Under review as a conference paper at ICLR 2026

INFIR2: A COMPREHENSIVE FP8 TRAINING RECIPE
FOR REASONING-ENHANCED LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The immense computational cost of training Large Language Models (LLMs)
presents a major barrier to innovation. While FP8 training offers a promising
solution with significant theoretical efficiency gains, its widespread adoption has
been hindered by the lack of a comprehensive, open-source training recipe. To
bridge this gap, we introduce an end-to-end FP8 training recipe that seamlessly
integrates continual pre-training and supervised fine-tuning. Our methodology
employs a fine-grained, hybrid-granularity quantization strategy to maintain nu-
merical fidelity while maximizing computational efficiency. Through extensive
experiments, including the continue pre-training of models on a 160B-token cor-
pus, we demonstrate that our recipe is not only remarkably stable but also essen-
tially lossless, achieving performance on par with the BF16 baseline across a suite
of reasoning benchmarks. Crucially, this is achieved with substantial efficiency
improvements, including up to a 22% reduction in training time, a 14% decrease
in peak memory usage, and a 19% increase in throughput. Our results establish
FP8 as a practical and robust alternative to BF16, and we will release the accom-
panying code to further democratize large-scale model training.

1 INTRODUCTION

The emergence of Large Language Models (LLMs) is revolutionizing artificial intelligence, demon-
strating unprecedented capabilities in tasks like natural language processing, code generation, and
multimodal reasoning (OpenAl et all 2024; [Team et al., |2024; [DeepSeek-Al et al., |2025; |Qwen
et al.,2025)). However, this progress is fundamentally tethered to scaling laws that demand immense
computational resources, rendering the training of these models prohibitively expensive and creat-
ing a significant barrier to innovation. To surmount this challenge, researchers are actively pursuing
more efficient training paradigms, with low-precision training emerging as a highly promising di-
rection (Micikevicius et al., 2018 Wang et al., 2018a; [Zhu et al., |2019; X1 et al., 2023 [Wortsman
et al.,[2023}; X1 et al., [2024).

Low-precision training accelerates computation and reduces memory usage by quantizing network
tensors to lower bit formats. While BF16 is the current de facto standard widely adopted in large-
scale model training (Kalamkar et al|,2019), a paradigm shift is underway. The advent of NVIDIA’s
Hopper architecture, with its dedicated hardware support for FP8, has unlocked new opportunities
for efficiency. FPS training offers the compelling theoretical potential to double training throughput
and halve the memory footprint relative to BF16.

Pioneering work by [DeepSeek-Al et al.| (2025) provided a crucial existence proof for the viability
of FP8 training. They introduced a fine-grained quantization strategy for efficient General Matrix
Multiplication (GEMM), open-sourcing their implementation as DeepGEMM (deepseek ail, [2024),
and demonstrated its application in reducing memory and communication overhead for Mixture-of-
Experts (MoE) models. While this work successfully showcased the potential of FP8, the absence
of an open-source, end-to-end training recipe has remained a critical gap, hindering widespread
community adoption and further research into the nuances of FP§ training dynamics.

To bridge this gap and democratize FP8 training, we introduce a comprehensive FP8 training recipe
that seamlessly integrates FP8 techniques with mainstream LLM training paradigms, including pre-
training and supervised fine-tuning. Our core methodology is a hybrid-granularity quantization

Under review as a conference paper at ICLR 2026

strategy: we apply computationally-friendly block-wise quantization to model weights, while em-
ploying higher-fidelity token-wise quantization for activations, which are known to exhibit more
dynamic ranges. Based on this end-to-end FP8 training recipe, we obtain InfiR2-1.5B-FP8 and
InfiR2-7B-FP8.

Through extensive experiments in both continual pre-training and supervised fine-tuning settings,
we demonstrate the efficacy and efficiency of our recipe. Our results show that end-to-end FPS8
training is remarkably stable, with training and validation loss curves that are nearly identical to
those of BF16. Furthermore, we find that FP8 training is largely lossless, achieving performance on
par with the BF16 baseline across a suite of reasoning benchmarks, and in some cases, even yield-
ing performance improvements, particularly in smaller-scale models. Crucially, these results are
achieved alongside substantial gains in training efficiency. Our FP8 implementation reduces total
training time by up to 22%, decreases peak memory consumption by up to 14%, and improves com-
putational throughput by up to 19%. Collectively, our work validates that FP8 training, facilitated by
our recipe, offers a compelling trade-off, delivering significant improvements in training speed and
resource utilization without compromising model performance, thereby making the development of
large-scale models more accessible and sustainable.

Our contributions are as follows:

* We introduce an FP8 fine-grained hybrid granularity training recipe for stable and efficient
large-scale model training, specifically designed to preserve and enhance model reasoning
capabilities.

* We provide rigorous empirical validation of FP8 training accuracy across continual pre-
training and SFT, showing that FP8 matches BF16 with performance differences typically
within 1-2 points across benchmarks, while delivering up to 22% faster training, 14% lower
memory footprint, and 19% higher throughput.

* We release valuable insights, training logs, and intermediate model checkpoints to sup-
port the community, including the InfiR2-7B-FP8 model that achieves 55.73 on AIME24
(+12.71 over its Qwen2.5-7B-base origin).

2 RELATED WORK

Low-precision training in LLMs Recent advancements in low-precision training have shown
promise in mitigating the substantial computational and memory demands of modern deep neu-
ral networks (Hubara et al., 2016; Wang et al.,|2018b; [Zhou et al., 2016; Wu et al., [2018)). Despite
this, applying low precision to the training of LLMs remains a significant challenge. A key obstacle
lies in the strong outliers that emerge in the activations of modern transformer models (Lin et al.,
2024;[smo; Kovaleva et al.,[202 1} Bondarenko et al.|, 202 1;|Dettmers et al.,|2022)). This phenomenon,
which complicates quantization, is primarily attributed to the combination of the softmax, residual
blocks and LayerNorm, posing a fundamental barrier to the effective use of low-precision techniques
for LLM training (Bondarenko et al.| 2023)).

To address these issues and enable low-precision training, the community has largely relied on
mixed-precision techniques. FP16, addressing the information loss of the half-precision by in-
troducing the loss scaling, becomes one of the most prevalent low-precision training methods for
LLMs (Micikevicius et al., 2017). An evolution of this approach, BF16 training (Hubara et al.,
2016) provides a wider representation range than FP16. This wider exponent range lets it handle the
large gradients and activation outliers common, and therefore more stable in LLMs training. How-
ever, both methods compute the forward and backward passes in half-precision, while maintaining
master weights, gradients, and optimizer states in FP32 for numerical stability.

As models continue to grow in scale, the field has also begun exploring even lower-precision training
methods, with FP8 training drawing significant attention (Fishman et al.| [2025; Wang et al.,[2018bj
Peng et al.,[2023). On the hardware side, NVIDIA’s Blackwell architecture (NVIDIA| [2024) fun-
damentally ensures FP8 training stability with the MXFP8-E4M3 format (Rouhani et al.,|2023)) and
a quantization method that preserves powers of two for scaling factors. Together, these innovations
are pushing the boundaries of low-precision training, making it an indispensable part of large model
research.

Under review as a conference paper at ICLR 2026

However, this lower precision introduces new challenges, such as a greater risk of precision loss
and training instability (Lee et al., |2024). To overcome these hurdles, COAT framework (X1 et al.,
2025) uses techniques like dynamic range expansion and mixed-granularity activation quantization
to preserve accuracy. DeepSeek-V3 (DeepSeek-Al et al.| [2025), meanwhile, employs a fine-grained
quantization strategy that meticulously groups and scales weights and activations to handle outliers.

3 PRELIMINARIES

FP8 has become a key technique for improving the efficiency of large models during both training
and Inference. Its main advantages include reducing memory footprint and accelerating computa-
tion. [Micikevicius et al.[(2022) standardized two FP8 formats for deep learning: E4M3 (4 exponent
bits, 3 mantissa bits), which has a smaller dynamic range but higher precision and is suitable for
weights, and ESM2 (5 exponent bits, 2 mantissa bits), which has a wider dynamic range and is
better suited for activations.

d bs d d

bs

per-tensor per-block per-token

Figure 1: An illustration of three common quantization granularities: per-tensor, per-block, and per-
token. The tensor has a shape of [s, d], where s is the context length and d is the dimension. bs
represents the block size.

Quantization is the process of mapping a high-precision tensor X to low-precision representation,
typically using a scaling factor (S). Based on the granularity at which the scaling factor is applied,
there are three primary quantization methods, as illustrated in Figure

* Per-Tensor: A single scaling factor is applied across the entire tensor. While computation-
ally simple, this method is prone to accuracy loss from outlier values.

* Per-Block: The tensor is partitioned into smaller blocks (e.g., bsxbs sub-matrices), each
with a unique scaling factor. This method offers a better balance between computational
efficiency and numerical precision.

* Per-Token: This fine-grained method applies a distinct scaling factor to each individual
token (or row). Specifically, this can also be represented as a 1 x bs block, where bs is the
block size. While this approach maximizes accuracy, it comes at a higher computational
cost.

All three quantization methods follow a simple two-step process. First, a scaling factor (S) is calcu-
lated. This is done by taking the largest absolute value in a given tensor (or its sub-part) and dividing
it by the maximum value that the FP8 format can represent (Vmax).

max(|X)

S =
Vmax

)

Next, this scaling factor is used to convert each number (x) in the original tensor (X) into its new
quantized value (Q (x)) by rounding the result.

Q(x) = round (%) 2

Mixed-Granularity Quantization: To address the inefficiency and inaccurate problem, COAT (Xi
et al., |20235)) propose to use mixed granularity FP8 precision flow to improve the accuracy without

Under review as a conference paper at ICLR 2026

introducing too much overhead. For linear layers, they apply per-tensor quantization to maximize
the performance of Tensor Cores. instead of using per-block quantization with block size bs x bs
as proposed in [Fishman et al.| (2025)), they propose to use per-token quantization with size 1 x G,
where G = bs? to keep the granularity the same.

UE8MO. proposed by Mishra et al.| (2025), ensures the stability of post-quantization FP§ training
by rounding the scaling factor X up to the nearest power of 2. As detailed in Algorithm [T] this
upward rounding guarantees the scaling factor is slightly greater than or equal to its theoretical value,
which in turn maps a wide numerical range into the limited 8-bit representation without introducing
significant quantization noise.

Algorithm 1 Scaling factor X computation method for UESMO quantization format.

1: Xfioat < @max/dmax > dmax 1S the max representable value in the MX-format
2: expXpou < 1089 (Xtoar) > Extract the de-biased exponent
30 expXiy < [expXgoa] > Round up
4: X < clamp(expX,, —127,127) > clamp to the ESMO representable exponent range
50 X «— X 4+ 127 > Add bias
6: return 2%

4 HYBRID GRANULARITY QUANTIZATION STRATEGY

To address the dual challenges of Out-of-Memory (OOM) errors and accuracy degradation in large-
scale model training, we adopt a hybrid granularity quantization strategy in FP8 training, applying
different quantization methods to weights and activations, as shown in Figure 2]

e ————

1
I
|
|
Gradient [v] = :
y i
Optimizer 1
States |
FlashAttention
Y I
Master 1
[=] =
1
1
___ |
Pt feelerelierefieyefisefesefereereferefieyefieyefiesefersfersferserefeyferfer —l
:BF16 FProp |
| PR B (__RmsNorm] [RMSNorm] ||
1 ! FProp i i Wgrad H :
i ! ! ! Weight

! | | | | [e] X .
. | j : | o] el

e :
| Optimizer 1
| P . States [
! T hgad | .

Gradient | | Gradient Master

. 9% = '
! o] .
| |
| |

r 1

1 1
FP8 FP8

! N 1

| @D oo BB renlom (O e @ w2 |y | s |

.)

Figure 2: An illustration of a hybrid granularity quantization strategy using FP8, compared to a
standard BF16 pipeline. In the FP8 pipeline, different quantization methods are applied: per-tensor
quantization for weights (purple), and per-block quantization for activations (blue). The diagram
shows the complete training process, including forward propagation (FProp), weight gradient cal-
culation (Wgrad), and input gradient calculation (Dgrad), along with a detailed view of the FProp
workflow.

Weight Quantization: To align with hardware-level optimizations for Deep GEMM operations, we
implement block-wise quantization for model weights. Compared to COAT which uses the coarser

Under review as a conference paper at ICLR 2026

tensor-wise method, this approach maintains a higher degree of precision while still providing a
substantial reduction in memory consumption, effectively alleviating resource bottlenecks during
training.

Activation Quantization: For activations, particularly those preceding the SwiGLU activation func-
tion, we employ a more granular token-wise quantization. This method is better suited to the unique
numerical range of each token, maximizing the preservation of critical information.

To guarantee the stability and accuracy of the training process, we maintain three critical compo-
nents in high-precision FP32. The weight gradient and optimizer states are kept in FP32 to ensure
the preservation of small, precise values that would otherwise be lost to rounding errors in a lower-
precision format. Similarly, the master weight is stored in FP32 as a high-fidelity reference copy,
accumulating small updates from the gradients without information loss, thereby preventing catas-
trophic degradation in model quality over time.

5 EXPERIMENTS

In this section, we present our experiments on pre-training and supervised fine-tuning (SFT) with
FP8, covering the experimental setup, training results, efficiency analysis, and key findings.

5.1 PRETRAINING AND FINE-TUNING WITH FP8

5.1.1 SETUP

We perform continual pre-training on the Qwen2.5-1.5B-base and Qwen2.5-7B-base models for
an additional 160B tokens using an FP8 format, where both forward and backward passes employ
E4M3, and quantization scaling factors are represented in UESMO. The data mixture consists of
140B tokens from public sources (FineWeb (Penedo et al., 2024}, Nemotron Datasets (Chowdhery
et al., [2024)), stack-edu (Kocetkov et al.,[2023) and issues-kaggle-notebooks (Lozhkov et al.| 2024))
and a subsequent 20B tokens where this base is mixed with AM-DeepSeek-R1 (a-m team| 2025)
and AM-Qwen3 (Tian et al., 2025). All pre-training hyperparameters are listed in Table |}

Subsequently, these models are fine-tuned with FP8 format in two stages using the InfiAlign-SFT-
92k (Cai et all [2025) and InfiAlign-SFT-165k datasets, with hyperparameters shown in Table [3]
This stage yields InfiR2-1.5B-FP8 and InfiR2-7B-FP8. Finally, we evaluate them on the AIME24,
AIME25 (Trinh et al.l 2024), GPQA (Rein et al.} |2023), and LiveCodeBench v5 (Cai et al., 2024)
benchmarks using the EvalScope framework (ModelScope)). To ensure a fair and consistent assess-
ment, the same precision is maintained throughout both the training and evaluation phases.

Table 1: Continual Pretrain Configuration

Hyperparameter Value
Batch Size 128
Learning Rate 1x1074
Minimun Learning Rate 1 x 107°
Weight decay 0.1
Context Length 32k

5.1.2 TRAINING LOSS

As shown in[4] the trajectories of the FP8 (red) and BF16 (blue) curves are nearly identical through-
out the entire 160B token training process, for both the validation loss (a) and the training loss (b).
The two curves are so closely aligned they are virtually indistinguishable. This indicates that the
model’s learning process is equivalent under both precision formats.

5.1.3 TRAINING RESULTS

Our end-to-end FP8 training recipe demonstrates strong effectiveness in enhancing foundation mod-
els. As shown in Table [2| both 1.5B and 7B models trained with InfiR2 achieve substantial gains

Under review as a conference paper at ICLR 2026

—— FP8 Continue Pretrain 13 —— FP8 Continue Pretrain
----- FP§ Decay -~ FP8 Decay

m - -

20 40 60 80 100 120 120 160 20 40 60 80 100 120 140
Tokens (B) Tokens (B)

(a) InfiR2-1.5B-FP8 (b) InfiR2-7B-FP8

Figure 3: The FP8 training loss of InfiR2-1.5B and InfiR2-7B.

over their Qwen2.5-base counterparts. At the 1.5B scale, InfiR2-1.5B-FP8 consistently surpasses
the base model with the same supervised fine-tuning across all benchmarks. The improvements be-
come even more pronounced at the 7B scale: InfiR2-7B-FP§ attains a score of 55.73 on AIME
24, representing a 12.71-point increase over its base and significantly outperforming the strong
DeepSeek-Distill-Qwen-7B baseline. These results confirm that our FP8 training pipeline produces
high-quality, competitive models with superior reasoning capabilities.

Table 2: Performance comparison on reasoning benchmarks. All scores are percentages (%).

Model AIME 25 AIME 24 GPQA LiveCodeBench v5
Deepseek-Distill-Qwen-1.5B 21.35 26.87 32.26 18.50
Qwen?2.5-1.5B-base (w. InfiAlign) 14.58 10.52 28.98 12.99
InfiR2-1.5B-FP8 18.45 17.39 29.48 17.10
Deepseek-Distill-Qwen-7B 43.00 49.00 48.20 37.60
Qwen2.5-7B-base (w. InfiAlign) 33.75 43.02 48.11 39.48
InfiR2-7B-FP8 40.62 55.73 45.33 40.31

5.2 SUPERVISED FINE-TUNING WITH FP8
5.2.1 SETUP

We performe a two-stage Supervised Fine-Tuning on the Qwen2.5-Math-7B and Qwen2.5-Math-
1.5B models to compare the performance across BF16, FP8(w. FP32 scale), and FP8. The key
training hyperparameters are summarized in Table 3]

Table 3: SFT Configuration

Hyperparameter Value

Stagel Dataset InfiAlign-SFT-92k
Stage2 Dataset InfiAlign-SFT-165k

Epochs 5

Batch Size 64

Learning Rate 5x107°

Context Length 32k

LR Cosine with 0.1 warm-up ratio

5.2.2 TRAINING RESULTS

The performance of Qwen2.5-Math-1.5B and Qwen2.5-Math-7B with different quantization meth-
ods is shown in Table @

Under review as a conference paper at ICLR 2026

Table 4: A detailed comparison of training quantization methods (BF16, FP8 w. FP32 scale, FP8)
on the performance of Qwen2.5-Math-7B and Qwen2.5-Math-1.5B. The models were evaluated on
AIME 25, AIME24, GPQA, and LiveCodeBench v5 using checkpoints from Stage 1 and Stage 2 of
training.

Base Model \ Quantization Method AIME 25 AIME24 GPQA LiveCodeBench v5
Stage 1
BF16 44.16 56.87 45.14 32.22
FP8 w. FP32 scale 44.06 56.67 47.98 32.18
FP8 44.89 57.81 47.10 31.34
Qwen2.5-Math-7B Stage 2
BF16 50.00 59.48 48.36 35.22
FP8 w. FP32 scale 46.46 57.92 45.39 35.87
FP8 49.79 59.69 46.78 36.21
Stage 1
BF16 15.41 18.33 24.68 10.71
FP8 w. FP32 scale 15.73 18.65 25.38 10.14
FP8 17.50 16.88 23.17 9.84
Qwen2.5-Math-1.5B Stage 2
BF16 17.92 21.35 24.48 12.16
FP8 w. FP32 scale 20.62 22.81 27.78 12.69
FP8 20.73 21.77 25.13 12.96

5.2.3 FINDINGS

FP8 Quantization: Performance Preservation with Occasional Gains. We find that FP8 quan-
tization largely maintains performance fidelity relative to the BF16 baseline. Across most bench-
marks, the performance metrics for FP8 are on par with BF16, with observed deltas typically con-
fined to a 1-2 point margin, a variance attributable to inherent evaluation noise.

UESMO better than FP32 scale. For the Qwen2.5-Math-7B model, all precision formats demon-
strate comparable performance in Stage 1. For instance, on the AIME24 benchmark, FP8 (57.81)
registers a slight improvement over BF16 (56.87). Although FP8(w. FP32 scale) exhibits a marginal
performance regression in Stage 2 on select benchmarks (e.g., 46.46 vs. 50.00 for BF16 on AIME
25), the FP8 configuration effectively mitigates this effect, restoring performance to a level (49.79)
nearly identical to the BF16 baseline. This result underscores the criticality of the UESMO format
for preserving model performance in larger-scale models during advanced training stages.

Performance Gains in Smaller-Scale Models. Counter-intuitively, for the smaller-scale Qwen2.5-
Math-1.5B model, both FP8 quantization methods yield substantial performance improvements over
the BF16 baseline in Stage 2. On the GPQA benchmark, for example, the FP8(w. FP32 scale) and
FP8 configurations achieve scores of 27.78 and 25.13, respectively, compared to 24.48 for BF16.
Notably, the FP8(w. FP32 scale) variant consistently outperforms the baseline across all four evalu-
ated benchmarks.

5.3 FP8 TRAINING VALIDATION

To validate the accuracy alignment of our FPS training recipe with a BF16 baseline, we conduct a
two-stage comparison on the Qwen2.5-1.5B-base model. First, we compare the loss curves during
the continual pre-training phase for both precisions with settings described in Section Second,
we perform a comprehensive evaluation of the models after applying the supervised fine-tuning
settings described in Section[5.2.1}

5.3.1 LosS COMPARISON

As shown in Figure[d] the training dynamics of FP8 and BF16 are virtually indistinguishable over the
entire 160B-token continual pre-training trajectory. Both the validation loss (Figure[4a)) and training
loss (Figure exhibit nearly identical convergence patterns, with the FP8 curve (red) and BF16
curve (blue) remaining closely aligned throughout. The overlap between the two trajectories is so
pronounced that they are almost visually indistinguishable, underscoring the numerical stability of
FP8 training.

Under review as a conference paper at ICLR 2026

FP8 vs BF16 FP8 vs BF16

20 40 60 80 100 120 120 160 20 40 60 80 100 120 120 160
Tokens (B) Tokens (B)

(a) Validation Loss (b) Training Loss

Figure 4: The validation loss and training loss of Continue Pretraining Qwen2.5-1.5B-base compar-
ing FP8 and BF16.

Table 5: Performance comparison of BF16 and FPS training on reasoning benchmarks. All scores
are reported as percentages (%).

AIME 25 AIME 24 GPQA LiveCodeBench v5

BF16 17.91 17.50 31.94 16.41
FP8 18.45 17.39 29.48 17.10

This finding provides strong empirical evidence that FP8 does not alter the underlying learning dy-
namics of the model. The equivalence between FP8 and BF16 in both optimization behavior and
generalization performance demonstrates that our FP8 recipe preserves training fidelity, ensuring
that efficiency gains are achieved without compromising convergence quality. Importantly, the con-
sistency of the two curves across the full pre-training horizon suggests that FP8 training remains
stable even under long-duration optimization at scale, reinforcing its viability as a drop-in replace-
ment for BF16 in large-scale LLM training pipelines.

5.3.2 PERFORMANCE COMPARISON

Table[5]reports the performance of FP8 and BF16 training on mathematical and coding benchmarks.
Notably, the FPS8 results are obtained under a full FP8 training pipeline, covering both continual
pretraining and subsequent 2-stage SFT. The results show that FP8 achieves accuracy on par with
BF16 across all tasks. The small score variations indicate that reduced numerical precision intro-
duces negligible degradation, confirming that FP8 training preserves the core reasoning capabilities
of the model.

5.4 EFFICIENCY ANALYSIS

The performance evaluation presented in Table[6|highlights the substantial computational and mem-
ory efficiency gains achieved by our FP8 training compared to BF16 across different model configu-
rations. The benchmarking encompasses both 1.5B and 7B parameter models under varying context
lengths and parallelization strategies, providing a comprehensive view of FP8’s effectiveness in
practical large-scale training scenarios.

Training Speed Optimization: FP8 training reduces total training time by 7% to 22%, achieving a
22% speedup (0.78x ratio) for both model sizes at an 8k context length. This improvement is largely
due to a reduction in backward pass computation time of up to 32%.

Memory Efficiency: FP8 consistently reduces peak memory consumption by 5% to 14%, reaching
11% (0.89x ratio) for the 1.5B model at a 32k context length. This memory saving facilitates the
use of larger batch sizes and longer input sequences without additional hardware investment, thereby
improving the effective utilization of existing GPU resources.

Under review as a conference paper at ICLR 2026

Table 6: Performance comparison of BF16 vs. FP8 quantization for Qwen2.5 model training. The
table shows per forward/backward pass times, peak memory usage, and throughput across different
model scales (1.5B, 7B) and context lengths (8k, 32k). FP8 achieves up to 22% faster training, 14%
memory reduction, and 19% throughput improvement over BF16 baseline. TP: tensor parallelism,
MBS: micro-batch size.

Model Size = 1.5B

Context Length =32k, TP=2,CP=1, MBS =1
Forward Backward Total Ratio Peak Memory Ratio Throughput Ratio

BF16 841 ms 2329 ms 3170 ms - 57.8 GB - 345 TFlops -
FP8 875ms 2075ms 2950ms 0.93x 51.7GB 0.89x 360 TFlops 1.04x

Context Length =8k, TP=1,CP=1, MBS =2
Forward Backward Total Ratio Peak Memory Ratio Throughput Ratio

BF16 463 ms 1567 ms 2030 ms - 68.1 GB - 340 TFlops -
FP8 529 ms 1061 ms 1590 ms 0.78x 58.3GB 0.86x 376 TFlops 1.10x

Model Size = 7B

Context Length =32k, TP =4, CP =1, MBS = 1
Forward Backward Total Ratio Peak Memory Ratio Throughput Ratio

BF16 2790ms 6800ms 9590 ms - 78.1 GB - 409 TFlops -
FP8 2660ms 5700 ms 8360 ms 0.87x 67.4 GB 0.86x 461 TFlops 1.14x

Context Length =32k, TP=2,CP=1,MBS =1
Forward Backward Total Ratio Peak Memory Ratio Throughput Ratio

BF16 1760 ms 5320ms 7080 ms - 53.2GB - 453 TFlops -
FPS8 2300 ms 3230ms 5530 ms 0.78x 50.8 GB 0.95x 537 TFlops 1.19x

Computational Throughput Enhancement: The method yields throughput improvements of 4%
to 19%, with the 7B model at 8k context length showing a 19% gain (1.19x ratio), demonstrating
effective of FP8 training.

Collectively, these results demonstrate that FP8 training achieves a highly favorable trade-off, de-
livering significant gains in training speed, memory efficiency, and throughput while maintain-
ing model convergence and final performance. This establishes FP8 as a practical, scalable, and
resource-efficient solution for large-scale language model training, providing tangible benefits for
both research and production deployments.

6 CONCLUSION

In this work, we addressed the critical challenge of computational costs in LLLM training by introduc-
ing and validating a comprehensive end-to-end FP8 training recipe. Our empirical results decisively
demonstrate that FP8 training is both stable and effective. We have shown that learning dynamics,
as reflected by training and validation loss curves, are nearly indistinguishable from the BF16 base-
line. Furthermore, our FP8-trained models achieve performance on par with their BF16 counterparts
across a range of challenging reasoning benchmarks, with performance differences typically within
a 1-2 point margin attributable to evaluation noise.

These performance results are coupled with significant efficiency improvements, with up to 22%
faster training, 14% lower memory usage, and 19% higher throughput. By providing this validated
recipe and releasing key artifacts, including the high-performing InfiR2-7B-FP8 model which sub-
stantially outperforms its base model, we lower the barrier to entry for researchers and practitioners.
Ultimately, our work establishes FP8 training not merely as a viable alternative, but as a compelling
successor to BF16 for the next generation of LLMs, offering a sustainable path forward that balances
cutting-edge performance with practical resource efficiency.

Under review as a conference paper at ICLR 2026

REFERENCES

a-m team. Am-deepseek-r1-0528-distilled, June 2025. URL https://github.com/
a-m-team/a-m-models.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming the
challenges of efficient transformer quantization. arXiv preprint arXiv:2109.12948, 2021.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers: Remov-
ing outliers by helping attention heads do nothing. Advances in Neural Information Processing
Systems, 36:75067-75096, 2023.

Shuo Cai, Su Lu, Qi Zhou, Kejing Yang, Zhijie Sang, Congkai Xie, and Hongxia Yang. Infialign:
A scalable and sample-efficient framework for aligning llms to enhance reasoning capabilities,
2025. URLhttps://arxiv.org/abs/2508.05496.

Yufan Cai, Junjie Wang, Abhilasha Lodha, Yuxuan Liu, Shengyu Zhang, Ge Li, Yunfei Zhao, Ji-
azhen Gu, Haotian Cui, Zihan Wang, Chenyan Gu, Zhijian Wu, Zheyuan Zhang, Qingcheng Xiao,
Yuxiang Wei, Jialun Wu, Xuanhe Zhou, Yichi Zhang, Terry Yue Zhuo, Zhiheng Xi, Wen-Ting S.
Chuang, Yijun Liu, Pinjia He, Hong-Gyu Jung, and Lichao Sun. LiveCodeBench: A new bench-
mark for general-purpose in-ide code generation. arXiv preprint arXiv:2403.07971, 2024.

Aakanksha Chowdhery, Abhishek Kadian, Adam Roberts, Adrien Le Scao, Aman Agarwal, Ani
Nrusimha, Anmol Gulati, Anush Moorthy, Behnam Neyshabur, Biao Zhang, Bowen Yang,
Chen Chen, Chris Alberti, Cindy Wang, Clemencia Siro, Daviditat B. de la Torre, Deh-Rong
Hung, Dhruti Shah, Dongji Feng, Dragomir Radev, Ed H. Chi, Emanuele Bugliarello annd
Fan-Kai Lin, Fan-Yin Cheng, Fan Yang, et al. Nemotron-4 340b: A suite of models for train-
ing and deploying large language models. https://developer.nvidia.com/blog/
announcing—-nemotron—-4-340b—-a-powerful-open—-model-for-synthetic-data—-generation/,
2024.

deepseek ai. Deepgemm: clean and efficient fp§ gemm kernels with fine-grained scaling. GitHub
repository, 2024. URL https://github.com/deepseek—ai/DeepGEMM,

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, et al. Deepseek-v3 technical report,
2025. URL https://arxiv.org/abs/2412.19437.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:

30318-30332, 2022.

Maxim Fishman, Brian Chmiel, Ron Banner, and Daniel Soudry. Scaling fp8 training to trillion-
token Ilms, 2025. URL https://arxiv.org/abs/2409.12517.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. Advances in neural information processing systems, 29, 2016.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,
Jiyan Yang, Jongsoo Park, Alexander Heinecke, Evangelos Georganas, Sudarshan Srinivasan,
Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul, and Pradeep Dubey. A study of bfloat16 for
deep learning training, 2019. URL https://arxiv.org/abs/1905.12322,

Denis Kocetkov, Harm de Vries, Arjun Ashok, Maxim Borisyak, Qian Liu, Chenghao Mou, Danish
Contractor, Tri Dao, Raymond Li, Yacine Jernite, Sean Hughes, Thomas Wolf, Leandro von
Werra, and Niklas Muennighoff. The stack v2: The code moe of bigcode, 2023.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. Bert busters: Outlier
dimensions that disrupt transformers. arXiv preprint arXiv:2105.06990, 2021.

Joonhyung Lee, Jeongin Bae, Byeongwook Kim, Se Jung Kwon, and Dongsoo Lee. To fp8 and
back again: Quantifying the effects of reducing precision on llm training stability. CoRR, 2024.

10

https://github.com/a-m-team/a-m-models
https://github.com/a-m-team/a-m-models
https://arxiv.org/abs/2508.05496
https://developer.nvidia.com/blog/announcing-nemotron-4-340b-a-powerful-open-model-for-synthetic-data-generation/
https://developer.nvidia.com/blog/announcing-nemotron-4-340b-a-powerful-open-model-for-synthetic-data-generation/
https://github.com/deepseek-ai/DeepGEMM
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2409.12517
https://arxiv.org/abs/1905.12322

Under review as a conference paper at ICLR 2026

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of machine learning and systems,

6:87-100, 2024.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training, 2018. URL https://arxiv.org/abs/1710.03740.

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisen-
thwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellempudi,
Stuart Oberman, Mohammad Shoeybi, Michael Siu, and Hao Wu. Fp8 formats for deep learning,
2022. URL https://arxiv.org/abs/2209.05433.

Asit Mishra, Dusan Stosic, Simon Layton, and Paulius Micikevicius. Recipes for pre-training llms
with mxfp8, 2025. URL https://arxiv.org/abs/2506.08027.

ModelScope. Evalscope. URL |https://github.com/modelscope/evalscope.

NVIDIA. Nvidia blackwell architecture technical brief. Technical report, NVIDIA, 2024. URL.:
https://resources.nvidia.com/en-us—blackwell-architecture.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Guillermo Penedo, Angela Fan, Dan Hesslow, Ruxandra Cojocaru, Sasha Luccioni, Irene Alistar,
Julie Fromken, Baptiste Pannier, Teven Villanova, and Teven Le Scao. The fineweb dataset.
https://huggingface.co/datasets/HuggingFaceFW/fineweb, 2024.

Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao, Yuxiang Yang, Ze Liu, Yifan Xiong, Ziyue
Yang, Bolin Ni, Jingcheng Hu, Ruihang Li, Miaosen Zhang, Chen Li, Jia Ning, Ruizhe Wang,
Zheng Zhang, Shuguang Liu, Joe Chau, Han Hu, and Peng Cheng. Fp8-lm: Training fp8 large
language models, 2023. URL https://arxiv.org/abs/2310.18313,

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, et al. Qwen2.5
technical report, 2025. URL https://arxiv.org/abs/2412.15115,

David Rein, Stas Gaskin, Luyu Gao, John Miller, Pang Wei Koh, Jackson Kernion, Adam H. Mar-
blestone, and Percy Liang. GPQA: A graduate-level google-proof q&a benchmark. arXiv preprint
arXiv:2311.12022,2023. URL https://arxiv.org/abs/2311.12022.

Bita Darvish Rouhani, Nitin Garegrat, Tom Savell, Ankit More, Kyung-Nam Han, Ritchie Zhao,
Mathew Hall, Jasmine Klar, Eric Chung, Yuan Yu, Michael Schulte, Ralph Wittig, lan Bratt, Nigel
Stephens, Jelena Milanovic, John Brothers, Pradeep Dubey, Marius Cornea, Alexander Heinecke,
Andres Rodriguez, Martin Langhammer, Summer Deng, Maxim Naumov, Paulius Micikevicius,
Michael Siu, and Colin Verrilli. Ocp microscaling (mx) specification. Technical report, Open
Compute Project, 2023.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context, 2024. URL
https://arxiv.org/abs/2403.05530.

Xiaoyu Tian, Yunjie Ji, Haotian Wang, Shuaiting Chen, Sitong Zhao, Yiping Peng, Han Zhao, and
Xiangang Li. Not all correct answers are equal: Why your distillation source matters, 2025. URL
https://arxiv.org/abs/2505.14464.

11

https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/2209.05433
https://arxiv.org/abs/2506.08027
https://github.com/modelscope/evalscope
https://resources.nvidia.com/en-us-blackwell-architecture
https://arxiv.org/abs/2303.08774
https://huggingface.co/datasets/HuggingFaceFW/fineweb
https://arxiv.org/abs/2310.18313
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2505.14464

Under review as a conference paper at ICLR 2026

Thang Luong Trinh, Yuhuai Wu, Quoc V. Le, He He, and Galyna Vasylyeva. The aimo prize: A new
benchmark for advanced mathematical reasoning. arXiv preprint arXiv:2407.00532, 2024. URL
https://arxiv.org/abs/2407.00532.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and K. Gopalakrishnan. Training
deep neural networks with 8-bit floating point numbers. ArXiv, abs/1812.08011, 2018a. URL
https://api.semanticscholar.org/CorpusID:53977760.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Train-
ing deep neural networks with 8-bit floating point numbers. Advances in neural information
processing systems, 31, 2018b.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig
Schmidt. Stable and low-precision training for large-scale vision-language models, 2023. URL
https://arxiv.org/abs/2304.13013.

Shuang Wu, Guogqi Li, Feng Chen, and Luping Shi. Training and inference with integers in deep
neural networks. arXiv preprint arXiv:1802.04680, 2018.

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers,
2023. URL https://arxiv.org/abs/2306.11987.

Haocheng Xi, Yuxiang Chen, Kang Zhao, Kai Jun Teh, Jianfei Chen, and Jun Zhu. Jetfire: Efficient
and accurate transformer pretraining with INTS8 data flow and per-block quantization. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 54049-54063. PMLR, 21-27 Jul
2024. URL https://proceedings.mlr.press/v235/x124b.html.

Haocheng Xi, Han Cai, Ligeng Zhu, Yao Lu, Kurt Keutzer, Jianfei Chen, and Song Han. Coat:
Compressing optimizer states and activation for memory-efficient fp8 training, 2025. URL
https://arxiv.org/abs/2410.19313\

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu, Yanfei Wang, Zhelong Li, Xiuqi Yang, and

Junjie Yan. Towards unified int8 training for convolutional neural network, 2019. URL https:
//arxiv.org/abs/1912.12607.

12

https://arxiv.org/abs/2407.00532
https://api.semanticscholar.org/CorpusID:53977760
https://arxiv.org/abs/2304.13013
https://arxiv.org/abs/2306.11987
https://proceedings.mlr.press/v235/xi24b.html
https://arxiv.org/abs/2410.19313
https://arxiv.org/abs/1912.12607
https://arxiv.org/abs/1912.12607

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USAGE OF LLM
In this paper, a Large Language Model was utilized solely for the purpose of proofreading and im-

proving the language and clarity of the manuscript. The core scientific contributions were performed
exclusively by the authors.

13

	Introduction
	Related work
	PRELIMINARIES
	Hybrid Granularity Quantization Strategy
	Experiments
	Pretraining and fine-tuning with FP8
	Setup
	Training Loss
	Training Results

	Supervised Fine-tuning with FP8
	Setup
	Training Results
	Findings

	FP8 Training Validation
	Loss Comparison
	Performance Comparison

	Efficiency Analysis

	Conclusion
	Appendix
	The usage of LLM

