

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEVERAGING DISCRETE FUNCTION DECOMPOSABILITY FOR SCIENTIFIC DESIGN

Anonymous authors

Paper under double-blind review

## ABSTRACT

In the era of AI-driven science and engineering, we often want to design discrete objects (e.g., circuits, proteins, materials) *in silico* according to user-specified properties (e.g., that a protein binds its target). Given a property predictive model, *in silico* design typically involves training a generative model over the design space (e.g., over the set of all length- $L$  proteins) to concentrate on designs with the desired properties. *Distributional optimization*, formalized as an estimation of distribution algorithm or as reinforcement learning policy optimization, maximizes an objective function in expectation over samples. Optimizing a distribution over discrete-valued designs is in general challenging due to the combinatorial nature of the design space. However, many property predictors in scientific applications are *decomposable* in the sense that they can be factorized over design variables in a way that will prove useful. For example, the active site amino acids in a catalytic protein may need to only loosely interact with the rest of the protein for maximal catalytic activity. Current distributional optimization algorithms are unable to make use of such structure, which could dramatically improve the optimization. Herein, we propose and demonstrate use of a new distributional optimization algorithm, **DECOMPOSITION-AWARE DISTRIBUTIONAL OPTIMIZATION (DADO)**, that can leverage any decomposability defined by a junction tree on the design variables. At its core, DADO employs a factorized “search distribution”—a learned generative model—for efficient navigation of the search space, and invokes graph message passing to coordinate optimization across all variables.

## 1 DESIGN IN DISCRETE STATE SPACES

The integration of AI into scientific research has opened new avenues for property-driven, *in silico* design of discrete objects—from molecular structures like proteins, to engineered systems like circuits—where computational methods guide design with user-specified properties. For example, we may seek to design an amino acid sequence for a protein so that the protein binds its target.

Given a property predictive model,  $f(x)$ , the simplest version of *in silico* design entails enumerating all possible designs,  $x = [x_1, x_2, \dots, x_L] \in \mathcal{X}$  (e.g., all possible amino acid sequences of length  $L$ ), evaluating each one under the predictive model,  $s = f(x)$ , and choosing the design with the highest  $s$ . Such a setup is complicated by two primary challenges. First, in most realistic problems, the design space is too large to fully enumerate. Second, if  $f(x)$  has parameters estimated from data, then it is most likely not accurate over the whole space. While many works address the second problem, there has been little recent development on the first; as such, we focus herein on performing efficient optimization in high-dimensional discrete design spaces. The second problem can be handled with approaches complementary to ours (e.g., Brookes et al. (2019); Trabucco et al. (2021); Uehara et al. (2024)), and is not here considered. We will focus our examples and experiments on designing amino acid sequences, but our method is general—applicable to design on any discrete space.

Finding the highest-scoring design,  $x^*$ , naively requires  $D^L$  evaluations of  $f(x)$  for a  $D$ -amino acid alphabet (typically  $D = 20$ ). To develop some intuition, in this section only let us assume that  $D = 2$  so that  $x$  is binary. First, consider the simple but unrealistic case where  $f(x) = \beta_1 x_1 + \beta_2 x_2, \dots, \beta_L x_L$ , for scalar parameters  $\{\beta_i\}$ . In such a scenario, finding the design with the highest function evaluation requires considering only  $D \times L$  partial designs because the  $L$  components of  $x$  do not interact with each other, acting only linearly additively. A more realistic setting would allow for more complicated functional forms while still having some notion of linear additivity. For example, consider the form

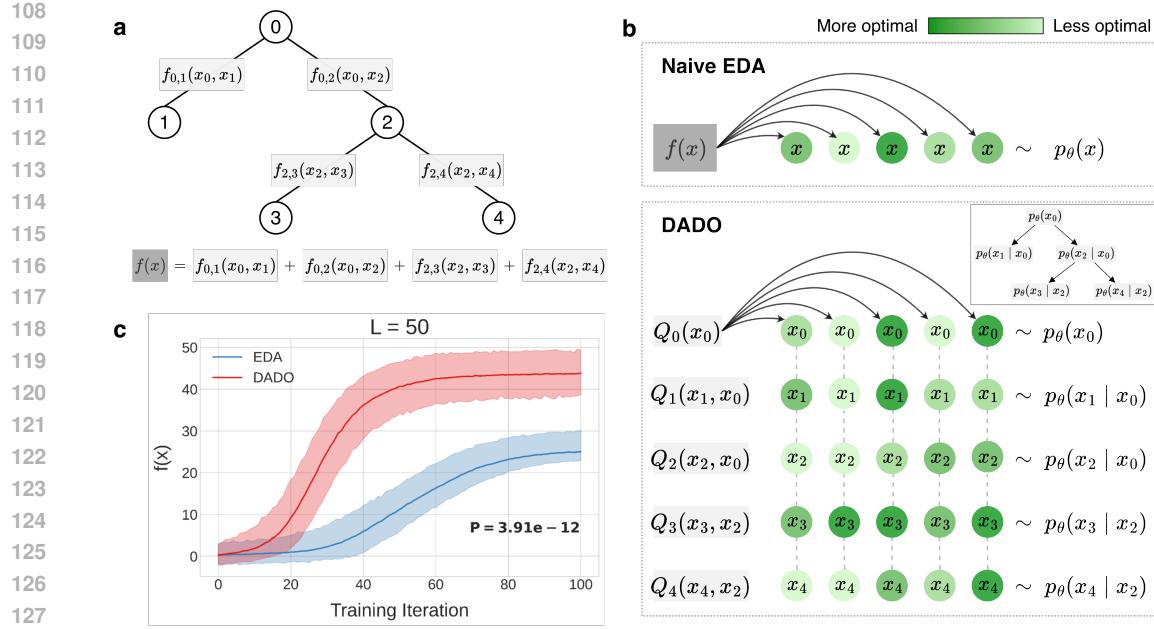
054  $f(x) = C_1(\hat{x}_1) + C_2(\hat{x}_2), \dots, C_\kappa(\hat{x}_\kappa)$ , where  $C_i$  denotes an arbitrary function on a set of design  
 055 variables,  $\hat{x}_i$ , such as  $C_1(\hat{x}_1) = C_1(x_1, x_3, x_8) = \exp(7x_1x_3 - 3x_3x_8)$ . In the case where sets of  
 056 variables do not overlap, *i.e.*, where  $x_j$  can appear in only one of the components  $C_j$ , finding the  
 057 global optimum of  $f(x)$  requires a number of evaluations of component functions that scales as  
 058  $D^M$ , where  $M \leq L$  corresponds to the cardinality of the largest variable set. When the sets of  
 059 variables *do* overlap across component functions, tying them together, then the number of required  
 060 evaluations becomes correspondingly higher. Note that this more general form of linear additivity  
 061 admits representation of any function, possibly requiring that  $M = L$  in which case there is no linear  
 062 additivity, nor consequently, decomposability. In more realistic settings with many design variables  
 063 and a larger alphabet (*e.g.*,  $D = 20$ ), the difference in number of evaluations required between the  
 064 decomposed and standard scenarios is even greater still. Importantly, in most real problems, we  
 065 expect some level of decomposability. For example, in designing a protein to bind to a target, a  
 066 few key sequence positions may make up the binding interface, which primarily dictates the binding  
 067 strength, whereas the other positions may be involved in stabilizing the protein for binding.  
 068

069 Classical message passing algorithms can leverage the general, aforementioned type of structure to exactly find the global optimum with the lowest possible time complexity (Vlassis et al.,  
 070 2004). However, for reasons discussed momentarily, we are interested in *distributional optimization*,  
 071 wherein a standard optimization problem over the design space,  $x^* = \arg \max_{x \in \mathcal{X}} f(x)$ , is replaced  
 072 by one over the parameters of a generative model,  $p_\theta(x)$ , namely,  $\theta^* = \arg \max_\theta \mathbb{E}_{p_\theta(x)} [f(x)]$ .  
 073 These formulations are equivalent in that the optimum of each is the same, assuming that  
 074  $p_\theta(x)$  has capacity to place its mass on the best design. However, each formulation lends itself  
 075 to different optimization algorithms, which in turn can be usefully generalized in different ways,  
 076 mentioned momentarily. Distributional optimization may employ strategies to prevent  $p_\theta(x)$ —the  
 077 search distribution/policy—from collapsing to a point mass, such as by using a prior, or entropy  
 078 regularizer (Brookes et al., 2019; Ziebart et al., 2008).  
 079

080 Our interest in the distributional optimization formulation is motivated by its extensibility. First,  
 081 such a setup enables us to directly use innovations from the Estimation of Distribution Algorithm  
 082 (EDA) (Brookes et al., 2020; Larrañaga & Lozano, 2001) and policy optimization (Peters & Schaal,  
 083 2007; Peng et al., 2019) communities. Of particular note are methods that enable combining a pre-  
 084 trained, unconditional generative model,  $p(x)$ , with a property predictor,  $p(y|x)$ , to execute Bayes  
 085 rule so as to obtain a sampling distribution that can be used for design,  $p(x|y \in Y)$  (*e.g.*, Brookes  
 086 et al. (2019); Fannjiang & Listgarten (2020); Uehara et al. (2024)). Second, as the key object that  
 087 navigates the search space,  $p_\theta(x)$ , is a generative model, we stand to benefit from advances in  
 088 generative modeling. Herein, for clarity of contribution, we focus on the purest form of the EDA,  
 089 without entropy regularization or a prior. We leave such extensions to future work.  
 090

091 **Contributions.** We develop a distributional optimization algorithm in the form of a generalized  
 092 EDA/policy optimization algorithm that can leverage any decomposability in  $f(x)$  in the form de-  
 093 scribed earlier as  $f(x) = C_1(\hat{x}_1) + C_2(\hat{x}_2), \dots, C_\kappa(\hat{x}_\kappa)$ , to more efficiently navigate the design  
 094 space and find high-performing designs quickly (Fig. 1). We call our method DECOMPOSITION-  
 095 AWARE DISTRIBUTIONAL OPTIMIZATION (DADO). We first empirically investigate DADO on  
 096 synthetic examples, illustrating that the anticipated optimization efficiency emerges compared to  
 097 decomposition-unaware baselines. Next, we further substantiate this efficiency on problems an-  
 098 chored on real protein data, that is, by optimizing protein property predictive models. Additionally,  
 099 in case studies on a few protein predictive models, we find that accuracy is robust to modifications  
 100 of the decomposition, suggesting that perfect *a priori* knowledge of decomposability is not required.  
 101

102 As DADO requires a decomposed objective of the form  $f(x) = C_1(\hat{x}_1) + C_2(\hat{x}_2), \dots, C_\kappa(\hat{x}_\kappa)$ ,  
 103 on our protein data problems, we construct these as follows. We first obtain a graph topology of  
 104 which variables (protein residues) are coupled by thresholding residue distances from an AlphaFold3  
 105 structure (Abramson et al., 2024; Brookes et al., 2022). This graph dictates the functional form of  
 106 the predictive model, by way of an automatically constructed junction tree. Recall that junction trees  
 107 represent arbitrarily complex relationships between random variables by transforming any graph into  
 108 a tree structure, where each node contains a set of the original variables, and where these sets may  
 109 be overlapping in adjacent nodes (Lauritzen & Spiegelhalter, 1988). Then we fit a neural network  
 110 that enforces this decomposition, to the training data. Analogous procedures in different application  
 111 areas could include the following, for example. In circuit design, certain topologies of components  
 112 may be prescribed ahead of time according to production constraints or domain knowledge. When  
 113



**Figure 1:** Key components of DADO. **a**, DADO requires as input an objective function in its decomposed form,  $f(x) = C_1(\hat{x}_1) + C_2(\hat{x}_2), \dots, C_\kappa(\hat{x}_\kappa)$ , which corresponds to a junction tree. Here we show a junction tree with nodes of size 1, *i.e.*, a regular tree, for simplicity. Variables with edges interact together to directly influence  $f$ . Some variables participate in multiple component functions, requiring coordination in the form of message-passing. **b**, To update the search distribution at each iteration, naive EDAs weight entire samples drawn from a joint distribution over all design variables by scoring with  $f(x)$ . Shade of green denotes more to less optimal scores. In contrast, DADO leverages the decomposition of  $f(x)$  to weight samples in a more local manner, according to the decomposition. Specifically, DADO uses message-passing to compute *value functions* that account for  $x_i$  interacting with its descendants. Correspondingly, the value functions serve as the weights for each part of the search distribution, which is factorized like  $f$ . Optional shaping function  $W$  is omitted for clarity. **c**, Example performance comparison on a synthetic problem with an exact tree decomposition over a discrete design space of size  $20^{50}$  ( $D = 20, L = 50$ ). Each of the two methods drew 100 samples per iteration. We evaluated these samples with  $f(x)$ , computing the per-iteration mean and 95% confidence interval. Results shown were averaged over 20 random seeds for the same  $f(x)$  (details in Sec. 4). The p-value shown is from a two-sided paired t-test that the mean at the final iteration is different between methods, over the 20 seeds.

designing a telescope, designers consider different arrangements of lenses—*i.e.*, topologies—and optimize the diameter, curvature, material, coating, etc. for each component.

## 2 DECOMPOSITION-AWARE DISCRETE OPTIMIZATION (DADO)

We begin by reminding the reader of the three primary steps that are iterated in a standard EDA, which is unaware of any decomposability (*e.g.*, Brookes et al. (2020)). From there, we describe how infusing this algorithm with awareness of the known decomposition of  $f(x)$  stands to make the EDA more statistically efficient, after which we formally introduce DADO.

In a standard EDA, after having initialized the search distribution,  $p_{\theta^0}(x)$ , the EDA proceeds by iterating through these three steps either  $N$  times or until convergence (Brookes et al., 2020):

1. Draw  $K$  samples from the current search distribution,  $\{x^k\}_{k=1}^K \sim p_{\theta^n}(x)$
2. Score each sample with the objective function,  $s^k = f(x^k)$ , from which a weight for each sample is computed through a predefined monotonic “shaping” function,  $w^k = W(s^k)$ .
3. Update search distribution parameters by weighted maximum likelihood estimation (MLE), using the weighted samples,  $\theta^{n+1} = \arg \max_{\theta} \mathbb{E}_{\{x^k\}} w^k \log p_\theta(x^k)$ .

As the weighted MLE problem is typically solved with gradient descent, one can choose to use only a fixed number of gradient steps, as we will do. Doing so can be theoretically justified through the equivalence of EDAs to Expectation-Maximization (Brookes et al., 2020). Intuitively, one can think

162 of the search distribution as a spotlight on the design space, which iteratively gets moved toward  
 163 areas of the space with high  $f(x)$  in expectation. Modern EDAs parameterize the search model with  
 164 neural network generative models, such as a Variational Autoencoder (e.g., Brookes et al. (2019)).  
 165

166 Now that a standard EDA is fresh in our minds, we can consider what it might mean to infuse it  
 167 with knowledge of how  $f(x)$  is decomposed, and how this might prove useful. Before discussing  
 168 the general case of a junction tree, let us first build intuition by considering a simpler example.  
 169 Specifically, consider  $f(x) = C_1(\tilde{x}_1) + C_2(\tilde{x}_2)$  where there is no overlap in variables,  $x_i$ , between  
 170 the meta-variables  $\tilde{x}_1$  and  $\tilde{x}_2$  (i.e., no edges in the tree—a “fully-decomposed” setting). In this  
 171 setting, one can replace step 1, of sampling from one search model over all the design variables,  
 172  $x = [\tilde{x}_1, \tilde{x}_2] = [x_1, x_2, \dots, x_L] \sim p_{\theta^n}(x)$ , with instead sampling each meta-variable from its own  
 173 search model separately,  $\tilde{x}_1^k \sim p_{\theta_1^n}(\tilde{x}_1)$  and  $\tilde{x}_2^k \sim p_{\theta_2^n}(\tilde{x}_2)$ . Having done so, one can then execute  
 174 steps 2 and 3 in a similar manner, namely, scoring each meta-variable separately with its component  
 175 function (e.g., for the first component,  $s_1^k = C_1(\tilde{x}_1^k)$ ), applying the shaping function,  $W$ , to obtain  
 176 a weight, and then updating the search model for each component independently of each other by  
 177 way of weighted MLE to obtain  $p_{\theta_1^{n+1}}(\tilde{x}_1)$  and  $p_{\theta_2^{n+1}}(\tilde{x}_2)$ . What has this bought us? We have  
 178 broken down the problem of estimating a density model over a large combinatorial space, into two  
 179 smaller combinatorial spaces. Crucially, we have split one optimization problem over a combinatorial  
 180 space, into two optimizations over much smaller combinatorial spaces. For example, for binary  
 181 design variables, where each meta-variable comprises say 15 variables, we have transformed one  
 182 optimization over a space of size  $2^{30} \approx 10^9$  to two problems each of size  $2^{15} \approx 10^5$ . For larger  
 183 alphabet sizes and sequence lengths, these differences will be larger still.  
 184

185 The general case allows overlapping variables in  $f(x) = C_1(\hat{x}_1) + C_2(\hat{x}_2), \dots, C_{\kappa}(\hat{x}_{\kappa})$ , requiring  
 186 coordination between meta-variables—we cannot divide and conquer as above; rather, we must  
 187 divide, collaborate, and then conquer. Instead of fully factorizing the search model into independent  
 188 search models, one per component, we will instead need to use a search model that matches the  
 189 decompositional topology of  $f(x)$  (Fig. 1a). Junction tree topologies can represent any  $f(x)$ , so we  
 190 will use a directed, acyclic graphical (DAG) model which has an autoregressive neural network  
 191 for each node, conditioned on its parent. Sampling from a DAG is both computationally efficient  
 192 and easy, so step 1 of the EDA remains straightforward when factorized. However, steps 2 and 3  
 193 of the standard EDA are not so easily generalized. To leverage the factorized search distribution  
 194 and reduce the effective size of the optimization problem, we will need to generalize “max-plus”  
 195 message passing, which yields a global optimum  $x^* = \arg \max_{x \in \mathcal{X}} f(x)$  (Vlassis et al., 2004), to a  
 196 procedure integrating message passing with a factorized search model fitting step, thus constituting  
 197 a decomposition-aware EDA.  
 198

## 2.1 FORMAL EXPOSITION OF DADO

199 The goal of DADO is to obtain a generative model,  $p_{\theta}(x)$ , that maximizes the EDA objective,  
 200  $\arg \max_{\theta} \mathbb{E}_{p_{\theta}(x)}[f(x)]$ , while leveraging decomposability in  $f(x)$  for optimization efficiency.  
 201 DADO requires as input a decomposed version of  $f(x)$ , which can be described by an undirected  
 202 junction tree,  $\mathcal{T} := (\mathcal{N}, \mathcal{E})$ , with nodes,  $\mathcal{N}$ , and edges,  $\mathcal{E}$ . As noted in the introduction and shown  
 203 in our experiments on proteins, identifying useful decomposability is feasible in practice. Given  
 204 the junction tree decomposition, we write  $f(x) = \sum_{i \in \mathcal{N}} f_i(\tilde{x}_i) + \sum_{(i,j) \in \mathcal{E}} f_{i,j}(\tilde{x}_i, \tilde{x}_j)$ , where we  
 205 refer to  $f_i(\tilde{x}_i)$  and  $f_{i,j}(\tilde{x}_i, \tilde{x}_j)$  respectively as node and edge component functions (Fig. 1a); these  
 206 are intimately related to the “epistatic landscape” of a protein property function (Sec. A.1.1). When  
 207 the component functions are not known *a priori*, they can be parameterized and fit to labeled data.  
 208

209 We will begin our exposition by recalling how to do decomposition-aware exact (non-distributional)  
 210 optimization, that is, to solve  $\arg \max_x f(x)$ . This problem is efficiently solved with a classical  
 211 message-passing algorithm, which coordinates local optimizations across parts of the junction tree  
 212 to obtain a single global optimum. Its efficiency comes from breaking optimization over all variables  
 213 jointly into separate optimizations for each (smaller) meta-variable. Having loaded the reader with  
 214 this intuition, we then adapt these ideas to distributional optimization, yielding DADO.  
 215

### 2.1.1 CLASSICAL MESSAGE-PASSING FOR NON-DISTRIBUTIONAL OPTIMIZATION

216 Although classical message-passing has been largely used for probabilistic inference on probabilistic  
 217 graphical models (Pearl, 1988; Shah, 2014), it can also be used for exact optimization of a function,  
 218

*x*<sup>\*</sup> = arg max<sub>*x*</sub> *f*(*x*) (Vlassis et al., 2004). In particular, message-passing can be used to find a global maximum of a function defined on an undirected junction tree,  $\mathcal{T}$ , by making use of its topology for optimal time-complexity. In particular, one takes the junction tree, which is undirected, and roots it to obtain a directed tree, which induces a hierarchy among the meta-variables from root to leaves. Each node is responsible for accumulating information from all nodes in its sub-tree and then passing this information on to its parent. Consequently, the root node receives information from the entire tree, which is sufficient to set its variables in a globally optimal manner. Then, starting with the root, each parent communicates its variables' optimal settings to its children, which can in turn set their variables optimally, and so forth.

To obtain the rooted tree,  $\mathcal{T}' := (\mathcal{N}', \mathcal{E}')$ , from the junction tree, one keeps the same nodes,  $\mathcal{N}' = \mathcal{N}$ , chooses a root node, *r*, and directs all edges in  $\mathcal{E}$  outward from *r*, yielding directed edges,  $\mathcal{E}'$ . Although rooting at any node will suffice, we choose *r* such that  $\mathcal{T}'$  has the shortest height possible. Message-passing finds a global optimum in two passes through the tree: one round of passing messages up from leaves to root and one round passing messages back down to the leaves.

Given  $\mathcal{T}'$ , classical message-passing first uses dynamic programming to accumulate information from the leaves up to the root. Similarly to any dynamic programming procedure, we accumulate solutions to increasingly larger intermediate sub-problems. In this case, each sub-problem is to find the value of  $f(x)$  evaluated on only a subset of meta-variables, rather than on the full set of variables in *x*. Each sub-problem is tractable owing to the decomposition of the objective function into component functions for each node and edge, and by respecting the partial order of sub-problems induced by  $\mathcal{T}'$ . Specifically, one computes a *value function*,  $V_i^{\max}(\tilde{x}_{p(i)})$ , for each node  $i \in \mathcal{N}' \setminus \{r\}$ , which tells us for each setting of its parent,  $\tilde{x}_{p(i)}$ , the value of the intermediate objective function defined by the edge component function,  $f_{p(i),i}(\tilde{x}_{p(i)}, \tilde{x}_i)$ , plus all component functions over the sub-tree rooted at *i*, given that all nodes maximize their respective intermediate objectives. Computing value functions comprises the first pass through the tree, from leaves to root:

$$V_i^{\max}(\tilde{x}_{p(i)}) := \max_{\tilde{x}_i} \left( f_i(\tilde{x}_i) + f_{p(i),i}(\tilde{x}_{p(i)}, \tilde{x}_i) + \sum_{c \in \text{children}(i)} V_c^{\max}(\tilde{x}_i) \right).$$

Notably,  $V_i^{\max}(\tilde{x}_{p(i)})$  provides sufficient information about all nodes in the sub-tree rooted at *i* to optimally choose the value of  $\tilde{x}_{p(i)}$  with respect to its children. Thus it follows that once all value functions have been computed, the root's assignment can be set in a globally optimal manner from its children's value functions,

$$\tilde{x}_r^* := \arg \max_{\tilde{x}_r} \left( f_r(\tilde{x}_r) + \sum_{c \in \text{children}(r)} V_c(\tilde{x}_r) \right).$$

Having chosen the root assignment, we then pass it down the tree as  $\tilde{x}_{p(i)} = \tilde{x}_{p(i)}^*$  to its children, which successively pass their chosen assignments to their children, all the way to the leaves,

$$\tilde{x}_i^* := \arg \max_{\tilde{x}_i} \left( f_i(\tilde{x}_i) + f_{p(i),i}(\tilde{x}_{p(i)}^*, \tilde{x}_i) + \sum_{c \in \text{children}(i)} V_c(\tilde{x}_i) \right),$$

resulting in a global maximizer *x*<sup>\*</sup> of *f*(*x*). This dynamic programming “traceback” of optimal assignments back down the tree constitutes our second and final pass of messages.

**Alternative notation.** For convenience of our generalization to distributional optimization, we re-write the parent value functions  $V_i^{\max}(\tilde{x}_{p(i)})$  in terms of child-parent,  $Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})$ , and single-node,  $Q_i^{\max}(\tilde{x}_i)$  value functions:

$$V_i^{\max}(\tilde{x}_{p(i)}) := \max_{\tilde{x}_i} Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)}), \quad \text{where} \quad (1)$$

$$Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)}) := f_{p(i),i}(\tilde{x}_{p(i)}, \tilde{x}_i) + Q_i^{\max}(\tilde{x}_i) \quad \text{and} \quad Q_i^{\max}(\tilde{x}_i) := f_i(\tilde{x}_i) + \sum_{c \in \text{children}(i)} V_c^{\max}(\tilde{x}_i).$$

In contrast to the original parent value functions,  $Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})$  represents the effect of the choice of *both*  $\tilde{x}_{p(i)}$  and  $\tilde{x}_i$  on their edge component function plus all component functions over the sub-tree rooted at *i*, assuming all descendants of *i* maximize their corresponding value functions. Intuitively,  $Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})$  is the value function on edge  $(p(i), i)$  prior to  $\tilde{x}_i$  being maximized out, which will become useful if we want to, say, sample  $\tilde{x}_i$  according to some distribution instead.  $Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})$  is composed of two terms, one of which depends on its parent, and one of which

270 doesn't,  $Q_i^{\max}(\tilde{x}_i)$ . Written using the  $Q$ -functions just defined, the equivalent traceback equations for selecting a globally optimal assignment,  $x^*$ , are simply  $\tilde{x}_r^* := \arg \max_{\tilde{x}_r} Q_r^{\max}(\tilde{x}_r)$  and  $\tilde{x}_i^* := \arg \max_{\tilde{x}_i} Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)}^*)$ . In other words,

$$274 x^* = \arg \max_x f(x) = \{\arg \max_{\tilde{x}_r} Q_r^{\max}(\tilde{x}_r)\} + \{\arg \max_{\tilde{x}_i} Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)}^*)\}_{(p(i), i) \in \mathcal{E}'} \quad (2)$$

$$275 = \arg \max_x \left( Q_r^{\max}(\tilde{x}_r) + \sum_{(p(i), i) \in \mathcal{E}'} Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)}) \right). \quad (3)$$

### 277 2.1.2 FROM CLASSICAL MESSAGE PASSING TO DISTRIBUTIONAL OPTIMIZATION

279 In the same way that an EDA transforms  $\arg \max_x f(x)$  into a distributional optimization problem, we can rewrite the equivalent message-passing objective in Eq. 3 as DO. Because the original 280 optimization problems over  $x$  are equivalent, their DO formulations are equivalent too,

$$282 \arg \max_{\theta} \mathbb{E}_{p_{\theta}(x)}[f(x)] = \arg \max_{\theta} \left( \mathbb{E}_{p_{\theta}(x)}[Q_r^{\max}(\tilde{x}_r)] + \sum_{(p(i), i) \in \mathcal{E}'} \mathbb{E}_{p_{\theta}(x)}[Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})] \right), \quad (4)$$

285 where we've used linearity of expectations on the right side. However, a generic joint search distribution 286 cannot take advantage of the linear additivity in value functions over the junction tree 287 topology. That is, while the classical traceback equations perform maximization over each 288 meta-variable separately, Eq. 4 uses a single, unfactorized search distribution over *all* variables,  $p_{\theta}(x)$ , to 289 optimize each  $Q$ -function. We address this next, by factorizing the search distribution.

290 **Factorized search distribution.** Classical message-passing (Eq. 2) independently maximizes 291 each  $Q$ -function conditional on the choice of  $\tilde{x}_{p(i)}$ , instead of explicitly maximizing all variables in 292  $x$  jointly (Eq. 3). This is possible because each  $Q_i$  captures all relevant global information needed to 293 choose  $\tilde{x}_i$ . It stands to reason then that DO can do something similar. Specifically, instead of training 294 a single joint search distribution, we train smaller search distributions over each  $\tilde{x}_i$ , conditional on 295  $\tilde{x}_{p(i)}$ , to separately maximize each  $Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})$ . That is, we factor the search distribution according 296 to  $\mathcal{T}'$ , resulting in a DAG,  $p_{\theta}(x) := p_{\theta}(\tilde{x}_r) \prod_{(p(i), i) \in \mathcal{E}'} p_{\theta}(\tilde{x}_i | \tilde{x}_{p(i)})$ , for root node  $r$ , non-root 297 nodes  $i$ , and parents  $p(i)$ , connected by directed edges  $\mathcal{E}'$ , and with parameters,  $\theta$ . This factorized 298 search distribution can be plugged into Eq. 4 for an equivalent optimization problem. We refer to 299 each element of this product as one of the *factors* of the search distribution. In our implementation, 300 each factor has completely separate parameters, though we write a shared  $\theta$  for conciseness. Notice 301 that each factor of the search distribution interacts with each other factor through the directed edges, 302  $\mathcal{E}'$ . That is, the distribution of  $\tilde{x}_i$  depends on its parent's factor, and through it, all of its parent's 303 ancestors:  $p_{\theta}(\tilde{x}_i) = p_{\theta}(\tilde{x}_i | \tilde{x}_{p(i)})p_{\theta}(\tilde{x}_{p(i)})$ . In turn, each of node  $i$ 's children's factors depends on 304  $p_{\theta}(\tilde{x}_i)$ . Due to this coupling, we cannot optimize each factor fully independently. But we can still 305 *update* each factor separately from the others in a globally-consistent manner via message-passing. 306 In particular, each factor will only be responsible for directly optimizing its own meta-variable, but 307 will need to coordinate with its neighboring factors by getting information from them about how they 308 are optimizing their meta-variables in a manner analogous to classical message-passing. Our current 309 messages,  $Q_i^{\max}$ , convey the value of each intermediate objective when all meta-variables are chosen 310 via maximization. For DO, we'll require messages that communicate values when meta-variables 311 are chosen according to the factorized search distribution,  $p_{\theta}(x)$ .

312 **Distributional value functions.** While one certainly could choose to optimize classical value 313 functions using an EDA search distribution (Eq. 4), it doesn't make sense for two main reasons. 314 As we just mentioned, DO aims to train  $p_{\theta}(x)$  such that it maximizes  $f(x)$ , or equivalently, the sum 315 of  $Q$ -functions, in expectation. Therefore, the DO objective should consider intermediate objective 316 values for meta-variables chosen according to the current search distribution, not those chosen by 317 explicit maximization, as in  $V_i^{\max}(\tilde{x}_{p(i)})$ . Additionally, computing classical value functions requires 318 enumerating all assignments of each  $\tilde{x}_i$  for the maximum used in  $V_i^{\max}(\tilde{x}_{p(i)})$ . When  $\tilde{x}_i$  contains 319 more than a few design variables, this max operation quickly becomes intractable. One reason for 320 doing distributional optimization is to avoid enumerating massive design spaces. To address both 321 issues, we define corresponding *distributional* value functions that fulfill both desiderata:

$$321 V_i^{\theta}(\tilde{x}_{p(i)}) := \mathbb{E}_{p_{\theta}(\tilde{x}_i | \tilde{x}_{p(i)})}[Q_i^{\theta}(\tilde{x}_i, \tilde{x}_{p(i)})], \text{ where}$$

$$323 Q_i^{\theta}(\tilde{x}_i, \tilde{x}_{p(i)}) := f_{p(i), i}(\tilde{x}_{p(i)}, \tilde{x}_i) + Q_i^{\theta}(\tilde{x}_i) \text{ and } Q_i^{\theta}(\tilde{x}_i) := f_i(\tilde{x}_i) + \sum_{c \in \text{children}(i)} V_c^{\theta}(\tilde{x}_i).$$

Compared to Eq. 1, the distributional  $V$ -functions compute the value in expectation under  $p_\theta$  instead of a max. Because they use an expectation instead of a max operation, these value functions can be approximated tractably and without bias by drawing Monte-Carlo samples from the search distribution. Moreover, each distributional value function lower bounds each corresponding classical value function because the expectation of a function cannot exceed its maximum (details in Sec. A.3). As a result, the sum of classical value functions in the objective in Eq. 4 is bounded below by the sum of distributional value functions, which we’ll optimize instead:

$$\mathbb{E}_{p_\theta(x)}[Q_r^{\max}(\tilde{x}_r)] + \sum_{(p(i), i) \in \mathcal{E}'} \mathbb{E}_{p_\theta(x)}[Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})] \geq \mathbb{E}_{p_\theta(x)}[Q_r^\theta(\tilde{x}_r)] + \sum_{(p(i), i) \in \mathcal{E}'} \mathbb{E}_{p_\theta(x)}[Q_i^\theta(\tilde{x}_i, \tilde{x}_{p(i)})]. \quad (5)$$

**Distributional optimization with value functions.** All that remains is to derive an update rule that treats each search distribution factor separately. Since each expectand in Eq. 5 doesn’t depend on descendant meta-variables, we can replace  $p_\theta(x)$  with each meta-variable’s marginal distribution:

$$\arg \max_{\theta} \mathbb{E}_{p_\theta(\tilde{x}_r)}[Q_r^\theta(\tilde{x}_r)] + \sum_{(p(i), i) \in \mathcal{E}'} \mathbb{E}_{p_\theta(\tilde{x}_i | \tilde{x}_{p(i)}) p_\theta(\tilde{x}_{p(i)})}[Q_i^\theta(\tilde{x}_i, \tilde{x}_{p(i)})].$$

We then follow the EDA derivation to arrive at an update rule (details in Sec. A.3) in which each term is optimized by only a single factor; dependence on  $p_\theta(\tilde{x}_{p(i)})$  is approximated by sampling. We write DADO’s update rule (sharing a single set of samples; see Fig. 1b) as a sum of weighted likelihoods for each search distribution factor,

$$\theta^{n+1} = \arg \max_{\theta} \sum_{x \sim p_{\theta^n}(x)} \left( Q_r^{\theta^n}(\tilde{x}_r) \log p_\theta(\tilde{x}_r) + \sum_{(p(i), i) \in \mathcal{E}'} Q_i^{\theta^n}(\tilde{x}_i, \tilde{x}_{p(i)}) \log p_\theta(\tilde{x}_i | \tilde{x}_{p(i)}) \right),$$

which is equivalent to separate updates because the factors don’t share parameters, as desired:

$$\begin{aligned} \theta_r^{n+1} &= \arg \max_{\theta_r} \sum_{x \sim p_{\theta^n}(x)} Q_r^{\theta^n}(\tilde{x}_r) \log p_{\theta_r}(\tilde{x}_r), \quad \text{and} \\ \theta_i^{n+1} &= \arg \max_{\theta_i} \sum_{x \sim p_{\theta^n}(x)} Q_i^{\theta^n}(\tilde{x}_i, \tilde{x}_{p(i)}) \log p_{\theta_i}(\tilde{x}_i | \tilde{x}_{p(i)}), \quad \forall i \in \mathcal{N} \setminus \{r\}. \end{aligned}$$

Each factor is weighted by its corresponding value function, enabling it to coordinate with all its descendant factors despite their being updated separately. The whole DO is tied together at the top by the root factor. We emphasize that DADO’s update is more statistically efficient than a naive EDA’s because DADO gets to use all  $K$  samples for weighted MLE on each lower-dimensional factor distribution (*i.e.*, ratio of number of samples to number of dimensions is larger). Our resulting algorithm (Alg. 1) fits into the three EDA steps: (1) designs are sampled from  $p_{\theta^n}(x)$ , (2) weights, here each  $Q$ -function instead of  $f(x)$ , are computed, and (3), each search distribution factor receives its own independent weighted maximum likelihood update based on these weights (Fig. 1b). These are repeated until convergence, or for some fixed number of iterations. The factor updates are coupled only through the  $Q$ -functions, the messages across edges.  $\{Q_i^{\theta^n}\}_{i \in \mathcal{N}}$  are only valid while  $\theta$  is close to  $\theta^n$ , meaning one must balance how many gradient steps are taken before drawing new samples. If too many gradient steps are taken without resampling, a factor may be changing its parameters to collaborate with another factor which has already changed its behavior. It’s common for EDAs to include an additional hyperparameter  $W(\cdot)$ , a monotonic shaping function applied to the weights, to alter optimization dynamics (Brookes et al., 2020), included in Alg. 1. Choosing  $W$  to be the identity recovers our derivation. Notice that in place of the classical message-passing traceback equations, DADO simply performs sequential conditional sampling from its search distribution. Interestingly, a very similar algorithm can be derived without using a lower bound on the value functions (Eq. 5) if one adds an entropy-maximizing term to the initial DO objective (Sec. A.4).

### 3 RELATED WORK

The closest work to ours in the EDA community is that of the Factorized Distribution Algorithm (FDA), wherein a decomposition is leveraged to factorize the conditional probability table (CPT) that parameterizes the search distribution (Mühlenbein & Mahnig, 1999). However, FDA cannot leverage message passing to give different weights to different variables so as to more efficiently update the search model. In related work, Pelikan (2005) replaced the CPTs with Bayesian networks, but still had no means to coordinate among variables through message passing or the like.

---

378 **Algorithm 1** DECOMPOSITION-AWARE DISTRIBUTIONAL OPTIMIZATION (DADO)

---

379 1: **Given:** junction tree  $\mathcal{T} = (\mathcal{N}, \mathcal{E})$ , component functions  $\{f_{i,j}(\tilde{x}_i, \tilde{x}_j)\}_{(i,j) \in \mathcal{E}}$  and  $\{f_i(\tilde{x}_i)\}_{i \in \mathcal{N}}$

380 2: Root  $\mathcal{T}$  such that tree height is minimized, yielding directed junction tree,  $\mathcal{T}' = (\mathcal{N}, \mathcal{E}')$

381 3: Factorize search distribution according to  $\mathcal{T}'$  as  $p_\theta(x) := p_\theta(\tilde{x}_r) \prod_{(p(i),i) \in \mathcal{E}'} p_\theta(\tilde{x}_i \mid \tilde{x}_{p(i)})$ ;

382 initialize  $\theta$

383 4: Sort nodes topologically: order  $O_{\mathcal{N}}$  such that  $O_{\mathcal{N}}^{(0)}$  is a leaf index and  $O_{\mathcal{N}}^{(L-1)}$  is root index

384 5: **for** iteration  $n = 1, 2, \dots, N$  **do**

385 6:  $\{\tilde{x}_i^k\}_{k=1}^K \sim p_\theta(x)$  ▷ Sample from the factorized search distribution

386 7: **for**  $i \in O_{\mathcal{N}}$  **do** ▷ Estimate distributional value functions from samples

387 8:   **for**  $k = 1, 2, \dots, K$  **do**

388 9:      $Q_i(\tilde{x}_i^k) \leftarrow f_i(\tilde{x}_i^k) + \sum_{c \in \text{children}(i)} \sum_{k=1}^K [Q_c(\tilde{x}_c^k, \tilde{x}_i^k)]$

389 10:     **if**  $i$ 's parent,  $p(i)$ , exists:

390 11:        $Q_i(\tilde{x}_i^k, \tilde{x}_{p(i)}^k) \leftarrow f_{p(i),i}(\tilde{x}_{p(i)}^k, \tilde{x}_i^k) + Q_i(\tilde{x}_i^k)$

391 12:     **end for**

392 13:   **end for** ▷ Update each search distribution factor using value functions as weights

393 14:   **for all**  $i \in \mathcal{N}$ , in parallel **do**

394 15:     **if**  $i = r$ :

395 16:        $\theta_r \leftarrow \arg \max_{\theta_r} \sum_{k=1}^K W(Q_r(\tilde{x}_r^k)) \log p_{\theta_r}(\tilde{x}_r^k)$

396 17:     **else**

397 18:        $\theta_i \leftarrow \arg \max_{\theta_i} \sum_{k=1}^K W(Q_i(\tilde{x}_i^k, \tilde{x}_{p(i)}^k)) \log p_{\theta_i}(\tilde{x}_i^k \mid \tilde{x}_{p(i)}^k)$

398 19:     **end for**

399 20: **end for**

---

400

401

402

403

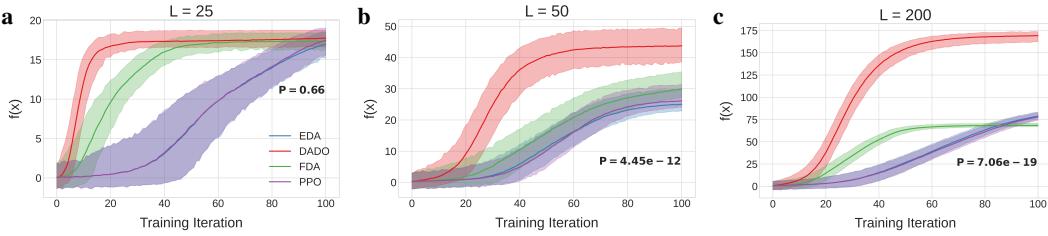
404

405 In a complementary line of work on policy optimization in reinforcement learning (analogous to  
406 learning the search distribution in EDAs), coordination between variables is enabled by message  
407 passing on a factorized search distribution/policy, but this line of work is only suitable for graph  
408 topologies that are Markov chains—that is, chain graphs. These graphs arise from reward functions,  
409  $f(x)$ , that decompose in time according to a first-order Markov assumption (Peters & Schaal (2007),  
410 Peng et al. (2019), Nair et al. (2020)). Such approaches cannot be used on arbitrary junction trees.

411 Adjacent to our problem of interest, because they focus solely on real-valued design spaces,  
412 Grudzien et al. (2024) introduces a new way to discover a functional decomposition from data,  
413 and then demonstrate that doing so helps improve out-of-distribution generalization. Separately, the  
414 Bayesian optimization (BO) community has developed methods for dynamically inferring a func-  
415 tion decomposition from data during active learning. Although they make use of message passing  
416 for coordination, they do not employ distributional optimization, nor can these methods be readily  
417 generalized to do so (Kandasamy et al. (2015), Han et al. (2021), Hoang et al. (2018), Rolland et al.  
418 (2018), Bardou et al. (2024)). This community has shown that using approximate or even random  
419 decompositions can be helpful (Ziomek & Ammar, 2023). DADO could, in principle, be used  
420 within the BO inner loop, although such an investigation is beyond the scope of the present work.

## 4 EXPERIMENTAL RESULTS

421 We perform two sets of experiments with increasing resemblance to real-world scientific design.  
422 In each setting we compare a standard EDA, that is unaware of the function decomposition, to  
423 DADO, which is aware of it. In the first setting, we create synthetic functions  $f(x)$ , while in the  
424 second setting, we focus on functions derived from real protein data. In all experiments we designed  
425 sequences of fixed length  $L$ , where each position is one of  $D = 20$  amino acids. We used  $N = 100$   
426 EDA training iterations and  $G = 1$  gradient steps for each weighted maximum likelihood update.  
427 We use MLP-based search distributions (details in Sec. A.7.1) for DADO and all baselines. We  
428 also compare to FDA (Mühlenbein & Mahnig, 1999) and PPO (Schulman et al., 2017) (details  
429 in Sec. A.6). For the shaping function we choose  $W(s) = \exp \frac{s}{\beta}$  and tune the temperature,  $\beta$ . To  
430 choose  $\beta$  and the learning rate,  $\eta$ , we performed a hyperparameter sweep separately for each method



**Figure 2: Comparison of a naive EDA to DADO on synthetic problems.** We created three random functions,  $f(x)$ , each with a randomly chosen junction tree decomposition with maximum node size of one, and randomly chosen parameters. Each experiment used alphabet size  $D = 20$  and sequence length, **a**,  $L = 25$ , **b**,  $L = 50$ , and **c**,  $L = 200$ . Each of the two methods drew  $K = 100$  samples per iteration. For each iteration, we show the mean (solid line) and 95% confidence interval (shaded envelope) of the 100 samples evaluated on  $f(x)$ , averaged across results from 20 random seeds. P-values are from a two-sided paired t-test that the mean at the final iteration is different between DADO and the best baseline, over the 20 seeds.

and each  $f(x)$ , taking  $(\eta^*, \beta^*)$  with the largest sample mean at the last iteration. For synthetic experiments, we swept over 100 combinations between  $\eta \in [10^{-5}, 5 \times 10^{-2}]$  and  $\beta \in [0.1, 8]$ . For protein experiments, which take longer, we swept only 54 pairs between  $\eta \in [5 \times 10^{-5}, 5 \times 10^{-2}]$  and  $\beta \in [0.01, 5]$ . If either method’s  $\eta^*$  or  $\beta^*$  was on the boundary of the sweep, we further expanded it.  $(\eta^*, \beta^*)$  were then used for all replicate runs over random seeds dictating the initial search distribution and sampling. Although not essential to our method as described in Alg. 1, in our implementation we reduce the variance of the search distribution update by using mean-shifted  $Q$ -functions,  $Q_i(\tilde{x}_i, \tilde{x}_p) - \mathbb{E}_{\{\tilde{x}_i^k\}}[Q_i(\tilde{x}_i^k, \tilde{x}_p)]$ , which are unbiased (Williams, 1992). Statistical significance of differences in performance is computed by comparing the sample mean  $f(x)$  at the final iteration, using paired two-sided t-tests over random seeds.

#### 456 COMPARISON ON FULLY SYNTHETIC FUNCTIONS

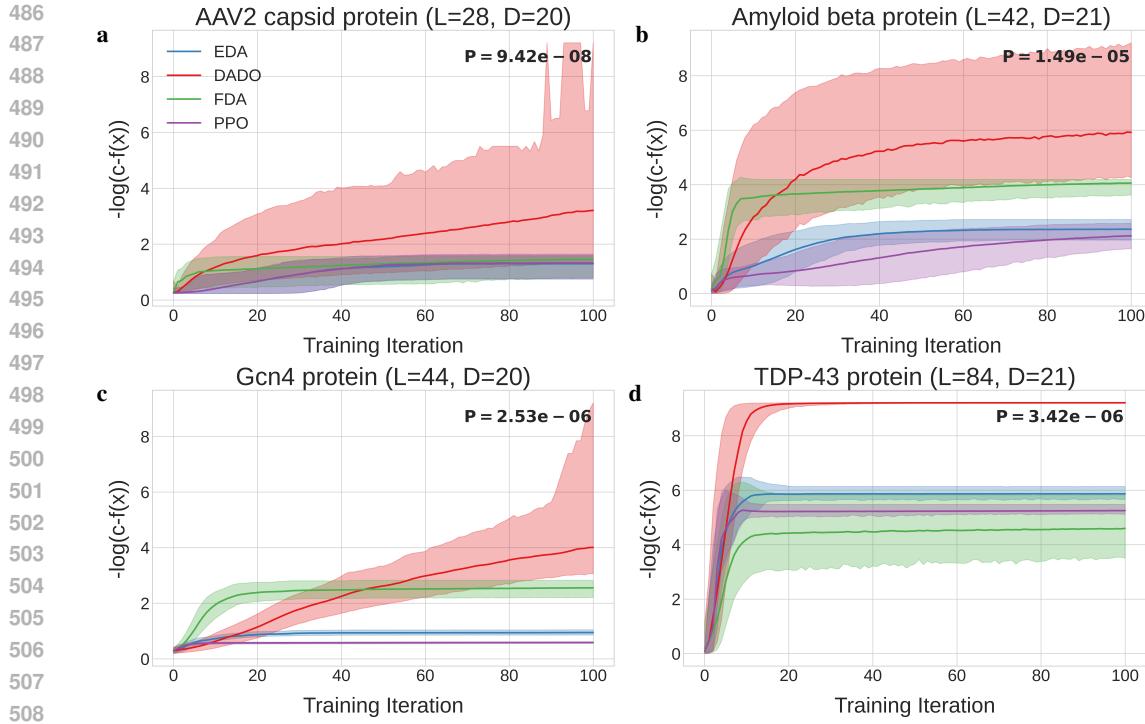
457 Here we used junction trees with meta-variable nodes containing only one original variable, *i.e.*, an  
 458 exact tree decomposition. We did so because this allowed us to better control the difficulty of the  
 459 synthetic functions in that we could specify each component function as a CPT of size  $D^2$ . For larger  
 460 meta-variables, we would have required a more compact representation than a CPT (which scale  
 461 exponentially with the number of variables in each meta-variable), based on say a neural network-  
 462 based generative model, for which random initialization tends to yield overly smooth functions that  
 463 are unrealistically easy to optimize, and are difficult to set in any other manner to obtain realistically  
 464 difficult functions. We simulated one  $f(x)$  for each of three sequence lengths,  $L = \{25, 50, 200\}$ ,  
 465 by randomly sampling a junction tree and then randomly specifying component functions (details in  
 466 Sec. A.7.2). Search model weights were initialized from  $\mathcal{N}(0, 0.0004)$  and biases were set to 0.  
 467

468 All methods drew  $K = 100$  samples from their search distribution at each iteration. For all three  
 469 sequence lengths, DADO outperforms all three baselines (Fig. 2). When  $L = 25$ , the baselines  
 470 catch up to DADO by the end of 100 iterations, but for larger  $L$ , corresponding to larger design  
 471 spaces, the baseline methods converge to substantially lower values of  $f(x)$  than DADO.

#### 472 COMPARISON ON PROTEIN PROPERTY FUNCTIONS

473 Here we anchor our experiments on  $f(x)$  fit to real protein datasets. We use four protein property  
 474 datasets, AAV, Amyloid, Gcn4, and TDP-43 (details in App. A.5). For each dataset, we used  
 475 AlphaFold3-predicted structures (Abramson et al., 2024) on the wild-type sequence to obtain a 3D  
 476 structure, from which we constructed a contact graph by thresholding the distance between pairs  
 477 of residues with threshold  $t$ . Following Brookes et al. (2022); Romero et al. (2013); Voigt et al.  
 478 (2002), we use a threshold of  $t = 4.5\text{\AA}$ . We interpret this contact map as a graph adjacency matrix,  
 479 from which we algorithmically construct a junction tree (Lauritzen & Spiegelhalter, 1988). This  
 480 defines the topology needed for DADO, and then we fit the component functions on the protein  
 481 assay-labeled data (details in Sec. A.7.3). We initialized the search distribution by training on the  
 482 1,000 points with lowest  $f(x)$ , for 1,000 iterations, with a learning rate of  $2 \times 10^{-3}$ .  
 483

484 All methods drew  $K = 1000$  samples from their search distribution at each iteration. For all four  
 485 proteins, DADO converges to designs with higher  $f(x)$  than the baselines both visually and by a  
 486 statistical test (Fig. 3). For three of the problems (Amyloid, Gcn4, and TDP-43), the 95% confidence



**Figure 3: Comparison of a naive EDA to DADO on protein property predictive models.** For each of four proteins of varying length, **a**, AAV, **b**, Amyloid, **c**, Gcn4, and **d**, TDP-43, we fit a neural network property function,  $f(x)$ , adhering to a junction tree decomposition derived from the protein’s 3D structure, and then used a naive EDA and DADO to optimize them. Each approach drew  $K = 1000$  samples per EDA iteration. For each iteration, we show the mean (solid line) and 95% confidence interval (shaded envelope) of the 1000 samples evaluated on  $-\log(c - f(x))$ , averaged across results from 20 random seeds. We plot this quantity to make clear the differences between methods when  $f(x)$  is large;  $c$  is the largest  $f(x)$  on a given plot, plus a small constant for numerical stability. P-values are from a two-sided paired t-test that the mean at the final iteration is different between DADO and the best baseline, over the 20 seeds.

intervals of DADO and the best baseline at the final iteration do not overlap at all. We plotted  $-\log(c - f(x))$  on the y-axis to make this difference clear visually; plots with  $f(x)$  on the y-axis are included in the appendix (Fig. A4).

## 5 DISCUSSION

We have proposed a new method for distributional optimization that can leverage arbitrary decomposability of the function being optimized. We have shown that it works as expected on synthetic problems—namely, better than a naive EDA that is not aware of the decomposition. We have also demonstrated the potential for practical utility on the problem protein design. Importantly, it is not necessary that a problem strictly adhere to the specified decomposition in order to be useful. Specifically, we showed that using the heuristic of thresholding AlphaFold3 estimated contacts, we can obtain a range of decomposed functions, including some that maintain predictive accuracy while providing a level of decomposability helpful for DADO. Obtaining similarly useful decomposability in other domains will require further investigation; however, as the real world typically is structured, we expect many areas will be amenable to doing so. Estimating decomposability from labeled data is an active area of research (Poelwijk et al. (2016); Grudzien et al. (2024); Park et al. (2024)).

It will be insightful to conduct future work interrogating the use of DADO with generalizations of the standard EDA, such as conditioning an unconditional generative model with an inaccurate property predictor for AI-guided design, which should enable us to design while accounting for the fact that  $f(x)$  is not truly known everywhere in the space due to finite data. This particular problem may require distilling an unconditional model into one that respects the decomposition, although alternative strategies could prove useful. Finally, use of DADO within Bayesian Optimization for optimization of the acquisition function is an exciting direction.

540 

## 6 REPRODUCIBILITY STATEMENT

541  
542 We specify exhaustively our experimental setup, hyperparameters, model architectures, and algo-  
543 rithm details in Sec. 4. Datasets used and their sources are detailed in App. A.5. A Github link to  
544 our code will be released upon publication.  
545546 

## REFERENCES

547  
548 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf  
549 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambbrick, et al. Accurate structure  
550 prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.551 Anthony Bardou, Patrick Thiran, and Thomas Begin. Relaxing the additivity constraints in decen-  
552 tralized no-regret high-dimensional bayesian optimization. In *The Twelfth International Confer-  
553 ence on Learning Representations*, 2024.554  
555 Benedetta Bolognesi, Andre J Faure, Mireia Seuma, Jörn M Schmiedel, Gian Gaetano Tartaglia, and  
556 Ben Lehner. The mutational landscape of a prion-like domain. *Nature communications*, 10(1):  
557 4162, 2019.558 David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for  
559 robust design. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th  
560 International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learn-  
561 ing Research*, pp. 773–782. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/brookes19a.html>.562  
563 David Brookes, Akosua Busia, Clara Fannjiang, Kevin Murphy, and Jennifer Listgarten. A view of  
564 estimation of distribution algorithms through the lens of expectation-maximization. In *Proceed-  
565 ings of the 2020 Genetic and Evolutionary Computation Conference Companion*, pp. 189–190,  
566 2020.567  
568 David H Brookes and Jennifer Listgarten. Design by adaptive sampling. *arXiv preprint  
569 arXiv:1810.03714*, 2018.570 David H. Brookes, Amiral Aghazadeh, and Jennifer Listgarten. On the sparsity of fitness func-  
571 tions and implications for learning. *Proceedings of the National Academy of Sciences*, 119(1):  
572 e2109649118, 2022. doi: 10.1073/pnas.2109649118. URL <https://www.pnas.org/doi/abs/10.1073/pnas.2109649118>.573  
574 Drew H Bryant, Ali Bashir, Sam Sinai, Nina K Jain, Pierce J Ogden, Patrick F Riley, George M  
575 Church, Lucy J Colwell, and Eric D Kelsic. Deep diversification of an aav capsid protein by  
576 machine learning. *Nature Biotechnology*, 39(6):691–696, 2021.577  
578 Yongcan Chen, Ruyun Hu, Keyi Li, Yating Zhang, Lihao Fu, Jianzhi Zhang, and Tong Si. Deep  
579 mutational scanning of an oxygen-independent fluorescent protein creilov for comprehensive pro-  
580 filing of mutational and epistatic effects. *ACS Synthetic Biology*, 12(5):1461–1473, 2023.581 DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter  
582 Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-  
583 dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,  
584 Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,  
585 Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John  
586 Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider, Eren  
587 Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec, Luyu  
588 Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL <http://github.com/google-deepmind>.589  
590 Clara Fannjiang and Jennifer Listgarten. Autofocused oracles for model-based design. In  
591 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-  
592 ral Information Processing Systems*, volume 33, pp. 12945–12956. Curran Associates, Inc.,  
593 2020. URL [https://proceedings.neurips.cc/paper\\_files/paper/2020/file/972cdale62b72640cb7ac702714a115f-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/972cdale62b72640cb7ac702714a115f-Paper.pdf).

594 Kuba Grudzien, Masatoshi Uehara, Sergey Levine, and Pieter Abbeel. Functional graphical  
 595 models: Structure enables offline data-driven optimization. In Sanjoy Dasgupta, Stephan  
 596 Mandt, and Yingzhen Li (eds.), *Proceedings of The 27th International Conference on Artifi-*  
 597 *cial Intelligence and Statistics*, volume 238 of *Proceedings of Machine Learning Research*, pp.  
 598 2449–2457. PMLR, 02–04 May 2024. URL <https://proceedings.mlr.press/v238/grudzien24a.html>.

600 Eric Han, Ishank Arora, and Jonathan Scarlett. High-dimensional bayesian optimization via tree-  
 601 structured additive models. In *Proceedings of the AAAI Conference on Artificial Intelligence*,  
 602 volume 35, pp. 7630–7638, 2021.

603

604 Trong Nghia Hoang, Quang Minh Hoang, Ruofei Ouyang, and Kian Hsiang Low. Decentralized  
 605 high-dimensional bayesian optimization with factor graphs. In *Proceedings of the AAAI Confer-*  
 606 *ence on Artificial Intelligence*, volume 32, 2018.

607

608 Edwin T Jaynes. Information theory and statistical mechanics. *Physical review*, 106(4):620, 1957.

609

610 Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Poczos. High dimensional bayesian op-  
 611 timisation and bandits via additive models. In Francis Bach and David Blei (eds.), *Proceed-*  
 612 *ings of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings*  
 613 *of Machine Learning Research*, pp. 295–304, Lille, France, 07–09 Jul 2015. PMLR. URL  
<https://proceedings.mlr.press/v37/kandasamy15.html>.

614

615 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*  
 616 *arXiv:1312.6114*, 2013.

617

618 Pedro Larrañaga and Jose A Lozano. *Estimation of distribution algorithms: A new tool for evolu-*  
 619 *tional computation*, volume 2. Springer Science & Business Media, 2001.

620

621 Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on graphical  
 622 structures and their application to expert systems. *Journal of the Royal Statistical Society: Series*  
 623 *B (Methodological)*, 50(2):157–194, 1988.

624

625 Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.  
 626 *arXiv preprint arXiv:1805.00909*, 2018.

627

628 Francesca-Zhoufan Li, Jason Yang, Kadina E Johnston, Emre Gürsoy, Yisong Yue, and Frances H  
 629 Arnold. Evaluation of machine learning-assisted directed evolution across diverse combinatorial  
 630 landscapes. *bioRxiv*, pp. 2024–10, 2024.

631

632 Rosalie Lipsh-Sokolik and Sarel J Fleishman. Addressing epistasis in the design of protein function.  
 633 *Proceedings of the National Academy of Sciences*, 121(34):e2314999121, 2024.

634

635 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*  
 636 *arXiv:1711.05101*, 2017.

637

638 Heinz Mühlenbein and Thilo Mahnig. Fda -a scalable evolutionary algorithm for the optimization  
 639 of additively decomposed functions. *Evolutionary Computation*, 7(4):353–376, 1999. doi: 10.  
 640 1162/evco.1999.7.4.353. URL <http://muhlenbein.org/fda99.PDF>.

641

642 Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-  
 643 forcement learning with offline datasets. *arXiv preprint arXiv:2006.09359*, 2020.

644

645 Pascal Notin, Aaron Kollasch, Daniel Ritter, Lood Van Niekerk, Steffanie Paul, Han Spinner, Nathan  
 646 Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, et al. Proteingym: Large-scale benchmarks  
 647 for protein fitness prediction and design. *Advances in Neural Information Processing Systems*, 36:  
 648 64331–64379, 2023.

649

650 C Anders Olson, Nicholas C Wu, and Ren Sun. A comprehensive biophysical description of pairwise  
 651 epistasis throughout an entire protein domain. *Current biology*, 24(22):2643–2651, 2014.

652

653 Jakub Otwinowski and Ilya Nemenman. Genotype to phenotype mapping and the fitness landscape  
 654 of the e. coli lac promoter. *PloS one*, 8(5):e61570, 2013.

648 Yeonwoo Park, Brian PH Metzger, and Joseph W Thornton. The simplicity of protein sequence-  
 649 function relationships. *Nature Communications*, 15(1):7953, 2024.  
 650

651 Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible inference, 1988.  
 652

653 Martin Pelikan. Bayesian optimization algorithm. In *Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms*, pp. 31–48. Springer, 2005.  
 654

655 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:  
 656 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.  
 657

658 Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for opera-  
 659 tional space control. In *Proceedings of the 24th International Conference on Machine Learn-  
 660 ing*, ICML '07, pp. 745–750, New York, NY, USA, 2007. Association for Computing Machin-  
 661 ery. ISBN 9781595937933. doi: 10.1145/1273496.1273590. URL <https://doi.org/10.1145/1273496.1273590>.  
 662

663 Frank J Poelwijk, Vinod Krishna, and Rama Ranganathan. The context-dependence of mutations: a  
 664 linkage of formalisms. *PLoS computational biology*, 12(6):e1004771, 2016.  
 665

666 Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. High-dimensional bayesian  
 667 optimization via additive models with overlapping groups. In Amos Storkey and Fernando  
 668 Perez-Cruz (eds.), *Proceedings of the Twenty-First International Conference on Artificial In-  
 669 telligence and Statistics*, volume 84 of *Proceedings of Machine Learning Research*, pp.  
 670 298–307. PMLR, 09–11 Apr 2018. URL <https://proceedings.mlr.press/v84/rolland18a.html>.  
 671

672 Philip A Romero, Andreas Krause, and Frances H Arnold. Navigating the protein fitness landscape  
 673 with gaussian processes. *Proceedings of the National Academy of Sciences*, 110(3):E193–E201,  
 674 2013.  
 675

676 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region  
 677 policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR,  
 678 2015.  
 679

680 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 681 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.  
 682

683 Mireia Seuma, Andre J Faure, Marta Badia, Ben Lehner, and Benedetta Bolognesi. The genetic  
 684 landscape for amyloid beta fibril nucleation accurately discriminates familial alzheimer’s disease  
 685 mutations. *elife*, 10:e63364, 2021.  
 686

687 Devavrat Shah. Algorithms for inference (course 6.438, fall 2014). MIT  
 688 OpenCourseWare, 2014. URL <https://ocw.mit.edu/courses/6-438-algorithms-for-inference-fall-2014/>. Lecture notes. Accessed:  
 689 2025-10-30.  
 690

691 Max V Staller, Alex S Holehouse, Devjanee Swain-Lenz, Rahul K Das, Rohit V Pappu, and Barak A  
 692 Cohen. A high-throughput mutational scan of an intrinsically disordered acidic transcriptional  
 693 activation domain. *Cell systems*, 6(4):444–455, 2018.  
 694

695 Tyler N Starr and Joseph W Thornton. Epistasis in protein evolution. *Protein science*, 25(7):1204–  
 696 1218, 2016.  
 697

698 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT  
 699 press Cambridge, 1998.  
 700

701 Ammar Tareen, Mahdi Kooshkbaghi, Anna Posfai, William T. Ireland, David M. McCandlish,  
 702 and Justin B. Kinney. Mave-nn: learning genotype-phenotype maps from multiplex assays  
 703 of variant effect. *Genome Biology*, 23:1–27, 12 2022. ISSN 1474760X. doi: 10.1186/S13059-022-02661-7/FIGURES/6. URL <https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02661-7>.  
 702

702 Brandon Trabucco, Aviral Kumar, Xinyang Geng, and Sergey Levine. Conservative objective mod-  
 703 els for effective offline model-based optimization. In Marina Meila and Tong Zhang (eds.), *Pro-  
 704 ceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings  
 705 of Machine Learning Research*, pp. 10358–10368. PMLR, 18–24 Jul 2021.

706 Kotaro Tsuboyama, Justas Dauparas, Jonathan Chen, Elodie Laine, Yasser Mohseni Behbahani,  
 707 Jonathan J Weinstein, Niall M Mangan, Sergey Ovchinnikov, and Gabriel J Rocklin. Mega-scale  
 708 experimental analysis of protein folding stability in biology and design. *Nature*, 620(7973):434–  
 709 444, 2023.

710 Masatoshi Uehara, Yulai Zhao, Ehsan Hajiramezanali, Gabriele Scialia, Gokcen Eraslan, Avantika  
 711 Lal, Sergey Levine, and Tommaso Biancalani. Bridging model-based optimization and genera-  
 712 tive modeling via conservative fine-tuning of diffusion models. *Advances in Neural Information  
 713 Processing Systems*, 37:127511–127535, 2024.

714 N. Vlassis, R. Elhorst, and J.R. Kok. Anytime algorithms for multiagent decision making using  
 715 coordination graphs. In *2004 IEEE International Conference on Systems, Man and Cybernetics  
 716 (IEEE Cat. No.04CH37583)*, volume 1, pp. 953–957 vol.1, 2004. doi: 10.1109/ICSMC.2004.  
 717 1398426.

718 Christopher A Voigt, Carlos Martinez, Zhen-Gang Wang, Stephen L Mayo, and Frances H Arnold.  
 719 Protein building blocks preserved by recombination. *Nature structural biology*, 9(7):553–558,  
 720 2002.

721 Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-  
 722 ment learning. *Mach. Learn.*, 8(3–4):229–256, May 1992. ISSN 0885-6125. doi: 10.1007/  
 723 BF00992696. URL <https://doi.org/10.1007/BF00992696>.

724 Fa-Yueh Wu. The potts model. *Reviews of modern physics*, 54(1):235, 1982.

725 Danqing Zhu, David H Brookes, Akosua Busia, Ana Carneiro, Clara Fannjiang, Galina Popova,  
 726 David Shin, Kevin C Donohue, Li F Lin, Zachary M Miller, et al. Optimal trade-off control in  
 727 machine learning-based library design, with application to adeno-associated virus (aav) for gene  
 728 therapy. *Science Advances*, 10(4):eadj3786, 2024.

729 Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse  
 730 reinforcement learning. In *Aaai*, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

731 Juliusz Krzysztof Ziomek and Haitham Bou Ammar. Are random decompositions all we need in  
 732 high dimensional bayesian optimisation? In *International Conference on Machine Learning*, pp.  
 733 43347–43368. PMLR, 2023.

## 739 A APPENDIX

### 741 A.1 DIFFERENT WAYS OF WRITING A FUNCTION DECOMPOSITION

743 In the introduction (Sec. 1), we define a decomposable function as one that can be written like  
 744  $f(x) = C_1(\hat{x}_1) + C_2(\hat{x}_2), \dots, C_\kappa(\hat{x}_\kappa)$ , with meta-variables  $\hat{x}_i$  that are generic sets of original vari-  
 745 ables  $x_j$ . This formulation is most helpful for building intuition about fully-decomposable functions,  
 746 in which there are no variables  $x_j$  that appear in multiple meta-variables (i.e., meta-variables don’t  
 747 overlap). It also encompasses functions for which there are overlapping meta-variables in the de-  
 748 composition too.

749  $f(x) = C_1(\hat{x}_1) + C_2(\hat{x}_2), \dots, C_\kappa(\hat{x}_\kappa)$  also provides the helpful intuition that someone looking to  
 750 use DADO need only specify a decomposition at this level of detail—sets of design variables that  
 751 directly interact—rather than as a graph. In the protein binding example given in Sec. 1, a user  
 752 might specify three component functions: one over sequence positions in the binding interface,  $\hat{x}_0$ ,  
 753 one over sequence positions in the scaffold,  $\hat{x}_1$ , and one over a subset of positions tying together  
 754 the binding interface and the scaffold,  $\hat{x}_2$ . Specifying a decomposition at this level may be easier  
 755 than in its graph form. In the event that one has an exact decomposition given, this information can  
 be represented either this way, or in terms of the graph introduced below. Situations in which an

exact decomposition may be given include hardware design (*e.g.*, due to manufacturing constraints, a topology of wires in a circuit is pre-specified) and bi-level optimizations (*e.g.*, to design the best telescope, a scientist optimizes both the arrangement of lenses and their physical properties; an outer loop optimizes topologies and an inner loop using DADO evaluates a single topology by optimizing each lens’ parameters).

However,  $f(x) = C_1(\hat{x}_1) + C_2(\hat{x}_2), \dots, C_\kappa(\hat{x}_\kappa)$  as written has no interpretation in terms of a graph, which is necessary for message-passing and for factorizing the search distribution (Sec. 2.1). To bridge this gap, we introduce a graph in which nodes are design variables and edges specify which design variables directly interact to influence  $f$ . Users of DADO may also specify the decomposition at this level; we expect this to be helpful when domain knowledge is available in the *negative* form, *i.e.*, when the user can begin with the fully-connected graph and remove edges between design variables they think don’t directly interact. This graph can then be automatically transformed into a junction tree (Lauritzen & Spiegelhalter, 1988), which is what our algorithm actually takes as input. That is, DADO takes an undirected junction tree,  $\mathcal{T} := (\mathcal{N}, \mathcal{E})$ , with nodes,  $\mathcal{N}$ , and edges,  $\mathcal{E}$ . Each node is a set of design variable indices, such that indexing  $x$  with this set yields a new meta-variable,  $\tilde{x}_i$ , correspondingly exactly to a node in the junction tree, whereas the old meta-variables  $\hat{x}_i$  had no such interpretation.  $f(x)$  must be decomposed instead according to  $\mathcal{T}$ .

We can rewrite the generic function decomposition,  $f(x) = C_1(\hat{x}_1) + C_2(\hat{x}_2), \dots, C_\kappa(\hat{x}_\kappa)$ , equivalently in terms of  $\mathcal{N}$  and  $\mathcal{E}$ :  $f(x) = \sum_{i \in \mathcal{N}} f_i(\tilde{x}_i) + \sum_{(i,j) \in \mathcal{E}} f_{i,j}(\tilde{x}_i, \tilde{x}_j)$  (Fig. 1a). We’ve replaced component functions  $C_i(\hat{x}_i)$  on generic sets of design variable indices with either an equivalent “node component function”,  $f_i(\tilde{x}_i)$ , or “edge component function”,  $f_{i,j}(\tilde{x}_i, \tilde{x}_j)$ . Correspondingly,  $\hat{x}_i$  in the original formulation either corresponds exactly to some node in the junction tree, such that  $\hat{x}_i = \tilde{x}_j$ , or it corresponds to some edge in the junction tree, such that  $\hat{x}_i = \tilde{x}_{j \cup k}$ . The fully-decomposed, no-overlap EDA described in Sec. 2 corresponds to an edgeless junction tree—each component function is simply a node component function,  $C_i(\hat{x}_i) = f_i(\tilde{x}_i)$ , and there are no edge component functions—which is why a fully-factorized search distribution suffices. But if, for example,  $\hat{x}_0 = \{x_0, x_1\}$  and  $\hat{x}_1 = \{x_1, x_2\}$  overlap, then they must instead correspond to edge component functions. For a simplified case where the junction tree nodes have cardinality 1 (*e.g.*,  $\tilde{x}_i = x_i$ ), we might have  $C_0(\hat{x}_0) = f_{0,1}(\tilde{x}_0, \tilde{x}_1)$  and  $C_1(\hat{x}_1) = f_{1,2}(\tilde{x}_1, \tilde{x}_2)$ . Fig. 1a only depicts edge component functions for clarity and simplicity; notice also that node component functions can technically be subsumed into appropriate edge component functions without loss of generality. The presence of edge component functions requires the coupling of the search distribution’s factors in a manner compatible with  $\mathcal{E}$ ; a fully-factorized search distribution with independent distributions for each meta-variable will no longer suffice.

### A.1.1 CONNECTION TO EPISTASIS

Function decomposition corresponds intimately to notions of the epistatic landscape for a protein property function (*e.g.*, Poelwijk et al. (2016), Wu (1982), Otwinowski & Nemenman (2013), Lipsh-Sokolik & Fleishman (2024)). An “epistatic expansion” of  $f$ ,

$$f(x) = \beta + \sum_{i=0}^L \beta_i[x_i] + \sum_{i=0}^L \sum_{j>i}^L \beta_{i,j}[x_i, x_j] + \dots + \beta_{0,1,\dots,L-1}[x_0, x_1, \dots, x_{L-1}], \quad (6)$$

is a decomposition of  $f$  into a bias term, first-order terms, second-order terms, and so forth up to  $L$ -order epistasis. For the first-order terms, each  $\beta_i$  is a vector which is indexed by the particular value of  $x_i$ . For higher-order terms,  $\beta$  is a  $d$ -dimensional tensor. One can obtain a decomposition graph from an epistatic expansion as follows: for each nonzero term in the expansion, add an edge between each design variable in the term. A function in which only a few, lower-order terms were nonzero would be relatively easy to optimize.

An expansion of this sort can be thought of as a spectral decomposition of  $f$  into components of lower and higher frequencies, and can be computed for small landscapes using a discrete Fourier transform. A function with primarily lower-frequency components would be smooth and easy to optimize whereas a function with higher-frequency components would be rugged and difficult to find the global optimum of. One can imagine a worst-case scenario, that of  $L$ -order epistasis, of which a needle-in-a-haystack function is an example. In general, full epistatic landscapes are intractable to compute for design spaces of practical sizes, but estimation of a subset of the terms is an active area

810 of research (e.g., Otwinowski & Nemenman (2013); Park et al. (2024)) due to beliefs that natural  
 811 proteins tend to exhibit sparse and mostly lower-order epistasis.  
 812

813 In comparison to the function decompositions used by DADO, a full epistatic landscape specifies  
 814 both the graph topology and the component functions, everywhere. Completely specifying an order-  
 815  $d$  interaction if each variable has  $D$  states requires choosing  $D^d$  values. The high-dimensional  
 816 synthetic functions used in our experiments are fully specified everywhere because they’re defined  
 817 with primarily lower-order epistasis, which can be specified with far fewer values. In contrast, our  
 818 protein property predictors can have high-order component functions represented by neural networks  
 819 fit from limited data, meaning they’re underspecified beyond the training data. In some sense, fitting  
 820 neural network component functions allows us to specify higher-order epistasis in a locale without  
 821 paying the price for defining it over the full design space. Real-world design procedures typically  
 822 only have knowledge of  $f$  in a small locale, which is why locally-valid decompositions suffice.  
 823

## A.2 DECOMPOSITION-UNAWARE EDA DERIVATION

824 Given an objective,  $f(x)$ , to maximize, a decomposition-unaware EDA (or “naive” EDA) transforms  
 825 the original problem into a distributional optimization problem as follows (Brookes et al., 2020):  
 826

$$827 \max_x f(x) = \max_{\theta} \mathbb{E}_{p_{\theta}(x)}[f(x)]. \quad (7)$$

828 For the equivalence to hold, the search distribution,  $p_{\theta}(x)$ , must be capable of representing a point  
 829 mass on  $x^*$ . Intuitively, one can think of an EDA as having a search distribution,  $p_{\theta}(x)$ , that acts as  
 830 a spotlight on the design space, which is iteratively moved toward areas of the space with high  $f(x)$   
 831 in expectation. Modern EDAs parameterize the search distribution with neural network generative  
 832 models, such as a Variational Autoencoder (Kingma & Welling (2013); e.g., Brookes et al. (2019)).  
 833

834 Procedurally, after having initialized the search distribution,  $p_{\theta^0}(x)$ , this naive EDA then iterates  
 835 through these three steps either  $N$  times or until some convergence criteria is met (Larrañaga &  
 836 Lozano, 2001; Brookes et al., 2020):

- 837 1. Draw  $K$  samples from the current search distribution,  $\{x^k\}_{k=1}^K \sim p_{\theta^n}(x)$
- 838 2. Score each sample with the objective function to get its weight,  $w^k = f(x^k)$ .
- 839 3. Update the search distribution parameters with weighted maximum likelihood estimation (MLE),  
 840 using the weighted samples,  $\theta^{n+1} = \arg \max_{\theta} \mathbb{E}_{\{x^k\}}[w^k \log p_{\theta}(x^k)]$ . In older EDAs, this step  
 841 was often instead a *truncated* maximum likelihood estimation, in which  $p_{\theta}(x)$  modeled only  
 842 samples with the largest weights.

843 Often, a predefined monotonic “shaping” function,  $W(\cdot)$ , is additionally applied  
 844 to the weights to control optimization dynamics. Its monotonicity guarantees that  
 845  $\arg \max_x f(x) = \arg \max_x W(f(x))$ . We’ve written the EDA above and its derivation be-  
 846 low without  $W$ , but  $f(x)$  can be equivalently replaced with  $W(f(x))$  everywhere.  
 847

848 For clarity, we sketch out one way of deriving the EDA update (step 3) from Eq. 7. At each EDA  
 849 iteration, we want to improve the current search distribution with an update,  $p_{\theta^{n+1}}(x) \leftarrow p_n^*(x) \propto$   
 850  $f(x) \cdot p_{\theta^n}(x)$ . To do this, we maximize  
 851

$$852 -D_{\text{KL}}(p_n^*(x) \parallel p_{\theta}(x)) = \frac{1}{Z} \mathbb{E}_{p_{\theta^n}(x)}[f(x) \log p_{\theta}(x)] + H(p_n^*(x)), \quad (8)$$

853 where the entropy term can be dropped because it has no dependence on  $\theta$  and division by  $Z$  can be  
 854 dropped without changing the objective’s maximizer. The sample approximation of the remaining  
 855 terms is exactly step 3. Assuming an exact update (*i.e.*, infinite samples such that the expectation is  
 856 evaluated exactly,  $p_{\theta}(x)$  has sufficient capacity to represent  $p_n^*(x)$ , and the KL divergence reaches 0),  
 857 the resulting search distribution at iteration  $n$  is  $p_n^*(x) \propto f(x)^n p_{\theta^0}(x)$ . As  $n \rightarrow \infty$ , this distribution  
 858 concentrates all of its mass at the global maxima of  $f$  and as a result,  $f(x^*) = \mathbb{E}_{p_{\theta}(x)}[f(x)]$ .  
 859 The derivation in Brookes & Listgarten (2018) is perhaps closest to this one, though their search  
 860 distribution improvement operator is motivated by Bayes’ rule. It can be generalized to the derivation  
 861 we give by simply writing  $p_n^*(x) \propto C(x) \cdot p_{\theta^n}(x)$  for some  $C$ . Bayes’ rule yields a special case of  
 862 this improvement operator, namely one where the multiplier is  $C(x) = \frac{p(S|x)}{\sum_x p_{\theta^n}(x)p(S|x)}$ . We choose  
 863 not to interpret  $f(x)$  as a normalized distribution in our derivation, though one can definitely do so.

864 In practice, the weighted MLE problem in step 3 is typically solved with gradient descent; we will  
 865 choose to use only a fixed number of gradient steps, which can be theoretically justified through the  
 866 equivalence of EDAs to Expectation-Maximization (Brookes et al., 2020).  
 867

868 **A.3 DADO DERIVATION**  
 869

870 Herein, we give an augmented version of the derivation presented in Sec. 2.1. We build on the  
 871 derivation of the naive EDA given in Sec. A.2. The goal of DADO is to obtain a generative  
 872 model,  $p_\theta(x)$ , that maximizes the EDA objective,  $\arg \max_\theta \mathbb{E}_{p_\theta(x)}[f(x)]$ , while leveraging de-  
 873 composable in  $f(x)$  for optimization efficiency. DADO requires as input a decomposed ver-  
 874 sion of  $f(x)$ , which can be described by an undirected junction tree,  $\mathcal{T} := (\mathcal{N}, \mathcal{E})$ , with nodes,  
 875  $\mathcal{N}$ , and edges,  $\mathcal{E}$ . As noted in the introduction and shown in our experiments on proteins, iden-  
 876 tifying useful decomposability is feasible in practice. Given the junction tree decomposition, we  
 877 write  $f(x) = \sum_{i \in \mathcal{N}} f_i(\tilde{x}_i) + \sum_{(i,j) \in \mathcal{E}} f_{i,j}(\tilde{x}_i, \tilde{x}_j)$ , where we refer to  $f_i(\tilde{x}_i)$  as “node component  
 878 functions” and  $f_{i,j}(\tilde{x}_i, \tilde{x}_j)$  as “edge component functions” (Fig. 1a). This functional structure is  
 879 intimately related to notions of the “epistatic landscape” of a protein’s property function and spec-  
 880 tral analysis (see Sec. A.1.1). When the component functions are not known *a priori*, they can be  
 881 parameterized and fit to labeled data.

882 We will begin our exposition by recalling how to do decomposition-aware exact (non-distributional)  
 883 optimization, that is, to solve  $\arg \max_x f(x)$ . This problem is efficiently solved with a classical  
 884 message-passing algorithm, which coordinates local optimizations across parts of the junction tree  
 885 to obtain a single global optimum. Its efficiency comes from breaking optimization over all variables  
 886 jointly into separate optimizations for each (smaller) meta-variable. Having loaded the reader with  
 887 this intuition, we then adapt these ideas to distributional optimization, yielding DADO.

888 **A.3.1 CLASSICAL MESSAGE-PASSING FOR NON-DISTRIBUTIONAL OPTIMIZATION**  
 889

890 Although classical message-passing has been largely used for probabilistic inference on probabilistic  
 891 graphical models (Pearl, 1988; Shah, 2014), it can also be used for exact optimization of a function,  
 892  $x^* = \arg \max_x f(x)$  (Vlassis et al., 2004). In particular, message-passing can be used to find  
 893 a global maximum of a function defined on an undirected junction tree,  $\mathcal{T}$ , by making use of its  
 894 topology for optimal time-complexity. In particular, one takes the junction tree, which is undirected,  
 895 and roots it to obtain a directed tree, which induces a hierarchy among the meta-variables from root  
 896 to leaves. Each node is responsible for accumulating information from all nodes in its sub-tree and  
 897 then passing this information on to its parent. Consequently, the root node receives information from  
 898 the entire tree, which is sufficient to set its variables in a globally optimal manner. Then, starting  
 899 with the root, each parent communicates its variables’ optimal settings to its children, which can in  
 900 turn set their variables optimally, and so forth.

900 To obtain the rooted tree,  $\mathcal{T}' := (\mathcal{N}', \mathcal{E}')$ , from the junction tree, one keeps the same nodes,  $\mathcal{N}' =$   
 901  $\mathcal{N}$ , chooses a root node,  $r$ , and directs all edges in  $\mathcal{E}$  outward from  $r$ , yielding directed edges,  
 902  $\mathcal{E}'$ . Although rooting at any node will suffice, we choose  $r$  such that  $\mathcal{T}'$  has the shortest height  
 903 possible. Message-passing finds a global optimum in two passes through the tree: one round of  
 904 passing messages up from leaves to root, and then one round passing messages back down to the  
 905 leaves.

906 Given  $\mathcal{T}'$ , classical message-passing first uses dynamic programming to accumulate information  
 907 from the leaves up to the root. Similarly to any dynamic programming procedure, we accumulate  
 908 solutions to increasingly larger intermediate sub-problems. In this case, each sub-problem is to find  
 909 the value of  $f(x)$  evaluated on only a subset of meta-variables, rather than on the full set of variables  
 910 in  $x$ . Each sub-problem is tractable owing to the decomposition of the objective function into compo-  
 911 nent functions for each node and edge, and by respecting the partial order of sub-problems induced  
 912 by  $\mathcal{T}'$ . Specifically, one computes a *value function*,  $V_i^{\max}(\tilde{x}_{p(i)})$ , for each node  $i \in \mathcal{N}' \setminus \{r\}$ , which  
 913 tells us for each setting of its parent,  $\tilde{x}_{p(i)}$ , the value of the intermediate objective function defined  
 914 by the edge component function,  $f_{p(i),i}(\tilde{x}_{p(i)}, \tilde{x}_i)$ , plus all component functions over the sub-tree  
 915 rooted at  $i$ , given that all nodes maximize their respective intermediate objectives. Computing value  
 916 functions comprises the first pass through the tree, from leaves to root:

$$917 V_i^{\max}(\tilde{x}_{p(i)}) := \max_{\tilde{x}_i} \left( f_i(\tilde{x}_i) + f_{p(i),i}(\tilde{x}_{p(i)}, \tilde{x}_i) + \sum_{c \in \text{children}(i)} V_c^{\max}(\tilde{x}_i) \right).$$

918 Notably,  $V_i^{\max}(\tilde{x}_{p(i)})$  provides sufficient information about all nodes in the sub-tree rooted at  $i$  to  
919 optimally choose the value of  $\tilde{x}_{p(i)}$  with respect to its children. Thus it follows that once all value  
920 functions have been computed, the root’s assignment can be set in a globally optimal manner from  
921 its children’s value functions,

$$923 \tilde{x}_r^* := \arg \max_{\tilde{x}_r} \left( f_r(\tilde{x}_r) + \sum_{c \in \text{children}(r)} V_c(\tilde{x}_r) \right).$$

925 Having chosen the root assignment, we then pass it down the tree as  $\tilde{x}_{p(i)} = \tilde{x}_{p(i)}^*$  to its children,  
926 which successively pass their chosen assignments to their children, all the way to the leaves,

$$928 \tilde{x}_i^* := \arg \max_{\tilde{x}_i} \left( f_i(\tilde{x}_i) + f_{p(i),i}(\tilde{x}_{p(i)}^*, \tilde{x}_i) + \sum_{c \in \text{children}(i)} V_c(\tilde{x}_i) \right),$$

930 resulting in a global maximizer  $x^*$  of  $f(x)$ . This dynamic programming “traceback” of optimal  
931 assignments back down the tree constitutes our second and final pass of messages.

932 **Alternative notation.** For convenience of our generalization to distributional optimization, we  
933 re-write the parent value functions  $V_i^{\max}(\tilde{x}_{p(i)})$  in terms of child-parent,  $Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})$ , and single-  
934 node,  $Q_i^{\max}(\tilde{x}_i)$  value functions:

$$936 V_i^{\max}(\tilde{x}_{p(i)}) := \max_{\tilde{x}_i} Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)}), \text{ where} \quad (9)$$

$$937 Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)}) := f_{p(i),i}(\tilde{x}_{p(i)}, \tilde{x}_i) + Q_i^{\max}(\tilde{x}_i) \text{ and} \quad (10)$$

$$939 Q_i^{\max}(\tilde{x}_i) := f_i(\tilde{x}_i) + \sum_{c \in \text{children}(i)} V_c^{\max}(\tilde{x}_i). \quad (11)$$

941 In contrast to the original parent value functions,  $Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})$  represents the effect of the choice  
942 of *both*  $\tilde{x}_{p(i)}$  and  $\tilde{x}_i$  on their edge component function plus all component functions over the sub-  
943 tree rooted at  $i$ , assuming all descendants of  $i$  maximize their corresponding value functions. In-  
944 tuitively,  $Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})$  is the value function on edge  $(p(i), i)$  prior to  $\tilde{x}_i$  being maximized out,  
945 which will become useful if we want to, say, sample  $\tilde{x}_i$  according to some distribution instead.  
946  $Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})$  is composed of two terms, one of which depends on its parent, and one of which  
947 doesn’t,  $Q_i^{\max}(\tilde{x}_i)$ . Written using the  $Q$ -functions just defined, the equivalent traceback equations  
948 for selecting a globally optimal assignment,  $x^*$ , are simply  $\tilde{x}_r^* := \arg \max_{\tilde{x}_r} Q_r^{\max}(\tilde{x}_r)$  and  
949  $\tilde{x}_i^* := \arg \max_{\tilde{x}_i} Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)}^*)$ . In other words,

$$950 x^* = \arg \max_x f(x) = \{ \arg \max_{\tilde{x}_r} Q_r^{\max}(\tilde{x}_r) \} + \{ \arg \max_{\tilde{x}_i} Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)}^*) \}_{(p(i),i) \in \mathcal{E}'} \quad (12)$$

$$951 = \arg \max_x \left( Q_r^{\max}(\tilde{x}_r) + \sum_{(p(i),i) \in \mathcal{E}'} Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)}) \right). \quad (13)$$

### 954 A.3.2 FROM CLASSICAL MESSAGE PASSING TO DISTRIBUTIONAL OPTIMIZATION

955 In the same way that an EDA transforms  $\arg \max_x f(x)$  into a distributional optimization problem  
956 (Sec. A.2), we can rewrite the equivalent message-passing objective in Eq. 13 as DO. Because the  
957 original optimization problems over  $x$  are equivalent, their DO formulations are equivalent too,

$$959 \arg \max_{\theta} \mathbb{E}_{p_{\theta}(x)}[f(x)] = \arg \max_{\theta} \mathbb{E}_{p_{\theta}(x)} \left[ Q_r^{\max}(\tilde{x}_r) + \sum_{(p(i),i) \in \mathcal{E}'} Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)}) \right] \quad (14)$$

$$961 = \arg \max_{\theta} \left( \mathbb{E}_{p_{\theta}(x)}[Q_r^{\max}(\tilde{x}_r)] + \sum_{(p(i),i) \in \mathcal{E}'} \mathbb{E}_{p_{\theta}(x)}[Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})] \right), \quad (15)$$

964 where we’ve used linearity of expectations. However, a generic joint search distribution cannot take  
965 advantage of the linear additivity in value functions over the junction tree topology. That is, while  
966 the classical traceback equations perform maximization over each meta-variable separately, Eq. 15  
967 uses a single, unfactorized search distribution over *all* variables,  $p_{\theta}(x)$ , to optimize each  $Q$ -function.  
968 We address this next, by factorizing the search distribution.

970 **Factorized search distribution.** Classical message-passing (Eq. 12) independently maximizes  
971 each  $Q$ -function conditional on the choice of  $\tilde{x}_{p(i)}$ , instead of explicitly maximizing all variables in  $x$   
972 jointly (Eq. 13). This is possible because each  $Q_i$  captures all relevant global information needed to

choose  $\tilde{x}_i$ . It stands to reason then that DO can do something similar. Specifically, instead of training a single joint search distribution, we train smaller search distributions over each  $\tilde{x}_i$ , conditional on  $\tilde{x}_{p(i)}$ , to separately maximize each  $Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})$ . That is, we factor the search distribution according to  $\mathcal{T}'$ , resulting in a DAG search distribution,  $p_\theta(x) := p_\theta(\tilde{x}_r) \prod_{(p(i), i) \in \mathcal{E}'} p_\theta(\tilde{x}_i | \tilde{x}_{p(i)})$ , for root node  $r$ , non-root nodes  $i$ , and parents  $p(i)$ , connected by directed edges  $\mathcal{E}'$ , and with parameters,  $\theta$ . This factorized search distribution can be plugged into Eq. 15 for an equivalent optimization problem. We refer to each element of this product as one of the *factors* of the search distribution. In our implementation, each factor has completely separate parameters, though we write a shared  $\theta$  for conciseness. Notice that each factor of the search distribution interacts with each other factor through the directed edges,  $\mathcal{E}'$ . That is, the distribution of  $\tilde{x}_i$  depends on its parent's factor, and through it, all of its parent's ancestors:  $p_\theta(\tilde{x}_i) = p_\theta(\tilde{x}_i | \tilde{x}_{p(i)}) p_\theta(\tilde{x}_{p(i)})$ . In turn, each of node  $i$ 's children's factors depends on  $p_\theta(\tilde{x}_i)$ . Due to this coupling, we cannot optimize each factor fully independently. But we can still *update* each factor separately from the others in a globally-consistent manner via message-passing. In particular, each factor will only be responsible for directly optimizing its own meta-variable, but will need to coordinate with its neighboring factors by getting information from them about how they are optimizing their meta-variables in a manner analogous to classical message-passing. Our current messages,  $Q_i^{\max}$ , convey the value of each intermediate objective when all meta-variables are chosen via maximization. For DO, we'll require messages that communicate values when meta-variables are chosen according to the factorized search distribution,  $p_\theta(x)$ .

**Distributional value functions.** While one certainly could choose to optimize classical value functions using an EDA search distribution (Eq. 15), it doesn't make sense for two main reasons. As we just mentioned, DO aims to train  $p_\theta(x)$  such that it maximizes  $f(x)$ , or equivalently, the sum of  $Q$ -functions, in expectation. Therefore, the DO objective should consider intermediate objective values for meta-variables chosen according to the current search distribution, not those chosen by explicit maximization, as in  $V_i^{\max}(\tilde{x}_{p(i)})$ . Additionally, computing classical value functions requires enumerating all assignments of each  $\tilde{x}_i$  for the maximum used in  $V_i^{\max}(\tilde{x}_{p(i)})$ . When  $\tilde{x}_i$  contains more than a few design variables, this  $\max$  operation quickly becomes intractable. One reason for doing distributional optimization is to avoid enumerating massive design spaces. To address both issues, we define corresponding *distributional* value functions that fulfill both desiderata:

$$V_i^\theta(\tilde{x}_{p(i)}) := \mathbb{E}_{p_\theta(\tilde{x}_i | \tilde{x}_{p(i)})} [Q_i^\theta(\tilde{x}_i, \tilde{x}_{p(i)})], \text{ where} \quad (16)$$

$$Q_i^\theta(\tilde{x}_i, \tilde{x}_{p(i)}) := f_{p(i), i}(\tilde{x}_{p(i)}, \tilde{x}_i) + Q_i^\theta(\tilde{x}_i) \text{ and} \quad (17)$$

$$Q_i^\theta(\tilde{x}_i) := f_i(\tilde{x}_i) + \sum_{c \in \text{children}(i)} V_c^\theta(\tilde{x}_i). \quad (18)$$

Compared to Eq. 9, the distributional  $V$ -functions compute the value in expectation under  $p_\theta$  instead of a  $\max$ . Because they use an expectation instead of a  $\max$  operation, these value functions can be approximated tractably and without bias by drawing Monte-Carlo samples from the search distribution. The connection to classical value functions can be made clearer by defining a particular distribution which recovers them, the one placing all of its mass on the  $\arg \max$ , and its corresponding distributional value functions:

$$p_{\max}(\tilde{x}_i = A | \tilde{x}_{p(i)}) = \begin{cases} 1 & \text{if } A = \arg \max_{\tilde{x}_i} Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)}) \\ 0 & \text{otherwise} \end{cases}, \quad (19)$$

$$V_i^{\max}(\tilde{x}_{p(i)}) = \mathbb{E}_{p_{\max}(\tilde{x}_i | \tilde{x}_{p(i)})} [Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})] = \max_{\tilde{x}_i} f_i(\tilde{x}_i) + f_{p(i), i}(\tilde{x}_{p(i)}, \tilde{x}_i) + \sum_{c \in \text{children}(i)} V_c^{\max}(\tilde{x}_i), \quad (20)$$

$$Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)}) = f_{p(i), i}(\tilde{x}_{p(i)}, \tilde{x}_i) + Q_i^{\max}(\tilde{x}_i), \quad \text{for } Q_i^{\max}(\tilde{x}_i) = f_i(\tilde{x}_i) + \sum_{c \in \text{children}(i)} V_c^{\max}(\tilde{x}_i) \quad (21)$$

Moreover, each distributional value function lower bounds each corresponding classical value function because the expectation of a function cannot exceed its maximum. This relation is evident for the base case of a leaf node,

$$V_i^{\max}(\tilde{x}_{p(i)}) = \max_{\tilde{x}_i} f_i(\tilde{x}_i) + f_{p(i), i}(\tilde{x}_{p(i)}, \tilde{x}_i) \geq \mathbb{E}_{p_\theta(\tilde{x}_i | \tilde{x}_{p(i)})} [f_i(\tilde{x}_i) + f_{p(i), i}(\tilde{x}_{p(i)}, \tilde{x}_i)] = V_i^\theta(\tilde{x}_{p(i)}), \quad (22)$$

and by inductive argument, is also true for all other nodes'  $V$ -functions, and similarly, the  $Q$ -functions, which only differ in which  $V$ -functions they sum over. This implies that the sum of classical value functions in the objective in Eq. 15 is bounded below by the sum of distributional value functions. This bound still holds when we take the expectation of each sum under  $p_\theta(x)$ ,

$$\mathbb{E}_{p_\theta(x)}[Q_r^{\max}(\tilde{x}_r)] + \sum_{(p(i), i) \in \mathcal{E}'} \mathbb{E}_{p_\theta(x)}[Q_i^{\max}(\tilde{x}_i, \tilde{x}_{p(i)})] \geq \mathbb{E}_{p_\theta(x)}[Q_r^\theta(\tilde{x}_r)] + \sum_{(p(i), i) \in \mathcal{E}'} \mathbb{E}_{p_\theta(x)}[Q_i^\theta(\tilde{x}_i, \tilde{x}_{p(i)})]. \quad (23)$$

We'll optimize the lower bound with its distributional value functions instead of the sum of classical value functions.

**Distributional optimization with value functions.** All that remains is to derive an update rule that treats each search distribution factor separately. Since each expectand in Eq. 23 doesn't depend on descendant meta-variables, we can replace  $p_\theta(x)$  with each meta-variable's marginal distribution:

$$\arg \max_{\theta} \mathbb{E}_{p_\theta(\tilde{x}_r)}[Q_r^\theta(\tilde{x}_r)] + \sum_{(p(i), i) \in \mathcal{E}'} \mathbb{E}_{p_\theta(\tilde{x}_i | \tilde{x}_{p(i)}) p_\theta(\tilde{x}_{p(i)})}[Q_i^\theta(\tilde{x}_i, \tilde{x}_{p(i)})]. \quad (24)$$

We then follow the EDA derivation (Sec. A.2) to arrive at a sample-approximated update rule using the previous iteration's distribution,  $p_{\theta^n}(x)$  in which each term is optimized by only a single factor. We omit the derivation for the root factor because it's exactly the same as in Sec. A.2, using  $Q_r^{\theta^n}(\tilde{x}_r)$  as the weight instead of  $f(x)$ . To update a conditional factor from Eq. 24 in an EDA loop, we define  $p_n^*(\tilde{x}_c | \tilde{x}_{p(i)}) \propto Q_c^{\theta^n}(\tilde{x}_c, \tilde{x}_{p(i)}) \cdot p_{\theta^n}(\tilde{x}_c | \tilde{x}_{p(i)})$ , and minimize its divergence from  $p^\theta(\tilde{x}_c | \tilde{x}_{p(i)})$  using the law of iterated expectations:

$$- \mathbb{E}_{p_{\theta^n}(\tilde{x}_{p(i)})} [D_{\text{KL}}(p_n^*(\tilde{x}_c | \tilde{x}_{p(i)}) \| p_\theta(\tilde{x}_c | \tilde{x}_{p(i)}))] \quad (25)$$

$$= \frac{1}{Z} \mathbb{E}_{p_{\theta^n}(\tilde{x}_{p(i)})} \left[ \mathbb{E}_{p_{\theta^n}(\tilde{x}_c | \tilde{x}_{p(i)})} [Q_c^{\theta^n}(\tilde{x}_c, \tilde{x}_{p(i)}) \log p_\theta(\tilde{x}_c | \tilde{x}_{p(i)})] + H(p_n^*(\tilde{x}_c | \tilde{x}_{p(i)})) \right]. \quad (26)$$

Again, when taking the arg max with respect to  $\theta$ , we can equivalently remove the entropy term which bears no dependence on  $\theta$  and division by constant  $Z$ . Notice that the dependence of the conditional terms on  $p_\theta(\tilde{x}_{p(i)})$  in Eq. 24 is approximated by sampling, which is why only individual factors of the search distribution,  $\log p_\theta(\tilde{x}_c | \tilde{x}_{p(i)})$ , appear in each summand, as opposed to  $\log p_\theta(\tilde{x}_c | \tilde{x}_{p(i)}) p_\theta(\tilde{x}_{p(i)})$ . Updating  $p_\theta(\tilde{x}_{p(i)})$  to maximize  $Q_c^\theta(\tilde{x}_c, \tilde{x}_{p(i)})$  would be redundant and against the spirit of message-passing since parent  $Q$ -functions already include that info from children. The resulting update rule over all search distribution factors (sharing a single set of samples; see Fig. 1b) can be written as a sum of weighted likelihoods for each factor,

$$\theta^{n+1} = \arg \max_{\theta} \sum_{x \sim p_{\theta^n}(x)} \left( Q_r^{\theta^n}(\tilde{x}_r) \log p_\theta(\tilde{x}_r) + \sum_{(p(i), i) \in \mathcal{E}'} Q_i^{\theta^n}(\tilde{x}_i, \tilde{x}_{p(i)}) \log p_\theta(\tilde{x}_i | \tilde{x}_{p(i)}) \right), \quad (27)$$

which can be written equivalently as separate updates because the factors don't share parameters, as desired:

$$\theta_r^{n+1} = \arg \max_{\theta_r} \sum_{x \sim p_{\theta^n}(x)} Q_r^{\theta^n}(\tilde{x}_r) \log p_{\theta_r}(\tilde{x}_r), \quad \text{and} \quad (28)$$

$$\theta_i^{n+1} = \arg \max_{\theta_i} \sum_{x \sim p_{\theta^n}(x)} Q_i^{\theta^n}(\tilde{x}_i, \tilde{x}_{p(i)}) \log p_{\theta_i}(\tilde{x}_i | \tilde{x}_{p(i)}), \quad \forall i \in \mathcal{N} \setminus \{r\}. \quad (29)$$

Each factor is weighted by its corresponding value function, enabling it to coordinate with all its descendant factors despite their being updated separately. The whole DO is tied together at the top by the root factor. Our resulting algorithm (Alg. 1) fits into the three EDA steps: (1) designs are sampled from  $p_{\theta^n}(x)$ , (2) weights, here each  $Q$ -function instead of  $f(x)$ , are computed, and (3), each search distribution factor receives its own independent weighted maximum likelihood update based on these weights (steps 1 and 2 illustrated in Fig. 1b). These are repeated until convergence, or for some fixed number of iterations. The factor updates are coupled only through the  $Q$ -functions, the messages across edges.  $\{Q_i^{\theta^n}\}_{i \in \mathcal{N}}$  are only valid while  $\theta$  is close to  $\theta^n$ , meaning one must balance how many gradient steps are taken before drawing new samples. If too many gradient steps are taken without resampling, a factor may be changing its parameters to collaborate with another factor which has already changed its behavior. It's common for EDAs to include an additional hyperparameter  $W(\cdot)$ , a monotonic shaping function applied to the weights, to alter optimization dynamics (Brookes et al., 2020), so we include it in Alg.1(1 on lines 16 and 18. Choosing  $W$  to be the identity recovers

1080 our derivation above. Notice that in place of the classical message-passing traceback equations,  
 1081 DADO simply performs sequential conditional sampling from its search distribution. Interestingly,  
 1082 a very similar algorithm can be derived without using a lower bound on the value functions (Eq. 23)  
 1083 if one adds an entropy-maximizing term to the initial DO objective (Sec. A.4).  
 1084

#### 1085 A.4 ALTERNATE DADO DERIVATION: MAXIMUM ENTROPY OBJECTIVE

1087 If, by comparison to Sec. A.3, we instead seek to solve a closely related objective which additionally  
 1088 maximizes the search distribution’s entropy, we can arrive at a similar method by leveraging the  
 1089 probabilistic graphical modeling (PGM) framework in Levine (2018). This view will  
 1090 provide another intuition for the relationship between classical value functions and distributional  
 1091 value functions approximated with Monte-Carlo samples. It also highlights the core components  
 1092 of our conceptual framework, which are shared even by derivations starting from different objectives.  
 1093 In other words, one need not use our specific method as outlined in Alg. 1 to reap the benefits  
 1094 of decomposition-aware distributional optimization, and variations may have desirable properties  
 1095 and/or simply perform better in certain scientific design settings. *This derivation will assume that*  
 1096 *you’ve already read key parts of Sec. 2/A.3 and are familiar with the function decomposition, search*  
 1097 *distribution factorization, and value functions.*

1098 **Maximum entropy decomposition-aware distributional optimization.** We begin from the maximum  
 1099 entropy problem (Jaynes, 1957; Ziebart et al., 2008; Zhu et al., 2024),

$$1100 \arg \max_{\theta} \mathbb{E}_{p_{\theta}(x)}[f(x)] + \beta H(p_{\theta}), \quad \beta \geq 0. \quad (30)$$

1102 This objective is arguably more consistent with the desired end result for many scientific design  
 1103 problems. Often, a distribution over good solutions is preferred to a single solution (*i.e.*, a distribution  
 1104 with no entropy)<sup>1</sup>. When optimizing a predictive model or more broadly, dealing with uncer-  
 1105 tainty or inaccuracy in the objective function, having a distribution over good solutions can be partic-  
 1106 ularly important. The maximum entropy objective has a closed-form solution,  $p^*(x) \propto \exp f(x)/\beta$ ,  
 1107 motivating the solution of an equivalent variational objective,  $\arg \min_{\theta} D_{\text{KL}}(p_{\theta} \parallel p^*)$ , from which  
 1108 we will obtain a decomposed update rule. We first plug in decomposed versions of  $f$  and  $p_{\theta}(x)$ , as  
 1109 described in Sec. Sec. 2.1/A.3, to get

$$1110 \arg \min_{\theta} D_{\text{KL}}(p_{\theta} \parallel p^*) = \arg \min_{\theta} D_{\text{KL}}\left(p_{\theta}(\tilde{x}_r) \prod_{i \in \mathcal{N} \setminus \{r\}} p_{\theta}(x_i \mid \tilde{x}_{p(i)}) \parallel \exp \frac{\sum_{i \in \mathcal{N}} f_{i,p}(\tilde{x}_i, \tilde{x}_{p(i)}) + f_i(\tilde{x}_i)}{\beta}\right). \quad (31)$$

1113 Notice that we’ve dropped the normalizing constant for  $p^*$  because it has no dependence on  $\theta$ . In  
 1114 what follows, for compactness and clarity, we will abuse notation slightly by including the root  
 1115 factor,  $p_{\theta}(\tilde{x}_r)$ , with the other nodes, writing it as conditional on a parent even though it has no  
 1116 parent and is an unconditional distribution.

$$1118 - D_{\text{KL}}\left(\prod_{i \in \mathcal{N}} p_{\theta}(x_i \mid \tilde{x}_{p(i)}) \parallel \exp \frac{\sum_{i \in \mathcal{N}} f_{i,p}(\tilde{x}_i, \tilde{x}_{p(i)}) + f_i(\tilde{x}_i)}{\beta}\right) \quad (32)$$

$$1121 = \mathbb{E}_{p_{\theta}(x)}\left[\frac{\sum_{i \in \mathcal{N}} f_{i,p}(\tilde{x}_i, \tilde{x}_{p(i)}) + f_i(\tilde{x}_{p(i)})}{\beta} - \log \prod_{i \in \mathcal{N}} p_{\theta}(x_i \mid \tilde{x}_{p(i)})\right] \quad (33)$$

$$1124 = \mathbb{E}_{p_{\theta}(x)}\left[\sum_{i \in \mathcal{N}} \frac{f_{i,p}(\tilde{x}_i, \tilde{x}_{p(i)}) + f_i(\tilde{x}_{p(i)})}{\beta} - \log p_{\theta}(\tilde{x}_i \mid \tilde{x}_{p(i)})\right] \quad (34)$$

$$1127 = \sum_{i \in \mathcal{N}} \mathbb{E}_{p_{\theta}(\tilde{x}_i, \tilde{x}_{p(i)})}\left[\frac{f_{i,p}(\tilde{x}_i, \tilde{x}_{p(i)}) + f_i(\tilde{x}_{p(i)})}{\beta} - \log p_{\theta}(\tilde{x}_i \mid \tilde{x}_{p(i)})\right] \quad (35)$$

1129 <sup>1</sup>In our experiments (no entropy bonus), the search distribution avoids collapse because we don’t run until  
 1130 convergence (fixed number of iterations), and because we sweep the learning rate (if it’s very high, the distri-  
 1131 bution may quickly collapse to a point, limiting further improvement). Similar strategies were used by Brookes  
 1132 et al. (2019) instead of an explicit entropy bonus. EDAs were originally used for discrete optimization problems  
 1133 where a single solution was desired. Using distributional optimization to solve more nuanced problems calls  
 for some modifications.

The final line decomposes over nodes, but still has an explicit dependence on all ancestor node search distribution factors. One way to obtain a separate update for each search distribution factor is to derive a form of  $p^*(x)$  factorized in accordance with  $p_\theta(x)$ 's factorization, so that we can simply minimize each factor's divergence from the optimal one.

**Optimal search distribution factors via message-passing.** To derive the optimal factors,  $p^*(\tilde{x}_i \mid \tilde{x}_{p(i)})$ , we'll use message-passing, for which we now introduce some notation. Note that we adopt the same convention as above of including the root with the rest of the value functions, meaning writing it with a parent, although it doesn't have a parent and all terms involving its nonexistent parent are simply 0. We recursively define value functions (consistent with Levine (2018)) as:

$$V_i(\tilde{x}_{p(i)}) = \log \sum_{\tilde{x}_i} \exp Q_i(\tilde{x}_i, \tilde{x}_{p(i)}), \quad (36)$$

$$Q_i(\tilde{x}_i, \tilde{x}_{p(i)}) = f_{p(i), i}(\tilde{x}_{p(i)}, \tilde{x}_i) + Q_i(\tilde{x}_i), \text{ and } Q_i(\tilde{x}_i) = f_i(\tilde{x}_i) + \sum_{c \in \text{children}(i)} V_c(\tilde{x}_i). \quad (37)$$

Though they might seem a bit arbitrary, substituting the value functions into Eq. 35 will help illuminate  $p^*(\tilde{x}_i \mid \tilde{x}_{p(i)})$ . Notice that the  $Q$ -functions have the same recursive definition as in DADO, though the  $V$ -functions are different. We first consider the base case of a leaf node, where  $Q_i(\tilde{x}_i, \tilde{x}_{p(i)}) = f_{p(i), i}(\tilde{x}_{p(i)}, \tilde{x}_i) + f_i(\tilde{x}_i)$ . We substitute, add  $0 = V_i(\tilde{x}_{p(i)})/\beta - V_i(\tilde{x}_{p(i)})/\beta$ , and use the definition of KL divergence:

$$\mathbb{E}_{p_\theta(\tilde{x}_i \mid \tilde{x}_{p(i)})} \left[ \log \exp \frac{Q_i(\tilde{x}_i, \tilde{x}_{p(i)})}{\beta} - \log p_\theta(\tilde{x}_i \mid \tilde{x}_{p(i)}) + \frac{V_i(\tilde{x}_{p(i)})}{\beta} - \log \exp \frac{V_i(\tilde{x}_{p(i)})}{\beta} \right] \quad (38)$$

$$= \mathbb{E}_{p_\theta(\tilde{x}_{p(i)})} \left[ -D_{\text{KL}} \left( p_\theta(\tilde{x}_i \mid \tilde{x}_{p(i)}) \parallel \exp \frac{Q_i(\tilde{x}_i, \tilde{x}_{p(i)}) - V_i(\tilde{x}_{p(i)})}{\beta} \right) + \frac{V_i(\tilde{x}_{p(i)})}{\beta} \right]. \quad (39)$$

Because  $p_\theta(\tilde{x}_i \mid \tilde{x}_{p(i)})$  only appears in the KL divergence, the overall expectation will be maximized, as far as  $p_\theta(\tilde{x}_i \mid \tilde{x}_{p(i)})$  is concerned, when the divergence is 0. Therefore, for a leaf node,  $p^*(\tilde{x}_i \mid \tilde{x}_{p(i)}) = \exp((Q_i(\tilde{x}_i, \tilde{x}_{p(i)}) - V_i(\tilde{x}_{p(i)}))/\beta)$ , which is a proper distribution because  $\exp V_i(\tilde{x}_{p(i)})$  is exactly the normalizing constant of  $\exp Q_i(\tilde{x}_i, \tilde{x}_{p(i)})$ . Notice that we still have a term,  $\mathbb{E}_{p_\theta(\tilde{x}_{p(i)})} [V_i(\tilde{x}_{p(i)})/\beta]$ , outside of the divergence (Eq. 39). Maximizing this term must therefore be the responsibility of  $p_\theta(\tilde{x}_{p(i)})$ , not  $p_\theta(\tilde{x}_i \mid \tilde{x}_{p(i)})$ . In fact, these leftover terms are included in the parent's  $Q$ -function via the sum over all child  $V$ -functions in  $Q_i(\tilde{x}_i)$  as we defined it above (Eq. 37). It follows that the recursive case has the same form as the leaves, which had  $Q_i(\tilde{x}_i) = f_i(\tilde{x}_i)$  because they've no children (more detailed derivation in Levine (2018)). That is, for all non-root nodes  $i$ ,  $p^*(\tilde{x}_i \mid \tilde{x}_{p(i)}) = \exp((Q_i(\tilde{x}_i, \tilde{x}_{p(i)}) - V_i(\tilde{x}_{p(i)}))/\beta)$ ; for the root node,  $p^*(\tilde{x}_r) = \exp((Q_r(\tilde{x}_r) - V_r)/\beta)$ , where  $V_r = \log \sum_{\tilde{x}_r} \exp Q_r(\tilde{x}_r)$  is a normalizing constant with no dependence on  $\theta$ . We now have an optimal form for each factor and can proceed to minimize our search factors' divergences from them completely separately.

**Distributional optimization by matching optimal factors.** Given a factorization of the optimal search distribution,  $p^*(x)$ , we can train  $p_\theta(x)$ 's factors to match their corresponding optimal factor distributions, resulting in an algorithm very similar to DADO. The objective for node  $i$ 's factor minimizes its divergence to the optimal factor  $p^*(\tilde{x}_i \mid \tilde{x}_{p(i)})$ ,

$$\arg \min_{\theta_i} \mathbb{E}_{p_{\theta_{p(i)}}(\tilde{x}_{p(i)})} \left[ D_{\text{KL}} \left( p_{\theta_i}(\tilde{x}_i \mid \tilde{x}_{p(i)}) \parallel \exp \frac{Q_i(\tilde{x}_i, \tilde{x}_{p(i)}) - V_i(\tilde{x}_{p(i)})}{\beta} \right) \right] \quad (40)$$

$$= \arg \max_{\theta_i} \mathbb{E}_{p_{\theta_{p(i)}}(\tilde{x}_{p(i)})} \left[ \mathbb{E}_{p_{\theta_i}(\tilde{x}_i \mid \tilde{x}_{p(i)})} [Q_i(\tilde{x}_i, \tilde{x}_{p(i)})] - V_i(\tilde{x}_{p(i)}) + \beta H(p_{\theta_i}(\tilde{x}_i \mid \tilde{x}_{p(i)})) \right], \quad (41)$$

and an analogous objective can be written for the root node. Notice that  $V_i(\tilde{x}_{p(i)})$  can be dropped completely or set to any other constant (with respect to  $\tilde{x}_i$ ) without altering the arg max, though certain settings may yield more favorable optimization dynamics<sup>2</sup>. We approximate the expectations

<sup>2</sup> $V_i(\tilde{x}_{p(i)})$  is often thought of as a “baseline” in the RL literature, the choice of which doesn't bias the objective's gradient, but can reduce its variance substantially and lead to more efficient policy optimization (Sutton et al., 1998).

1188 in the objective using samples from the current search distribution (as in EDAs) to yield a weighted  
 1189 maximum likelihood update rule for each node  $i$ ,  
 1190

$$1191 \theta_i^{n+1} = \arg \max_{\theta_i} \sum_{x \sim p_{\theta^n}(x)} \left( \left( Q_i(\tilde{x}_i, \tilde{x}_{p(i)}) - V_i(\tilde{x}_{p(i)}) \right) \log p_{\theta_i}(\tilde{x}_i \mid \tilde{x}_{p(i)}) - \beta \log p_{\theta_i}(\tilde{x}_i \mid \tilde{x}_{p(i)}) \right), \\ 1192 \quad (42)$$

1193 and since the weight should always be non-negative, a monotonic shaping function,  $W$ , outputting  
 1194 non-negative weights, can be introduced too,  
 1195

$$1196 \theta_i^{n+1} = \arg \max_{\theta_i} \sum_{x \sim p_{\theta^n}(x)} \left( W \left( Q_i(\tilde{x}_i, \tilde{x}_{p(i)}) - V_i(\tilde{x}_{p(i)}) - \beta \right) \log p_{\theta_i}(\tilde{x}_i \mid \tilde{x}_{p(i)}) \right). \\ 1197 \quad (43)$$

1198 There are a few minor differences from DADO. First, there's an entropy-maximizing term. Sec-  
 1199 ond, notice that the value function definitions are a little different from in DADO. Here we use  
 1200  $\log \sum \exp$  to define  $V_i(\tilde{x}_{p(i)})$ , whereas DADO uses an expectation over the search distribution in-  
 1201 stead. Third, the  $Q$ -function has  $V_i(\tilde{x}_{p(i)})$  subtracted from it, whereas DADO's derivation doesn't.  
 1202 As mentioned above though,  $V_i(\tilde{x}_{p(i)})$ 's role in the objective is that of a "baseline", and it can be  
 1203 changed out or dropped. In our implementation, we do subtract  $V_i(\tilde{x}_{p(i)})$ —the expectation-based  
 1204 one, not  $\log \sum \exp$ —as a mean baseline function to reduce weight variance and obtain a more stable  
 1205 update (Sec. 4). Overall though, the result is quite similar to DADO (Sec. A.3), supporting the gen-  
 1206 erality of the decomposition-aware distributional optimization framework, and suggesting that there  
 1207 are a variety of related objectives and algorithms one might use under this umbrella. In particular,  
 1208 one might adapt methods from RL. For example, Peng et al. (2019)'s derivation could be adapted  
 1209 to get a similar weighted maximum likelihood objective with the difference in value functions (also  
 1210 called the advantage) exponentiated instead. TRPO, PPO, or CbAS (Schulman et al., 2015; 2017;  
 1211 Brookes et al., 2019) might be adapted to regularize the search distribution toward some (identically  
 1212 factorized) prior, or the previous iteration's search distribution for stability. We emphasize that the  
 1213 core idea of DADO is to leverage message-passing (*i.e.*, value functions) on arbitrarily decomposed  
 1214 objectives to derive a distributional optimization procedure which updates search distribution factors  
 1215 separately, regardless of the specific objective and algorithm used.  
 1216

1217 **From classical value functions to distributional value functions.** Under this definition of value  
 1218 functions using  $\log \sum \exp$  (Eq. 36), we can view  $V_i(\tilde{x}_{p(i)})$  as a soft maximum, which becomes a  
 1219 hard maximum when  $Q_i$  are large, such that for  $\tilde{x}_i^*$ ,  $V_i(\tilde{x}_{p(i)}) \approx Q_i(\tilde{x}_i^*, \tilde{x}_{p(i)})$ . The hard maximum  
 1220 case resembles classical message-passing, from which we began. When  $Q_i$  are relatively small,  
 1221 information about multiple  $\tilde{x}_i$  will pass through  $\log \sum \exp$ , thus propagating info for a distribution  
 1222 of descendant states in accordance with  $p^*(\tilde{x}_i \mid \tilde{x}_{p(i)}) \propto \exp Q_i(\tilde{x}_i, \tilde{x}_{p(i)}) / \beta$ . Another way of  
 1223 seeing the transition from classical message-passing to distributional optimization is that for  $\beta$  near  
 1224 0,  $p^*(\tilde{x}_i \mid \tilde{x}_{p(i)})$  will concentrate all its mass on the arg max. But for a larger  $\beta$ ,  $p^*(\tilde{x}_i \mid \tilde{x}_{p(i)})$  will  
 1225 concentrate on multiple designs proportional to their  $Q$  values. As  $\beta \rightarrow \infty$ ,  $p^*(\tilde{x}_i \mid \tilde{x}_{p(i)})$  becomes  
 1226 a uniform distribution.  
 1227

## A.5 PROTEIN DATASET DETAILS

1228 We investigated seven protein property datasets from Tareen et al. (2022) and Notin et al. (2023).  
 1229 These proteins span various lengths and all have more than single mutations away from wild-type.  
 1230 These datasets are:  
 1231

- 1232 • Adeno-associated virus 2 capsid protein (AAV2 capsid or AAV;  $L = 28, D = 20$ ), with  
 1233 data from Bryant et al. (2021), which assayed 42,329 sequences for virus viability, includ-  
 1234 ing sequences with as many as 27 mutations from the wild-type. The full protein is of  
 1235 length 735. The dataset was accessed via Notin et al. (2023).
- 1236 • Amyloid-beta (Amyloid;  $L = 42, D = 21$ , where the extra state is a stop codon), with  
 1237 data from Seuma et al. (2021), which assayed 16,066 sequences for aggregation with a  
 1238 nucleation score, 97% of which are double mutants. The dataset was accessed via Tareen  
 1239 et al. (2022).
- 1240 • Yeast transcription factor Gcn4 ( $L = 44, D = 20$ ), with data from Staller et al. (2018),  
 1241 which assayed 2,639 sequences for activity, including sequences with as many as 44 mu-

1242 tations from the wild-type. The full protein is of length 281. The dataset was accessed  
 1243 via Notin et al. (2023).

1244

- 1245 • TAR DNA-binding protein 43 (TDP-43;  $L = 84, D = 21$ , where the extra state is a stop  
 1246 codon), with data Bolognesi et al. (2019), which assayed 57,996 sequences for cell toxicity,  
 1247 98% of which are double mutants. The dataset was accessed via Tareen et al. (2022).
- 1248 • Protein G B1 domain (GB1;  $L = 55, D = 20$ ), with data from Olson et al. (2014), who  
 1249 scanned all possible single and double mutants and assayed their 536,963 binding affinities  
 1250 to IgGFC, of which 99.8% are double mutants. The dataset was accessed via Tareen et al.  
 1251 (2022).
- 1252 • ynzC, a small protein domain ( $L = 39, D = 20$ ), with data from Tsuboyama et al. (2023),  
 1253 assayed for its folding stability on 2,301 variants, 68% of which are double mutants. The  
 1254 dataset was accessed via Notin et al. (2023).
- 1255 • *Chlamydomonas reinhardtii*'s light-oxygen-voltage domain (CreiLOV or Phot;  $L =$   
 1256 118,  $D = 20$ ), with data from Chen et al. (2023), which assayed 167,530 sequences for  
 1257 fluorescence, including sequences with as many as 15 mutations from the wild-type. The  
 1258 dataset was accessed via Notin et al. (2023).

1259

1260 Of these, the four shown in the main text were chosen according to two criteria. First, we wanted pro-  
 1261 teins for which the AlphaFold3-derived junction tree had relatively small nodes (*i.e.*, more decom-  
 1262 posable proteins). Second, we also prioritized proteins for which the datasets contained sequences  
 1263 many mutations away from the wild-type, as the resulting predictive models are more likely to be  
 1264 realistic in a larger area of the design space than datasets that only assay a concentrated ball of se-  
 1265 quences. Based on these criteria, we decided to focus on AAV, Amyloid, Gcn4, and TDP-43 (Fig. 3).  
 1266 These four proteins' decomposition junction trees have nodes of cardinality five or fewer, whereas  
 1267 the junction trees for GB1 and ynzC have many nodes with cardinality over 10, and CreiLOV has  
 1268 nodes with cardinality greater than 20. The remaining datasets are shown in the appendix (Fig.A3).

#### A.6 BASELINE METHOD DETAILS

1271 We compare DADO with three baseline methods. The first is the naive, decomposition-unaware  
 1272 EDA, which we refer to as “EDA”. Algorithmic details of this method are in Sec. 2 and Sec. A.2  
 1273 also includes a derivation of the EDA algorithm. We take this as the starting point for the other  
 1274 baseline methods and now describe how the EDA is modified for each.

1275 The second baseline we consider is the factorized distribution algorithm (“FDA”) from Mühlenbein  
 1276 & Mahnig (1999). The only modification to the naive EDA is to replace its search distribution,  
 1277 ordinarily a joint distribution over all design variables, with a factorized search distribution. In all of  
 1278 our experiments, we give FDA the same search distribution factorization as DADO for fairness; as  
 1279 such, in our protein experiments, FDA's factorization is based on the AlphaFold3-based contact map.  
 1280 Comparing to FDA sheds light on how much of DADO's improved performance can be attributed  
 1281 to it using a factorized search distribution versus the contribution of using message-passing value  
 1282 functions for the factorized search distribution update because FDA only uses the former and not the  
 1283 latter, whereas DADO uses both.

1284 The third baseline we consider is a proximal policy optimization version of the EDA, which we  
 1285 call “PPO”. This baseline is inspired by Schulman et al. (2017). We only modify the EDA's up-  
 1286 date rule to match the PPO update rule. That is, instead of minimizing the naive EDA's loss,  
 1287  $L(\theta) = \mathbb{E}_{x^k \sim p_{\theta^n}(x)} [f(x^k) \log p_{\theta}(x^k)]$ , we instead minimize a proximal version of it,  
 1288

$$1289 L(\theta) = \mathbb{E}_{x^k \sim p_{\theta^n}(x)} \left[ \min \left\{ f(x^k) \frac{p_{\theta}(x^k)}{p_{\theta^n}(x)}, f(x^k) \text{clip} \left( \frac{p_{\theta}(x^k)}{p_{\theta^n}(x)}, 1 - \epsilon, 1 + \epsilon \right) \right\} \right],$$

1290

1291 where  $\epsilon$  is a hyperparameter that we set to 0.2 as suggested in the original PPO paper. PPO-style  
 1292 updates can be interpreted as stabilizing the search distribution update of the naive EDA by pen-  
 1293 alizing it from deviating too far from the previous iteration's search distribution. This approach could  
 1294 easily be added onto DADO and FDA; we did not explore this but expect it would be helpful for  
 1295 these decomposition-aware methods too.

1296  
1297

## A.7 ADDITIONAL IMPLEMENTATION DETAILS

1298  
1299  
1300

We record various implementation details for reproducibility (also see code released upon publication). We implemented all of our code using Jax, Flax, and Optax (DeepMind et al., 2020).

1301  
1302

## A.7.1 SEARCH DISTRIBUTION

1303  
1304  
1305  
1306  
1307  
1308  
1309  
1310

For the search distribution of DADO, we used MLP-based autoregressive neural networks for each position  $l \in [1, \dots, L]$ —specifically, an MLP of size  $[64, 64]$  that takes as input all conditioning variables (parents in the tree) and outputs  $D$  logits for each step of autoregressive decoding. Our naive EDA implementation is the same, only assuming all variables are in one meta-variable—hence, a standard autoregressive model over all variables. The FDA baseline uses the same architecture as DADO, whereas our PPO baseline uses the same architecture as the naive EDA. For gradient descent to fit the search distribution, we used the AdamW optimizer (Loshchilov & Hutter, 2017) with default momentum parameters  $\beta_1 = 0.9, \beta_2 = 0.999$ .

1311  
1312

## A.7.2 FULLY SYNTHETIC FUNCTIONS

1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
1321  
1322

We simulated one  $f(x)$  for each of three sequence lengths,  $L = \{25, 50, 200\}$ , by first randomly sampling a junction tree topology, and then randomly specifying the component functions. Each node function, a  $D$ -vector, was sampled  $f_i \in \mathbb{R}^D \sim \mathcal{N}(0, 0.01)$ , where  $\mathcal{N}$  denotes a Gaussian distribution. Each edge function, a  $D \times D$  matrix, was sampled,  $f_{i,j} \in \mathbb{R}^{D \times D} \sim \mathcal{N}(0, 0.0025)$ . To ensure a reasonable degree of non-smoothness in  $f(x)$ , we further explicitly added what in biology is known as *reciprocal sign epistasis* (Starr & Thornton, 2016; Li et al., 2024). Specifically, for each edge function we, twice, randomly assigned one of the 20 alphabet letters to each node, i)  $x_i := A, x_j := B$  and ii)  $x_i := C, x_j := D$ . Next we sampled an effect size,  $\lambda \sim \mathcal{N}(0, 4)$ . Finally, we set  $f_{i,j}(x_i = A, x_j = B) = 0$  and  $f_{i,j}(x_i = C, x_j = B) = \lambda$ , and also half of the time,  $f_{i,j}(x_i = A, x_j = D) = 0$  and  $f_{i,j}(x_i = A, x_j = D) = \lambda$ .

1323  
1324

## A.7.3 DECOMPOSED PROTEIN PROPERTY PREDICTIVE MODELS

1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338

For each dataset, we used AlphaFold3-predicted structures (Abramson et al., 2024) on the wild-type sequence to obtain a 3D structure, from which we constructed a contact graph by thresholding the distance between pairs of residues with threshold  $t$ . Following Brookes et al. (2022); Romero et al. (2013); Voigt et al. (2002), we use a threshold of  $t = 4.5\text{\AA}$ . We interpret this contact map as a graph adjacency matrix, from which we algorithmically construct a junction tree (Lauritzen & Spiegelhalter, 1988). This defines the topology needed for DADO, but we must also fit the component functions on the protein assay-labeled data. To do so, we employ an MLP-based predictive model that strictly enforces the decomposition defined by the junction tree. In particular, we use an MLP that takes as input the sequence, and, critically, also a bit-vector specifying active variables. One function evaluation requires calling this MLP for every node and edge function and summing. We used 5-fold cross validation to sweep through hidden layers of size  $([16, 16], [128, 16], \text{ or } [128, 128, 16])$ , learning rate (0.001 or 0.0001), and number of training iterations (5,000 or 50,000), to choose hyperparameters with the lowest cross-validation mean-squared error. Finally, we trained the model with those hyper-parameters using all data available.

1339  
1340

## A.8 ADDITIONAL EXPERIMENTAL RESULTS

1341  
1342  
1343  
1344  
1345

Herein, we include additional experimental results on synthetic landscapes for completeness—primarily studying the relationship between performance and number of design variables ( $L$ ), and larger alphabet sizes ( $D$ ). For protein landscapes, we also perform a case study on one protein dataset in order to study the effect of the distance threshold,  $t$ , on decomposability, predictive accuracy, and downstream optimization performance.

1346  
1347  
1348

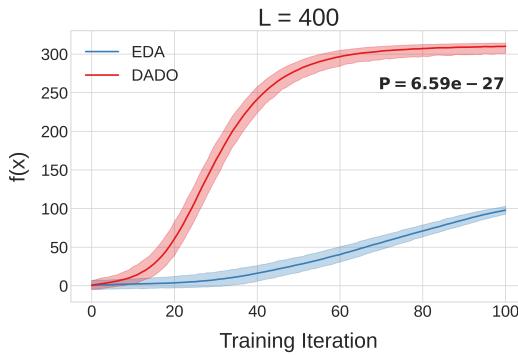
## A.8.1 SYNTHETIC FUNCTIONS: L=400

1349

We wanted to compare DADO and a naive EDA on even larger design spaces, but this can take quite a while to run when considering the hyperparameter sweep and replicates (Sec. A.8.7). For

1350 expediency, we chose the same hyperparameters (temperature and learning rate) as were used by  
 1351 each method for  $L = 200$  (Fig. 2). We then ran 20 replicates of each method.  
 1352

1353 At  $L = 400$ , the trend we observed in Fig. 2 continues—as  $L$  grows, the gap between DADO and  
 1354 the EDA grows increasingly larger (Fig. A1), as expected, because the full design space grows at a  
 1355 faster rate than the decomposed design space that DADO operates in.  
 1356



1357 **Figure A1: Comparison of a naive EDA to DADO on a synthetic problem with  $L = 400$ .** We created a  
 1358 random function,  $f(x)$ , with a randomly chosen junction tree decomposition with maximum node size of one,  
 1359 and randomly chosen parameters. We used alphabet size  $D = 20$  and sequence length  $L = 400$ . Each of the  
 1360 two methods drew  $K = 100$  samples per iteration. For each iteration, we show the mean (solid line) and 95%  
 1361 confidence interval (shaded envelope) of the 100 samples evaluated on  $f(x)$ , averaged across results from 20  
 1362 random seeds. P-value is from a two-sided paired t-test that the mean at the final iteration is different between  
 1363 methods, over the 20 seeds.  
 1364

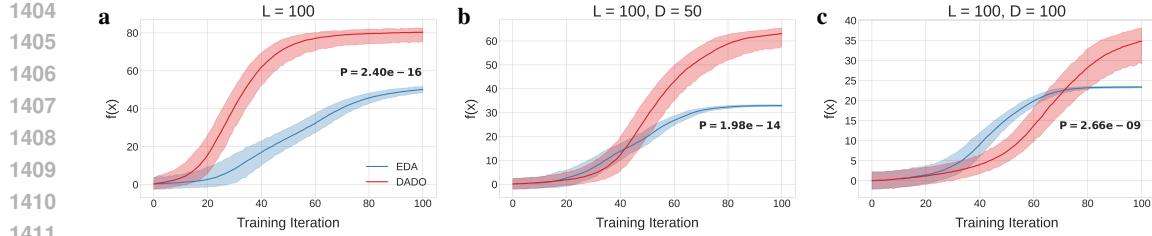
#### 1365 A.8.2 SYNTHETIC FUNCTIONS: INCREASING D

1366 For all of our synthetic experiments, we used an alphabet size of  $D = 20$ , which reflects the typical  
 1367 alphabet for protein design problems. Design problems in other scientific domains might have larger  
 1368 alphabets so we also considered  $D = 50$  and  $D = 100$  here, keeping  $L$  fixed at 100.  
 1369

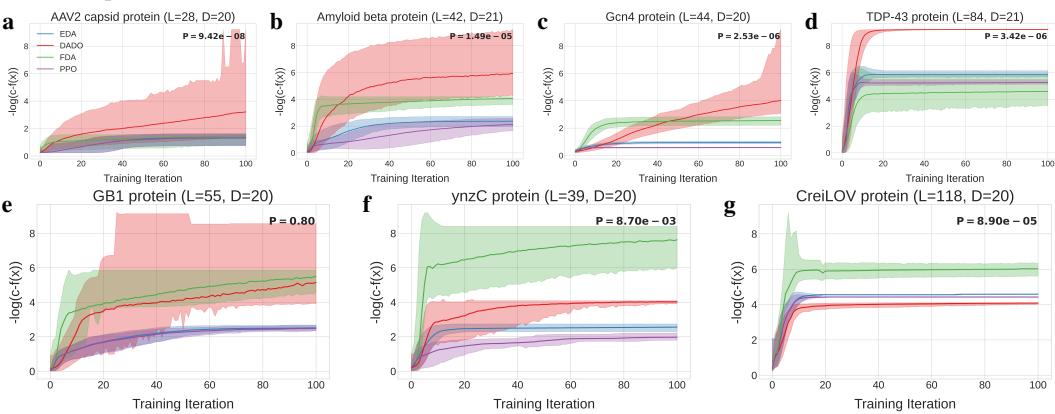
1370 We observe that DADO finds designs with higher  $f(x)$  than the naive EDA across all three alphabet  
 1371 sizes (Fig. A2). As one would expect, as  $D$  grows and the design space grows combinatorially larger,  
 1372 it becomes increasingly difficult for both methods to optimize  $f(x)$ . In general, such problems  
 1373 require using a larger sampling budget ( $K$ ) and/or more iterations. Although the performance gap  
 1374 between DADO and EDA seems to shrink as  $D$  grows, the EDA has converged to a suboptimal  
 1375 region of the design space, whereas DADO still has a positive slope and a lot of sampling diversity.  
 1376 This suggests that were we to run more iterations, DADO would continue to improve, but the EDA  
 1377 would not.  
 1378

#### 1379 A.8.3 COLLECTED PROTEIN EXPERIMENTS

1380 Here, we collect the four proteins shown in the main text (Fig. 3) alongside three other proteins  
 1381 we tested (details of why those four were chosen in Sec. A.5). First, we plot them with  $-\log(c -$   
 1382  $f(x))$  on the y-axis, for clarity when  $f(x)$  is high (Fig. A3). For comparison, we then show the  
 1383 same experimental results with just  $f(x)$  on the y-axis (Fig. A4). Whereas AAV, Amyloid, Gcn4,  
 1384 and TDP-43 have decomposition junction trees with nodes of cardinality five or less, the junction  
 1385 trees for GB1 and ynzC have many nodes with cardinality over 10, and CreiLOV has nodes with  
 1386 cardinality greater than 20. For GB1 and ynzC, DADO still outperforms the decomposition-unaware  
 1387 baselines, but is less competitive compared to FDA, which also operates in the decomposed design  
 1388 space. We hypothesize that FDA performs well relative to DADO in these cases because as the  
 1389 nodes grow larger, the computed value functions become higher variance estimates, such that it can  
 1390 be better to use  $f(x)$  directly. For CreiLOV, this effect would be even stronger because its nodes  
 1391 are even larger. It would be interesting to test this hypothesis by implementing further variance-  
 1392 reduction techniques for the value function.  
 1393



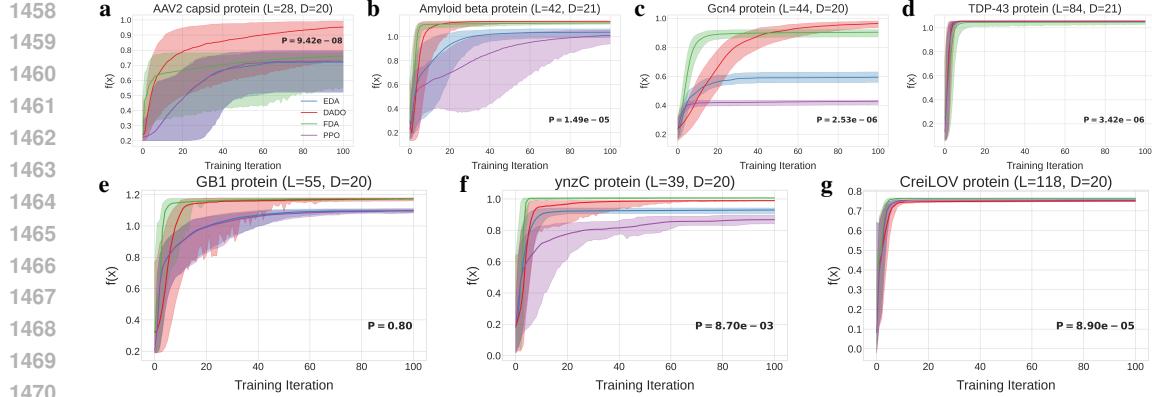
**Figure A2: Comparison of a naive EDA to DADO on synthetic problems with large alphabets.** We created three random functions,  $f(x)$ , each with the same randomly chosen junction tree decomposition with maximum node size of one, and randomly chosen parameters. Each experiment used sequence length  $L = 100$  and alphabet size **a**,  $D = 20$ , **b**,  $D = 50$ , and **c**,  $D = 100$ . Each of the two methods drew  $K = 100$  samples per iteration. For each iteration, we show the mean (solid line) and 95% confidence interval (shaded envelope) of the 100 samples evaluated on  $f(x)$ , averaged across results from 20 random seeds. P-values are from a two-sided paired t-test that the mean at the final iteration is different between methods, over the 20 seeds.



**Figure A3: Optimization performance on protein problems, plotted on a negative log scale.** For each of seven proteins of varying length, **a**, AAV (also Fig. 3a), **b**, Amyloid (also Fig. 3b), **c**, Gcn4 (also Fig. 3c), **d**, TDP-43 (also Fig. 3d), **e**, GB1, **f**, ynzC, and **g**, CreiLOV, we fit a neural network property function,  $f(x)$ , adhering to a junction tree decomposition derived from the protein’s 3D structure, and then used standard EDA and DADO to optimize them. Each approach drew  $K = 1000$  samples per EDA iteration. For each iteration, we show the mean (solid line) and 95% confidence interval (shaded envelope) of the 1000 samples evaluated on  $-\log(c - f(x))$ , averaged across results from 20 random seeds. We plot this quantity to make clear the differences between methods when  $f(x)$  is large;  $c$  is the largest  $f(x)$  on a given plot, plus a small constant for numerical stability. P-values are from a two-sided paired t-test that the mean at the final iteration is different between methods, over the 20 seeds.

#### A.8.4 INVESTIGATION OF PROTEIN PROPERTY PREDICTIVE MODEL DECOMPOSABILITY

We also sought to investigate how changing the threshold that determines the complexity of the junction tree would affect both predictive performance and optimization performance. Specifically, we varied the distance threshold,  $t$ , for which pairs of residues were considered contacting to explore the tradeoff between accuracy of the model and decomposability. The lower the value of  $t$ , the stricter the decomposition (the smaller the cardinality of the largest meta-variable); thus lower  $t$  should give DADO a larger advantage over the standard EDA, but may be overly restrictive and yield a worse predictive model. We decided to do a case study of GB1 for  $K = 100$  samples at each iteration because in this setting, using the default threshold of  $t = 4.5\text{\AA}$  leads to comparable performance between DADO and the EDA. We wanted to see if decomposing the model further would result in a function that’s easier for DADO to optimize without sacrificing accuracy. We find that the largest  $t$  provides the highest holdout predictive accuracy, which is expected because the resulting decomposed model isn’t restricted. However, decreasing this distance down to  $t = 2.75\text{\AA}$  allows most of the predictive signal to remain while substantially reducing the complexity of the junction tree (Fig. A5a), enabling DADO to consistently converge on designs with high  $f(x)$  within only 10 iterations (Fig. A5b), whereas for  $t = 4.5\text{\AA}$  and  $t = 9\text{\AA}$ , DADO’s mean does not clearly converge even after 100 iterations, and its distribution remains dispersed as evidenced by wide shaded



**Figure A4: Optimization performance on protein problems, plotted on a standard scale.** For each of seven proteins of varying length, **a**, AAV (also Fig. 3a), **b**, Amyloid (also Fig. 3b), **c**, Gcn4 (also Fig. 3c), **d**, TDP-43 (also Fig. 3d), **e**, GB1, **f**, ynzC, and **g**, CreiLOV, we fit a neural network property function,  $f(x)$ , adhering to a junction tree decomposition derived from the protein’s 3D structure, and then used standard EDA and DADO to optimize them. Each approach drew  $K = 1000$  samples per EDA iteration. For each iteration, we show the mean (solid line) and 95% confidence interval (shaded envelope) of the 1000 samples evaluated on  $f(x)$ , averaged across results from 20 random seeds. P-values are from a two-sided paired t-test that the mean at the final iteration is different between methods, over the 20 seeds.

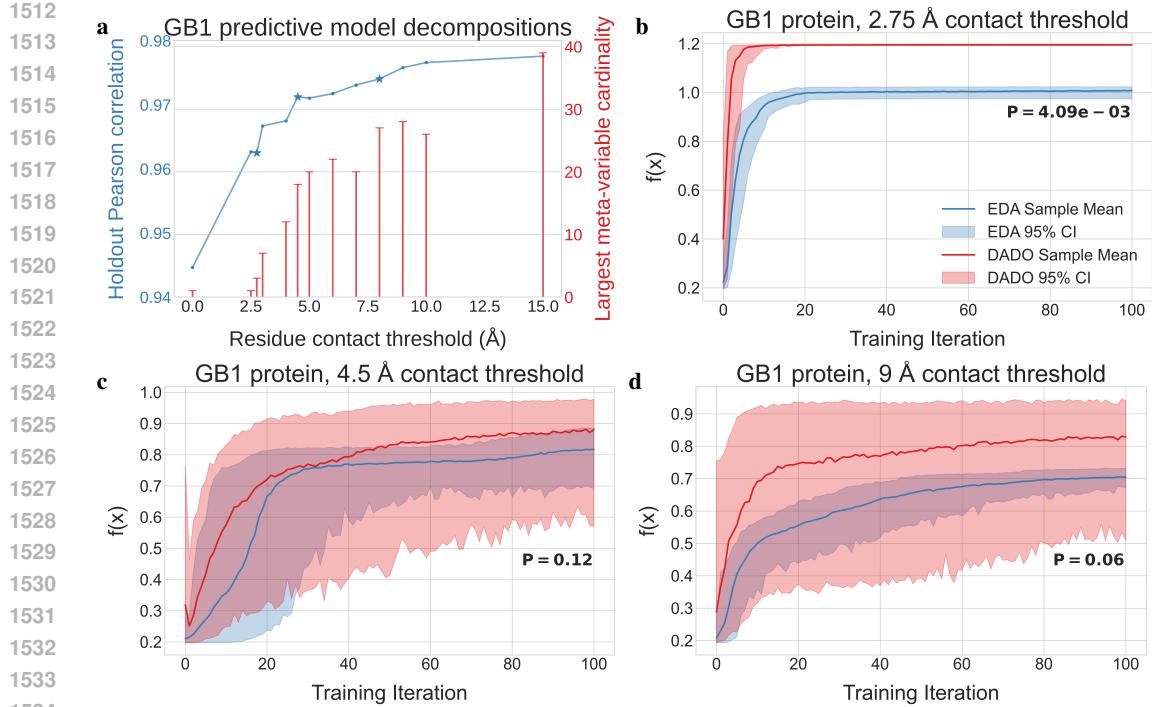
envelopes (Fig. A5c,d). Additionally, DADO definitively outperforms the decomposition-unaware EDA when  $t = 2.75\text{\AA}$  (Fig. A5b). When the predictive model is less decomposed, DADO is not as distinguishable from the EDA (Fig. A5c,d).

#### A.8.5 DECOMPOSITION GRAPH ROBUSTNESS

How crucial is it to guess the decomposition perfectly *a priori*? One way to investigate this is to mutate the decomposition graph and observe how the resulting decomposed predictive models’ predictive accuracies change. In our first set of experiments, we varied the contact threshold ( $t$ ) used on the AlphaFold 3D structure to determine connectivity; lowering  $t$  will gradually remove more distant contacts, whereas increasing  $t$  will gradually add more distant contacts. Given different decomposition graphs, we then trained a decomposed predictive model for each. For our second set of experiments, we performed random mutations to the  $t = 4.5\text{\AA}$  decomposition graph (used in Sec. 4) to study how robust prediction is to missing / extra edges. In particular, for each of  $N \in [-50, -10, -5, -1, 1, 5, 10, 50]$ , we randomly sampled  $N$  edges to remove/add. We implemented a check to ensure that the graph doesn’t become disconnected, so for some experiments, we cut off  $N$  at the largest number of edges that could be removed resulting in a chain graph. We repeated this procedure 10 times.

In both of our experiments, we considered holdout accuracy as measured by the Pearson correlation coefficient between assay labels and model predictions. All decomposed models for each protein used the same hyperparameters that were chosen via 5-fold cross validation on the full dataset for the base  $t = 4.5\text{\AA}$  decomposed model, for expediency. We also compared to a neural network without any decomposition (*i.e.*, an all-edges model), denoted “Naive NN” in our plots. For this model we performed an additional 5-fold cross validation on the full dataset for each protein.

We observe that the holdout accuracy of the non-decomposed predictive model and the decomposed models of varying  $t$  all tend to fall within a relatively small range (Fig. A6), suggesting that using our decomposed predictive model does not constitute a substantial sacrifice compared to a full (naive) model, and that our decomposition is somewhat robust to changing the contact threshold. When we randomly mutate the decomposition graph, we find that holdout accuracy is generally concentrated within an even smaller range, with some exceptions when many edges are added or removed (Fig. A7). Interestingly, for Gcn4, the decomposed predictive models outperform the naive model, though it’s worth noting that this prediction task is especially hard due to the relatively uniform dispersion of sequences throughout the design space, and the small size of the dataset. Both models fit the training data well (not shown here).

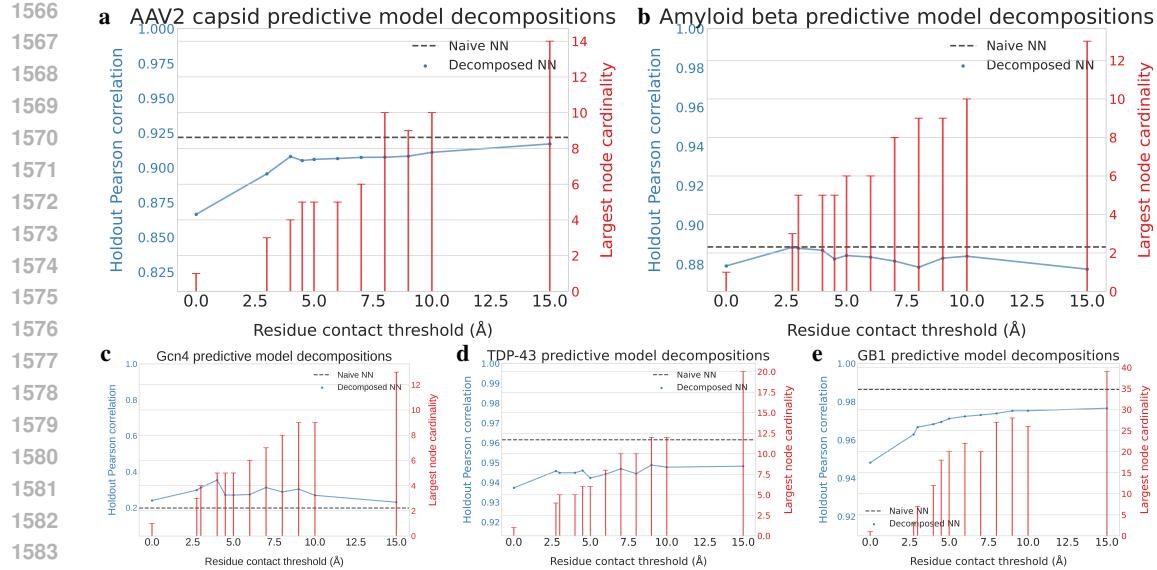


**Figure A5: Investigation of GB1 predictive model decomposability.** **a**, We varied the distance threshold,  $t$ , for which pairs of residues in protein GB1’s 3D structure are considered neighbors in the junction tree, using several values in  $t \in [0\text{\AA}, 15\text{\AA}]$ , so as to explore the tradeoff between accuracy of the model and decomposability. The lower the value of  $t$ , the stricter the decomposition (the smaller the cardinality of the largest meta-variable); thus lower  $t$  should give DADO a larger relative advantage over the standard EDA, but may yield a worse predictive model from imposing a more restrictive functional structure. The Pearson correlation on a 10% holdout set remains quite good down to and including  $t = 2.75\text{\AA}$ , a point at which DADO provides a statistically significant win over a standard EDA as seen in panel b. Blue stars denote values of  $t$  corresponding to the experiments in panels b,  $t = 2.75\text{\AA}$ , c,  $t = 4.5\text{\AA}$ , and d,  $t = 9\text{\AA}$ . Each method drew 100 samples per iteration. For each iteration, we show the mean (solid line) and 95% confidence interval (shaded envelope) of the 100 samples evaluated on  $f(x)$ , averaged across results from 20 random seeds that dictated initialization of the search distribution. P-values are from two-sided paired t-tests that AUC of the per-iteration mean is different between methods, using the 20 mean curves.

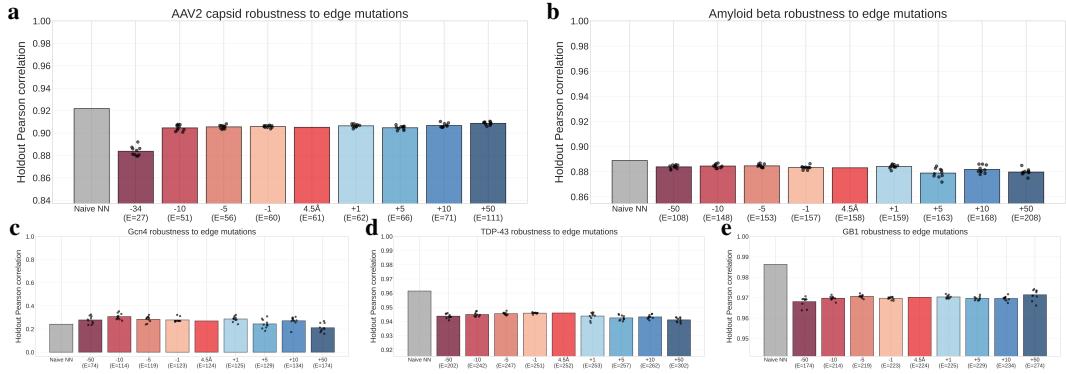
#### A.8.6 DECOMPOSITION GRAPH ROBUSTNESS: BOTTOM 50% DATA

Herein, we repeated the same analyses as in Sec. A.8.5, except using the bottom half of the training set (*i.e.*, the datapoints with the lowest assay labels). We used the same exact holdout sets as in Sec. A.8.5, such that decomposed predictive models are tested against sequences with both high and low assay labels. We used the same hyperparameters for all of the predictive models before, which were cross-validated on the full dataset.

Overall, we observe that compared to Fig. A6 and Fig. A7, holdout accuracy as measured by the Pearson correlation coefficient between assay labels and model predictions is lower for all models and all proteins (Fig. A8, Fig. A9). Interestingly, for several proteins, the more decomposed predictive models (lower  $t$ ) performed better than the less decomposed models (higher  $t$ ), as well as the full (naive) model (Fig. A8). This makes sense, as more complex models are more prone to overfitting when the training data is shifted from the holdout distribution, and as the training dataset gets smaller. This trend is also reflected in the random graph mutation experiments (Fig. A9). Generally, the same trends observed in Sec. A.8.5 hold here, such as predictive accuracy being relatively robust to changing  $t$  and to randomly mutating the graph (up to a point).



**Figure A6: Investigation of predictive model decomposability by contact threshold.** We varied the contact threshold,  $t$ , for which pairs of residues in each protein’s 3D structure are considered neighbors in the decomposition graph, using several values in  $t \in [0\text{\AA}, 15\text{\AA}]$ , so as to explore the tradeoff between accuracy of the model and decomposability. We studied **a**, AAV, **b**, Amyloid, **c**, Gcn4, **d**, TDP-43, and **e**, GB1.

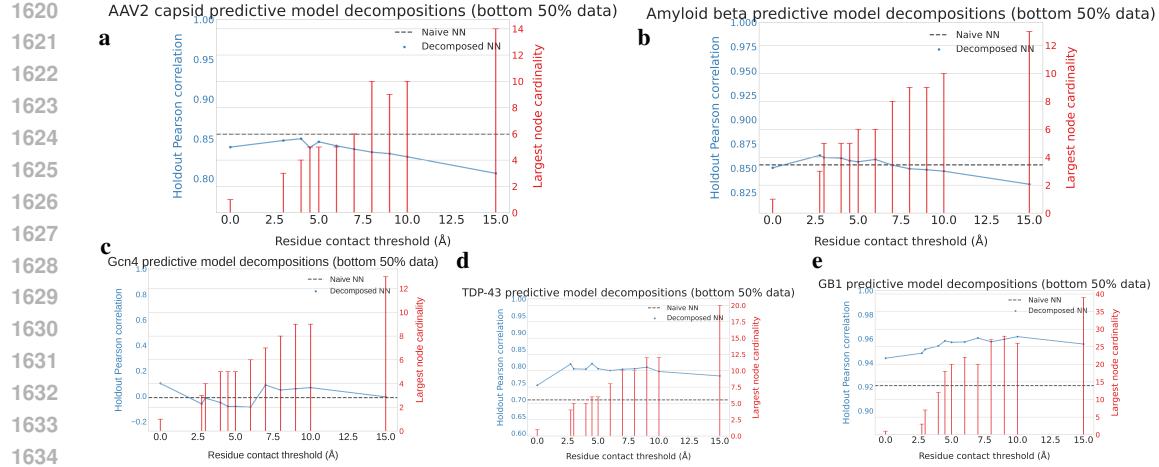


**Figure A7: Investigation of predictive model decomposability by random graph mutation.** For each of **a**, AAV, **b**, Amyloid, **c**, Gcn4, **d**, TDP-43, and **e**, GB1, we randomly added or removed edges from the  $t = 4.5\text{\AA}$  decomposition graph. In particular, we randomly sampled  $N \in [-50, -10, -5, -1, 1, 5, 10, 50]$  edges to remove/add. We implemented a check to ensure that the graph doesn’t become disconnected, so for some experiments, we cut off  $N$  at the largest number of edges that could be removed resulting in a chain graph. We repeated this procedure 10 times.

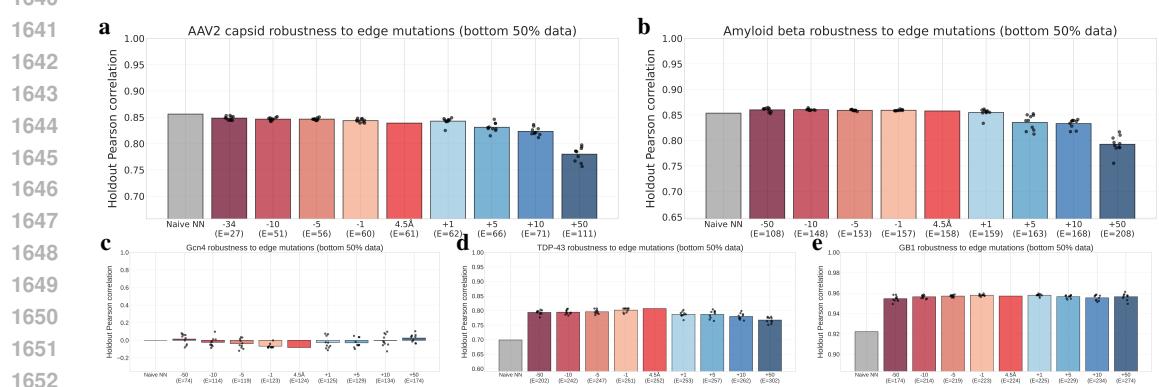
### A.8.7 RUNTIME ANALYSIS

We measure the wall-clock time it takes to run a single distributional optimization algorithm for both DADO and the naive EDA. We fix both to run for 100 iterations, drawing 100 samples at each, using the same architectures as described in Sec. A.7.1, and on a single GPU. We report times just to give a rough sense of runtime and scaling; one could definitely further optimize our code.

A few trends stand out. First, the EDA and DADO take roughly the same amount of time to run, with DADO being faster sometimes. This speed-up may come from using a factorized search distribution, which requires only conditioning on parent variables as opposed to all preceding variables (autoregressive). In general, problems with larger  $L$  take longer to run, and this scaling is worse than linear for our implementation. We also notice that when increasing  $D$  and holding  $L$  fixed at 100, the runtime is similar.



**Figure A8: Investigation of predictive model decomposability by contact threshold (bottom 50% data).** We varied the contact threshold,  $t$ , for which pairs of residues in each protein’s 3D structure are considered neighbors in the decomposition graph, using several values in  $t \in [0\text{Å}, 15\text{Å}]$ , so as to explore the tradeoff between accuracy of the model and decomposability. We studied **a**, AAV, **b**, Amyloid, **c**, Gcn4, **d**, TDP-43, and **e**, GB1. In this set of experiments, we used the same holdout set, but only trained on the bottom 50% of data by assay label.



**Figure A9: Investigation of predictive model decomposability by random graph mutation (bottom 50% data).** For each of **a**, AAV, **b**, Amyloid, **c**, Gcn4, **d**, TDP-43, and **e**, GB1, we randomly added or removed edges from the  $t = 4.5\text{Å}$  decomposition graph. In particular, we randomly sampled  $N \in [-50, -10, -5, -1, 1, 5, 10, 50]$  edges to remove/add. We implemented a check to ensure that the graph doesn’t become disconnected, so for some experiments, we cut off  $N$  at the largest number of edges that could be removed resulting in a chain graph. We repeated this procedure 10 times. In this set of experiments, we used the same holdout set, but only trained on the bottom 50% of data by assay label.

1661 In general, a single run of either DADO or EDA does not require the full memory of a 16GB GPU.  
1662 In practice, we’re able to parallelize runs within GPUs and across multiple GPUs in order to perform  
1663 our hyperparameter sweep and random seed replicates efficiently.

1664  
1665  
1666  
1667  
1668  
1669  
1670  
1671  
1672  
1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

| Problem             | Length (L) | Alphabet size (D) | EDA runtime | DADO runtime |
|---------------------|------------|-------------------|-------------|--------------|
| Synthetic tree      | 25         | 20                | 2.8 min.    | 2.9 min.     |
| Synthetic tree      | 50         | 20                | 6.3 min.    | 7.0 min.     |
| Synthetic tree      | 100        | 20                | 16.3 min.   | 16.1 min.    |
| Synthetic tree      | 200        | 20                | 42.7 min.   | 36.2 min.    |
| Synthetic tree      | 400        | 20                | 139.5 min.  | 114.2 min.   |
| Synthetic tree      | 100        | 50                | 14.0 min.   | 16.0 min.    |
| Synthetic tree      | 100        | 100               | 14.5 min.   | 18.3 min.    |
| AAV2 capsid protein | 28         | 20                | 2.1 min.    | 3.4 min.     |
| TDP-43 protein      | 84         | 21                | 6.7 min.    | 10.5 min.    |

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727