsity in the feature space. This factor is critical for balancing stability and plasticity,
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Vanilla Feature Attention

Ours with Compression-Sparsity principle

Base Stage (Old Classes) Incremental Stage (New Classes)

Figure 2: Motivation behind proposed compression-sparsity principle. We visualize the feature at-
tention to illustrate the advantages of our method. In vanilla feature attention (second row), we
observe that weaker feature attention responses for different objects , resulting in insufficient dis-
criminative features. In our proposed method (last row), we reveal the causes of this degradation
and activate the latent diverse representation.

ultimately enhancing long-term algorithmic performance, as shown in the last row of Figure 2. Our
work introduces a practical and innovative approach for modifying feature distributions, referred to
Compression-Sparsity based Incremental Segmentation Learning (CSISL). Compression is applied
to the knowledge structure of complex networks, encompassing both multi-class general knowledge
and class-specific knowledge. The knowledge is subsequently mapped into three-dimensional space,
with each dimension corresponding to the horizontal position, vertical position, and feature response
information. Besides dimensionality reduction, the feature mapping process involves learning opti-
mal compression parameters to narrow the range of feature responses and minimize spatial overlap
in the distribution. Sparsity is attained by identifying and constraining the multi-peaks present within
the Gaussian mixture distribution in the compressed three-dimensional subspace. The objective is
to enhance the separation between peaks that represent distinct subspaces, thereby maximizing the
available subspace for incorporating new knowledge. The core of our approach lies in effectively
handling the variability of data encountered in incremental learning, aligning with the dynamic and
adaptive requirements of practical learning processes.

Unlike the existing diverse and effective methods currently utilized in incremental learning (Schus-
ter et al., 2021; Wang et al., 2022; Menezes et al., 2024), our approach aims to change the im-
mutability of old knowledge in the field of incremental segmentation. Instead, we facilitate the
dynamic adaptation of knowledge by modifying the subspace of Gaussian mixture distribution as
new class knowledge is acquired. This adaptability empowers the modification of subspaces, en-
abling the preservation of more distinguish class features while reducing the coupling of subspace
distributions. To further validate the motivation and rationality of our method, we present a math-
ematical analysis is provided to demonstrate the benefit of the compression-sparsity operation in
the feature space. Rather than focusing on maximizing distances between class centroids based on
similarity (Ferdinand et al., 2022; Xuan et al., 2024), our approach adopts an additional strategy
that maximizes the distances between multiple peaks within Gaussian mixture distribution. This
stricter constraint compels the network to more effectively minimize the coupling among different
class knowledge distributions, promoting more enhanced and concentrated feature responses. To
provide a more intuitive understanding of the enhancement facilitated by the compression-sparsity
principle, we conduct experiments in complex incremental settings. The main contributions of this
paper could be summarized as follows:

• Mathematical analysis demonstrates the benefit of compression-sparsity in incremental seg-
mentation learning, emphasizing their interdependent role in maintaining stability and plas-
ticity. Compression primarily shrinks the representation of old knowledge, while sparsity
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minimizes the overlap among different subspaces. This foundation facilitates the preserva-
tion of discriminative features across multiple knowledge classes.

• Based on the principles of compression and sparsity, this paper presents practical imple-
mentation techniques. Compression is achieved by reducing the dimensionality space and
shrinking the representation of class knowledge, while sparsity is accomplished by min-
imizing the coupling among subspaces through distance maximization between multiple
peaks in the Gaussian mixture distribution.

• Experiments are conducted across various incremental settings, demonstrating the effec-
tiveness of our proposed approach in overcoming plasticity constraints. In the challenging
incremental configuration with 11 steps of 10-1, our method achieved improvements of
11.7% in incremental stage categories and 6.4% in overall categories compared to the pre-
vious state-of-the-art approaches.

2 RELATED WORK

In this section, we review the previous studies on regularization-based learning, expanding
architecture-based learning, and memory replay-based learning. By summarizing and analyzing
recent methods, we propose a novel learning manner with dynamic adaptation for both old and new
knowledge.

Regularization-based Learning. These methods (Han et al., 2023; Kim et al., 2024; Zhao et al.,
2023; Jiang et al., 2023) constrain parameter values using various loss functions. Common ap-
proaches include knowledge distillation (Hinton et al., 2015), contrastive learning (Lin et al., 2023;
Ji et al., 2023), and parameter freezing. AFC (Kang et al., 2022) minimizes the upper bound of
the loss function and leverages the importance of individual backbone feature maps for knowledge
distillation. This effectively mitigates catastrophic forgetting, even with limited data from previous
classes. Semi-FSCIL (Cui et al., 2023) applies the nearest-mean-of-exemplars principle to select
unlabeled data and uses knowledge distillation to learn from them, thereby improving class means.
RCIL (Zhang et al., 2022a) incorporates a structured re-parameterization mechanism and a knowl-
edge distillation strategy based on spatial and channel dimensions to prevent catastrophic forgetting
when accommodating new classes. In addition to the conventional knowledge distillation approach,
CD (Arnaudo et al., 2021) introduces contrastive regularization. This technique involves comparing
each input with its augmented version (e.g., via flipping and rotations) to minimize discrepancies
between the segmentation features produced by both inputs. UCD (Yang et al., 2022) introduces an
uncertainty-aware contrastive distillation method that encourages high similarity among pixels of
the same class while pulling apart the center distances of pixels from different classes. These con-
trastive features are extracted from both the frozen old knowledge after previous learning steps and
the knowledge of the newly learned class. These well-designed methods effectively maintain con-
sistency between the network’s representations in the new incremental stage and previous ones by
constraining parameters, features, mapping spaces, and other aspects, thus preventing catastrophic
forgetting. Nonetheless, although they provide considerable advantages in preserving stability for
old tasks, the immutability of old knowledge frequently results in an imbalance between stability
and plasticity when new knowledge is learned.

Expanding Architecture-based Learning. These methods (Yoon et al., 2017; Qin et al., 2021) aim
to allocate specific parameters to each class, potentially leading to a significant increase in model
parameters as the number of learned classes grows. To efficiently select the appropriate experts
during testing, EG (Aljundi et al., 2016) calculates the correlation between classes and directs the
test samples to the corresponding sub-models. PackNet (Mallya & Lazebnik, 2017) modifies fine-
tuning parameters and retraining parameters to assign specific parameters for each class, guiding
learning and prediction. Although these methodologies dynamically expand network structures as
new knowledge is introduced, enhancing plasticity to some extent, they face the practical challenge
of unbounded network expansion in real-world applications.

Memory Replay-based Learning. These methods (Zhang et al., 2024; Lin et al., 2023) store a
limited quantity of historical data to utilize previous information when learning class data. Ad-
vancements in generative models (Shin et al., 2017; Wu et al., 2018), even if the historical data is
unavailable, enable the effective use of these stored pool samples to supplement the learning pro-
cess, even in the absence of historical data. SSUL (Cha et al., 2021) combines historical replay and
parameter freezing to prevent performance degradation in model stability. A-GEM (Chaudhry et al.,
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2018) aims to improve model robustness in non-stationary environments. It estimates the mean
of the gradients by leveraging experience data from the memory pool, reducing gradient variance
and enhancing model performance on new classes. MER (Riemer et al., 2018) strengthens gradi-
ent alignment through meta-learning and experience replay, enabling better adaptation to learning
classes in non-stationary environments. The data replay pool is limited in size, thereby not signifi-
cantly burdening storage in practical applications. Hence, it is progressively becoming a prevalent
auxiliary strategy for achieving incremental learning.

3 THEORETICAL ANALYSIS OF COMPRESSION-SPARSITY PRINCIPLE

3.1 TASK DEFINITION

Incremental Segmentation simulates the gradual emergence of multiple new classes in real-world
scenarios by defining a sequence of learning steps, where each step is denoted as t = 1, ..., T. In each
learning step t, a dataset Dt and a non-zero number of classes Ct are involved. A model Ft with
parameters θ is constructed to facilitate the segmentation learning, assigning different classes to each
pixel. Typically, this model consists of a feature extractor Gθ

t , and a classifier Hθ
t . Assuming that the

classes learned in the previous step t-1 are denoted as Ct−1, and the classes learned in the current
step t are denoted as Ct. Consistent with prior studies, all steps generally include a background
class Cu, which may encompass previously learned or unseen classes. The objective of incremental
segmentation is to perform pixel-level segmentation of classes C1:t on input images after completing
the learning of the t-th step, even without access to all the data D1:t−1 at this stage. Consequently,
the predicted result Pt includes the segmentation results corresponding to N categories and their
corresponding class labels, represented as Pt = {(Mi, Ci) |Mi ∈ {0, 1}H×W , Ci ∈ C}.

3.2 MATHEMATICAL ANALYSIS OF COMPRESSION-SPARSITY PRINCIPLE

While current algorithms have made significant progress in achieving stability comparable to joint
training, a considerable deficiency in plasticity remains when compared to the ideal state. To an-
alyze this issue, we establish mathematical formulas from a probabilistic perspective. Within this
analysis, the optimization of network parameters θ is reformulated as the problem of maximizing
the likelihood of θ given the data X. This can be accomplished using Bayes’ theorem as follows:

logP (θ|X) = logP (X|θ) + logP (θ)− logP (X) (1)
Assuming X represents the complete dataset for learning, including the data required for joint train-
ing. We can formulate the incremental training process by partitioning the data in X into two subsets,
X1 and X2, according to their respective categories. This leads to the following formulation:

logP (θ|X) = logP (X2|θ) + logP (θ|X1)− logP (X2) (2)
In this equation, logP (θ|X) denotes the posterior probability of joint training on X1 and X2, serving
as an upper bound on the performance of incremental distribution learning. logP (X2|θ) represents
the negative loss incurred during the learning of the new class X2, while the posterior distribution
logP (θ|X1) corresponds to the proportion of knowledge assimilated by the network after learning
X1. It is important to note that X1 corresponds to the data learned in step 1, and X2 corresponds to
the data learned in step 2. Further step divisions are not explicitly considered here, as this simpli-
fication is implemented for analytical convenience. Additionally, logP (θ|X1) follows a Gaussian
mixture distribution, implying that any complex curve can be approximated by a combination of
Gaussian curves.

logP (θ|X1) =

K∑
k=1

wkg(θ|X1, µk, σk) (3)

Here, K denotes the number of components in the Gaussian mixture distribution, while
g(θ|X1, µk, σk) represents the Gaussian distribution that satisfies the mean µ and variance σ for
the current step. At this point, the optimal parameter θ∗ can be estimated as:

θ∗ = argmin{− logP (θ|X1)} (4)
Based on the Taylor expansion, the right-hand side of Equation (3) can be approximated as:

K∑
k=1

wkg(θ|X1, µk, σk) ≈ −1

2
(θ − θ∗)TH(θ∗)(θ − θ∗) + constant (5)
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Figure 3: Diagram of compression-sparsity based algorithm. This figure illustrates how a dynami-
cally adaptive strategy compacts and sparses knowledge when learning new categories, ensuring the
preservation of essential features. Knowledge transfer is utilized to obtain the feature distribution of
old categories, facilitating the separation of the peaks of the Gaussian mixture distribution.

where H(θ∗) represents the second derivative of logP (θ|X1). Based on previous research (Martens,
2014; Huszár, 2017), H(θ∗) can be estimated as:

H(θ∗)−NkF (θ∗)

λp
k

≈ σp
k (6)

Here, N denotes the number of samples in the current dataset X1, F (θ∗) represents the empirical
Fisher information matrix, and λp

k is the coefficient used for optimizing the prior distribution. This
indicates that there is a certain proportional relationship between the search for the optimal param-
eter θ∗ and the variance of the Gaussian mixture distribution before optimization. Learning through
neural networks to adjust the original spatial distribution parameters can facilitate the search for
optimal parameters, prompting us to perform preliminary feature contraction on the original spatial
distribution. Furthermore, assuming that the class corresponding to each pixel position (Px, Py) in
the input image is denoted as Ck, the prior probabilityP (X2|θ) can be determined as follows:

P (X2|θ) =
K∏

k=1

P (Ck|θ, Px, Py) (7)

This suggests that to maximize P (X2|θ), the class features associated with each pixel region should
demonstrate substantial differentiation and minimal positional coupling. Based on the analysis of
equations Equation (6) and Equation (7), compression and sparsity for feature space distribution
among different classes can maximize the probability distribution logP (X2|θ) and logP (θ|X1) in
incremental segmentation, thereby approaching the performance of joint training.

4 FEASIBLE IMPLEMENTATION OF COMPRESSION-SPARSITY PRINCIPLE

4.1 BRIEF DESCRIPTION OF THE OVERALL IMPLEMENTATION

Based on the above mathematical analysis, as illustrated in Figure 3, we propose the designs to val-
idate the reliability of the compression-sparsity principle and develop a practical technical solution:
1) Compression: Knowledge gained in each new step, including both category-general and category-
specific knowledge, undergoes dimensionality reduction and feature contraction. This compression
process concentrates the response regions of features, promoting the generation of compact feature
spaces and distinctive feature representations to retain knowledge. 2) Knowledge distillation: By
utilizing knowledge transfer, we obtain the feature response distributions from previous steps for
the old categories, effectively preventing catastrophic forgetting. 3) Sparsity: The peak values of
Gaussian mixture distributions for each category are calculated, and maximum distance constraints

6
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are applied to these peaks. These constraints help allocate spatial distributions with low coupling,
thus reducing category confusion. Detailed explanations are provided in the following section.

4.2 IMPLEMENTATION DETAILS

Considering the necessity of dynamically adjusting the feature distribution, this research aims to
continually reconstruct the feature representation to adapt both new and old knowledge. In each new
learning step, the high-dimensional knowledge is transformed into a three-dimensional Gaussian
mixture distribution (GMD), where the three dimensions correspond to the horizontal pixel position,
vertical position, and pixel feature response information in the images. After calculating convex
points in feature space, the Euclidean distance between the farthest peak points P1 and P2 in the
GMD (GMD) corresponding for class Ci is obtained. Therefore, the relationship between the initial
feature F o

t and the reconstructed feature F r
t is expressed as follows:

F r
t = γF o

t + τ (8)

subject to Diam(F r
t ) < minD(PCi

1 , PCi
2 ), ∀PCi

1 , PCi
2 ∈ F o

t , 0<i ≤ N

D(PCm
1 , PCn

2 ) > maxD(PCi
1 , PCi

2 ), ∀PCm
1 , PCn

2 ∈ F r
t ,m ̸= n

where γ and τ are learnable parameters that satisfy the constraint conditions. Diam represents the
diameter of the feature representation. At each learning step, these constraints are designed to facil-
itate shrinking the reconstructed feature representations by compressing each feature subspace to a
diameter smaller than that of all initial feature spaces. Additionally, they ensure the peak distances
between different feature spaces exceed the maximum diameter of all initial feature subspaces, hence
minimizing coupling. To preserve valuable components of prior knowledge distribution, it is crucial
to integrate the compressed and sparse feature distribution F r

t with the original feature distribution
F o
t . This study explores both attention mechanisms and weighted approaches, with the latter being

chosen based on comprehensive experimental results to obtain the feature Ft for the current step.

Ft = αF o
t + βF r

t (9)

Pt = argmaxFt(Xt) (10)

St = [1 + expFt(Xt)]
−1 (11)

where Ft, Pt, and St denote the feature representation, prediction results, and confidence scores pro-
duced by the network after learning the Xt data in the t-th step, respectively. Moreover, knowledge
transfer is employed to acquire previously learned knowledge of the old categories, referred to as:

P̃t =

{
Pt when C = Ct

Pt−1 when C = Cu and St−1 > 0.7
(12)

where Ct and Cu represent the current new class and the regions considered as the background class
in the current step, respectively. Subsequently, P̃t and Pt−1 are optimized based on the following
loss function:

LCS = − 1

||C||

||C||∑
i=1

log
exp

P̃ i
t

||P̃ i
t ||

P i
t−1

||P i
t−1||∑2||C||

j=1,j ̸=i exp
P̃ i

t

||P̃ i
t ||

P j
t−1

||P j
t−1||

− 1

||C||
log

||C||∑
i=1

exp P̃ i
t ⊗Masku

exp P̃ i
t

(13)

L = LCS + LBCE (14)
where Masku (Cheng et al., 2021; Zhang et al., 2022b) represents the binary mask of potential
target regions in the Xt. Binary Cross-entropy (BCE) is a widely used supervised segmentation loss
in prior studies (Zhang et al., 2022b; Zhao et al., 2023).

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS.

Following the architectural design of prior works (Cha et al., 2021; Michieli & Zanuttigh, 2021; Cer-
melli et al., 2020a; Zhang et al., 2023), we incorporate DeepLabV3 and Swin Transformer are used

7
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Table 1: Comparative experiments on VOC dataset (Everingham et al., 2010). Our method achieves
significant improvements in plasticity while maintaining stability across diverse configurations.

10-1 2-2 15-1 19-1 15-5Backbone (11 steps) (10 steps) (6 steps) (2 steps) (2 steps)
0-10 11-20 All 0-2 3-20 All 0-15 16-20 All 0-19 20 All 0-15 16-20 All

Joint R - Resnet101 82.1 79.6 80.9 76.5 81.6 80.9 82.7 75.0 80.9 81.0 79.1 80.9 82.7 75.0 80.9
Joint S - Swin-B 82.4 83.0 82.7 75.8 83.9 82.7 83.8 79.3 82.7 82.6 84.4 82.7 83.8 79.3 82.7

MIB (Cermelli et al., 2020b) CVPR Resnet101 12.3 13.1 12.7 41.1 23.4 25.9 34.2 13.5 29.3 71.4 23.6 69.1 76.4 50.0 70.1
SDR (Michieli & Zanuttigh, 2021) CVPR Resnet101 32.1 17.0 24.9 13.0 5.1 6.2 44.7 21.8 39.2 69.1 32.6 67.4 75.4 52.6 70.0

PLOP (Douillard et al., 2021) CVPR Resnet101 44.0 15.5 30.4 24.1 11.9 13.6 65.1 21.1 54.6 75.4 37.4 73.6 75.7 51.7 70.0
REMINDER (Phan et al., 2022) CVPR Resnet101 - - - - - - 68.3 27.7 58.6 76.5 32.3 74.4 76.1 50.7 70.1

RCIL (Zhang et al., 2022a) CVPR Resnet101 55.4 15.1 36.2 28.3 19.0 20.3 70.6 23.7 59.4 68.5 12.1 65.8 78.8 52.0 72.4
SSUL (Cha et al., 2021) NIPS Resnet101 74.0 53.2 64.1 - - - 78.4 49.0 71.4 77.8 49.8 76.5 78.4 55.8 73.0

MicroSeg (Zhang et al., 2022b) NIPS Resnet101 77.2 57.2 67.7 60.0 50.9 52.2 81.3 52.5 74.4 79.3 62.9 78.5 82.0 59.2 76.6
SSUL+ (Cha et al., 2021) NIPS Swin-B 74.3 51.0 63.2 60.3 40.6 43.4 78.1 33.4 67.5 80.8 31.5 78.5 79.7 55.3 73.9

MicroSeg+ (Zhang et al., 2022b) NIPS Swin-B 73.5 53.0 63.7 64.8 43.4 46.5 80.5 40.8 71.0 79.0 25.3 76.4 81.9 54.0 75.3
EWF (Xiao et al., 2023) CVPR Resnet101 71.5 30.3 51.9 - - - 77.7 32.7 67.0 77.9 6.7 74.5 - - -

LGKD (Yang et al., 2023) ICCV Resnet101 - - - - - - 70.6 30.9 61.1 77.3 42.9 75.7 79.5 54.8 73.6
IDEC (Zhao et al., 2023) TPAMI ResNet101 70.7 46.3 59.1 - - - 77.0 36.5 67.4 - - - 78.0 51.8 71.8
GSC (Cong et al., 2023) TMM ResNet101 50.6 17.3 34.7 - - - 72.1 24.4 60.7 76.9 42.7 75.3 78.3 54.2 72.6

CoMFormer (Cermelli et al., 2023) CVPR ResNet101 - - - - - - 49.0 23.3 42.9 75.4 24.1 72.9 74.7 48.5 68.4
CoinSeg (Zhang et al., 2023) ICCV Swin-B 80.1 60.0 70.5 70.1 63.3 64.3 82.7 52.5 75.5 81.5 44.8 79.8 82.1 63.2 77.6

CoMasTRe (Gong et al., 2024) CVPR ResNet101 - - - - - - 69.8 43.6 63.5 75.1 69.5 74.9 79.7 51.9 73.1
Ours - ResNet101 74.1 57.7 66.3 56.4 55.1 55.3 77.7 52.2 71.6 76.6 61.4 75.9 78.3 55.5 72.9

Ours (α=0.8,β=0.2) - Swin-B 80.3 69.8 75.3 68.0 69.5 69.3 83.6 64.3 79.0 82.4 67.8 81.7 78.6 70.3 76.6
Ours (α=0.2,β=0.8) - Swin-B 81.7 71.7 76.9 66.7 69.1 68.8 83.4 66.7 79.4 82.0 75.5 81.7 83.7 71.5 80.8
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Figure 4: Line chart compar-
ing MIoU performance across
all classes in the 15-1 incre-
mental setting. Our method
demonstrates a significant im-
provement in MIoU values
across multiple classes, par-
ticularly evident during the
incremental stage.
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Figure 5: Bar chart com-
paring accuracy performance
across all classes in the 15-
1 incremental setting. Our
method (shown in orange) at-
tains superior accuracy across
most classes, notably ex-
celling in the five latest learn-
ing classes (16-20).
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Figure 6: Visualization of fea-
ture distribution using T-SNE
in the 15-1 incremental set-
ting. Our approach shows
more noticeable intra-class
clustering and inter-class dis-
persion. In the incremental
stage, ours exhibits reduced
confusion among classes.

as components the architecture (Chen et al., 2016; Liu et al., 2021) . The ADAMW optimizer is em-
ployed for training optimization (Loshchilov & Hutter, 2017), applying different learning rates for
various modules. To ensure a fair comparison, we adopt the same memory sampling strategy (Cha
et al., 2021)during training. Additionally, we include the widely used ResNet architecture (Szegedy
et al., 2016) to evaluate its performance in joint training and under various incremental configura-
tions. More details and code are provided in the supplementary materials.

5.2 COMPARATIVE EXPERIMENT

Quantitative Evaluation. Table 1 presents the performance comparison based on MIoU for various
methods and incremental settings. As the number of steps increases, the challenge of achieving
plasticity performance becomes greater. Due to the design principles based on compression-sparsity
techniques discussed in this paper, we observe a significant improvement in plasticity, especially
with hyper-parameters α=0.2/β=0.8 in the challenging 10-1 setting, where the plasticity rises by
11.7% compared to previous methods. Besides, enhancements of 9.8%, 6.2%, 11.8%, and 7.1% in
plasticity are obtained with hyper-parameters α=0.8/β=0.2 in the 10-1, 2-2, 15-1, and 15-5 incre-
mental configurations, respectively. Table 2 illustrates the learning performance of the challenging
incremental configuration of another dataset, which spans a total of 11 steps. In the incremental
configuration of 100-5 within ADE20K dataset, our method shows a notable degree of performance
improvement. From Figure 4, it is evident that even after five steps without transferring all data
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Table 2: Comparison of our method with recent approaches, on the challenging 100-5 setting of ADE
dataset (Zhou et al., 2017)) in terms of MIoU. Our method demonstrates consistent performance
improvements in both the base stage and the incremental stage.

Joint S SDR PLOP REMINDER RCIL SSUL MicroSeg SSUL+ Microseg+ EWF IDEC CoMFormer CoMadTRe Ours
0-100 43.5 36.0 39.1 36.1 38.5 39.9 40.4 41.3 41.2 41.4 39.2 34.4 40.8 41.6

101-150 30.6 5.7 7.8 16.4 11.5 17.4 20.5 16.0 21.0 13.4 14.6 15.9 15.8 25.5
All 39.2 26.0 28.7 29.5 29.6 32.4 33.8 32.9 34.5 32.1 31.0 28.3 32.5 36.3
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Figure 7: Visual comparison on 15-1 setting. Our method exhibits less knowledge confusion in the
base stage and demonstrates stronger capabilities for new classes in the incremental stages.

from the first fifteen classes, our method maintains remarkable segmentation performance. Addi-
tionally, the results from classes 16 to 20 show that our method exhibits superior adaptability for
learning new classes. Figure 5 further illustrates that our method shows a significant improvement
in accuracy performance for each class, highlighting the effectiveness of dynamic learning manner
based on the compression-sparsity principle.

Qualitative Evaluation. From Figure 6, it demonstrates that our method exhibits a more concen-
trated intra-class and a sparser inter-class distribution in the base stage (first fifteen classes). This
illustrates that the proposed method, based on the compression-sparsity principle, can effectively
modify the distribution area and spacing of features. Moreover, during the incremental stage, where
one new class is learned at a time, the overlap among newly added classes is minimal. Although the
inherent incompleteness of the data results in the inter-class distances is not strongly sparse across
different stages, this low coupling still allows for good learning performance for new classes. To de-
picts the visual comparison, as shown in Figure 7, we employ publicly available codes and training
strategies from MIB (Cermelli et al., 2020b) and LGKD (Yang et al., 2023) to evaluate the segmen-
tation results for the 15-1 configuration. Furthermore, we retrain the Coinseg (Zhang et al., 2023)
method using the same backbone and memory sampling strategy (Cha et al., 2021) to compare its
visual results. In both the base stage for old classes and the incremental for new classes, our method
demonstrates superior pixel-level segmentation accuracy and category correctness.

5.3 ABLATION EXPERIMENT AND DISCUSSION

Effectiveness of compressioin-sparsity based algorithm. In Table 3, we show the ablation ex-
periments conducted on the VOC dataset for the incremental settings 19-1 and 10-1. By observing
the results of groups 1, and 5, it is evident that compression and sparsity significantly contribute to
balancing stability and plasticity. Based on the performance of groups 5 and 8, whether integrating
knowledge distillation (KD) or not, compression and sparsity have the capacity to balance stability
and plasticity. We maintain the KD module to ensure superior stability. Observations from the re-
sults from groups 7 and 8, the degradation in performance is more obvious in 19-1 compared to 10-1
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Table 3: Abaltion studies of compression-sparsity
based algorithm. Compression (C) and sparsity
(S) play a crucial role in learning knowledge.

KD C S 0-19 20 All 0-10 11-20 All
01 × × × 73.0 37.8 71.3 7.2 13.0 10.0
02 ✓ × × 81.9 36.2 79.7 76.6 57.3 67.4
03 × ✓ × 82.0 41.3 80.1 77.4 57.1 67.7
04 × × ✓ 81.9 40.8 79.9 71.4 55.8 64.0
05 × ✓ ✓ 82.2 70.5 81.6 79.9 70.7 75.5
06 ✓ × ✓ 82.0 60.7 81.0 81.2 67.8 74.8
07 ✓ ✓ × 81.8 65.5 81.0 80.6 70.6 75.8
08 ✓ ✓ ✓ 82.4 67.8 81.7 80.3 69.8 75.3

Table 4: Comparison of feature space fusion
methods. The weighted approach exhibits supe-
rior overall performance.

10-1 2-2 15-1 19-1 15-5

Attention
Mechanism

Base Stage 80.1 48.8 80.6 80.7 70.7
Incremental Stage 68.8 67.8 61.9 61.3 69.3

All 74.4 65.9 75.9 79.8 70.3

Weighted
Approach

Base Stage 80.3 68.0 83.6 82.4 78.6
Incremental Stage 69.8 69.5 64.3 67.8 70.3

All 75.3 69.3 79.0 81.7 76.6

Table 5: Impact of α and β parameters in Equation (9). α and β can effectively balance the stability
of the base stage and the plasticity of the incremental stage across diverse parameter configurations.

α = 0.2, β = 0.8 α = 0.5, β = 0.5 α = 0.8, β = 0.2
Steps Base Stage Incremental Stage All Base Stage Incremental Stage All Base Stage Incremental Stage All

10-1 11 81.7 71.7 76.9 81.5 72.5 77.2 80.3 69.8 75.3
2-2 10 66.7 69.1 68.8 69.5 69.9 69.8 68.0 69.5 69.3

15-1 6 83.4 66.7 79.4 81.7 65.0 77.7 83.6 54.3 76.6
19-1 2 82.0 75.5 81.7 82.2 61.0 81.2 82.4 67.8 81.7
15-5 2 83.7 71.5 80.8 83.0 70.8 80.1 78.6 70.3 76.6

incremental operations in the absence of sparsity. This disparity arises because the compressed oper-
ations in 10-1 learning undergo efficient iterative compression with more steps, thereby facilitating
plasticity. Considering the performance of the base and incremental stage on multiple incremental
configurations, the combined use of knowledge distillation, compression, and sparsity can be more
conducive to balancing stability and plasticity.

Integration Approach: Attention mechanism VS weighted approach. To balance the distribu-
tion of feature space between old knowledge and new knowledge, we explore two commonly used
feature fusion approaches in this paper: the attention-based method (Vaswani et al., 2017) and the
weighted-based method (Lee et al., 2017). Across five different incremental settings, the weighted
approach consistently demonstrates superior overall performance, as shown in Table 4.Therefore,
in Equation (9), we employ the weighted approach to improve performance in alignment that aligns
with the principles of compression and sparsity.

Effectiveness of weighted coefficient. To assign appropriate values in Equation (9), we conduct
three sets of experiments, as shown in Table 5. A higher α value indicates an increased presence
of original features in the fusion feature, while a higher β value signifies a greater proportion of
reconstructed features. Specifically, when setting α to 0.2 and β to 0.8, our method demonstrates
a notable performance advantage on both old and new categories. Through our experiments, we
observe that for datasets with a larger number of categories like ADE20K, preserving more original
features in the fusion feature is advantageous for incremental segmentation. Though models with
hyper-parameters α=0.2/β=0.8 achieve best results in the VOC dataset, we would like to show the
robustness of our method on variate datasets for fair comparisons in a consistent manner. Thus, α
and β are set to 0.8 and 0.2 in this paper for qualitative and quantitative analysis.

6 CONCLUTION

In this paper, we conduct a mathematical analysis focusing on the good stability but limited plasticity
in the current incremental segmentation learning. We find that dynamically adjusting the distribution
of new and old knowledge based on the compression-sparsity principle can promote the balance
between stability and plasticity. Building upon the investigation of Gaussian mixture distribution, we
propose a viable algorithm. In contrast to existing incremental segmentation learning methods, we
advocate for the adaptation of prior knowledge to newly acquired knowledge, rather than retaining
parameters statically or preserving the invariance of the old space. This adaptive transformation
enhances feature compression and promotes sparse space distribution, facilitating the extraction of
discriminative features while maintaining stability in prior stages and improving adaptability to new
stages. Through comparative experiments and ablation experiments conducted across five different
difficulty levels in the incremental learning setups, we comprehensively demonstrate the feasibility
of the compression-sparsity principle.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a
network of experts. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 7120–7129, 2016.

Edoardo Arnaudo, Fabio Cermelli, A. Tavera, Claudio Rossi, and Barbara Caputo. A con-
trastive distillation approach for incremental semantic segmentation in aerial images. ArXiv,
abs/2112.03814, 2021.

Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulò, Elisa Ricci, and Barbara Caputo. Mod-
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APPENDIX

A COMPRESSION-SPARSITY BASED ALGORITHM

Algorithm 1 Feasible implementation pseudocode for compression-sparsity principles.

Input: P : Three-dimensional point set
Output: P̃t: Optimized multi-class segmentation prediction

1: Initialize an empty list Ppeaks.
2: RecursivePeakFinder(P, Ppeaks)
3: IF |P | = 1 THEN
4: Add point P [0] to the list Ppeaks
5: ELSE
6: Compute the midpoint index mid of P
7: IF P [mid] is a peak THEN
8: Add point P [mid] to the list Ppeaks
9: IF P [mid− 1] > P [mid] THEN

10: RecursivePeakFinder(P [0 : mid− 1], Ppeaks)
11: IF P [mid+ 1] > P [mid] THEN
12: RecursivePeakFinder(P [mid+ 1 : |P | − 1], Ppeaks)
13: Compression and Sparsity with Equation (8)
14: Fusion of reconstructed and original feature distribution with Equation (9)
15: Knowledge Distillation with Equation (10) - Equation (12)
16: Optimize the parameters with Equations (13) and (14)

Algorithm 1 provides a logical demonstration of the pseudo-code for the incremental segmentation
architecture implemented based on the compression-sparsity principle. To establish initial com-
pression and coefficient soft constraints during incremental segmentation, we first employ Recur-
sivePeakFinder to identify peaks within each Gaussian distribution. Subsequently, utilizing Equa-
tion (8), we preliminarily compress and sparsify the feature representation, significantly facilitating
the plasticity of new knowledge. To balance the initial knowledge and reconstructed knowledge,
we integrate the reconstructed features with the original ones according to Equation (9). To pre-
vent catastrophic forgetting, we transfer high-confidence knowledge from previous categories to the
current stage, ensuring that the high confidence of old categories can still be maximally retained.
Finally, we optimize predictions by considering both old and new knowledge using Equations (13)
and (14).

B MORE IMPLEMENTATION DETAILS

B.1 EXPERIMENT DATASET

This paper utilizes the VOC 2012 and ADE20K. Apart from the background category, the VOC
dataset consists of a total of twenty categories, namely Aeroplane, Bicycle, Bird, Boat, Bottle, Bus,
Car, Cat, Chair, Cow, Dining table, Dog, Horse, Motorbike, Person, Potted plant, Sheep, Sofa,
Train, and TV monitor. The division of training, validation, and test sets in the dataset follows the
original segmentation settings. The original VOC 2012 dataset comprised 1464 training samples,
1449 validation samples, and 1456 test samples. The augmented dataset includes 10582 training
samples, 1449 validation samples, and 1456 test samples. The results in the paper are based on the
latter for training. The ADE dataset features 150 categories for incremental segmentation, sourced
from the SUN dataset (2010, Princeton University) and the Places dataset (2014, MIT). Currently,
there is no public test set available for this dataset. As a result, the validation set of the original
dataset is repurposed as the test set, comprising a total of 2000 images. The training set contains a
total of 20,210 images. The images in the datasets have been subjected to anonymization procedures,
such as facial and license plate blurring, along with the elimination of private information.
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B.2 INCREMENTAL SETTING

Building upon previous work, we explore five distinct incremental configurations for the VOC
dataset, including 10-1, 2-2, 15-1, 19-1, and 15-5. For the ADE dataset, we establish two dif-
ferent incremental setups: 100-5 and 100-10. These varied configurations correspond to different
numbers of learning categories in the base stage and incremental stage. For instance, in the 10-1
setup, the base stage involves learning 10 categories, with each subsequent incremental stage adding
one new category. The data from the previous ten categories cannot all participate in joint training,
leading to a total of 11 learning steps. Similarly, in the 2-2 setting, the base stage includes learning
two categories, with each subsequent incremental stage also involving two categories, totaling 10
steps. A higher number of steps indicates a more challenging setting for enhancing the plasticity
of new classes while maintaining the stability of old classes. In real-world scenarios, data arrives
intermittently, similar to incremental learning settings. To address the challenge of learning new in-
coming data without extensive time and computational resources, while simultaneously preserving
the performance of old data, we conduct tests and research on a total of seven different incremental
learning configurations for the VOC and ADE datasets.

B.3 TRAINING DETAILS

When training the incremental configurations 10-1, 2-2, 15-1, 19-1, and 15-5, we utilize the training
set of the VOC dataset. Notably, each training session loads data corresponding to specific categories
based on the incremental setting, rather than the entire training set. To enhance training efficiency,
images from the VOC dataset are cropped to a resolution of 513x513 due to high data resolution.
We also integrate augmented data following previous works Data preprocessing involves techniques
such as resizing, scaling, cropping, flipping, and normalization. Normalization is performed using
a mean of [0.485, 0.456, 0.406] and a variance of [0.229, 0.224, 0.225]. During training, learning
rates vary across different modules, and we employ the AdamW optimizer utilized. Each incre-
mental configuration undergoes 50 epochs of training on a single 3090 GPU for both the base and
incremental stages. For the 100-5 configuration, we use the training set of ADE20K, selectively
loading data based on the incremental setting in each training stage. During training, we implement
a replay buffer following prior researches (Cha et al., 2021; Zhang et al., 2022b), which restricts
the storage of instances per class to a maximum of ten. The data preprocessing, learning rates, and
optimizer settings mirrored those described earlier. Each incremental configuration is trained for
100 epochs using two A100 GPUs, and the implementation is carried out with PyTorch.

B.4 TESTING DETAILS

After learning twenty different classes based on various incremental configurations, including 10-1,
2-2, 15-1, 19-1, and 15-5, we load the best pth file generated from the final step to evaluate the
MIoU and ACC performance across all classes in the VOC test set. In this study, we measure the
catastrophic forgetting resistance (stability) of old classes by evaluating the MIoU and ACC perfor-
mance on test data corresponding to the classes learned in the base stage. Additionally, we evaluate
the learning ability (plasticity) of new classes by testing the MIoU and ACC performance on data
involving classes in the incremental stage. Before inference, the test data must undergo normaliza-
tion to ensure compatibility with the algorithm. Similarly, for the incremental configuration 100-5,
we measure the corresponding MIoU and ACC metrics on the ADE20K test set after completing
learning all incremental steps. All experiments are conducted using PyTorch on 3090 GPU and
A100 GPU.

C ADDITIONAL EXPERIMENT RESULTS AND DISCUSSION.

Benefits of the Compression-Sparsity Principle. Implementation of the Compression-Sparsity
Principle in incremental segmentation effectively addresses the challenge of limited performance
in new classes while preserving the performance of old classes. As shown in Table 6, we have
compiled Mean Intersection over Union (MIoU) and accuracy (Acc) for 21 subclasses in a 15-1
incremental configuration, comparing three typical methods with our approach. The averages cal-
culated in the table represent the mean MIoU and accuracy for individual categories, facilitating
performance comparisons among various methods. It is evident from the table that our approach
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Table 6: Comparison with recent approaches based on Mean Intersection over Union (MIoU) and
accuracy (ACC) across multiple subclasses. Benefiting from the Compression-Sparsity principle,
our method shows significant plasticity performance improvements in the incremental stage (last
five categories) while maintaining stability in handling old classes.

MIB LGKD Coinseg Ours
MIoU Acc Average MIoU Acc Average MIoU Acc Average MIoU Acc Average

Background 85.46 90.88 88.17 89.15 94.55 91.85 90.65 93.39 92.02 91.09 93.56 92.33
Aeroplane 23.61 23.67 23.64 80.41 85.23 82.82 88.80 92.33 90.57 90.78 95.29 93.04
Bicycle 28.31 38.81 33.56 41.07 85.13 63.10 42.81 87.86 65.34 39.88 79.18 59.53
Bird 53.33 53.55 53.44 80.03 85.78 82.91 95.42 96.95 96.19 95.24 97.20 96.22
Boat 33.94 35.39 34.67 56.33 60.17 58.25 77.89 89.41 83.65 74.09 92.49 83.29
Bottle 50.43 51.45 50.94 70.65 83.58 77.12 87.88 93.81 90.85 86.26 95.43 90.85
Bus 7.38 7.38 7.38 81.96 83.68 82.82 90.55 92.57 91.56 94.61 97.17 95.89
Car 34.91 35.02 34.97 80.37 81.93 81.15 90.67 92.69 91.68 90.18 92.65 91.42
Cat 74.32 74.58 74.45 88.29 95.21 91.75 96.48 98.21 97.35 95.93 98.29 97.11
Chair 3.49 3.53 3.51 14.90 15.47 15.19 46.69 54.83 50.76 51.07 60.04 55.56
Cow 38.03 38.69 38.36 70.75 74.66 72.71 88.09 89.45 88.77 94.79 97.55 96.17
Dining table 33.09 34.12 33.61 54.87 63.18 59.03 61.25 65.71 63.48 64.79 69.39 67.09
Dog 54.64 56.83 55.74 79.50 83.18 81.34 94.91 96.95 95.93 94.50 97.50 96.00
Horse 48.30 48.81 48.56 76.96 92.64 84.80 92.94 96.01 94.48 92.38 95.86 94.12
Motorbike 33.96 34.35 34.16 77.74 82.78 80.26 92.46 96.00 94.23 91.48 97.00 94.24
Person 82.67 87.95 85.31 76.90 96.32 86.61 90.53 93.00 91.77 89.74 92.58 91.16
Potted plant 4.93 5.55 5.24 7.57 7.75 7.66 57.72 67.72 62.72 59.83 76.68 68.26
Sheep 24.71 80.74 52.73 51.28 63.89 57.59 68.47 93.46 80.97 88.52 94.71 91.62
Sofa 23.18 46.31 34.75 19.45 24.19 21.82 36.57 80.16 58.37 31.97 85.24 58.61
Train 15.40 90.38 52.89 40.73 82.54 61.64 67.19 90.85 79.02 81.13 95.42 88.28
Tv monitor 17.95 63.62 40.79 34.42 52.22 43.32 33.61 85.52 59.57 59.96 87.44 73.70

Table 7: Comparison of our method with recent approaches, on the challenging 100-10 setting of
ADE dataset (Zhou et al., 2017)) in terms of MIoU. In the incremental stage, our method demon-
strates a certain degree of performance improvement.

Joint SDR MIB PLOP Reminder RCIL SSUL Microseg SSUL+ MicroSeg+ EWF LGKD IDEC GSC CoMFormer CoMasTRe Ours
0-100 43.5 28.9 38.2 40.5 39.0 39.3 40.2 41.5 40.7 41.0 41.5 42.0 42.3 40.8 36.0 42.8 41.6

101-150 30.6 7.4 11.1 13.6 21.3 17.7 18.8 21.6 19.0 22.6 16.3 20.4 17.6 17.6 17.1 15.8 25.5
All 39.2 21.8 29.2 31.6 33.1 32.2 33.1 34.9 33.5 34.9 33.2 34.9 34.1 33.1 29.7 33.9 36.3

demonstrates superior performance across multiple categories among the first sixteen. Particularly,
our method shows significant performance improvements in the categories learned during the fi-
nal five incremental stages, specifically in the Potted plant, Sheep, Sofa, Train, and TV monitor
categories, with increases of 5.54%, 10.65%, 0.24%, 9.26%, and 14.13%, respectively. Table 7 il-
lustrates the performance comparison under the 100-10 incremental setting on the ADE20K dataset.
Compared to the suboptimal method, we achieve a performance improvement of 2.9% on new cat-
egories (101-150). These notable enhancements in adaptability can be attributed to our method’s
capability to provide more discriminative features, which aids in reducing confusion among cate-
gory features and shapes a more segmentation-friendly feature space.

As shown in Figure 8, we visualize feature attention maps with (columns four and five) and without
the Compression-Sparsity method (columns two and three). It is worth noting that this visualization
does not represent features from the final layer of the network, but rather from a feature layer selected
for compression and sparsity operations. Columns two and four illustrate the effects after averaging
multiple channels, while columns three and five display the results after summing features from
multiple channels and overlaying them on the original image. It is evident that the high-heat response
regions of features become more enriched in both quantity and area on most images following the
incorporation of compression and sparsity. This observation further validates that the Compression-
Sparsity method can provide more discriminative features, thereby promoting a balance between
stability and plasticity.

Additionally, Figure 9 illustrates the test results of our method compared to recent methods across
all test sets in the 15-1 incremental configuration. The results indicate that our method exhibits fewer
category confusions after learning new classes. Furthermore, our approach demonstrates enhanced
adaptability towards new categories. Table 8 presents a statistical analysis of the Mean Intersection
over Union (MIoU) values across multiple incremental steps under a 10-1 incremental setting. The
two compared groups are G4 (an incremental algorithm without the Compression-Sparsity operation
in ablation experiments) and G7 (an algorithm incorporating the Compression-Sparsity operation).
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Table 8: Comparison between the method with compression-sparsity (G7) and the method without
compression-sparsity (G4). By analyzing the MIoU values of multiple steps in the intricate 10-1 in-
cremental setting, the incorporation of the compression-sparsity principle facilitates the assimilation
of knowledge for new categories in the incremental stage.

Step 1 2 3 4 5 6 7 8 9 10
G4 22.7 63.2 67.9 71.9 76.0 70.1 66.0 60.3 61.4 57.3
G7 44.6 72.6 76.8 79.6 77.6 74.1 73.7 65.7 70.6 69.8

↑21.9 ↑9.4 ↑8.9 ↑7.7 ↑1.6 ↑4 ↑7.7 ↑5.4 ↑9.2 ↑12.5

Table 9: Comparative experiments conducted without replay in a 2-2 incremental setup. It is demon-
strated that even without replay, the compression-sparsity approach exhibits strong learning capabil-
ities for new classes (3-20).

Joint MIB SDR PLOP RCIL SSUL+ Microseg+ Coinseg Ours
0-2 75.8 41.1 13.0 24.1 28.3 60.3 64.8 70.1 70.6

3-20 83.9 23.4 5.1 11.9 19.0 40.6 43.4 63.3 65.8
All 82.7 25.9 6.2 13.6 20.3 43.4 46.5 64.3 66.5

A direct comparison reveals that the incorporation of the Compression-Sparsity operation effectively
enhances the plasticity of new categories to a greater extent. Specifically, in the first step, perfor-
mance improvement is notably increased by 21.9% compared to the absence of the Compression-
Sparsity method.

Methods without Replay. To validate the effectiveness of our method in a no-replay scenario, we
conduct experiments under a zero-replay setting and compare our approach to recent state-of-the-art
methods in a 2-2 incremental configuration. As illustrated in Table 9, our method demonstrates a
balanced performance in terms of stability and plasticity, even in the absence of replay. Particularly,
when compared to the previously second-best method, our approach demonstrates an improvement
of 2.2% in overall category performance. While our method achieves significant performance with-
out replay in incremental segmentation, we still recommend utilizing a small amount of replay,
where hardware allows, to further enhance performance.

D LIMITATION

Although this study demonstrates a significant enhancement in the plasticity of new classes through
incremental learning utilizing the compression-sparsity principle, the spatial separation between the
class centers learned during the incremental step remains relatively close, as indicated by the t-
SNE plot. While this distance is sufficient to support notable enhancements in MIoU and ACC
performance, it also indicates the need for further efforts to increase the distribution gap between
new classes in future work. To maintain a balance between stability and plasticity, classes within the
same step undergo more substantial adaptive changes, resulting in relatively smaller fluctuations in
adaptability among classes across different steps. This limitation primarily arises because the data
involved in loss calculations mainly consists of data from the new classes in the current step, where
the influence of past data knowledge during the incremental stages mainly focuses on knowledge
distillation rather than spatial sparsity. Therefore, we will reassess how classes in different steps can
achieve greater sparsity in the distribution with minimal replay during the adaptive change process
in future research.
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Figure 8: Feature response maps with compression-sparsity methods (columns four and five) and
characteristics of maps without compression-sparsity methods (columns two and three). It can be
seen that after incorporating the compression-sparsity principle, the feature responses of most data
become richer and stronger, which greatly facilitates the acquisition of discriminative features.
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Figure 9: More comparisons with recent methods on the 15-1 testing dataset. From the results, it
can be seen that our method is able to maintain good segmentation of old categories on most data
and achieve effective learning of new categories.
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