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Abstract

Despite the prominence of decoder-only lan-
guage models, encoders remain crucial for
resource-constrained applications. We intro-
duce ModernGBERT (134M, 1B), a fully
transparent family of German encoder mod-
els trained from scratch, incorporating archi-
tectural innovations from ModernBERT. To
evaluate the practical trade-offs of training en-
coders from scratch, we also present LLAMm-
lein2Vec (120M, 1B, 7B), a family of encoders
derived from German decoder-only models
via LLM2Vec. We benchmark all models on
natural language understanding, text embed-
ding, and long-context reasoning tasks, en-
abling a controlled comparison between ded-
icated encoders and converted decoders. Our
results show that ModernGBERT 1B outper-
forms prior state-of-the-art German encoders
as well as encoders adapted via LLM2Vec, with
regard to performance and parameter-efficiency.
All models, training data, checkpoints and
code are publicly available', advancing the Ger-
man NLP ecosystem with transparent, high-
performance encoder models.

1 Introduction

Despite the recent dominance of decoder-only large
language models (LLMs), parameter-efficient en-
coder models remain crucial for language tech-
nology, particularly for local deployments such
as retrieval-augmented generation (RAG). Their
bidirectional attention confers strong understand-
ing capabilities with lower resource requirements,
making them attractive for consumer hardware. In
the German NLP landscape, GBERTarge (337M
parameters; Chan et al., 2020) remains a popular en-
coder, performing competitively with much larger
German-capable decoder LLMs across tasks (Pfis-
ter and Hotho, 2024), despite its modest size and

"ModernGBERT and LL&Mmlein2 Vec, including all code,
data and intermediary checkpoints will be published upon
acceptance under a “research-only RAIL” license.
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Figure 1: Performance on SuperGLEBer benchmark.
e markers: encoders, A markers: decoders. Dashed
arrows: LLM2Vec conversion gains. Models of the
same family are colored in the same color.

limited training data (163 GB). More recently, Mod-
ernBERT (Warner et al., 2024) introduced several
architectural improvements for English encoders,
including enhanced relative positional embeddings
and efficient attention patterns enabling long con-
text processing. Building on this progress and in-
spired by the success of LLiMmlein (Pfister et al.,
2024), a family of German decoder-only LLMs
transparently trained on approximately 6 TB of
RedPajamaV2 (Weber et al., 2024) text, we intro-
duce ModernGBERT a family of fully open, high-
performance German encoder models with 134M
and 1B parameters. These models provide a foun-
dation to explore the impact of ModernBERT’s
architectural innovations on German encoder per-
formance. They also allow us to investigate how



parameter scaling influences model quality when
trained on large-scale monolingual corpora.

To better assess the practical utility and trade-
offs of training encoder models from scratch, we
further present LL&Mmlein2Vec encoders (120M,
1B, and 7B), derived from decoder-only models us-
ing LLM2Vec (BehnamGhader et al., 2024). Since
all models are based on the same training datasets,
this setup provides a foundation for systematically
analyzing the relationship between different archi-
tectures and training strategies.

We extensively evaluate these models during and
post training via: natural language understanding
(SuperGLEBer, Pfister and Hotho, 2024), embed-
ding performance (MTEB; Enevoldsen et al., 2025;
Muennighoff et al., 2023; Wehrli et al., 2023), and
long-context understanding (Question Answering
Needle-in-a-Haystack). Our findings reveal:

* ModernGBERT 134M and 1B are highly com-
petitive German encoders, scaling well with
size (8,192 tokens), with 1B surpassing the
previous SotA GBERT yge.

* Our LL@aMmlein2Vec 7B also outperforms
GBERTY g, though dedicated encoders still
outperform converted models of similar size.

& Note: Throughout the paper, we highlight in-
teresting findings and insights we gained during
the process in little boxes like this one.

2 Datasets

2.1 Pre-training Dataset

We pre-trained ModernGBERT on the same data as
LLiMmlein decoder models (Pfister et al., 2024),
using the open-source RedPajamaV2 dataset (We-
ber et al., 2024).? This dataset comprises German
CommonCrawl snapshots from 2014-2023. As we
intend to keep datasets constant between Modern-
GBERT and LLdaMmlein, we follow LLiMm-
lein’s data pipeline and select the higher quality
document-level deduplicated “head” and “middle”
partitions, excluding the lower quality “tail” par-
tition. For our 134M model, we only selected
the head partition. We used the same processing
pipeline as Pfister et al. (2024): First, paragraph-
level deduplication using a Bloom filter to remove
redundant content like GDPR notices and web boil-
erplate, improving data diversity. Then, a token-to-
word ratio filter to further improve text quality. The

2Common Crawl Foundation Terms of Use

median

Dataset # tokens # sequences length
LONG-Head (extl) 52B 6,813,019 7,755
LONG-Head/Middle (extl) 90B 11,785,941 8,013
HQ (ext2) 144B 43,191,271 199
Fineweb2 7,640M 42,319,173 194
OpenLegalData 407M 53,798 7,583
Wikipedia 143M 19,004 7,515
Fineweb2-long 6,211M 799,296 7,902

Table 1: Composition of the context extension datasets.

final dataset is approximately 6 TB, consisting of
~ 2 TB from head and ~4 TB from middle. Using
a GBERT 4 tokenizer, this results in about 1.27T
tokens.

2.2 Context Extension Dataset

ModernBERT enhances its context capacity from
1,024 to 8,192 by finetuning in two phases: on
~ 250B-token subsample of 8,192-token sequences
from its original pre-training dataset (extl), fol-
lowed by a curated ~ 50B-token dataset with mixed
sequence lengths, including short and long ones
(ext2, up to 8,192 tokens) (Gao et al., 2025).

Following this setup, we proceed to construct
our own German context extension datasets for the
two phases (Table 1): for the first phase (extl),
we take the same approach and subsample long
sequences from our pre-training datasets (resulting
in “LONG-Head” from the head partition for our
134M model, and “LONG-Head/Middle” from the
head and middle partition for our 1B model). For
the second phase (ext2) on a high-quality dataset
we coin “HQ” in Table 1, we use the German por-
tion of the Fineweb2 dataset (Penedo et al., 2024)3.
Aiming for a similar distribution, we first take a ran-
domized sample of Fineweb2, and added a separate
sample from Fineweb2, selecting long documents
with >8,192 tokens, splitting them into sequences
of ~ 8,192 tokens (“Fineweb2-long”). Further-
more, we add additional long documents by in-
cluding the 2023 German Wikipedia* and the 2022
OpenLegalData dump,’ also split to sequences of
up to 8,192 tokens. The entire HQ dataset consists
of 14.4B tokens. Table 1 summarizes these three
resulting datasets.

30pen Data Commons Attribution License (ODC-By) v1.0

*Creative Commons Attribution-ShareAlike 3.0

Shttps://de.openlegaldata.io/; database licensed
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from copyright law
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3 Methodology

3.1 ModernGBERT: Scaling SotA Encoders

The ModernGBERT models adapt the Modern-
BERT architecture and training strategy for Ger-
man. ModernGBERT 134M matches the base Mod-
ernBERT model size (22 layers, 768 hidden units,
but 16M fewer parameters due to a smaller vocabu-
lary size), while ModernGBERT 1B consists of 28
layers and a hidden size of 2,048. Full architectural
details can be found in Table 4.

Both models follow the ModernBERT pre-
training recipe: masked language modeling (MLM)
with no next-sentence-prediction, a 30% masking
rate, and sequences up to 1,024 tokens (10,000
ROPE theta). For training, we use our German
pre-training corpus (Section 2.1): ModernGBERT
1B trains on the head then middle partitions for
a total of 1.27T tokens; ModernGBERT 134M is
trained only on the head partition (0.47T tokens),
as downstream evaluation showed early saturation
(Section 5.1). Details of the training procedure are
shown in Table 5.

After MLM, we extend context length in two
phases, following ModernBERT, raising the RoPE
theta to 160,000 and training on longer sequences.
In the first extension phase (extl), models are
trained on the LONG-Head for the 134M model
or LONG-Head/Middle for the 1B model. In ext2,
both models are trained on the HQ dataset. As
we did not intend to develop a novel German to-
kenizer, we utilized the original BERT-style to-
kenizer from GBERTyge (resulting in a 31,168-
word embedding layer - a multiple of 64 for com-
pute efficiency). While LLaMmlein (Pfister et al.,
2024) provides a dedicated German Llama-style
tokenizer, our preliminary ablations consistently
showed degraded downstream performance. This
degradation is consistent with results by Warner
et al. (2024), who observed similar behavior with
(English) Llama-style tokenizers during the devel-
opment of the original ModernBERT. We therefore
retained the GBERT g tokenizer.

Throughout the training checkpoints are saved
and evaluated, and all are released publicly to
support further research. In addition, inspired by
Pythia (Biderman et al., 2023) we provide full train-
ing provenance by logging and releasing the order
of data points seen during training; thus, all check-
points can be linked with the exact data points seen
up to that checkpoint.

3.2 LLMZ2Vec: Turning Decoders to Encoders

LLM?2Vec (BehnamGhader et al., 2024) proposes
a method to convert decoder-only LLMs into ef-
fective text encoders through the following steps:
First, the causal attention mask is replaced with
a full attention mask, enabling bidirectional atten-
tion across tokens. Second, the model is trained
using a masked next token prediction (MNTP) ob-
jective. Third, unsupervised contrastive learning
(SimCSE) is applied, improving embedding qual-
ity by maximizing agreement between differently
dropped-out versions of the same input. How-
ever, we intend to remain closely aligned with
ModernGBERT’s training objectives and not re-
produce LLM2Vec results. For this reason, we
trained our models exclusively using the MNTP
objective, which is most similar to MLM. Modern-
GBERT performs two context extension phases,
each using two datasets per model. Similarly,
we train all three LLiAMmlein models using the
same respective two datasets as employed by
ModernGBERT'’s context extensions (Section 2.2):
the LL&Mmlein2Vec 120M model variant follows
ModernGBERT 134M (LONG-Head for phase
one, HQ for phase two); the LL@Mmlein2Vec
1B and 7B models follow ModernGBERT 1B
(LONG-Head/Middle for phase one, HQ tokens
for phase two). For each model, we apply MNTP
training separately on each respective dataset, re-
sulting in two distinct adapter modules—one per
phase. We evaluate both individual adapters (extl
& ext2) as well as a merged model (ext1+2) where
both adapters are combined. Notably, the models
achieve comparable results even without seeing the
full training data as exemplary shown in Table 7
- this is comparable to the observations in Pfister
et al. (2024), indicating possibilities of reducing
compute in future trainings. However, for consis-
tency and comparability, we report results using
the fully trained models throughout the paper®. We
also increased the sequence length to 8,192 and set
ROPE theta to 160,000, otherwise, we follow the
default LLM2Vec parameters (see Table 6 for more
details).

Sexcept for the LLiMmlein2Vec 7B trained on the LONG-
Head/Middle model, which we trained on 64 nodes with 4
H200 each for 14 hours, before stopping the training due to
compute constraints (Table 6)



4 Evaluation Setup

4.1 SuperGLEBer

We assess our final models using the German Su-
perGLEBer benchmark (Pfister and Hotho, 2024),
which includes 29 tasks across text classification,
sequence tagging, question answering, and sen-
tence similarity. These tasks cover diverse domains
such as news, legal texts, and consumer reviews.
For each task, models are fine-tuned with QLoRA
(Dettmers et al., 2023) by default, or LoRA as fall-
back. In addition to evaluating final checkpoints,
we follow LLiMmlein (Pfister et al., 2024) and
evaluate intermediate checkpoints on the same rep-
resentative SuperGLEBer subset as selected by
Pfister et al.: the classification tasks NLI (Con-
neau et al., 2018), FactClaiming Comments (Risch
et al., 2021), DB Aspect (Wojatzki et al., 2017),
and WebCAGe (Henrich et al., 2012), the sequence
tagging task EuroParl (Faruqui and Pado, 2010),
and the sentence similarity task PAWSX (Liang
et al., 2020).

4.2 Massive Text Embedding Benchmark

We further evaluate the models on the German sub-
set of the Massive Text Embedding Benchmark
MTEB(deu,vi) (Enevoldsen et al., 2025). The spe-
cific tasks can be found in Table 8. In addition to
text pair classification and semantic textual similar-
ity—already covered by the SuperGLEBer bench-
mark—MTEB includes clustering (Wehrli et al.,
2023), as well as reranking and retrieval tasks.

These latter tasks provide a more comprehen-
sive assessment of general-purpose sentence em-
beddings, focusing on the models’ ability to pro-
duce robust semantic representations.

To adapt the base models for embedding tasks,
we fine-tune them using the Sentence-Transformer
framework (Reimers and Gurevych, 2019) in a
supervised setup. Fine-tuning employs 10,000
samples from the German portion of the machine-
translated multilingual mMARCO passage ranking
dataset (Bonifacio et al., 2022), maximizing simi-
larity between query and positive passages, while
minimizing similarity to negative passages. Sen-
tence embeddings are obtained by mean pooling
over the final token representations. We use Info-
NCE loss with a batch size of 128 and a learning
rate of 5x 107, We apply QLoRA for efficient
training (falling back to LoRA for the GBERT fam-
ily, where quantization is not supported).

4.3 Long-Context Understanding

Evaluating long-context capabilities in German
is hindered by the scarcity of native high-quality
datasets, with translations from English often intro-
ducing artifacts.

To address this, we construct a Question-
Answering Needle-In-a-Haystack (QA-NIAH)
evaluation (Ivgi et al., 2023; Hsieh et al., 2024)
based on the human-annotated GermanQuAD
dataset (Moller et al., 2021). Given a question,
the goal is to extract the answer span from a long
document. We adapt GermanQuAD to a QA-NIAH
setup as follows: for each question—paragraph
(“needle”) pair, we sample up to 3 distractor para-
graphs and shuffle them with the needle, forming a
“haystack” document of up to 1,024 tokens. The an-
swer always appears only in the needle paragraph.
For evaluation, we increase distractors to up to 20,
yielding documents up to 8,192 tokens. This yields
11,518 training and 2,204 test question—haystack
pairs. We fine-tune models on the QA-NIAH train-
ing set using QLoRA, and evaluate on the test set,
following the SuperGLEBer benchmark procedure.
Training uses sequences up to 1,024 tokens; evalu-
ation uses up to 8,192 tokens, assessing generaliza-
tion to longer contexts.

5 [Evaluation Results

5.1 Intermediate Model Evaluation

To track pre-training progress, we evaluated in-
termediate checkpoints on six representative Su-
perGLEBer tasks, following Pfister et al. (2024)
(see Section 4.1). All checkpoints will be released
for future analysis. Figure 3 shows that Modern-
GBERT 1B’s average performance steadily im-
proves throughout training, while ModernGBERT
134M quickly saturates.

To quantify these trends, we evaluated the
full SuperGLEBer suite on four checkpoints for
ModernGBERT 1B and three for 134M (com-
parison done using Wilcoxon signed-rank tests):
ModernGBERT 134M plateaued after 72B tokens
(15% of data), with no further significant improve-
ments. In contrast, ModernGBERT 1B showed
significant gains over the same dataset portion
(p < 0.0001), and additional gains during train-
ing on the middle partition (p < 0.00052). Per-
formance then plateaus after 864B tokens (67% of
entire pre-training dataset), with the SuperGLEBer
score increasing only slightly from 0.777 to 0.791
despite 406B more tokens.
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Figure 2: Intermediate checkpoint evaluation of
ModernGBERT 1B during pre-training, on the Super-
GLEBer tasks: NLI (top) and PAWSX (bottom). To
improve trend visibility, we adjusted the y-axis scale
and plotted every second checkpoint.

Analyzing on the six selected subtasks that were
run on every checkpoint (Section 5.1), for the 134M
variant, only PAWSX showed a significant posi-
tive Spearman rank correlation between training
token count and performance (r = 0.655;p <
0.003), while the others did not. For 1B, all but
EuroParl showed significant positive correlations
(r > 0.57;p < 0.00014). In particular, even
though the aggregate score remains largely stable
in the final third of the pre-training, on complex
tasks such as NLI and PAWSX, we still see slight
improvements with increased training (Figure 2).

These saturation patterns, including per-task
trends and overall performance plateaus, are con-
sistent with findings by Pfister et al. (2024) for
decoder models, and by Antoun et al. (2024) for
their ModernBERT variant ModernCamemBERT
(with 136M parameters) trained on French. Our
results confirm that although small ModernBERT
models saturate quickly, larger models benefit from
additional data. Extrapolating the observed scal-
ing behavior between ModernGBERT 134M and
1B, we hypothesize that training a larger, 7B-sized
encoder could make further use of an extensive
monolingual datasets, improving performance be-
yond ModernGBERT 1B.

Model Avg Class. NER PAWSX QA
GBERTguse 0.718  0.723  0.786 0.561 0.803
GBERT Lagge 0.768  0.785  0.799 0.654 0.832
GeBERTaggse 0.716 0.715 0.778 0.559 0.813
GeBERTa e 0.749  0.743  0.791 0.619 0.844
GeBERTaxarge 0.767  0.770  0.807 0.643 0.848
XLM-RoBERTagse 0.689 0.693 0.754 0.505 0.802
XLM-RoBERTaurge 0.730  0.714  0.787 0.583 0.837
XLM-RoBERTaxLarge 0.758  0.750  0.802 0.656 0.822
LLiMmlein 120M 0.676  0.702 0.712 0.477 0.812
LLiMmlein2Vec 120M  0.684 0.703  0.741 0.472 0.819
LL&Mmlein 1B 0.733  0.781 0.773 0.548 0.828
LL&Mmlein2Vec 1B 0.762  0.776  0.812 0.615 0.843
LLiMmlein 7B 0.747 0.810 0.805 0.524 0.851
LLiMmlein2Vec 7B 0.787 0.799 0.838 0.670 0.842
ModernGBERT 134M°  0.730  0.716  0.782 0.589 0.833
ModernGBERT 134M 0.749  0.735 0.805 0.612 0.836
ModernGBERT 1B® 0.800 0.806  0.839 0.681 0.874
ModernGBERT 1B 0.808 0812 0.845 0.699 0.876

Table 2: Performance comparison on SuperGLEBer.
< indicates ModernGBERT without context extension.

& Confirmation: Our findings corroborate An-
toun et al. (2024) and Pfister et al. (2024): small
ModernGBERT models reach saturation early,
while scaling model and dataset size enables
improvements.

5.2 Final Model Evaluation

Natural Language Understanding We evaluate
all final models on the full SuperGLEBer bench-
mark. Table 2 averages the scores per task type,
while Table 7 provides more fine-grained scores.
We compare our models to established encoders:
GBERT (Chan et al., 2020), GeBERTa (Dada et al.,
2023), and XLM-RoBERTa (Conneau et al., 2020;
Goyal et al., 2021).

Our ModernGBERT consistently outperforms
comparable and larger models. The 134M
variant achieves an average score of (.749,
surpassing all similar-sized baselines, includ-
ing GBERTg, (0.718), XLM-RoBERTagys
(0.689), GeBERTag,s. (0.716), and even XLM-
ROBERTay ype (0.730), as well as LLaMmlein
1B (0.733). The ModernGBERT 1B variant
achieves a new state-of-the-art average score across
the entire SuperGLEBer of 0.808, outperform-
ing GBERT e (0.768) by 4% and beating the
seven times larger LLaMmlein2Vec 7B (0.787). It
leads in three of four evaluation categories, includ-
ing classification (0.812), NER (0.845), and QA
(0.876). Only on sentence similarity (0.699), our
seven times larger LLaMmlein2Vec 7B achieves
better results. ModernGBERT scales well, with
performance improving for larger model sizes,
again suggesting that scaling ModernBERT-style



encoders can leverage large monolingual corpora
effectively. In the SuperGLEBer setting, adding
context extension improved ModernGBERT’s av-
erage by 1.9% for the 134M model (from 0.730
to 0.749) and by 0.8% for the 1B variant (from
0.800 to 0.808). No large improvements were to
be expected from our context extension, as Super-
GLEBer tasks do not make use of long contexts.

Adaptation via LLM2Vec yields consistent gains
across models. Thus, our first LLM2Vec tun-
ing (analogous to extl, Section 2.2) showed the
most prominent positive effect, while the sec-
ond finetune using the ext2 datasets showed only
marginal increase, or even a decrease in perfor-
mance. The same holds for a mixture of the
two LLM2Vec adapters (ext1+2). The LLiMm-
lein2Vec 7B achieves the strongest results among
the LLM2Vec models (0.787). Conversion of
LLiMmlein 120M, 1B, 7B improved the average
score by 0.8%, 2.9%, and 4.0% respectively. This
effect is especially pronounced in PAWSX, with
scores increasing by up to 14.6% for LLiMmlein
7B and 6.7% for LL@Mmlein 1B.

& Observation: LLM2Vec yields the best im-
provement on similarity-related tasks.

Comparing the LL&Mmlein2Vec with the
ModernGBERT family, we find that on similarly
sized models, ModernGBERT always outperforms
the transformed decoders by a large margin. Only
the much larger LLiMmlein2Vec 7B approaches
the performance of ModernGBERT 1B.

& Observation: With similar data and model
sizes, training encoders from scratch outper-
forms LL.M2Vec converted models.

Text Embedding We evaluate models on the
MTEB benchmark, which covers six task cate-
gories: classification, pair classification, clustering,
reranking, retrieval, and short text similarity (STS)
tasks. While Table 3 summarizes the outcomes, all
results are presented in Table 9. In general, super-
vised fine-tuning on mMARCO yields consistent
improvements across all model types. While classi-
fication performance sometimes declines, substan-
tial gains can be observed in other areas: 25% on
average for reranking, 26% for retrieval and 25%
for STS.

Model Avg  Clustering Reranking Retrieval
GBERTg,. 0.360 0.274 0.118 0.226
GBERTg;e ' 0.500 0318 0.374 0.461
GBERTLuge 0.412 0.336 0.206 0.297
GBERTyge ' 0.521 0.334 0.389 0.493
XLM-RoBERTag, 0.248 0.173 0.024 0.008
XLM-RoBERTag;. 0.403 0.247 0.247 0.299
XLM-RoBERTA yrge 0.264 0.172 0.048 0.026
XLM-RoBERTa qrge 0.460 0.259 0.343 0.416
XLM-RoBERTax{ arge 0.301 0.225 0.090 0.142
XLM-RoBERTax arge 0.479 0.342 0.362 0.407
LLiMmlein2Vec 120M  0.315 0.261 0.139 0.224
LLiMmlein2Vec 120M'  0.471 0.308 0.325 0.425
LLiMmlein2Vec 1B 0.399 0.308 0.183 0.276
LL4Mmlein2Vec 1Bt 0.540 0.343 0.433 0.511
LLaMmlein2Vec 7B 0.376 0.249 0.169 0.266
LL4Mmlein2Vec 7Bt 0.557 0.339 0.477 0.522
ModernGBERT 134M°®  0.383 0.293 0.139 0.241
ModernGBERT 134M°T  0.485 0.303 0.364 0.432
ModernGBERT 134M 0.376 0.296 0.120 0.213
ModernGBERT 134M'  0.501 0.312 0.404 0.446
ModernGBERT 1B° 0.374 0318 0.097 0.199
ModernGBERT 1B°* 0.549 0.339 0.463 0.511
ModernGBERT 1B 0.366 0.307 0.088 0.191
ModernGBERT 1B’ 0.551 0.338 0.459 0.512

Table 3: Performance comparison on MTEB. “Avg”
refers to the average over all six task groups, not only
the ones shown here. < indicates ModernGBERT with-
out context extension, while t marks the variant with
additional training.

& Observation: Fine-tuning yields the largest
gains in reranking, retrieval, and STS tasks.

The best overall average performance is achieved
by the fine-tuned LL&Mmlein2Vec 7B (0.557),
closely followed by the fine-tuned ModernGBERT
1B (0.551), despite the latter being significantly
smaller. LLAMmlein2Vec models generally show
strong performance after fine-tuning, particularly
when trained with the extension dataset of the first
phase (extl). Using the second extension phase
(ext2) or combining both adapters into the base
model (ext1+2) harms the performance. Interest-
ingly, the latter shows the largest fine-tuning gains
among the three variants.

The ModernGBERT models perform compet-
itively to similarly sized models. Before fine-
tuning, ModernGBERT 1B (avg. 0.366) already
outperforms most encoder-only models, such as
GeBERTaxparge (0.325) or XLM-RoBERTaxp arge
(0.301), but not GBERT] 3 (0.412). However,
after fine-tuning, it demonstrates clear superiority
among native encoder-only models by at least 3%
on the average score. As with our observations on
the SuperGLEBer benchmark, ModernGBERT’s
context extension did not show significant improve-
ments here.



Comparing ModernGBERT and LL&Mm-
lein2Vec, we find that before fine-tuning, the
LL&Mmlein2Vec 1B and 7B models produce better
representations than ModernGBERT 1B. However,
after fine-tuning, ModernGBERT 1B surpasses
the 1B variant of LLaMmlein2Vec on average and
closely aligns with the larger 7B model.

Long-Context Understanding Table 10 re-
ports results on our German Question-Answering
Needle-in-a-Haystack benchmark. Next to the
overall accuracy, we also present accuracy on sub-
sets of the test dataset, consisting only of short
(<1,024), medium (1,024 to 4,095), resp. long
(4,096 to 8,192) sequences. The evaluation focuses
on LL.Ms supporting up to 8,192 tokens: Modern-
GBERT, the encoder-converted LLiMmlein2 Vec,
as well as their original decoder counterparts. No-
tably, LLiMmlein models were pre-trained with
a maximum context of 2,048 tokens. Modern-
GBERT 1B demonstrates strong long-context per-
formance across all lengths, outperforming all en-
coders. The first extension phase during Modern-
GBERT training yielded strong improvements, in-
creasing accuracy by approximately factor 3, but
the final extension phase on the HQ dataset slightly
decreased performance by few percentage points,
particularly for the 134M variant.

Regarding LLM2Vec, a sufficiently long conver-
sion improved long-context understanding. Con-
version of LLiMmlein 120M and 1B decoders
(with native context length of 2,048) improved
accuracy by factor 1.3 resp. 2, both not as pro-
nounced in comparison to the ModernGBERT en-
coders. For LLiMmlein2Vec 7B however (with
LLM?2Vec training on approximately half of our
extl dataset), it decreased by 51%, with no correct
answers on haystacks of >4,096 tokens. Given the
intensive compute requirements, we did not explore
further optimizations regarding context extension
of the LLaMmlein2Vec 7B model.

& Observation: On small training datasets,
LLM2Vec tuning limits the understanding of
long-context samples.

5.3 Inference Efficiency

We evaluate inference efficiency across varying se-
quence lengths using four synthetic datasets, each
containing 8,192 documents composed of random
tokens. Following Warner et al. (2024), we cre-
ated two datasets using fixed length sequences of

either 512 or 8,192 tokens. The other two datasets
feature normal distributed sequence lengths (either
mean 256, variance 64; or mean 4,096, variance
1,024) to better simulate real-world conditions. Our
ModernGBERT models adopt ModernBERT’s un-
padding approach: padding tokens are removed
and sequences in a batch are concatenated, allow-
ing Flash Attention to handle variable-length at-
tention masks. The computational equivalence is
facilitated by carefully crafting an appropriate at-
tention mask. In contrast, all other models rely on
conventional padding.

Table 11 summarizes our findings. Among
smaller models (134M resp. 120M), Modern-
GBERT and LLdMmlein2Vec achieve comparable
efficiency on fixed-length data, both only surpassed
by GBERTg,s. and XLM-RoBERTag, in terms
of efficiency on short sequences.

For the 1B variants, ModernGBERT consistently
outperforms LL&Mmlein2Vec 1B and 7B varia-
tions in inference speed, likely due to its archi-
tectural decisions optimized for efficiency, such
as ensuring that weight matrices have dimension
of multiples of 64, and are divisible into 128 X
256 block for efficient tiling on the GPU. Gains
are most pronounced for variable-length datasets,
where ModernGBERT’s unpadding yields clear
benefits: the 134M ModernGBERT is the most effi-
cient model on variable length, and the 1B variant
substantially outpaces its LLiMmlein2 Vec counter-
part. Furthermore, given the comparable task per-
formance for e.g. ModernGBERT 1B and LLiMm-
lein2Vec 7B on MTEB (see Table 9), the Modern-
GBERT model is 10 times as fast on variable length
long context documents. The same trend is even
more pronounced for ModernGBERT 1B, com-
pared to its 1B LL@Mmlein2 Vec counterpart, where
LL&Mmlein2Vec is consistently outperformed by it
similarly sized ModernGBERT version, which on
top is twice as efficient on these long documents.

& Observation: When considering the trade-
off between computational efficiency and
downstream performance metrics, Modern-
GBERT consistently emerges as the optimal
solution—frequently outperforming LLiMm-
lein2Vec on both dimensions simultaneously.

6 Related Work

Next-Generation Encoders Several recent ef-
forts have extended ModernBERT to new lan-



guages and domains, including adaptations for
French (Antoun et al., 2024) and Japanese (Sugiura
et al., 2025).

Concurrent to our work, several alternative en-
coder architectures have been proposed. Breton
et al. (2025) introduced NeoBERT, an English en-
coder scaled to 250M, incorporating similar archi-
tectural innovations like ModernBERT, but scaling
up layers rather than hidden dimension, switch-
ing from GeLU to SwiGLU activation, and us-
ing a modified training scheme (Cosine sched-
uler, reduced masking). Their model surpasses
ModernBERT-large on GLUE and MTEB with
100M fewer parameters, although its scalability
with model size remains unexplored.

Likewise, Boizard et al. (2025) recently pre-
sented EuroBERT (210M, 610M, 2.1B), a multilin-
gual encoder family featuring architectural changes
similar to those of ModernBERT, but retaining
some architectural details (RMSNorm layer nor-
malization, SiLU activation function, Llama-style
tokenizer) from the Llama family, resembling our
LL&Mmlein2Vec architecture.

Antoun et al. (2025) compared French Modern-
BERT and DeBERTaV3 under controlled condi-
tions, finding DeBERTaV3 to be superior on down-
stream tasks but significantly slower in training and
inference.

Tuning decoder-only LLLMs into Encoders Few
works have investigated converting decoder-only
LLMs into encoders, besides LLM2Vec (Sec-
tion 3.2). Recent studies predominantly address
either distilling text embedders (Li and Li, 2024;
Lee et al., 2025, 2024; Ma et al., 2025) or fine-
tuning LL.Ms as bidirectional encoders for specific
tasks (Li et al., 2023; Dukié¢ and Snajder, 2024),
with evaluation typically focused on English or
multilingual settings.

Concurrently, MAGNET (Khosla et al., 2025)
was proposed for converting decoder LL.Ms into
foundational encoders, similarly to LLM2Vec. Un-
like LLM2Vec, MAGNET employs both bidirec-
tional and causal attention and adds a missing-span
generation objective.

7 Conclusion

We have demonstrated that both architectural ad-
vances in ModernBERT and the LLM2Vec decoder
transformation method yield strong German en-
coder models. The proposed ModernGBERT fam-
ily, especially the 1B variant, sets a new state-of-

the-art for German encoders, outperforming previ-
ous models while remaining suitable for practical
deployment as a drop-in replacement for GBERT,
capable of handing sequences of up to 8,192 to-
kens. Our learning dynamics analysis confirms
that larger encoder architectures can effectively ex-
ploit terabyte-scale German monolingual corpora,
with performance consistently improving with in-
creased model size and data. These trends suggest
that even larger encoder models could yield further
gains, which we leave to future work.

A comparison of ModernGBERT, and LLAMm-
lein2Vec (derived from LL#&Mmlein) both based
on the same dataset, shows that dedicated encoder
training yields superior results, justifying its com-
putational expense when parameter efficiency is
essential. By releasing ModernGBERT, along
with full training transparency, intermediate check-
points, and detailed documentation, we aim to facil-
itate further development and understanding within
the German LLM community.

Limitations

Despite the ModernGBERT models being a no-
table advancement in the German NLP landscape,
several limitations persist: 1) Monolingual focus.
Although the focus on German is a strength for
this specific context, ModernGBERT is unable to
utilize multilingual contexts or perform cross-lin-
gual tasks, hindering applicability in some scenar-
ios. 2) Limited coding capabilities. High-qual-
ity German resources for coding are rare, and no
code is included in the training dataset. This re-
stricts its capabilities in code retrieval applications.
3) Evaluation scope. While we rigorously eval-
uated our models on the German SuperGLEBer
and MTEB benchmarks, these benchmarks are lim-
ited in their domain, and other domains such as
literature, medical domains, or technical subjects
were not tested. Furthermore, our benchmarks do
not strictly probe for “German factual knowledge”,
for instance, knowledge about German geography,
or common German TV shows. 4) No custom
tokenizer. We utilized the original BERT-style
GBERT tokenizer due to its availability and per-
sistent usage. However, we did not invest in de-
veloping a custom tokenizer, like the BPE-style
OLMo tokenizer used in ModernBERT. Conse-
quently, ModernGBERT’s tokenizer cannot, e.g.,
differentiate between various whitespace charac-
ters or encode emoji.



5) Evaluation of long-context understanding.
Due to the absence of high-quality native German
evaluation datasets, we had to rely on non-natural
QA-NIAH sequences, only broadly testing for long—
context understanding. Contrast this with English
benchmarks such as coBench-MC (Zhang et al.,
2024) or LongBench-v2 (Bai et al., 2025), which
include full novels along with questions that require
attention to many information scattered throughout
the novel. In future work, we plan on develop-
ing a dedicated high-quality non-synthetic German
long-context evaluation benchmark.
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Appendix

A Model Architecture and Training
Details

Table 4 provides an overview of the model archi-
tectures for the ModernGBERT (134M, 1B) and
LLiaMmlein2Vec (120M, 1B, 7B) model families.
Detailed training settings regarding the pretraining
phase, context extension phase one and two, for
ModernGBERT are listed in Table 5, and those for
LLdMmlein2Vec, covering MNTP training, can be
found in Table 6.

B Evaluation Results

In the following we present the full evaluation re-
sults on SuperGLEBer, MTEB, NIAH, and our ef-
ficiency benchmarks for German-capable encoder
models, specifically our ModernGBERT (134M,
1B) and LL&Mmlein2Vec (120M, 1B, 7B).
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B.1 SuperGLEBer

In Figure 3 we illustrate the training progress, eval-
uating several intermediate checkpoints of Modern-
GBERT 134M and 1B. Notably, while the smaller
model did not show significant improvements af-
ter approximately 15% of it’s training data, the 1B
model improves performance until 67%.

Table 7 presents the results on the full Super-
GLEBer benchmark, comparing various German-
capable encoder models. Notably, ModernGBERT
1B sets a new state of the art, surpassing the previ-
ously leading encoder model GBERTY ¢ as well
as the seven times larger LLiMmlein2Vec 7B.
Transforming the LLiAMmlein decoders into en-
coders (in particular, the +extl variant) improves
the average score and yields notable gains on simi-
larity and sequence tagging tasks.

B.2 Massive Text Embedding Benchmark
(MTEB)

We summarize all tasks included in the
MTEB(deu,,vl) benchmark in Table 8 and
report the corresponding results in Table 9.
In addition to the base model outcomes, we
also present scores for models after supervised
training on the mMARCO dataset. Notably,
the fine-tuned versions consistently outperform
their base counterparts, with particularly strong
improvements in reranking, retrieval, and s2s tasks.
LLiMmlein2Vec 7B achieves the best results
closely followed by ModernGBERT 1B.

B.3 Needle-in-a-Haystack

The results on the Question-Answering Needle-in-
a-Haystack test are presented in Table 10. Modern-
GBERT 1B performs strongly across sequence
lengths, surpassed only by the eight-times larger
LLaMA 3.2. For LLiMmlein 120M and 1B,
MNTP training on the LONG-Head or LONG-
Head/Middle datasets improves performance on
longer contexts.

B.4 Efficiency

Finally, we depict the outcomes of our model ef-
ficiency tests in Table 11. The smaller Modern-
GBERT model is the most efficient on variable-
length input, while the 1B variant substantially out-
performs its LL@Mmlein2 Vec counterpart.
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ModernGBERT LLdMmlein2Vec
Parameters 134M 1B 120M 1B 7B
Vocabulary 31,168 31,168 32,064 32,064 32,064
Unused Tokens 66 66 54 54 54
Layers 22 28 12 22 32
Hidden Size 768 2,048 768 2,048 4,096
Transformer Block Pre-Norm Pre-Norm Post-Norm  Post-Norm  Post-Norm
Activation Function GeLU GeLU SiLU SiLU SiLU
Attention Heads 12 32 12 32 32
Head Size 64 64 64 64 128
Intermediate Size 1,152 3,072 2,048 5,632 11,008
Normalization LayerNorm LayerNorm RMSNorm  RMSNorm  RMSNorm
Norm Epsilon 1x107 1x107 1x107 1x107 1x1075
ROPE theta 160,000 160,000 160,000 160,000 160,000
Global Attention Every three layers  Every three layers  Every layer  Every layer  Every layer
Local Attention Window 128 128 — — —
Local Attn RoPE theta 10,000 10,000 — — —

Table 4: Model design of the ModernGBERT and LLd@Mmlein2Vec model family.

Pretraining Phase

Context Extension: Phase One

Context Extension: Phase Two

134M 1B 134M 1B 134M 1B
Training Tokens 0.47T 1.27T 52B 90B 14.4B
Max Sequence Length 1,024 8,192 8,192
RoPE Theta 10,000 160,000 160,000
Batch Size 4,608 4,928 96 96 96 96
Warmup (tokens) 3x10° — — — —
Microbatch Size 96 28 8 3 8 3
Learning Rate §x 10  5x107 3x 107 5% 107 3% 107 5% 107
Schedule Trapezoidal — — 1-sqrt
Warmup (tokens) 15 % 10° — — — —
Decay (tokens) — — — — 12.8 x 10°
Weight Decay 1x107 1x107° 1x107° 1x107° 1x107°
Training Time (hours) 31.3 446.1 5.9 42.1 2.0 8.3
Model Initialization Megatron  Megatron — — — —
Dropout (attn out) 0.1
Dropout (all other layers) 0.0
Optimizer StableAdamW
Betas (0.90, 0.98)
Epsilon 1x107°
Training Hardware 16x H100

Training Strategy

Distributed DataParallel, bfloat16

Table 5: ModernGBERT training settings. Dropout and below are shared across all phases.

LLdMmlein2Vec 120M

LLdMmlein2Vec 1B

LLdMmlein2Vec 7B

Extl Ext2 Extl Ext2 Extl Ext2
Training Tokens 52B 14.4B 90B 14.4B 90B 14.4B
Max Sequence Length 8,192 8,192 8,192
ROPE theta 160,000 160,000 160,000
Batch Size 32 32 32 32 16 16
Training Hardware 64x H200 64 x H200 256 x H200 128 x H200
Training Duration 10h41 3h40 37h24 6h40 14h25% 9h39

Table 6: LLaMmlein2Vec training settings. Due to limited resources we had to terminate the 7B model training on
the first extension dataset early .
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Figure 3: Intermediate Checkpoint Evaluation. Note that the solid line represents the mean of the six tasks selected
for the intermediate checkpoint evaluation (NLI, FactClaiming Comments, DB Aspect, WebCAGe, EuroParl,
PAWSX Similarity). The box plots show the distribution of scores for those checkpoints evaluated across all 29
SuperGLEBer tasks. We compared each pair of these checkpoints using Wilcoxon signed-rank tests, and highlighted
significant increases with brackets. Brackets of pairs without significant increases are not displayed. (Accordingly,
all pairs of 134M checkpoints show no significant increase.) Four checkpoints failed to converge during fine-tuning
on some task, leading to the visible outliers. Similar behavior has been observed by Antoun et al. (2025).

15



Category Task Metric Reference
Classification AmazonCounterfactual Accuracy O’Neill et al. (2021)
AmazonReviews Accuracy Keung et al. (2020)
MTOPDomain Accuracy Liet al. (2021)
MTOPIntent Accuracy Lietal. (2021)
Massivelntent Accuracy FitzGerald et al. (2023)
MassiveScenario Accuracy FitzGerald et al. (2023)
PairClassification  FalseFriendsGermanEnglish ~ Average Precision  Chibb (2022)
PawsXPairClassification Average Precision  Yang et al. (2019)
Clustering BlurbsClusteringP2P V-measure Wehrli et al. (2023)
BlurbsClusteringS2S V-measure Wehrli et al. (2023)
TenKGnadClusteringP2P V-measure Wehrli et al. (2023)
TenKGnadClusteringS2S V-measure Wehrli et al. (2023)
Reranking MIRACLReranking nDCG@10 Zhang et al. (2023)
Retrieval GermanQuAD-Retrieval MRR @5 Moller et al. (2021)
GermanDPR DCG@10 Moller et al. (2021)
Xmarket nDCG@10 Bonab et al. (2021)
GerDaLIR nDCG@10 Wrzalik and Krechel (2021)
STS GermanSTSBenchmark Spearman May (2021); Cer et al. (2017)
STS22 Spearman Chen et al. (2022)

Table 8: Overview of tasks included in the German MTEB(deu, v1) benchmark, grouped by six categories: classifi-

cation, pairclassification, clustering, reranking, retrieval and STS.
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GBERT Large 337M | 0.649 0.544 0336 0206 0.297 0.438 0.412
GBERT Large f 0.646 0.662 0334 0389 0.493 0.603 0.521
gerturax-3 135M | 0.623 0.554 0.269 0.141 0.187 0.375 0.358
gerturax-3T 0.620 0.614 0328 0.346 0.389 0.538 0.472
GeBERTag;;. 139M | 0.632 0535 0312 0.174 0213  0.429 0.382
GeBERTag, ' 0.611 0.613 0318 0.374 0430 0.611 0.493
GeBERTap g 406M | 0.642 0.533 0.287 0.223 0.274 0424 0.397
GeBERTangeJr 0.618 0.611 0311 0374 0432 0.616 0.494
GeBERTaxtarge 887M | 0.626 0.536 0.278 0.108 0.058 0.342 0.325
GeBERTaXLMgeJr 0.638 0.631 0323 0414 0462 0.655 0.521
XLM-RoBERTagase 279M | 0.442 0506 0.173  0.024 0.008 0.333 0.248
XLM-RoBERTag, 0.555 0529 0.247 0247 0299 0.539 0.403
XLM-RoBERTaLarge 561M | 0.510 0.510 0.172 0.048 0.026 0.320 0.264
XLM—ROBERTaLargeT 0.576  0.574 0259 0.343 0416 0.593 0.460
XLM-RoBERTaxp arge 348B | 0456 0519 0.225 0.090 0.142 0.372 0.301
XLM—ROBERTaXLargeT 0.609 0.564 0342 0362 0407 0.590 0.479
LL&éMmlein2Vec (extl) 120M | 0.546 0.529 0.261 0.139 0.224 0.188 0.315
LLiMmlein2Vec T (extl) 120M | 0.599 0.575 0308 0.325 0425 0.592 0.471
LL&éMmlein2Vec (ext2) 120M | 0457 0525 0.202 0.118 0.117  0.205 0.271
LLiMmlein2Vec T (ext2) 120M | 0.607 0.588 0.295 0.305 0.339 0.498 0.439

LLaMmlein2Vec (ext1+2) 120M | 0.339 0.530 0.098 0.046 0.009 0.107 0.188
LL#Mmlein2Vec T (ext1+2) 120M | 0.517 0.563 0.263 0.251 0.355 0.554 0.417

LLaMmlein2Vec (extl) IB | 0.641 0542 0.308 0.183 0.276 0.442 0.399
LL#Mmlein2Vec T (extl) 1B | 0.670 0.625 0.343 0433 0511 0.660 0.540
LL&Mmlein2Vec (ext2) IB | 0.617 0541 0299 0.189 0.280 0.431 0.393
LLdMmlein2Vec T (ext2) IB | 0.666 0.622 0.330 0433 0499 0.644 0.532
LL&Mmlein2Vec (ext142) 1B | 0337 0.538 0.075 0.062 0.010 0.217 0.206
LL#Mmlein2Vec T (ext1+2) 1B | 0.647 0.611 0.325 0421 0481 0.640 0.521
LL&Mmlein2Vec (extl) 7B | 0.683 0.558 0.249 0.169 0.266 0.333 0.376
LL#Mmlein2Vec T (extl) 7B | 0.687 0.636 0.339 0477 0.522 0.682 0.557
LL&Mmlein2Vec (ext2) 7B | 0.679 0555 0323 0.187 0309 0.462 0.419
LL#Mmlein2Vec T (ext2) 7B | 0.683 0.628 0.337 0471 0517 0.680 0.553
LL&aMmlein2Vec (extl1+2) 7B | 0349 0525 0.072 0.047 0.005 0.182 0.197
LL#Mmlein2Vec T (ext1+2) 7B | 0.677 0.615 0.327 0460 0.506 0.663 0.541
ModernGBERT 134M | 0.639 0.537 0.293 0.139 0.241 0.449 0.383
ModernGBERT f 0.602 0.606 0303 0364 0432 0.602 0.485
ModernGBERT  + ext1+42 134M | 0.642 0.536 0296 0.120 0.213  0.445 0.376
ModernGBERT T + ext1+2 0.629 0.612 0312 0404 0446 0.606 0.501
ModernGBERT IB | 0.665 0544 0318 0.097 0.199 0418 0.374
ModernGBERT f 0.659 0.641 0339 0463 0.511 0.681 0.549
ModernGBERT  + ext1+2 1B | 0.659 0.540 0307 0.088 0.191 0.410 0.366
ModernGBERT T + ext1+2 0.659 0.654 0338 0459 0513  0.682 0.551

Table 9: Results on MTEB(deu, vi) of the German MTEB Benchmark. For each task type, scores were averaged
across respective unique tasks. We provide results for basis models as well as after supervised training on mMARCO
1. In all cases, evaluation was done in a zero-shot fashion without further finetuning on the above tasks. Best scores
are indicated in bold.

17



1,024 to 4,096 to
Model Params | <1,024 tok. 4,095 tok. 8,192 tok. Overall
LL&Mmlein 120M 0.286 0.124 0.049 0.091
LLiMmlein 1B 0.517 0.230 0.088 0.165
LL&Mmlein 7B 0.529 0.310 0.122 0.216
LLdMmlein2Vec (extl) 120M 0.315 0.206 0.044 0.120
LL&Mmlein2Vec (ext2) 120M 0.252 0.047 0.000 0.031
LLiMmlein2Vec (extl+2) 120M 0.055 0.001 0.000 0.003
LL4Mmlein2Vec (ext1) 1B 0.588 0.448 0.232 0.333
LL&Mmlein2Vec (ext2) 1B 0.555 0.297 0.003 0.144
LLaMmlein2Vec (ext1+2) 1B 0.462 0.209 0.033 0.123
LL#Mmlein2Vec (extl) 7B 0.597 0.207 0.000 0.111
LLaMmlein2Vec (ext2) 7B 0.605 0.176 0.000 0.099
LL&Mmlein2Vec (ext1+2) 7B 0.580 0.327 0.000 0.156
ModernGBERT 134M 0.552 0.168 0.013 0.105
ModernGBERT + extl 134M 0.536 0.410 0.238 0.323
ModernGBERT + ext1+2 134M 0.540 0.393 0.201 0.296
ModernGBERT 1B 0.556 0.233 0.023 0.136
ModernGBERT + extl 1B 0.617 0.506 0.406 0.457
ModernGBERT + ext1+2 1B 0.601 0.526 0.383 0.451

Table 10: QA-NIAH results. Metric is Exact Match. All tokens are counted per the model’s respective tokenizer.
ModernGBERT models marked with “w/o ext” refer to the model checkpoint after pre-training but before the
context extension phases, those marked with “w/o ext2” to the models after extension phase one, but before phase
two.

Short Long

Model Params  Fixed Length  Variable Length ~ Fixed Length ~ Variable Length
GBERTEase 111M 2.33+£0.13 5.25+£0.27 - -
GBERT Large 337M 7.25+0.77 15.70 £ 1.66 - -
gerturax-3 135M 4.13+0.40 8.26+0.81 - -
GeBERTag 139M 9.79 +£0.04 19.40 £ 0.08 - -
GeBERTaLargeJr 406M 27.30+£0.09 54.10 £ 0.40 - -
GeBERTaXngeT 887M 42.20+0.36 83.80+0.70 - -
XLM-RoBERTag,se 279M 2.28 £0.08 5.05+0.19 - -
XLM-RoBERTalLargeJr 561M 7.27+0.53 15.90 £ 1.04 - -
XLM-RoBERTaXL.d,gJ 3.48B 57.70 £0.37 123.00 £ 0.71 - -
LLiMmlein2Vec 120M 3.74 £0.75 7.17+0.53 6.69 +£0.14 8.39+0.35
LLiMmlein2Vec 1B 27.30+0.16 53.90 £ 0.37 4270 £0.12 59.70 £ 0.30
LLdMmlein2Vec 7B 143.00+0.22 288.00 +£0.52 180.00 £ 0.19 304.00 £ 0.41
ModernGBERT 134M 3.60 +0.29 3.70+0.74 5.42+0.33 471 +£0.75
ModernGBERT 1B 22.60 +0.40 22.50+0.18 28.70 +£0.31 26.20+0.36

Table 11: Model Throughput. Numbers are seconds per million tokens. All models were run on an RTX A6000
with Bfloat16 data type and with Flash Attention 2, except models with T, which did not implement Flash Attention
2. Reported uncertainty is the empirical standard deviation on 10 repetitions.
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