
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEVERAGING DISCRETE FUNCTION
DECOMPOSABILITY FOR SCIENTIFIC DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

In the era of AI-driven science and engineering, we often want to design discrete
objects (e.g., circuits, proteins, materials) in silico according to user-specified
properties (e.g., that a protein binds its target). Given a property predictive model,
in silico design typically involves training a generative model over the design
space (e.g., over the set of all length-L proteins) to concentrate on designs with the
desired properties. Distributional optimization, formalized as an estimation of dis-
tribution algorithm or as reinforcement learning policy optimization, maximizes
an objective function in expectation over samples. Optimizing a distribution over
discrete-valued designs is in general challenging due to the combinatorial nature
of the design space. However, many property predictors in scientific applications
are decomposable in the sense that they can be factorized over design variables in a
way that will prove useful. For example, the active site amino acids in a catalytic
protein may need to only loosely interact with the rest of the protein for maxi-
mal catalytic activity. Current distributional optimization algorithms are unable to
make use of such structure, which could dramatically improve the optimization.
Herein, we propose and demonstrate use of a new distributional optimization algo-
rithm, DECOMPOSITION-AWARE DISTRIBUTIONAL OPTIMIZATION (DADO),
that can leverage any decomposability defined by a junction tree on the design
variables. At its core, DADO employs a factorized “search distribution”—a
learned generative model—for efficient navigation of the search space, and in-
vokes graph message passing to coordinate optimization across all variables.

1 DESIGN IN DISCRETE STATE SPACES

The integration of AI into scientific research has opened new avenues for property-driven, in sil-
ico design of discrete objects—from molecular structures like proteins, to engineered systems like
circuits—where computational methods guide design with user-specified properties. For example,
we may seek to design an amino acid sequence for a protein so that the protein binds its target.

Given a property predictive model, f(x), the simplest version of in silico design entails enumerating
all possible designs, x = [x1, x2, ..., xL] ∈ X (e.g., all possible amino acid sequences of length L),
evaluating each one under the predictive model, s = f(x), and choosing the design with the highest
s. Such a setup is complicated by two primary challenges. First, in most realistic problems, the de-
sign space is too large to fully enumerate. Second, if f(x) has parameters estimated from data, then
it is most likely not accurate over the whole space. While many works address the second problem,
there has been little recent development on the first; as such, we focus herein on performing effi-
cient optimization in high-dimensional discrete design spaces. The second problem can be handled
with approaches complementary to ours (e.g., Brookes et al. (2019); Trabucco et al. (2021); Uehara
et al. (2024)), and is not here considered. We will focus our examples and experiments on designing
amino acid sequences, but our method is general—applicable to design on any discrete space.

Finding the highest-scoring design, x∗, naively requires DL evaluations of f(x) for a D-
amino acid alphabet (typically D = 20). To develop some intuition, in this section only let
us assume that D = 2 so that x is binary. First, consider the simple but unrealistic case
where f(x) = β1x1 + β2x2, . . . , βLxL, for scalar parameters {βi}. In such a scenario, find-
ing the design with the highest function evaluation requires considering only D × L par-
tial designs because the L components of x do not interact with each other, acting only
linearly additively. A more realistic setting would allow for more complicated functional
forms while still having some notion of linear additivity. For example, consider the form

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

f(x) = C1(x̂1) + C2(x̂2), . . . , Cκ(x̂κ), where Ci denotes an arbitrary function on a set of design
variables, x̃i, such as C1(x̃1) = C1(x1, x3, x8) = exp(7x1x3 − 3x3x8). In the case where sets of
variables do not overlap, i.e., where xj can appear in only one of the components Cj , finding the
global optimum of f(x) requires a number of evaluations of component functions that scales as
DM , where M ≤ L corresponds to the cardinality of the largest variable set. When the sets of
variables do overlap across component functions, tying them together, then the number of required
evaluations becomes correspondingly higher. Note that this more general form of linear additivity
admits representation of any function, possibly requiring that M = L in which case there is no linear
additivity, nor consequently, decomposability. In more realistic settings with many design variables
and a larger alphabet (e.g., D = 20), the difference in number of evaluations required between the
decomposed and standard scenarios is even greater still. Importantly, in most real problems, we
expect some level of decomposability. For example, in designing a protein to bind to a target, a
few key sequence positions may make up the binding interface, which primarily dictates the binding
strength, whereas the other positions may be involved in stabilizing the protein for binding.

Classical message passing algorithms can leverage the general, aforementioned type of struc-
ture to exactly find the global optimum with the lowest possible time complexity (Vlassis et al.,
2004). However, for reasons discussed momentarily, we are interested in distributional optimization,
wherein a standard optimization problem over the design space, x∗ = argmaxx∈X f(x), is replaced
by one over the parameters of a generative model, pθ(x), namely, θ∗ = argmaxθ Epθ(x) [f(x)].
These formulations are equivalent in that that the optimum of each is the same, assuming that
pθ(x) has capacity to place its mass on the best design. However, each formulation lends itself
to different optimization algorithms, which in turn can be usefully generalized in different ways,
mentioned momentarily. Distributional optimization may employ strategies to prevent pθ(x)—the
search distribution/policy—from collapsing to a point mass, such as by using a prior, or entropy
regularizer (Brookes et al., 2019; Ziebart et al., 2008).

Our interest in the distributional optimization formulation is motivated by its extensibility. First,
such a setup enables us to directly use innovations from the Estimation of Distribution Algorithm
(EDA) (Brookes et al., 2020; Larrañaga & Lozano, 2001) and policy optimization (Peters & Schaal,
2007; Peng et al., 2019) communities. Of particular note are methods that enable combining a pre-
trained, unconditional generative model, p(x), with a property predictor, p(y|x), to execute Bayes
rule so as to obtain a sampling distribution that can be used for design, p(x|y ∈ Y) (e.g., Brookes
et al. (2019); Fannjiang & Listgarten (2020); Uehara et al. (2024)). Second, as the key object that
navigates the search space, pθ(x), is a generative model, we stand to benefit from advances in
generative modeling. Herein, for clarity of contribution, we focus on the purest form of the EDA,
without entropy regularization or a prior. We leave such extensions to future work.

Contributions. We develop a distributional optimization algorithm in the form of a generalized
EDA/policy optimization algorithm that can leverage any decomposability in f(x) in the form de-
scribed earlier as f(x) = C1(x̂1) + C2(x̂2), . . . , Cκ(x̂κ), to more efficiently navigate the design
space and find high-performing designs quickly (Fig. 1). We call our method DECOMPOSITION-
AWARE DISTRIBUTIONAL OPTIMIZATION (DADO). We first empirically investigate DADO on
synthetic examples, illustrating that the anticipated optimization efficiency emerges compared to
decomposition-unaware baselines. Next, we further substantiate this efficiency on problems an-
chored on real protein data, that is, by optimizing protein property predictive models. Additionally,
in case studies on a few protein predictive models, we find that accuracy is robust to modifications
of the decomposition, suggesting that perfect a priori knowledge of decomposability is not required.

As DADO requires a decomposed objective of the form f(x) = C1(x̂1) + C2(x̂2), . . . , Cκ(x̂κ),
on our protein data problems, we construct these as follows. We first obtain a graph topology of
which variables (protein residues) are coupled by thresholding residue distances from an AlphaFold3
structure (Abramson et al., 2024; Brookes et al., 2022). This graph dictates the functional form of
the predictive model, by way of an automatically constructed junction tree. Recall that junction trees
represent arbitrarily complex relationships between random variables by transforming any graph into
a tree structure, where each node contains a set of the original variables, and where these sets may
be overlapping in adjacent nodes (Lauritzen & Spiegelhalter, 1988). Then we fit a neural network
that enforces this decomposition, to the training data. Analogous procedures in different application
areas could include the following, for example. In circuit design, certain topologies of components
may be prescribed ahead of time according to production constraints or domain knowledge. When

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Key components of DADO. a, DADO requires as input an objective function in its decomposed
form, f(x) = C1(x̂1) + C2(x̂2), . . . , Cκ(x̂κ), which corresponds to a junction tree. Here we show a junction
tree with nodes of size 1, i.e., a regular tree, for simplicity. Variables with edges interact together to directly
influence f . Some variables participate in multiple component functions, requiring coordination in the form
of message-passing. b, To update the search distribution at each iteration, naive EDAs weight entire samples
drawn from a joint distribution over all design variables by scoring with f(x). Shade of green denotes more to
less optimal scores. In contrast, DADO leverages the decomposition of f(x) to weight samples in a more local
manner, according to the decomposition. Specifically, DADO uses message-passing to compute value functions
that account for xi interacting with its descendants. Correspondingly, the value functions serve as the weights
for each part of the search distribution, which is factorized like f . Optional shaping function W is omitted for
clarity. c, Example performance comparison on a synthetic problem with an exact tree decomposition over a
discrete design space of size 2050 (D = 20, L = 50). Each of the two methods drew 100 samples per iteration.
We evaluated these samples with f(x), computing the per-iteration mean and 95% confidence interval. Results
shown were averaged over 20 random seeds for the same f(x) (details in Sec. 4). The p-value shown is from a
two-sided paired t-test that the mean at the final iteration is different between methods, over the 20 seeds.

designing a telescope, designers consider different arrangements of lenses—i.e., topologies—and
optimize the diameter, curvature, material, coating, etc. for each component.

2 DECOMPOSITION-AWARE DISCRETE OPTIMIZATION (DADO)

We begin by reminding the reader of the three primary steps that are iterated in a standard EDA,
which is unaware of any decomposability (e.g., Brookes et al. (2020)). From there, we describe how
infusing this algorithm with awareness of the known decomposition of f(x) stands to make the EDA
more statistically efficient, after which we formally introduce DADO.

In a standard EDA, after having initialized the search distribution, pθ0(x), the EDA proceeds by
iterating through these three steps either N times or until convergence (Brookes et al., 2020):

1. Draw K samples from the current search distribution, {xk}Kk=1 ∼ pθn(x)

2. Score each sample with the objective function, sk = f(xk), from which a weight for each sample
is computed through a predefined monotonic “shaping” function, wk = W (sk).

3. Update search distribution parameters by weighted maximum likelihood estimation (MLE), using
the weighted samples, θn+1 = argmaxθ E{xk}w

k log pθ(x
k).

As the weighted MLE problem is typically solved with gradient descent, one can choose to use only
a fixed number of gradient steps, as we will do. Doing so can be theoretically justified through the
equivalence of EDAs to Expectation-Maximization (Brookes et al., 2020). Intuitively, one can think

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

of the search distribution as a spotlight on the design space, which iteratively gets moved toward
areas of the space with high f(x) in expectation. Modern EDAs parameterize the search model with
neural network generative models, such as a Variational Autoencoder (e.g., Brookes et al. (2019)).

Now that a standard EDA is fresh in our minds, we can consider what it might mean to infuse it
with knowledge of how f(x) is decomposed, and how this might prove useful. Before discussing
the general case of a junction tree, let us first build intuition by considering a simpler example.
Specifically, consider f(x) = C1(x̃1) + C2(x̃2) where there is no overlap in variables, xi, between
the meta-variables x̃1 and x̃2 (i.e., no edges in the tree—a “fully-decomposed” setting). In this
setting, one can replace step 1, of sampling from one search model over all the design variables,
x = [x̃1, x̃2] = [x1, x2, ..., xL] ∼ pθn(x), with instead sampling each meta-variable from its own
search model separately, x̃k

1 ∼ pθn
1
(x̃1) and x̃k

2 ∼ pθn
2
(x̃2). Having done so, one can then execute

steps 2 and 3 in a similar manner, namely, scoring each meta-variable separately with its component
function (e.g., for the first component, sk1 = C1(x̃

k
1)), applying the shaping function, W , to obtain

a weight, and then updating the search model for each component independently of each other by
way of weighted MLE to obtain pθn+1

1
(x̃1) and pθn+1

2
(x̃2). What has this bought us? We have

broken down the problem of estimating a density model over a large combinatorial space, into two
smaller combinatorial spaces. Crucially, we have split one optimization problem over a combinato-
rial space, into two optimizations over much smaller combinatorial spaces. For example, for binary
design variables, where each meta-variable comprises say 15 variables, we have transformed one
optimization over a space of size 230 ≈ 109 to two problems each of size 215 ≈ 105. For larger
alphabet sizes and sequence lengths, these differences will be larger still.

The general case allows overlapping variables in f(x) = C1(x̂1) + C2(x̂2), . . . , Cκ(x̂κ), requiring
coordination between meta-variables— we cannot divide and conquer as above; rather, we must
divide, collaborate, and then conquer. Instead of fully factorizing the search model into independent
search models, one per component, we will instead need to use a search model that matches the
decompositional topology of f(x) (Fig. 1a). Junction tree topologies can represent any f(x), so we
will use a a directed, acyclic graphical (DAG) model which has an autoregressive neural network
for each node, conditioned on its parent. Sampling from a DAG is both computationally efficient
and easy, so step 1 of the EDA remains straightforward when factorized. However, steps 2 and 3
of the standard EDA are not so easily generalized. To leverage the factorized search distribution
and reduce the effective size of the optimization problem, we will need to generalize “max-plus”
message passing, which yields a global optimum x∗ = argmaxx∈X f(x) (Vlassis et al., 2004), to a
procedure integrating message passing with a factorized search model fitting step, thus constituting
a decomposition-aware EDA.

2.1 FORMAL EXPOSITION OF DADO

The goal of DADO is to obtain a generative model, pθ(x), that maximizes the EDA objec-
tive, argmaxθ Epθ(x)[f(x)], while leveraging decomposability in f(x) for optimization efficiency.
DADO requires as input a decomposed version of f(x), which can be described by an undirected
junction tree, T := (N , E), with nodes, N , and edges, E . As noted in the introduction and shown
in our experiments on proteins, identifying useful decomposability is feasible in practice. Given
the junction tree decomposition, we write f(x) =

∑
i∈N fi(x̃i) +

∑
(i,j)∈E fi,j(x̃i, x̃j), where we

refer to fi(x̃i) and fi,j(x̃i, x̃j) respectively as node and edge component functions (Fig. 1a); these
are intimately related to the “epistatic landscape” of a protein property function (Sec. A.1.1). When
the component functions are not known a priori, they can be parameterized and fit to labeled data.

We will begin our exposition by recalling how to do decomposition-aware exact (non-distributional)
optimization, that is, to solve argmaxx f(x). This problem is efficiently solved with a classical
message-passing algorithm, which coordinates local optimizations across parts of the junction tree
to obtain a single global optimum. Its efficiency comes from breaking optimization over all variables
jointly into separate optimizations for each (smaller) meta-variable. Having loaded the reader with
this intuition, we then adapt these ideas to distributional optimization, yielding DADO.

2.1.1 CLASSICAL MESSAGE-PASSING FOR NON-DISTRIBUTIONAL OPTIMIZATION

Although classical message-passing has been largely used for probabilistic inference on probabilistic
graphical models (Pearl, 1988; Shah, 2014), it can also be used for exact optimization of a function,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

x∗ = argmaxx f(x) (Vlassis et al., 2004). In particular, message-passing can be used to find
a global maximum of a function defined on an undirected junction tree, T , by making use of its
topology for optimal time-complexity. In particular, one takes the junction tree, which is undirected,
and roots it to obtain a directed tree, which induces a hierarchy among the meta-variables from root
to leaves. Each node is responsible for accumulating information from all nodes in its sub-tree and
then passing this information on to its parent. Consequently, the root node receives information from
the entire tree, which is sufficient to set its variables in a globally optimal manner. Then, starting
with the root, each parent communicates its variables’ optimal settings to its children, which can in
turn set their variables optimally, and so forth.

To obtain the rooted tree, T ′ := (N ′, E ′), from the junction tree, one keeps the same nodes, N ′ =
N , chooses a root node, r, and directs all edges in E outward from r, yielding directed edges,
E ′. Although rooting at any node will suffice, we choose r such that T ′ has the shortest height
possible. Message-passing finds a global optimum in two passes through the tree: one round of
passing messages up from leaves to root and one round passing messages back down to the leaves.

Given T ′, classical message-passing first uses dynamic programming to accumulate information
from the leaves up to the root. Similarly to any dynamic programming procedure, we accumulate
solutions to increasingly larger intermediate sub-problems. In this case, each sub-problem is to find
the value of f(x) evaluated on only a subset of meta-variables, rather than on the full set of variables
in x. Each sub-problem is tractable owing to the decomposition of the objective function into compo-
nent functions for each node and edge, and by respecting the partial order of sub-problems induced
by T ′. Specifically, one computes a value function, V max

i (x̃p(i)), for each node i ∈ N ′ \ {r}, which
tells us for each setting of its parent, x̃p(i), the value of the intermediate objective function defined
by the edge component function, fp(i),i(x̃p(i), x̃i), plus all component functions over the sub-tree
rooted at i, given that all nodes maximize their respective intermediate objectives. Computing value
functions comprises the first pass through the tree, from leaves to root:

V max
i (x̃p(i)) := maxx̃i

(
fi(x̃i) + fp(i),i(x̃p(i), x̃i) +

∑
c∈children(i)

V max
c (x̃i)

)
.

Notably, V max
i (x̃p(i)) provides sufficient information about all nodes in the sub-tree rooted at i to

optimally choose the value of x̃p(i) with respect to its children. Thus it follows that once all value
functions have been computed, the root’s assignment can be set in a globally optimal manner from
its children’s value functions,

x̃∗
r := argmaxx̃r

(
fr(x̃r) +

∑
c∈children(r)

Vc(x̃r)
)
.

Having chosen the root assignment, we then pass it down the tree as x̃p(i) = x̃∗
p(i) to its children,

which successively pass their chosen assignments to their children, all the way to the leaves,

x̃∗
i := argmaxx̃i

(
fi(x̃i) + fp(i),i(x̃

∗
p(i), x̃i) +

∑
c∈children(i)

Vc(x̃i)
)
,

resulting in a global maximizer x∗ of f(x). This dynamic programming “traceback” of optimal
assignments back down the tree constitutes our second and final pass of messages.

Alternative notation. For convenience of our generalization to distributional optimization, we
re-write the parent value functions V max

i (x̃p(i)) in terms of child-parent, Qmax
i (x̃i, x̃p(i)), and single-

node, Qmax
i (x̃i) value functions:

V max
i (x̃p(i)) := maxx̃i

Qmax
i (x̃i, x̃p(i)), where (1)

Qmax
i (x̃i, x̃p(i)) := fp(i),i(x̃p(i), x̃i)+Qmax

i (x̃i) and Qmax
i (x̃i) := fi(x̃i) +

∑
c∈children(i)

V max
c (x̃i).

In contrast to the original parent value functions, Qmax
i (x̃i, x̃p(i)) represents the effect of the choice

of both x̃p(i) and x̃i on their edge component function plus all component functions over the sub-
tree rooted at i, assuming all descendants of i maximize their corresponding value functions. In-
tuitively, Qmax

i (x̃i, x̃p(i)) is the value function on edge (p(i), i) prior to x̃i being maximized out,
which will become useful if we want to, say, sample x̃i according to some distribution instead.
Qmax

i (x̃i, x̃p(i)) is composed of two terms, one of which depends on its parent, and one of which

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

doesn’t, Qmax
i (x̃i). Written using the Q-functions just defined, the equivalent traceback equa-

tions for selecting a globally optimal assignment, x∗, are simply x̃∗
r := argmaxx̃r

Qmax
r (x̃r) and

x̃∗
i := argmaxx̃i

Qmax
i (x̃i, x̃

∗
p(i)). In other words,

x∗ = argmaxx f(x) = {argmaxx̃r Q
max
r (x̃r)} + {argmaxx̃i Q

max
i (x̃i, x̃

∗
p(i))}(p(i),i)∈E′ (2)

= argmaxx

(
Qmax

r (x̃r) +
∑

(p(i),i)∈E′
Qmax

i (x̃i, x̃p(i))
)
. (3)

2.1.2 FROM CLASSICAL MESSAGE PASSING TO DISTRIBUTIONAL OPTIMIZATION

In the same way that an EDA transforms argmaxx f(x) into a distributional optimization prob-
lem, we can rewrite the equivalent message-passing objective in Eq. 3 as DO Because the original
optimization problems over x are equivalent, their DO formulations are equivalent too,

argmax
θ

Epθ(x)[f(x)] = argmax
θ

(
Epθ(x)[Q

max
r (x̃r)] +

∑
(p(i),i)∈E′

Epθ(x)[Q
max
i (x̃i, x̃p(i))]

)
, (4)

where we’ve used linearity of expectations on the right side. However, a generic joint search dis-
tribution cannot take advantage of the linear additivity in value functions over the junction tree
topology. That is, while the classical traceback equations perform maximization over each meta-
variable separately, Eq. 4 uses a single, unfactorized search distribution over all variables, pθ(x), to
optimize each Q-function. We address this next, by factorizing the search distribution.

Factorized search distribution. Classical message-passing (Eq. 2) independently maximizes
each Q-function conditional on the choice of x̃p(i), instead of explicitly maximizing all variables in
x jointly (Eq. 3). This is possible because each Qi captures all relevant global information needed to
choose x̃i. It stands to reason then that DO can do something similar. Specifically, instead of training
a single joint search distribution, we train smaller search distributions over each x̃i, conditional on
x̃p(i), to separately maximize each Qmax

i (x̃i, x̃p(i)). That is, we factor the search distribution accord-
ing to T ′, resulting in a DAG, pθ(x) := pθ(x̃r)

∏
(p(i),i)∈E′ pθ(x̃i | x̃p(i)), for root node r, non-root

nodes i, and parents p(i), connected by directed edges E ′, and with parameters, θ. This factorized
search distribution can be plugged into Eq. 4 for an equivalent optimization problem. We refer to
each element of this product as one of the factors of the search distribution. In our implementation,
each factor has completely separate parameters, though we write a shared θ for conciseness. Notice
that each factor of the search distribution interacts with each other factor through the directed edges,
E ′. That is, the distribution of x̃i depends on its parent’s factor, and through it, all of its parent’s
ancestors: pθ(x̃i) = pθ(x̃i | x̃p(i))pθ(x̃p(i)). In turn, each of node i’s children’s factors depends on
pθ(x̃i). Due to this coupling, we cannot optimize each factor fully independently. But we can still
update each factor separately from the others in a globally-consistent manner via message-passing.
In particular, each factor will only be responsible for directly optimizing its own meta-variable, but
will need to coordinate with its neighboring factors by getting information from them about how they
are optimizing their meta-variables in a manner analogous to classical message-passing. Our current
messages, Qmax

i , convey the value of each intermediate objective when all meta-variables are chosen
via maximization. For DO, we’ll require messages that communicate values when meta-variables
are chosen according to the factorized search distribution, pθ(x).

Distributional value functions. While one certainly could choose to optimize classical value
functions using an EDA search distribution (Eq. 4), it doesn’t make sense for two main reasons.
As we just mentioned, DO aims to train pθ(x) such that it maximizes f(x), or equivalently, the sum
of Q-functions, in expectation. Therefore, the DO objective should consider intermediate objective
values for meta-variables chosen according to the current search distribution, not those chosen by
explicit maximization, as in V max

i (x̃p(i)). Additionally, computing classical value functions requires
enumerating all assignments of each x̃i for the maximum used in V max

i (x̃p(i)). When x̃i contains
more than a few design variables, this max operation quickly becomes intractable. One reason for
doing distributional optimization is to avoid enumerating massive design spaces. To address both
issues, we define corresponding distributional value functions that fulfill both desiderata:

V θ
i (x̃p(i)) := Epθ(x̃i|x̃p(i))[Q

θ
i (x̃i, x̃p(i))], where

Qθ
i (x̃i, x̃p(i)) := fp(i),i(x̃p(i), x̃i)+Qθ

i (x̃i) and Qθ
i (x̃i) := fi(x̃i) +

∑
c∈children(i)

V θ
c (x̃i).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Compared to Eq. 1, the distributional V -functions compute the value in expectation under pθ instead
of a max. Because they use an expectation instead of a max operation, these value functions can be
approximated tractably and without bias by drawing Monte-Carlo samples from the search distribu-
tion. Moreover, each distributional value function lower bounds each corresponding classical value
function because the expectation of a function cannot exceed its maximum (details in Sec. A.3). As
a result, the sum of classical value functions in the objective in Eq. 4 is bounded below by the sum
of distributional value functions, which we’ll optimize instead:

Epθ(x)[Q
max
r (x̃r)] +

∑
(p(i),i)∈E′

Epθ(x)[Q
max
i (x̃i, x̃p(i))] ≥

Epθ(x)[Q
θ
r(x̃r)] +

∑
(p(i),i)∈E′

Epθ(x)[Q
θ
i (x̃i, x̃p(i))]. (5)

Distributional optimization with value functions. All that remains is to derive an update rule
that treats each search distribution factor separately. Since each expectand in Eq. 5 doesn’t depend
on descendant meta-variables, we can replace pθ(x) with each meta-variable’s marginal distribution:

argmax
θ

Epθ(x̃r)[Q
θ
r(x̃r)] +

∑
(p(i),i)∈E′

Epθ(x̃i|x̃p(i))pθ(x̃p(i))[Q
θ
i (x̃i, x̃p(i))].

We then follow the EDA derivation to arrive at an update rule (details in Sec. A.3) in which each
term is optimized by only a single factor; dependence on pθ(x̃p(i)) is approximated by sampling.
We write DADO’s update rule (sharing a single set of samples; see Fig. 1b) as a sum of weighted
likelihoods for each search distribution factor,

θn+1 = argmax
θ

∑
x∼pθn (x)

(
Qθn

r (x̃r) log pθ(x̃r) +
∑

(p(i),i)∈E′

Qθn

i (x̃i, x̃p(i)) log pθ(x̃i | x̃p(i))
)
,

which is equivalent to separate updates because the factors don’t share parameters, as desired:

θn+1
r = argmax

θr

∑
x∼pθn (x)

Qθn

r (x̃r) log pθr (x̃r), and

θn+1
i = argmax

θi

∑
x∼pθn (x)

Qθn

i (x̃i, x̃p(i)) log pθi(x̃i | x̃p(i)), ∀ i ∈ N \ {r}.

Each factor is weighted by its corresponding value function, enabling it to coordinate with all its
descendant factors despite their being updated separately. The whole DO is tied together at the top
by the root factor. We emphasize that DADO’s update is more statistically efficient than a naive
EDA’s because DADO gets to use all K samples for weighted MLE on each lower-dimensional
factor distribution (i.e., ratio of number of samples to number of dimensions is larger). Our resulting
algorithm (Alg. 1) fits into the three EDA steps: (1) designs are sampled from pθn(x), (2) weights,
here each Q-function instead of f(x), are computed, and (3), each search distribution factor receives
its own independent weighted maximum likelihood update based on these weights (Fig. 1b). These
are repeated until convergence, or for some fixed number of iterations. The factor updates are
coupled only through the Q-functions, the messages across edges. {Qθn

i }i∈N are only valid while
θ is close to θn, meaning one must balance how many gradient steps are taken before drawing new
samples. If too many gradient steps are taken without resampling, a factor may be changing its
parameters to collaborate with another factor which has already changed its behavior. It’s common
for EDAs to include an additional hyperparameter W (·), a monotonic shaping function applied to the
weights, to alter optimization dynamics (Brookes et al., 2020), included in Alg. 1. Choosing W to be
the identity recovers our derivation. Notice that in place of the classical message-passing traceback
equations, DADO simply performs sequential conditional sampling from its search distribution.
Interestingly, a very similar algorithm can be derived without using a lower bound on the value
functions (Eq. 5) if one adds an entropy-maximizing term to the initial DO objective (Sec. A.4).

3 RELATED WORK

The closest work to ours in the EDA community is that of the Factorized Distribution Algorithm
(FDA), wherein a decomposition is leveraged to factorize the conditional probability table (CPT)
that parameterizes the search distribution (Mühlenbein & Mahnig, 1999). However, FDA cannot
leverage message passing to give different weights to different variables so as to more efficiently
update the search model. In related work, Pelikan (2005) replaced the CPTs with Bayesian networks,
but still had no means to coordinate among variables through message passing or the like.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 1 DECOMPOSITION-AWARE DISTRIBUTIONAL OPTIMIZATION (DADO)

1: Given: junction tree T = (N , E), component functions {fi,j(x̃i, x̃j)}(i,j)∈E and {fi(x̃i)}i∈N
2: Root T such that tree height is minimized, yielding directed junction tree, T ′ = (N , E ′)
3: Factorize search distribution according to T ′ as pθ(x) := pθ(x̃r)

∏
(p(i),i)∈E′ pθ(x̃i | x̃p(i));

initialize θ

4: Sort nodes topologically: order ON such that O(0)
N is a leaf index and O

(L−1)
N is root index

5: for iteration n = 1, 2, . . . , N do
6: {x̃k}Kk=1 ∼ pθ(x) ▷ Sample from the factorized search distribution
7: for i ∈ ON do ▷ Estimate distributional value functions from samples
8: for k = 1, 2, . . .K do
9: Qi(x̃

k
i)← fi(x̃

k
i) +

∑
c∈children(i)

∑K
k=1[Qc(x̃

k
c , x̃

k
i)]

10: if i’s parent, p(i), exists:
11: Qi(x̃

k
i , x̃

k
p(i))← fp(i),i(x̃

k
p(i), x̃

k
i) +Qi(x̃

k
i)

12: end for
13: end for ▷ Update each search distribution factor using value functions as weights
14: for all i ∈ N , in parallel do
15: if i = r:
16: θr ← argmaxθr

∑K
k=1 W (Qr(x̃

k
r)) log pθr (x̃

k
r)

17: else
18: θi ← argmaxθi

∑K
k=1 W (Qi(x̃

k
i , x̃

k
p(i))) log pθi(x̃

k
i | x̃k

p(i))

19: end for
20: end for

In a complementary line of work on policy optimization in reinforcement learning (analogous to
learning the search distribution in EDAs), coordination between variables is enabled by message
passing on a factorized search distribution/policy, but this line of work is only suitable for graph
topologies that are Markov chains—that is, chain graphs. These graphs arise from reward functions,
f(x), that decompose in time according to a first-order Markov assumption (Peters & Schaal (2007),
Peng et al. (2019), Nair et al. (2020)). Such approaches cannot be used on arbitrary junction trees.

Adjacent to our problem of interest, because they focus solely on real-valued design spaces,
Grudzien et al. (2024) introduces a new way to discover a functional decomposition from data,
and then demonstrate that doing so helps improve out-of-distribution generalization. Separately, the
Bayesian optimization (BO) community has developed methods for dynamically inferring a func-
tion decomposition from data during active learning. Although they make use of message passing
for coordination, they do not employ distributional optimization, nor can these methods be readily
generalized to do so (Kandasamy et al. (2015), Han et al. (2021), Hoang et al. (2018), Rolland et al.
(2018), Bardou et al. (2024)). This community has shown that using approximate or even random
decompositions can be helpful (Ziomek & Ammar, 2023). DADO could, in principle, be used
within the BO inner loop, although such an investigation is beyond the scope of the present work.

4 EXPERIMENTAL RESULTS

We perform two sets of experiments with increasing resemblance to real-world scientific design.
In each setting we compare a standard EDA, that is unaware of the function decomposition, to
DADO, which is aware of it. In the first setting, we create synthetic functions f(x), while in the
second setting, we focus on functions derived from real protein data. In all experiments we designed
sequences of fixed length L, where each position is one of D = 20 amino acids. We used N = 100
EDA training iterations and G = 1 gradient steps for each weighted maximum likelihood update.
We use MLP-based search distributions (details in Sec. A.7.1) for DADO and all baselines. We
also compare to FDA (Mühlenbein & Mahnig, 1999) and PPO (Schulman et al., 2017) (details
in Sec. A.6). For the shaping function we choose W (s) = exp s

β and tune the temperature, β. To
choose β and the learning rate, η, we performed a hyperparameter sweep separately for each method

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

a b c

Figure 2: Comparison of a naive EDA to DADO on synthetic problems. We created three random functions,
f(x), each with a randomly chosen junction tree decomposition with maximum node size of one, and randomly
chosen parameters. Each experiment used alphabet size D = 20 and sequence length, a, L = 25, b, L = 50,
and c, L = 200. Each of the two methods drew K = 100 samples per iteration. For each iteration, we show
the mean (solid line) and 95% confidence interval (shaded envelope) of the 100 samples evaluated on f(x),
averaged across results from 20 random seeds. P-values are from a two-sided paired t-test that the mean at the
final iteration is different between DADO and the best baseline, over the 20 seeds.

and each f(x), taking (η∗, β∗) with the largest sample mean at the last iteration. For synthetic
experiments, we swept over 100 combinations between η ∈ [10−5, 5 × 10−2] and β ∈ [0.1, 8].
For protein experiments, which take longer, we swept only 54 pairs between η ∈ [5 × 10−5, 5 ×
10−2] and β ∈ [0.01, 5]. If either method’s η∗ or β∗ was on the boundary of the sweep, we
further expanded it. (η∗, β∗) were then used for all replicate runs over random seeds dictating
the initial search distribution and sampling. Although not essential to our method as described in
Alg. 1, in our implementation we reduce the variance of the search distribution update by using
mean-shifted Q-functions, Qi(x̃i, x̃p) − E{x̃k

i }[Qi(x̃
k
i , x̃p)], which are unbiased (Williams, 1992).

Statistical significance of differences in performance is computed by comparing the sample mean
f(x) at the final iteration, using paired two-sided t-tests over random seeds.

COMPARISON ON FULLY SYNTHETIC FUNCTIONS

Here we used junction trees with meta-variable nodes containing only one original variable, i.e., an
exact tree decomposition. We did so because this allowed us to better control the difficulty of the
synthetic functions in that we could specify each component function as a CPT of size D2. For larger
meta-variables, we would have required a more compact representation than a CPT (which scale
exponentially with the number of variables in each meta-variable), based on say a neural network-
based generative model, for which random initialization tends to yield overly smooth functions that
are unrealistically easy to optimize, and are difficult to set in any other manner to obtain realistically
difficult functions. We simulated one f(x) for each of three sequence lengths, L = {25, 50, 200},
by randomly sampling a junction tree and then randomly specifying component functions (details in
Sec. A.7.2). Search model weights were initialized from N (0, 0.0004) and biases were set to 0.

All methods drew K = 100 samples from their search distribution at each iteration. For all three
sequence lengths, DADO outperforms all three baselines (Fig. 2). When L = 25, the baselines
catch up to DADO by the end of 100 iterations, but for larger L, corresponding to larger design
spaces, the baseline methods converge to substantially lower values of f(x) than DADO.

COMPARISON ON PROTEIN PROPERTY FUNCTIONS

Here we anchor our experiments on f(x) fit to real protein datasets. We use four protein property
datasets, AAV, Amyloid, Gcn4, and TDP-43 (details in App. A.5). For each dataset, we used
AlphaFold3-predicted structures (Abramson et al., 2024) on the wild-type sequence to obtain a 3D
structure, from which we constructed a contact graph by thresholding the distance between pairs
of residues with threshold t. Following Brookes et al. (2022); Romero et al. (2013); Voigt et al.
(2002), we use a threshold of t = 4.5Å. We interpret this contact map as a graph adjacency matrix,
from which we algorithmically construct a junction tree (Lauritzen & Spiegelhalter, 1988). This
defines the topology needed for DADO, and then we fit the component functions on the protein
assay-labeled data (details in Sec. A.7.3). We initialized the search distribution by training on the
1,000 points with lowest f(x), for 1,000 iterations, with a learning rate of 2× 10−3.

All methods drew K = 1000 samples from their search distribution at each iteration. For all four
proteins, DADO converges to designs with higher f(x) than the baselines both visually and by a
statistical test (Fig. 3). For three of the problems (Amyloid, Gcn4, and TDP-43), the 95% confidence

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

a b

c d

Figure 3: Comparison of a naive EDA to DADO on protein property predictive models. For each of four
proteins of varying length, a, AAV, b, Amyloid, c, Gcn4, and d, TDP-43, we fit a neural network property
function, f(x), adhering to a junction tree decomposition derived from the protein’s 3D structure, and then
used a naive EDA and DADO to optimize them. Each approach drew K = 1000 samples per EDA iteration.
For each iteration, we show the mean (solid line) and 95% confidence interval (shaded envelope) of the 1000
samples evaluated on − log(c − f(x)), averaged across results from 20 random seeds. We plot this quantity
to make clear the differences between methods when f(x) is large; c is the largest f(x) on a given plot, plus
a small constant for numerical stability. P-values are from a two-sided paired t-test that the mean at the final
iteration is different between DADO and the best baseline, over the 20 seeds.

intervals of DADO and the best baseline at the final iteration do not overlap at all. We plotted
− log(c − f(x)) on the y-axis to make this difference clear visually; plots with f(x) on the y-axis
are included in the appendix (Fig. A4).

5 DISCUSSION

We have proposed a new method for distributional optimization that can leverage arbitrary decom-
posability of the function being optimized. We have shown that it works as expected on synthetic
problems–namely, better than a naive EDA that is not aware of the decomposition. We have also
demonstrated the potential for practical utility on the problem protein design. Importantly, it is
not necessary that a problem strictly adhere to the specified decomposition in order to be useful.
Specifically, we showed that using the heuristic of thresholding AlphaFold3 estimated contacts, we
can obtain a range of decomposed functions, including some that maintain predictive accuracy while
providing a level of decomposability helpful for DADO. Obtaining similarly useful decomposability
in other domains will require further investigation; however, as the real world typically is structured,
we expect many areas will be amenable to doing so. Estimating decomposability from labeled data
is an active area of research (Poelwijk et al. (2016); Grudzien et al. (2024); Park et al. (2024)).

It will be insightful to conduct future work interrogating the use of DADO with generalizations
of the standard EDA, such as conditioning an unconditional generative model with an inaccurate
property predictor for AI-guided design, which should enable us to design while accounting for the
fact that f(x) is not truly known everywhere in the space due to finite data. This particular problem
may require distilling an unconditional model into one that respects the decomposition, although
alternative strategies could prove useful. Finally, use of DADO within Bayesian Optimization for
optimization of the acquisition function is an exciting direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We specify exhaustively our experimental setup, hyperparameters, model architectures, and algo-
rithm details in Sec. 4. Datasets used and their sources are detailed in App. A.5. A Github link to
our code will be released upon publication.

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, 630(8016):493–500, 2024.

Anthony Bardou, Patrick Thiran, and Thomas Begin. Relaxing the additivity constraints in decen-
tralized no-regret high-dimensional bayesian optimization. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Benedetta Bolognesi, Andre J Faure, Mireia Seuma, Jörn M Schmiedel, Gian Gaetano Tartaglia, and
Ben Lehner. The mutational landscape of a prion-like domain. Nature communications, 10(1):
4162, 2019.

David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for
robust design. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 773–782. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/brookes19a.html.

David Brookes, Akosua Busia, Clara Fannjiang, Kevin Murphy, and Jennifer Listgarten. A view of
estimation of distribution algorithms through the lens of expectation-maximization. In Proceed-
ings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 189–190,
2020.

David H Brookes and Jennifer Listgarten. Design by adaptive sampling. arXiv preprint
arXiv:1810.03714, 2018.

David H. Brookes, Amirali Aghazadeh, and Jennifer Listgarten. On the sparsity of fitness func-
tions and implications for learning. Proceedings of the National Academy of Sciences, 119(1):
e2109649118, 2022. doi: 10.1073/pnas.2109649118. URL https://www.pnas.org/doi/
abs/10.1073/pnas.2109649118.

Drew H Bryant, Ali Bashir, Sam Sinai, Nina K Jain, Pierce J Ogden, Patrick F Riley, George M
Church, Lucy J Colwell, and Eric D Kelsic. Deep diversification of an aav capsid protein by
machine learning. Nature Biotechnology, 39(6):691–696, 2021.

Yongcan Chen, Ruyun Hu, Keyi Li, Yating Zhang, Lihao Fu, Jianzhi Zhang, and Tong Si. Deep
mutational scanning of an oxygen-independent fluorescent protein creilov for comprehensive pro-
filing of mutational and epistatic effects. ACS Synthetic Biology, 12(5):1461–1473, 2023.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,
Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider, Eren
Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec, Luyu
Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL http:
//github.com/google-deepmind.

Clara Fannjiang and Jennifer Listgarten. Autofocused oracles for model-based design. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 12945–12956. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/972cda1e62b72640cb7ac702714a115f-Paper.pdf.

11

https://proceedings.mlr.press/v97/brookes19a.html
https://proceedings.mlr.press/v97/brookes19a.html
https://www.pnas.org/doi/abs/10.1073/pnas.2109649118
https://www.pnas.org/doi/abs/10.1073/pnas.2109649118
http://github.com/google-deepmind
http://github.com/google-deepmind
https://proceedings.neurips.cc/paper_files/paper/2020/file/972cda1e62b72640cb7ac702714a115f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/972cda1e62b72640cb7ac702714a115f-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kuba Grudzien, Masatoshi Uehara, Sergey Levine, and Pieter Abbeel. Functional graphical
models: Structure enables offline data-driven optimization. In Sanjoy Dasgupta, Stephan
Mandt, and Yingzhen Li (eds.), Proceedings of The 27th International Conference on Artifi-
cial Intelligence and Statistics, volume 238 of Proceedings of Machine Learning Research, pp.
2449–2457. PMLR, 02–04 May 2024. URL https://proceedings.mlr.press/v238/
grudzien24a.html.

Eric Han, Ishank Arora, and Jonathan Scarlett. High-dimensional bayesian optimization via tree-
structured additive models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 7630–7638, 2021.

Trong Nghia Hoang, Quang Minh Hoang, Ruofei Ouyang, and Kian Hsiang Low. Decentralized
high-dimensional bayesian optimization with factor graphs. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 32, 2018.

Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620, 1957.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Poczos. High dimensional bayesian op-
timisation and bandits via additive models. In Francis Bach and David Blei (eds.), Proceed-
ings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pp. 295–304, Lille, France, 07–09 Jul 2015. PMLR. URL
https://proceedings.mlr.press/v37/kandasamy15.html.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Pedro Larrañaga and Jose A Lozano. Estimation of distribution algorithms: A new tool for evolu-
tionary computation, volume 2. Springer Science & Business Media, 2001.

Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society: Series
B (Methodological), 50(2):157–194, 1988.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Francesca-Zhoufan Li, Jason Yang, Kadina E Johnston, Emre Gürsoy, Yisong Yue, and Frances H
Arnold. Evaluation of machine learning-assisted directed evolution across diverse combinatorial
landscapes. bioRxiv, pp. 2024–10, 2024.

Rosalie Lipsh-Sokolik and Sarel J Fleishman. Addressing epistasis in the design of protein function.
Proceedings of the National Academy of Sciences, 121(34):e2314999121, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Heinz Mühlenbein and Thilo Mahnig. Fda -a scalable evolutionary algorithm for the optimization
of additively decomposed functions. Evolutionary Computation, 7(4):353–376, 1999. doi: 10.
1162/evco.1999.7.4.353. URL http://muehlenbein.org/fda99.PDF.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Pascal Notin, Aaron Kollasch, Daniel Ritter, Lood Van Niekerk, Steffanie Paul, Han Spinner, Nathan
Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, et al. Proteingym: Large-scale benchmarks
for protein fitness prediction and design. Advances in Neural Information Processing Systems, 36:
64331–64379, 2023.

C Anders Olson, Nicholas C Wu, and Ren Sun. A comprehensive biophysical description of pairwise
epistasis throughout an entire protein domain. Current biology, 24(22):2643–2651, 2014.

Jakub Otwinowski and Ilya Nemenman. Genotype to phenotype mapping and the fitness landscape
of the e. coli lac promoter. PloS one, 8(5):e61570, 2013.

12

https://proceedings.mlr.press/v238/grudzien24a.html
https://proceedings.mlr.press/v238/grudzien24a.html
https://proceedings.mlr.press/v37/kandasamy15.html
http://muehlenbein.org/fda99.PDF

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yeonwoo Park, Brian PH Metzger, and Joseph W Thornton. The simplicity of protein sequence-
function relationships. Nature Communications, 15(1):7953, 2024.

Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible inference, 1988.

Martin Pelikan. Bayesian optimization algorithm. In Hierarchical Bayesian optimization algorithm:
toward a new generation of evolutionary algorithms, pp. 31–48. Springer, 2005.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for opera-
tional space control. In Proceedings of the 24th International Conference on Machine Learn-
ing, ICML ’07, pp. 745–750, New York, NY, USA, 2007. Association for Computing Machin-
ery. ISBN 9781595937933. doi: 10.1145/1273496.1273590. URL https://doi.org/10.
1145/1273496.1273590.

Frank J Poelwijk, Vinod Krishna, and Rama Ranganathan. The context-dependence of mutations: a
linkage of formalisms. PLoS computational biology, 12(6):e1004771, 2016.

Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. High-dimensional bayesian
optimization via additive models with overlapping groups. In Amos Storkey and Fernando
Perez-Cruz (eds.), Proceedings of the Twenty-First International Conference on Artificial In-
telligence and Statistics, volume 84 of Proceedings of Machine Learning Research, pp.
298–307. PMLR, 09–11 Apr 2018. URL https://proceedings.mlr.press/v84/
rolland18a.html.

Philip A Romero, Andreas Krause, and Frances H Arnold. Navigating the protein fitness landscape
with gaussian processes. Proceedings of the National Academy of Sciences, 110(3):E193–E201,
2013.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Mireia Seuma, Andre J Faure, Marta Badia, Ben Lehner, and Benedetta Bolognesi. The genetic
landscape for amyloid beta fibril nucleation accurately discriminates familial alzheimer’s disease
mutations. elife, 10:e63364, 2021.

Devavrat Shah. Algorithms for inference (course 6.438, fall 2014). MIT
OpenCourseWare, 2014. URL https://ocw.mit.edu/courses/
6-438-algorithms-for-inference-fall-2014/. Lecture notes. Accessed:
2025-10-30.

Max V Staller, Alex S Holehouse, Devjanee Swain-Lenz, Rahul K Das, Rohit V Pappu, and Barak A
Cohen. A high-throughput mutational scan of an intrinsically disordered acidic transcriptional
activation domain. Cell systems, 6(4):444–455, 2018.

Tyler N Starr and Joseph W Thornton. Epistasis in protein evolution. Protein science, 25(7):1204–
1218, 2016.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Ammar Tareen, Mahdi Kooshkbaghi, Anna Posfai, William T. Ireland, David M. McCandlish,
and Justin B. Kinney. Mave-nn: learning genotype-phenotype maps from multiplex assays
of variant effect. Genome Biology, 23:1–27, 12 2022. ISSN 1474760X. doi: 10.1186/
S13059-022-02661-7/FIGURES/6. URL https://genomebiology.biomedcentral.
com/articles/10.1186/s13059-022-02661-7.

13

https://doi.org/10.1145/1273496.1273590
https://doi.org/10.1145/1273496.1273590
https://proceedings.mlr.press/v84/rolland18a.html
https://proceedings.mlr.press/v84/rolland18a.html
https://ocw.mit.edu/courses/6-438-algorithms-for-inference-fall-2014/
https://ocw.mit.edu/courses/6-438-algorithms-for-inference-fall-2014/
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02661-7
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02661-7

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Brandon Trabucco, Aviral Kumar, Xinyang Geng, and Sergey Levine. Conservative objective mod-
els for effective offline model-based optimization. In Marina Meila and Tong Zhang (eds.), Pro-
ceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 10358–10368. PMLR, 18–24 Jul 2021.

Kotaro Tsuboyama, Justas Dauparas, Jonathan Chen, Elodie Laine, Yasser Mohseni Behbahani,
Jonathan J Weinstein, Niall M Mangan, Sergey Ovchinnikov, and Gabriel J Rocklin. Mega-scale
experimental analysis of protein folding stability in biology and design. Nature, 620(7973):434–
444, 2023.

Masatoshi Uehara, Yulai Zhao, Ehsan Hajiramezanali, Gabriele Scalia, Gokcen Eraslan, Avantika
Lal, Sergey Levine, and Tommaso Biancalani. Bridging model-based optimization and genera-
tive modeling via conservative fine-tuning of diffusion models. Advances in Neural Information
Processing Systems, 37:127511–127535, 2024.

N. Vlassis, R. Elhorst, and J.R. Kok. Anytime algorithms for multiagent decision making using
coordination graphs. In 2004 IEEE International Conference on Systems, Man and Cybernetics
(IEEE Cat. No.04CH37583), volume 1, pp. 953–957 vol.1, 2004. doi: 10.1109/ICSMC.2004.
1398426.

Christopher A Voigt, Carlos Martinez, Zhen-Gang Wang, Stephen L Mayo, and Frances H Arnold.
Protein building blocks preserved by recombination. Nature structural biology, 9(7):553–558,
2002.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8(3–4):229–256, May 1992. ISSN 0885-6125. doi: 10.1007/
BF00992696. URL https://doi.org/10.1007/BF00992696.

Fa-Yueh Wu. The potts model. Reviews of modern physics, 54(1):235, 1982.

Danqing Zhu, David H Brookes, Akosua Busia, Ana Carneiro, Clara Fannjiang, Galina Popova,
David Shin, Kevin C Donohue, Li F Lin, Zachary M Miller, et al. Optimal trade-off control in
machine learning–based library design, with application to adeno-associated virus (aav) for gene
therapy. Science Advances, 10(4):eadj3786, 2024.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Juliusz Krzysztof Ziomek and Haitham Bou Ammar. Are random decompositions all we need in
high dimensional bayesian optimisation? In International Conference on Machine Learning, pp.
43347–43368. PMLR, 2023.

A APPENDIX

A.1 DIFFERENT WAYS OF WRITING A FUNCTION DECOMPOSITION

In the introduction (Sec. 1), we define a decomposable function as one that can be written like
f(x) = C1(x̂1) + C2(x̂2), . . . , Cκ(x̂κ), with meta-variables x̂i that are generic sets of original vari-
ables xj . This formulation is most helpful for building intuition about fully-decomposable functions,
in which there are no variables xj that appear in multiple meta-variables (i.e., meta-variables don’t
overlap). It also encompasses functions for which there are overlapping meta-variables in the de-
composition too.

f(x) = C1(x̂1) + C2(x̂2), . . . , Cκ(x̂κ) also provides the helpful intuition that someone looking to
use DADO need only specify a decomposition at this level of detail—sets of design variables that
directly interact—rather than as a graph. In the protein binding example given in Sec. 1, a user
might specify three component functions: one over sequence positions in the binding interface, x̂0,
one over sequence positions in the scaffold, x̂1, and one over a subset of positions tying together
the binding interface and the scaffold, x̂2. Specifying a decomposition at this level may be easier
than in its graph form. In the event that one has an exact decomposition given, this information can
be represented either this way, or in terms of the graph introduced below. Situations in which an

14

https://doi.org/10.1007/BF00992696

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

exact decomposition may be given include hardware design (e.g., due to manufacturing constraints,
a topology of wires in a circuit is pre-specified) and bi-level optimizations (e.g., to design the best
telescope, a scientist optimizes both the arrangement of lenses and their physical properties; an outer
loop optimizes topologies and an inner loop using DADO evaluates a single topology by optimizing
each lens’ parameters).

However, f(x) = C1(x̂1) + C2(x̂2), . . . , Cκ(x̂κ) as written has no interpretation in terms of a
graph, which is necessary for message-passing and for factorizing the search distribution (Sec. 2.1).
To bridge this gap, we introduce a graph in which nodes are design variables and edges specify which
design variables directly interact to influence f . Users of DADO may also specify the decomposi-
tion at this level; we expect this to be helpful when domain knowledge is available in the negative
form, i.e., when the user can begin with the fully-connected graph and remove edges between design
variables they think don’t directly interact. This graph can then be automatically transformed into a
junction tree (Lauritzen & Spiegelhalter, 1988), which is what our algorithm actually takes as input.
That is, DADO takes an undirected junction tree, T := (N , E), with nodes, N , and edges, E . Each
node is a set of design variable indices, such that indexing x with this set yields a new meta-variable,
x̃i, correspondingly exactly to a node in the junction tree, whereas the old meta-variables x̂i had no
such interpretation. f(x) must be decomposed instead according to T .

We can rewrite the generic function decomposition, f(x) = C1(x̂1) + C2(x̂2), . . . , Cκ(x̂κ), equiva-
lently in terms ofN and E : f(x) =

∑
i∈N fi(x̃i) +

∑
(i,j)∈E fi,j(x̃i, x̃j) (Fig. 1a). We’ve replaced

component functions Ci(x̂i) on generic sets of design variable indices with either an equivalent
“node component function”, fi(x̃i), or “edge component function”, fi,j(x̃i, x̃j). Correspondingly,
x̂i in the original formulation either corresponds exactly to some node in the junction tree, such
that x̂i = x̃j , or it corresponds to some edge in the junction tree, such that x̂i = x̃j ∪ k. The
fully-decomposed, no-overlap EDA described in Sec. 2 corresponds to an edgeless junction tree—
each component function is simply a node component function, Ci(x̂i) = fi(x̃i), and there are no
edge component functions—which is why a fully-factorized search distribution suffices. But if, for
example, x̂0 = {x0, x1} and x̂1 = {x1, x2} overlap, then they must instead correspond to edge
component functions. For a simplified case where the junction tree nodes have cardinality 1 (e.g.,
x̃i = xi), we might have C0(x̂0) = f0,1(x̃0, x̃1) and C1(x̂1) = f1,2(x̃1, x̃2). Fig. 1a only depicts
edge component functions for clarity and simplicity; notice also that node component functions can
technically be subsumed into appropriate edge component functions without loss of generality. The
presence of edge component functions requires the coupling of the search distribution’s factors in a
manner compatible with E ; a fully-factorized search distribution with independent distributions for
each meta-variable will no longer suffice.

A.1.1 CONNECTION TO EPISTASIS

Function decomposition corresponds intimately to notions of the epistatic landscape for a protein
property function (e.g., Poelwijk et al. (2016), Wu (1982), Otwinowski & Nemenman (2013), Lipsh-
Sokolik & Fleishman (2024)). An “epistatic expansion” of f ,

f(x) = β +

L∑
i=0

βi[xi] +

L∑
i=0

L∑
j>i

βi,j [xi, xj] + ...+ β0,1,...L−1[x0, x1, ..., xL−1], (6)

is a decomposition of f into a bias term, first-order terms, second-order terms, and so forth up to
L-order epistasis. For the first-order terms, each βi is a vector which is indexed by the particular
value of xi. For higher-order terms, β is a d-dimensional tensor. One can obtain a decomposition
graph from an epistatic expansion as follows: for each nonzero term in the expansion, add an edge
between each design variable in the term. A function in which only a few, lower-order terms were
nonzero would be relatively easy to optimize.

An expansion of this sort can be thought of as a spectral decomposition of f into components of
lower and higher frequencies, and can be computed for small landscapes using a discrete Fourier
transform. A function with primarily lower-frequency components would be smooth and easy to
optimize whereas a function with higher-frequency components would be rugged and difficult to find
the global optimum of. One can imagine a worst-case scenario, that of L-order epistasis, of which a
needle-in-a-haystack function is an example. In general, full epistatic landscapes are intractable to
compute for design spaces of practical sizes, but estimation of a subset of the terms is an active area

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

of research (e.g., Otwinowski & Nemenman (2013); Park et al. (2024)) due to beliefs that natural
proteins tend to exhibit sparse and mostly lower-order epistasis.

In comparison to the function decompositions used by DADO, a full epistatic landscape specifies
both the graph topology and the component functions, everywhere. Completely specifying an order-
d interaction if each variable has D states requires choosing Dd values. The high-dimensional
synthetic functions used in our experiments are fully specified everywhere because they’re defined
with primarily lower-order epistasis, which can be specified with far fewer values. In contrast, our
protein property predictors can have high-order component functions represented by neural networks
fit from limited data, meaning they’re underspecified beyond the training data. In some sense, fitting
neural network component functions allows us to specify higher-order epistasis in a locale without
paying the price for defining it over the full design space. Real-world design procedures typically
only have knowledge of f in a small locale, which is why locally-valid decompositions suffice.

A.2 DECOMPOSITION-UNAWARE EDA DERIVATION

Given an objective, f(x), to maximize, a decomposition-unaware EDA (or “naive” EDA) transforms
the original problem into a distributional optimization problem as follows (Brookes et al., 2020):

max
x

f(x) = max
θ

Epθ(x)[f(x)]. (7)

For the equivalence to hold, the search distribution, pθ(x), must be capable of representing a point
mass on x∗. Intuitively, one can think of an EDA as having a search distribution, pθ(x), that acts as
a spotlight on the design space, which is iteratively moved toward areas of the space with high f(x)
in expectation. Modern EDAs parameterize the search distribution with neural network generative
models, such as a Variational Autoencoder (Kingma & Welling (2013); e.g., Brookes et al. (2019)).

Procedurally, after having initialized the search distribution, pθ0(x), this naive EDA then iterates
through these three steps either N times or until some convergence criteria is met (Larrañaga &
Lozano, 2001; Brookes et al., 2020):

1. Draw K samples from the current search distribution, {xk}Kk=1 ∼ pθn(x)

2. Score each sample with the objective function to get its weight, wk = f(xk).
3. Update the search distribution parameters with weighted maximum likelihood estimation (MLE),

using the weighted samples, θn+1 = argmaxθ E{xk}[w
k log pθ(x

k)]. In older EDAs, this step
was often instead a truncated maximum likelihood estimation, in which pθ(x) modeled only
samples with the largest weights.

Often, a predefined monotonic “shaping” function, W (·), is additionally applied
to the weights to control optimization dynamics. Its monotonicity guarantees that
argmaxx f(x) = argmaxx W (f(x)). We’ve written the EDA above and its derivation be-
low without W , but f(x) can be equivalently replaced with W (f(x)) everywhere.

For clarity, we sketch out one way of deriving the EDA update (step 3) from Eq. 7. At each EDA
iteration, we want to improve the current search distribution with an update, pθn+1(x) ← p∗n(x) ∝
f(x) · pθn(x). To do this, we maximize

−DKL(p
∗
n(x) ∥ pθ(x)) =

1

Z
Epθn (x)[f(x) log pθ(x)] +H(p∗n(x)), (8)

where the entropy term can be dropped because it has no dependence on θ and division by Z can be
dropped without changing the objective’s maximizer. The sample approximation of the remaining
terms is exactly step 3. Assuming an exact update (i.e., infinite samples such that the expectation is
evaluated exactly, pθ(x) has sufficient capacity to represent p∗n(x), and the KL divergence reaches 0),
the resulting search distribution at iteration n is p∗n(x) ∝ f(x)npθ0(x). As n→∞, this distribution
concentrates all of its mass at the global maxima of f and as a result, f(x∗) = Epθ(x)[f(x)].
The derivation in Brookes & Listgarten (2018) is perhaps closest to this one, though their search
distribution improvement operator is motivated by Bayes’ rule. It can be generalized to the derivation
we give by simply writing p∗n(x) ∝ C(x) · pθn(x) for some C. Bayes’ rule yields a special case of
this improvement operator, namely one where the multiplier is C(x) = p(S|x)∑

x pθn (x)p(S|x) . We choose
not to interpret f(x) as a normalized distribution in our derivation, though one can definitely do so.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In practice, the weighted MLE problem in step 3 is typically solved with gradient descent; we will
choose to use only a fixed number of gradient steps, which can be theoretically justified through the
equivalence of EDAs to Expectation-Maximization (Brookes et al., 2020).

A.3 DADO DERIVATION

Herein, we give an augmented version of the derivation presented in Sec. 2.1. We build on the
derivation of the naive EDA given in Sec. A.2. The goal of DADO is to obtain a generative
model, pθ(x), that maximizes the EDA objective, argmaxθ Epθ(x)[f(x)], while leveraging de-
composability in f(x) for optimization efficiency. DADO requires as input a decomposed ver-
sion of f(x), which can be described by an undirected junction tree, T := (N , E), with nodes,
N , and edges, E . As noted in the introduction and shown in our experiments on proteins, iden-
tifying useful decomposability is feasible in practice. Given the junction tree decomposition, we
write f(x) =

∑
i∈N fi(x̃i) +

∑
(i,j)∈E fi,j(x̃i, x̃j), where we refer to fi(x̃i) as “node component

functions” and fi,j(x̃i, x̃j) as “edge component functions” (Fig. 1a). This functional structure is
intimately related to notions of the “epistatic landscape” of a protein’s property function and spec-
tral analysis (see Sec. A.1.1). When the component functions are not known a priori, they can be
parameterized and fit to labeled data.

We will begin our exposition by recalling how to do decomposition-aware exact (non-distributional)
optimization, that is, to solve argmaxx f(x). This problem is efficiently solved with a classical
message-passing algorithm, which coordinates local optimizations across parts of the junction tree
to obtain a single global optimum. Its efficiency comes from breaking optimization over all variables
jointly into separate optimizations for each (smaller) meta-variable. Having loaded the reader with
this intuition, we then adapt these ideas to distributional optimization, yielding DADO.

A.3.1 CLASSICAL MESSAGE-PASSING FOR NON-DISTRIBUTIONAL OPTIMIZATION

Although classical message-passing has been largely used for probabilistic inference on probabilistic
graphical models (Pearl, 1988; Shah, 2014), it can also be used for exact optimization of a function,
x∗ = argmaxx f(x) (Vlassis et al., 2004). In particular, message-passing can be used to find
a global maximum of a function defined on an undirected junction tree, T , by making use of its
topology for optimal time-complexity. In particular, one takes the junction tree, which is undirected,
and roots it to obtain a directed tree, which induces a hierarchy among the meta-variables from root
to leaves. Each node is responsible for accumulating information from all nodes in its sub-tree and
then passing this information on to its parent. Consequently, the root node receives information from
the entire tree, which is sufficient to set its variables in a globally optimal manner. Then, starting
with the root, each parent communicates its variables’ optimal settings to its children, which can in
turn set their variables optimally, and so forth.

To obtain the rooted tree, T ′ := (N ′, E ′), from the junction tree, one keeps the same nodes, N ′ =
N , chooses a root node, r, and directs all edges in E outward from r, yielding directed edges,
E ′. Although rooting at any node will suffice, we choose r such that T ′ has the shortest height
possible. Message-passing finds a global optimum in two passes through the tree: one round of
passing messages up from leaves to root, and then one round passing messages back down to the
leaves.

Given T ′, classical message-passing first uses dynamic programming to accumulate information
from the leaves up to the root. Similarly to any dynamic programming procedure, we accumulate
solutions to increasingly larger intermediate sub-problems. In this case, each sub-problem is to find
the value of f(x) evaluated on only a subset of meta-variables, rather than on the full set of variables
in x. Each sub-problem is tractable owing to the decomposition of the objective function into compo-
nent functions for each node and edge, and by respecting the partial order of sub-problems induced
by T ′. Specifically, one computes a value function, V max

i (x̃p(i)), for each node i ∈ N ′ \ {r}, which
tells us for each setting of its parent, x̃p(i), the value of the intermediate objective function defined
by the edge component function, fp(i),i(x̃p(i), x̃i), plus all component functions over the sub-tree
rooted at i, given that all nodes maximize their respective intermediate objectives. Computing value
functions comprises the first pass through the tree, from leaves to root:

V max
i (x̃p(i)) := maxx̃i

(
fi(x̃i) + fp(i),i(x̃p(i), x̃i) +

∑
c∈children(i)

V max
c (x̃i)

)
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Notably, V max
i (x̃p(i)) provides sufficient information about all nodes in the sub-tree rooted at i to

optimally choose the value of x̃p(i) with respect to its children. Thus it follows that once all value
functions have been computed, the root’s assignment can be set in a globally optimal manner from
its children’s value functions,

x̃∗
r := argmaxx̃r

(
fr(x̃r) +

∑
c∈children(r)

Vc(x̃r)
)
.

Having chosen the root assignment, we then pass it down the tree as x̃p(i) = x̃∗
p(i) to its children,

which successively pass their chosen assignments to their children, all the way to the leaves,

x̃∗
i := argmaxx̃i

(
fi(x̃i) + fp(i),i(x̃

∗
p(i), x̃i) +

∑
c∈children(i)

Vc(x̃i)
)
,

resulting in a global maximizer x∗ of f(x). This dynamic programming “traceback” of optimal
assignments back down the tree constitutes our second and final pass of messages.

Alternative notation. For convenience of our generalization to distributional optimization, we
re-write the parent value functions V max

i (x̃p(i)) in terms of child-parent, Qmax
i (x̃i, x̃p(i)), and single-

node, Qmax
i (x̃i) value functions:

V max
i (x̃p(i)) := maxx̃i

Qmax
i (x̃i, x̃p(i)), where (9)

Qmax
i (x̃i, x̃p(i)) := fp(i),i(x̃p(i), x̃i) +Qmax

i (x̃i) and (10)

Qmax
i (x̃i) := fi(x̃i) +

∑
c∈children(i)

V max
c (x̃i). (11)

In contrast to the original parent value functions, Qmax
i (x̃i, x̃p(i)) represents the effect of the choice

of both x̃p(i) and x̃i on their edge component function plus all component functions over the sub-
tree rooted at i, assuming all descendants of i maximize their corresponding value functions. In-
tuitively, Qmax

i (x̃i, x̃p(i)) is the value function on edge (p(i), i) prior to x̃i being maximized out,
which will become useful if we want to, say, sample x̃i according to some distribution instead.
Qmax

i (x̃i, x̃p(i)) is composed of two terms, one of which depends on its parent, and one of which
doesn’t, Qmax

i (x̃i). Written using the Q-functions just defined, the equivalent traceback equa-
tions for selecting a globally optimal assignment, x∗, are simply x̃∗

r := argmaxx̃r
Qmax

r (x̃r) and
x̃∗
i := argmaxx̃i

Qmax
i (x̃i, x̃

∗
p(i)). In other words,

x∗ = argmaxx f(x) = {argmaxx̃r
Qmax

r (x̃r)} + {argmaxx̃i
Qmax

i (x̃i, x̃
∗
p(i))}(p(i),i)∈E′ (12)

= argmax
x

(
Qmax

r (x̃r) +
∑

(p(i),i)∈E′
Qmax

i (x̃i, x̃p(i))
)
. (13)

A.3.2 FROM CLASSICAL MESSAGE PASSING TO DISTRIBUTIONAL OPTIMIZATION

In the same way that an EDA transforms argmaxx f(x) into a distributional optimization problem
(Sec. A.2), we can rewrite the equivalent message-passing objective in Eq. 13 as DO. Because the
original optimization problems over x are equivalent, their DO formulations are equivalent too,

argmaxθ Epθ(x)[f(x)] = argmax
θ

Epθ(x)

[
Qmax

r (x̃r) +
∑

(p(i),i)∈E′
Qmax

i (x̃i, x̃p(i))
]

(14)

= argmax
θ

(
Epθ(x)[Q

max
r (x̃r)] +

∑
(p(i),i)∈E′

Epθ(x)[Q
max
i (x̃i, x̃p(i))]

)
,

(15)

where we’ve used linearity of expectations. However, a generic joint search distribution cannot take
advantage of the linear additivity in value functions over the junction tree topology. That is, while
the classical traceback equations perform maximization over each meta-variable separately, Eq. 15
uses a single, unfactorized search distribution over all variables, pθ(x), to optimize each Q-function.
We address this next, by factorizing the search distribution.

Factorized search distribution. Classical message-passing (Eq. 12) independently maximizes
each Q-function conditional on the choice of x̃p(i), instead of explicitly maximizing all variables in x
jointly (Eq. 13). This is possible because each Qi captures all relevant global information needed to

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

choose x̃i. It stands to reason then that DO can do something similar. Specifically, instead of train-
ing a single joint search distribution, we train smaller search distributions over each x̃i, conditional
on x̃p(i), to separately maximize each Qmax

i (x̃i, x̃p(i)). That is, we factor the search distribution
according to T ′, resulting in a DAG search distribution, pθ(x) := pθ(x̃r)

∏
(p(i),i)∈E′ pθ(x̃i | x̃p(i)),

for root node r, non-root nodes i, and parents p(i), connected by directed edges E ′, and with param-
eters, θ. This factorized search distribution can be plugged into Eq. 15 for an equivalent optimization
problem. We refer to each element of this product as one of the factors of the search distribution.
In our implementation, each factor has completely separate parameters, though we write a shared
θ for conciseness. Notice that each factor of the search distribution interacts with each other factor
through the directed edges, E ′. That is, the distribution of x̃i depends on its parent’s factor, and
through it, all of its parent’s ancestors: pθ(x̃i) = pθ(x̃i | x̃p(i))pθ(x̃p(i)). In turn, each of node i’s
children’s factors depends on pθ(x̃i). Due to this coupling, we cannot optimize each factor fully in-
dependently. But we can still update each factor separately from the others in a globally-consistent
manner via message-passing. In particular, each factor will only be responsible for directly opti-
mizing its own meta-variable, but will need to coordinate with its neighboring factors by getting
information from them about how they are optimizing their meta-variables in a manner analogous
to classical message-passing. Our current messages, Qmax

i , convey the value of each intermediate
objective when all meta-variables are chosen via maximization. For DO, we’ll require messages that
communicate values when meta-variables are chosen according to the factorized search distribution,
pθ(x).

Distributional value functions. While one certainly could choose to optimize classical value
functions using an EDA search distribution (Eq. 15), it doesn’t make sense for two main reasons.
As we just mentioned, DO aims to train pθ(x) such that it maximizes f(x), or equivalently, the sum
of Q-functions, in expectation. Therefore, the DO objective should consider intermediate objective
values for meta-variables chosen according to the current search distribution, not those chosen by
explicit maximization, as in V max

i (x̃p(i)). Additionally, computing classical value functions requires
enumerating all assignments of each x̃i for the maximum used in V max

i (x̃p(i)). When x̃i contains
more than a few design variables, this max operation quickly becomes intractable. One reason for
doing distributional optimization is to avoid enumerating massive design spaces. To address both
issues, we define corresponding distributional value functions that fulfill both desiderata:

V θ
i (x̃p(i)) := Epθ(x̃i|x̃p(i))[Q

θ
i (x̃i, x̃p(i))], where (16)

Qθ
i (x̃i, x̃p(i)) := fp(i),i(x̃p(i), x̃i) +Qθ

i (x̃i) and (17)

Qθ
i (x̃i) := fi(x̃i) +

∑
c∈children(i)

V θ
c (x̃i). (18)

Compared to Eq. 9, the distributional V -functions compute the value in expectation under pθ instead
of a max. Because they use an expectation instead of a max operation, these value functions can
be approximated tractably and without bias by drawing Monte-Carlo samples from the search dis-
tribution. The connection to classical value functions can be made clearer by defining a particular
distribution which recovers them, the one placing all of its mass on the argmax, and its correspond-
ing distributional value functions:

pmax(x̃i = A | x̃p(i)) =

{
1 if A = argmaxx̃i

Qmax
i (x̃i, x̃p(i))

0 otherwise
, (19)

V max
i (x̃p(i)) = Epmax(x̃i|x̃p(i))[Q

max
i (x̃i, x̃p(i))] = max

x̃i

fi(x̃i) + fp(i),i(x̃p(i), x̃i) +
∑

c∈children(i)

V max
c (x̃i),

(20)

Qmax
i (x̃i, x̃p(i)) = fp(i),i(x̃p(i), x̃i) +Qmax

i (x̃i), for Qmax
i (x̃i) = fi(x̃i) +

∑
c∈children(i)

V max
c (x̃i)

(21)
Moreover, each distributional value function lower bounds each corresponding classical value func-
tion because the expectation of a function cannot exceed its maximum. This relation is evident for
the base case of a leaf node,
V max
i (x̃p(i)) = max

x̃i

fi(x̃i)+fp(i),i(x̃p(i), x̃i) ≥ Epθ(x̃i|x̃p(i))[fi(x̃i)+fp(i),i(x̃p(i), x̃i)] = V θ
i (x̃p(i)),

(22)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

and by inductive argument, is also true for all other nodes’ V -functions, and similarly, the Q-
functions, which only differ in which V -functions they sum over. This implies that the sum of
classical value functions in the objective in Eq. 15 is bounded below by the sum of distributional
value functions. This bound still holds when we take the expectation of each sum under pθ(x),

Epθ(x)[Q
max
r (x̃r)]+

∑
(p(i),i)∈E′

Epθ(x)[Q
max
i (x̃i, x̃p(i))] ≥ Epθ(x)[Q

θ
r(x̃r)]+

∑
(p(i),i)∈E′

Epθ(x)[Q
θ
i (x̃i, x̃p(i))].

(23)
We’ll optimize the lower bound with its distributional value functions instead of the sum of classical
value functions.

Distributional optimization with value functions. All that remains is to derive an update rule
that treats each search distribution factor separately. Since each expectand in Eq. 23 doesn’t depend
on descendant meta-variables, we can replace pθ(x) with each meta-variable’s marginal distribution:

argmax
θ

Epθ(x̃r)[Q
θ
r(x̃r)] +

∑
(p(i),i)∈E′

Epθ(x̃i|x̃p(i))pθ(x̃p(i))[Q
θ
i (x̃i, x̃p(i))]. (24)

We then follow the EDA derivation (Sec. A.2) to arrive at a sample-approximated update rule us-
ing the previous iteration’s distribution, pθn(x) in which each term is optimized by only a single
factor. We omit the derivation for the root factor because it’ss exactly the same as in Sec. A.2, us-
ing Qθn

r (x̃r) as the weight instead of f(x). To update a conditional factor from Eq. 24 in an EDA
loop, we define p∗n(x̃c | x̃p(i)) ∝ Qθn

c (x̃c, x̃p(i)) · pθn(x̃c | x̃p(i)), and minimize its divergence from
pθ(x̃c | x̃p(i)) using the law of iterated expectations:

− Epθn (x̃p(i))

[
DKL

(
p∗n(x̃c | x̃p(i)) ∥ pθ(x̃c | x̃p(i))

)]
(25)

=
1

Z
Epθn (x̃p(i))

[
Epθn (x̃c|x̃p(i))[Q

θn

c (x̃c, x̃p(i)) log pθ(x̃c | x̃p(i))] +H(p∗n(x̃c | x̃p(i)))
]
. (26)

Again, when taking the argmax with respect to θ, we can equivalently remove the entropy term
which bears no dependence on θ and division by constant Z. Notice that the dependence of the
conditional terms on pθ(x̃p(i)) in Eq. 24 is approximated by sampling, which is why only individ-
ual factors of the search distribution, log pθ(x̃c | x̃p(i)), appear in each summand, as opposed to
log pθ(x̃c | x̃p(i))pθ(x̃p(i)). Updating pθ(x̃p(i)) to maximize Qθ

c(x̃c, x̃p(i)) would be redundant and
against the spirit of message-passing since parent Q-functions already include that info from chil-
dren. The resulting update rule over all search distribution factors (sharing a single set of samples;
see Fig. 1b) can be written as a sum of weighted likelihoods for each factor,

θn+1 = argmax
θ

∑
x∼pθn (x)

(
Qθn

r (x̃r) log pθ(x̃r)+
∑

(p(i),i)∈E′
Qθn

i (x̃i, x̃p(i)) log pθ(x̃i | x̃p(i))
)
,

(27)
which can be written equivalently as separate updates because the factors don’t share parameters, as
desired:

θn+1
r = argmax

θr

∑
x∼pθn (x)

Qθn

r (x̃r) log pθr (x̃r), and (28)

θn+1
i = argmax

θi

∑
x∼pθn (x)

Qθn

i (x̃i, x̃p(i)) log pθi(x̃i | x̃p(i)), ∀ i ∈ N \ {r}. (29)

Each factor is weighted by its corresponding value function, enabling it to coordinate with all its
descendant factors despite their being updated separately. The whole DO is tied together at the top
by the root factor. Our resulting algorithm (Alg. 1) fits into the three EDA steps: (1) designs are
sampled from pθn(x), (2) weights, here each Q-function instead of f(x), are computed, and (3), each
search distribution factor receives its own independent weighted maximum likelihood update based
on these weights (steps 1 and 2 illustrated in Fig. 1b). These are repeated until convergence, or for
some fixed number of iterations. The factor updates are coupled only through the Q-functions, the
messages across edges. {Qθn

i }i∈N are only valid while θ is close to θn, meaning one must balance
how many gradient steps are taken before drawing new samples. If too many gradient steps are taken
without resampling, a factor may be changing its parameters to collaborate with another factor which
has already changed its behavior. It’s common for EDAs to include an additional hyperparameter
W (·), a monotonic shaping function applied to the weights, to alter optimization dynamics (Brookes
et al., 2020), so we include it in Alg.1(1 on lines 16 and 18. Choosing W to be the identity recovers

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

our derivation above. Notice that in place of the classical message-passing traceback equations,
DADO simply performs sequential conditional sampling from its search distribution. Interestingly,
a very similar algorithm can be derived without using a lower bound on the value functions (Eq. 23)
if one adds an entropy-maximizing term to the initial DO objective (Sec. A.4).

A.4 ALTERNATE DADO DERIVATION: MAXIMUM ENTROPY OBJECTIVE

If, by comparison to Sec. A.3, we instead seek to solve a closely related objective which addi-
tionally maximizes the search distribution’s entropy, we can arrive at a similar method by lever-
aging the probabilistic graphical modeling (PGM) framework in Levine (2018). This view will
provide another intuition for the relationship between classical value functions and distributional
value functions approximated with Monte-Carlo samples. It also highlights the core components
of our conceptual framework, which are shared even by derivations starting from different objec-
tives. In other words, one need not use our specific method as outlined in Alg. 1 to reap the benefits
of decomposition-aware distributional optimization, and variations may have desirable properties
and/or simply perform better in certain scientific design settings. This derivation will assume that
you’ve already read key parts of Sec. 2/ A.3 and are familiar with the function decomposition, search
distribution factorization, and value functions.

Maximum entropy decomposition-aware distributional optimization. We begin from the max-
imum entropy problem (Jaynes, 1957; Ziebart et al., 2008; Zhu et al., 2024),

argmax
θ

Epθ(x)[f(x)] + βH(pθ), β ≥ 0. (30)

This objective is arguably more consistent with the desired end result for many scientific design
problems. Often, a distribution over good solutions is preferred to a single solution (i.e., a distribu-
tion with no entropy)1. When optimizing a predictive model or more broadly, dealing with uncer-
tainty or inaccuracy in the objective function, having a distribution over good solutions can be partic-
ularly important. The maximum entropy objective has a closed-form solution, p∗(x) ∝ exp f(x)/β,
motivating the solution of an equivalent variational objective, argminθ DKL(pθ ∥ p∗), from which
we will obtain a decomposed update rule. We first plug in decomposed versions of f and pθ(x), as
described in Sec.Sec. 2.1/ A.3, to get

argmin
θ

DKL(pθ ∥ p∗) = argmin
θ

DKL

pθ(x̃r)
∏

i∈N\{r}

pθ(xi | x̃p(i)) ∥ exp
∑

i∈N fi,p(x̃i, x̃p(i)) + fi(x̃i)

β

 .

(31)
Notice that we’ve dropped the normalizing constant for p∗ because it has no dependence on θ. In
what follows, for compactness and clarity, we will abuse notation slightly by including the root
factor, pθ(x̃r), with the other nodes, writing it as conditional on a parent even though it has no
parent and is an unconditional distribution.

−DKL

(∏
i∈N

pθ(xi | x̃p(i)) ∥ exp
∑

i∈N fi,p(x̃i, x̃p(i)) + fi(x̃i)

β

)
(32)

= Epθ(x)

[∑
i∈N fi,p(x̃i, x̃p(i)) + fi(x̃p(i))

β
− log

∏
i∈N

pθ(xi | x̃p(i))

]
(33)

= Epθ(x)

[∑
i∈N

fi,p(x̃i, x̃p(i)) + fi(x̃p(i))

β
− log pθ(x̃i | x̃p(i))

]
(34)

=
∑
i∈N

Epθ(x̃i,x̃p(i))

[
fi,p(x̃i, x̃p(i)) + fi(x̃p(i))

β
− log pθ(x̃i | x̃p(i))

]
(35)

1In our experiments (no entropy bonus), the search distribution avoids collapse because we don’t run until
convergence (fixed number of iterations), and because we sweep the learning rate (if it’s very high, the distri-
bution may quickly collapse to a point, limiting further improvement). Similar strategies were used by Brookes
et al. (2019) instead of an explicit entropy bonus. EDAs were originally used for discrete optimization problems
where a single solution was desired. Using distributional optimization to solve more nuanced problems calls
for some modifications.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

The final line decomposes over nodes, but still has an explicit dependence on all ancestor node
search distribution factors. One way to obtain a separate update for each search distribution factor is
to derive a form of p∗(x) factorized in accordance with pθ(x)’s factorization, so that we can simply
minimize each factor’s divergence from the optimal one.

Optimal search distribution factors via message-passing. To derive the optimal factors, p∗(x̃i |
x̃p(i)), we’ll use message-passing, for which we now introduce some notation. Note that we adopt
the same convention as above of including the root with the rest of the value functions, meaning
writing it with a parent, although it doesn’t have a parent and all terms involving its nonexistent
parent are simply 0. We recursively define value functions (consistent with Levine (2018)) as:

Vi(x̃p(i)) = log
∑

x̃i

expQi(x̃i, x̃p(i)), (36)

Qi(x̃i, x̃p(i)) = fp(i),i(x̃p(i), x̃i) +Qi(x̃i), and Qi(x̃i) = fi(x̃i) +
∑

c∈children(i)
Vc(x̃i). (37)

Though they might seem a bit arbitrary, substituting the value functions into Eq. 35 will help il-
luminate p∗(x̃i | x̃p(i)). Notice that the Q-functions have the same recursive definition as in
DADO, though the V -functions are different. We first consider the base case of a leaf node, where
Qi(x̃i, x̃p(i)) = fp(i),i(x̃p(i), x̃i) + fi(x̃i). We substitute, add 0 = Vi(x̃p(i))/β − Vi(x̃p(i))/β, and
use the definition of KL divergence:

Epθ(x̃i|x̃p(i))pθ(x̃p(i))

[
log exp

Qi(x̃i, x̃p(i))

β
− log pθ(x̃i | x̃p(i)) +

Vi(x̃p(i))

β
− log exp

Vi(x̃p(i))

β

]
(38)

= Epθ(x̃p(i))

[
−DKL

(
pθ(x̃i | x̃p(i)) ∥ exp

Qi(x̃i, x̃p(i))− Vi(x̃p(i))

β

)
+

Vi(x̃p(i))

β

]
. (39)

Because pθ(x̃i | x̃p(i)) only appears in the KL divergence, the overall expectation will be max-
imized, as far as pθ(x̃i | x̃p(i)) is concerned, when the divergence is 0. Therefore, for a leaf
node, p∗(x̃i | x̃p(i)) = exp((Qi(x̃i, x̃p(i))− Vi(x̃p(i)))/β), which is a proper distribution because
expVi(x̃p(i)) is exactly the normalizing constant of expQi(x̃i, x̃p(i)). Notice that we still have
a term, Epθ(x̃p(i))

[
Vi(x̃p(i))/β

]
, outside of the divergence (Eq. 39). Maximizing this term must

therefore be the responsibility of pθ(x̃p(i)), not pθ(x̃i | x̃p(i)). In fact, these leftover terms are in-
cluded in the parent’s Q-function via the sum over all child V -functions in Qi(x̃i) as we defined
it above (Eq. 37). It follows that the recursive case has the same form as the leaves, which had
Qi(x̃i) = fi(x̃i) because they’ve no children (more detailed derivation in Levine (2018)). That
is, for all non-root nodes i, p∗(x̃i | x̃p(i)) = exp((Qi(x̃i, x̃p(i))− Vi(x̃p(i)))/β); for the root node,
p∗(x̃r) = exp((Qr(x̃r)− Vr)/β), where Vr = log

∑
x̃r

expQr(x̃r) is a normalizing constant with
no dependence on θ. We now have an optimal form for each factor and can proceed to minimize our
search factors’ divergences from them completely separately.

Distributional optimization by matching optimal factors. Given a factorization of the optimal
search distribution, p∗(x), we can train pθ(x)’s factors to match their corresponding optimal factor
distributions, resulting in an algorithm very similar to DADO. The objective for node i’s factor
minimizes its divergence to the optimal factor p∗(x̃i | x̃p(i)),

argmin
θi

Epθp(i)
(x̃p(i))

[
DKL

(
pθi(x̃i | x̃p(i)) ∥ exp

Qi(x̃i, x̃p(i))− Vi(x̃p(i))

β

)]
(40)

= argmax
θi

Epθp(i)
(x̃p(i))

[
Epθi

(x̃i|x̃p(i))

[
Qi(x̃i, x̃p(i))

]
− Vi(x̃p(i)) + βH(pθi(x̃i | x̃p(i)))

]
, (41)

and an analogous objective can be written for the root node. Notice that Vi(x̃p(i)) can be dropped
completely or set to any other constant (with respect to x̃i) without altering the argmax, though
certain settings may yield more favorable optimization dynamics 2. We approximate the expectations

2Vi(x̃p(i)) is often thought of as a “baseline” in the RL literature, the choice of which doesn’t bias the objec-
tive’s gradient, but can reduce its variance substantially and lead to more efficient policy optimization (Sutton
et al., 1998).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

in the objective using samples from the current search distribution (as in EDAs) to yield a weighted
maximum likelihood update rule for each node i,

θn+1
i = argmax

θi

∑
x∼pθn (x)

((
Qi(x̃i, x̃p(i))− Vi(x̃p(i))

)
log pθi(x̃i | x̃p(i))− β log pθi(x̃i | x̃p(i))

)
,

(42)
and since the weight should always be non-negative, a monotonic shaping function, W , outputting
non-negative weights, can be introduced too,

θn+1
i = argmax

θi

∑
x∼pθn (x)

(
W
(
Qi(x̃i, x̃p(i))− Vi(x̃p(i))− β

)
log pθi(x̃i | x̃p(i))

)
. (43)

There are a few minor differences from DADO. First, there’s an entropy-maximizing term. Sec-
ond, notice that the value function definitions are a little different from in DADO. Here we use
log
∑

exp to define Vi(x̃p(i)), whereas DADO uses an expectation over the search distribution in-
stead. Third, the Q-function has Vi(x̃p(i)) subtracted from it, whereas DADO’s derivation doesn’t.
As mentioned above though, Vi(x̃p(i))’s role in the objective is that of a “baseline”, and it can be
changed out or dropped. In our implementation, we do subtract Vi(x̃p(i))—the expectation-based
one, not log

∑
exp—as a mean baseline function to reduce weight variance and obtain a more stable

update (Sec. 4). Overall though, the result is quite similar to DADO (Sec. A.3), supporting the gen-
erality of the decomposition-aware distributional optimization framework, and suggesting that there
are a variety of related objectives and algorithms one might use under this umbrella. In particular,
one might adapt methods from RL. For example, Peng et al. (2019)’s derivation could be adapted
to get a similar weighted maximum likelihood objective with the difference in value functions (also
called the advantage) exponentiated instead. TRPO, PPO, or CbAS (Schulman et al., 2015; 2017;
Brookes et al., 2019) might be adapted to regularize the search distribution toward some (identically
factorized) prior, or the previous iteration’s search distribution for stability. We emphasize that the
core idea of DADO is to leverage message-passing (i.e., value functions) on arbitrarily decomposed
objectives to derive a distributional optimization procedure which updates search distribution factors
separately, regardless of the specific objective and algorithm used.

From classical value functions to distributional value functions. Under this definition of value
functions using log

∑
exp (Eq. 36), we can view Vi(x̃p(i)) as a soft maximum, which becomes a

hard maximum when Qi are large, such that for x̃∗
i , Vi(x̃p(i)) ≈ Qi(x̃

∗
i , x̃p(i)). The hard maximum

case resembles classical message-passing, from which we began. When Qi are relatively small,
information about multiple x̃i will pass through log

∑
exp, thus propagating info for a distribution

of descendant states in accordance with p∗(x̃i | x̃p(i)) ∝ expQi(x̃i, x̃p(i))/β. Another way of
seeing the transition from classical message-passing to distributional optimization is that for β near
0, p∗(x̃i | x̃p(i)) will concentrate all its mass on the argmax. But for a larger β, p∗(x̃i | x̃p(i)) will
concentrate on multiple designs proportional to their Q values. As β →∞, p∗(x̃i | x̃p(i)) becomes
a uniform distribution.

A.5 PROTEIN DATASET DETAILS

We investigated seven protein property datasets from Tareen et al. (2022) and Notin et al. (2023).
These proteins span various lengths and all have more than single mutations away from wild-type.
These datasets are:

• Adeno-associated virus 2 capsid protein (AAV2 capsid or AAV; L = 28, D = 20), with
data from Bryant et al. (2021), which assayed 42,329 sequences for virus viability, includ-
ing sequences with as many as 27 mutations from the wild-type. The full protein is of
length 735. The dataset was accessed via Notin et al. (2023).

• Amyloid-beta (Amyloid; L = 42, D = 21, where the extra state is a stop codon), with
data from Seuma et al. (2021), which assayed 16,066 sequences for aggregation with a
nucleation score, 97% of which are double mutants. The dataset was accessed via Tareen
et al. (2022).

• Yeast transcription factor Gcn4 (L = 44, D = 20), with data from Staller et al. (2018),
which assayed 2,639 sequences for activity, including sequences with as many as 44 mu-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

tations from the wild-type. The full protein is of length 281. The dataset was accessed
via Notin et al. (2023).

• TAR DNA-binding protein 43 (TDP-43; L = 84, D = 21, where the extra state is a stop
codon), with data Bolognesi et al. (2019), which assayed 57,996 sequences for cell toxicity,
98% of which are double mutants. The dataset was accessed via Tareen et al. (2022).

• Protein G B1 domain (GB1; L = 55, D = 20), with data from Olson et al. (2014), who
scanned all possible single and double mutants and assayed their 536,963 binding affinities
to IgGFC, of which 99.8% are double mutants. The dataset was accessed via Tareen et al.
(2022).

• ynzC, a small protein domain (L = 39, D = 20), with data from Tsuboyama et al. (2023),
assayed for its folding stability on 2,301 variants, 68% of which are double mutants. The
dataset was accessed via Notin et al. (2023).

• Chlamydomonas reinhardtii’s light-oxygen-voltage domain (CreiLOV or Phot; L =
118, D = 20), with data from Chen et al. (2023), which assayed 167,530 sequences for
fluorescence, including sequences with as many as 15 mutations from the wild-type. The
dataset was accessed via Notin et al. (2023).

Of these, the four shown in the main text were chosen according to two criteria. First, we wanted pro-
teins for which the AlphaFold3-derived junction tree had relatively small nodes (i.e., more decom-
posable proteins). Second, we also prioritized proteins for which the datasets contained sequences
many mutations away from the wild-type, as the resulting predictive models are more likely to be
realistic in a larger area of the design space than datasets that only assay a concentrated ball of se-
quences. Based on these criteria, we decided to focus on AAV, Amyloid, Gcn4, and TDP-43 (Fig. 3).
These four proteins’ decomposition junction trees have nodes of cardinality five or fewer, whereas
the junction trees for GB1 and ynzC have many nodes with cardinality over 10, and CreiLOV has
nodes with cardinality greater than 20. The remaining datasets are shown in the appendix (Fig.A3).

A.6 BASELINE METHOD DETAILS

We compare DADO with three baseline methods. The first is the naive, decomposition-unaware
EDA, which we refer to as “EDA”. Algorithmic details of this method are in Sec. 2 and Sec. A.2
also includes a derivation of the EDA algorithm. We take this as the starting point for the other
baseline methods and now describe how the EDA is modified for each.

The second baseline we consider is the factorized distribution algorithm (“FDA”) from Mühlenbein
& Mahnig (1999). The only modification to the naive EDA is to replace its search distribution,
ordinarily a joint distribution over all design variables, with a factorized search distribution. In all of
our experiments, we give FDA the same search distribution factorization as DADO for fairness; as
such, in our protein experiments, FDA’s factorization is based on the AlphaFold3-based contact map.
Comparing to FDA sheds light on how much of DADO’s improved performance can be attributed
to it using a factorized search distribution versus the contribution of using message-passing value
functions for the factorized search distribution update because FDA only uses the former and not the
latter, whereas DADO uses both.

The third baseline we consider is a proximal policy optimization version of the EDA, which we
call “PPO”. This baseline is inspired by Schulman et al. (2017). We only modify the EDA’s up-
date rule to match the PPO update rule. That is, instead of minimizing the naive EDA’s loss,
L(θ) = Exk∼pθn (x)

[
f(xk) log pθ(x

k)
]
, we instead minimize a proximal version of it,

L(θ) = Exk∼pθn (x)

[
min

{
f(xk)

pθ(x
k)

pθn(x)
, f(xk) clip(

pθ(x
k)

pθn(x)
, 1− ϵ, 1 + ϵ)

}]
,

where ϵ is a hyperparameter that we set to 0.2 as suggested in the original PPO paper. PPO-style
updates can be interpreted as stabilizing the search distribution update of the naive EDA by penal-
izing it from deviating too far from the previous iteration’s search distribution. This approach could
easily be added onto DADO and FDA; we did not explore this but expect it would be helpful for
these decomposition-aware methods too.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A.7 ADDITIONAL IMPLEMENTATION DETAILS

We record various implementation details for reproducibility (also see code released upon publica-
tion). We implemented all of our code using Jax, Flax, and Optax (DeepMind et al., 2020).

A.7.1 SEARCH DISTRIBUTION

For the search distribution of DADO, we used MLP-based autoregressive neural networks for each
position l ∈ [1, . . . , L]—specifically, an MLP of size [64, 64] that takes as input all conditioning
variables (parents in the tree) and outputs D logits for each step of autoregressive decoding. Our
naive EDA implementation is the same, only assuming all variables are in one meta-variable—hence,
a standard autoregressive model over all variables. The FDA baseline uses the same architecture
as DADO, whereas our PPO baseline uses the same architecture as the naive EDA. For gradient
descent to fit the search distribution, we used the AdamW optimizer (Loshchilov & Hutter, 2017)
with default momentum parameters β1 = 0.9, β2 = 0.999.

A.7.2 FULLY SYNTHETIC FUNCTIONS

We simulated one f(x) for each of three sequence lengths, L = {25, 50, 200}, by first randomly
sampling a junction tree topology, and then randomly specifying the component functions. Each
node function, a D-vector, was sampled fi ∈ RD ∼ N (0, 0.01), where N denotes a Gaussian
distribution. Each edge function, a D ×D matrix, was sampled, fi,j ∈ RD×D ∼ N (0, 0.0025). To
ensure a reasonable degree of non-smoothness in f(x), we further explicitly added what in biology
is known as reciprocal sign epistasis (Starr & Thornton, 2016; Li et al., 2024). Specifically, for
each edge function we, twice, randomly assigned one of the 20 alphabet letters to each node, i)
xi := A, xj := B and ii) xi := C, xj := D. Next we sampled an effect size, λ ∼ N (0, 4). Finally,
we set fi,j(xi = A, xj = B) = 0 and fi,j(xi = C, xj = B) = λ, and also half of the time,
fi,j(xi = A, xj = D) = 0 and fi,j(xi = A, xj = D) = λ.

A.7.3 DECOMPOSED PROTEIN PROPERTY PREDICTIVE MODELS

For each dataset, we used AlphaFold3-predicted structures (Abramson et al., 2024) on the wild-type
sequence to obtain a 3D structure, from which we constructed a contact graph by thresholding the
distance between pairs of residues with threshold t. Following Brookes et al. (2022); Romero et al.
(2013); Voigt et al. (2002), we use a threshold of t = 4.5Å. We interpret this contact map as a graph
adjacency matrix, from which we algorithmically construct a junction tree (Lauritzen & Spiegelhal-
ter, 1988). This defines the topology needed for DADO, but we must also fit the component func-
tions on the protein assay-labeled data. To do so, we employ an MLP-based predictive model that
strictly enforces the decomposition defined by the junction tree. In particular, we use an MLP that
takes as input the sequence, and, critically, also a bit-vector specifiying active variables. One func-
tion evaluation requires calling this MLP for every node and edge function and summing. We used
5-fold cross validation to sweep through hidden layers of size ([16, 16], [128, 16], or [128, 128, 16]),
learning rate (0.001 or 0.0001), and number of training iterations (5,000 or 50,000), to choose hy-
perparameters with the lowest cross-validation mean-squared error. Finally, we trained the model
with those hyper-parameters using all data available.

A.8 ADDITIONAL EXPERIMENTAL RESULTS

Herein, we include additional experimental results on synthetic landscapes for completeness—
primarily studying the relationship between performance and number of design variables (L), and
larger alphabet sizes (D). For protein landscapes, we also perform a case study on one protein dataset
in order to study the effect of the distance threshold, t, on decomposability, predictive accuracy, and
downstream optimization performance.

A.8.1 SYNTHETIC FUNCTIONS: L=400

We wanted to compare DADO and a naive EDA on even larger design spaces, but this can take
quite a while to run when considering the hyperparameter sweep and replicates (Sec. A.8.7). For

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

expediency, we chose the same hyperparameters (temperature and learning rate) as were used by
each method for L = 200 (Fig. 2). We then ran 20 replicates of each method.

At L = 400, the trend we observed in Fig. 2 continues—as L grows, the gap between DADO and
the EDA grows increasingly larger (Fig. A1), as expected, because the full design space grows at a
faster rate than the decomposed design space that DADO operates in.

Figure A1: Comparison of a naive EDA to DADO on a synthetic problem with L = 400. We created a
random function, f(x), with a randomly chosen junction tree decomposition with maximum node size of one,
and randomly chosen parameters. We used alphabet size D = 20 and sequence length L = 400. Each of the
two methods drew K = 100 samples per iteration. For each iteration, we show the mean (solid line) and 95%
confidence interval (shaded envelope) of the 100 samples evaluated on f(x), averaged across results from 20
random seeds. P-value is from a two-sided paired t-test that the mean at the final iteration is different between
methods, over the 20 seeds.

A.8.2 SYNTHETIC FUNCTIONS: INCREASING D

For all of our synthetic experiments, we used an alphabet size of D = 20, which reflects the typical
alphabet for protein design problems. Design problems in other scientific domains might have larger
alphabets so we also considered D = 50 and D = 100 here, keeping L fixed at 100.

We observe that DADO finds designs with higher f(x) than the naive EDA across all three alphabet
sizes (Fig. A2). As one would expect, as D grows and the design space grows combinatorially larger,
it becomes increasingly difficult for both methods to optimize f(x). In general, such problems
require using a larger sampling budget (K) and/or more iterations. Although the performance gap
between DADO and EDA seems to shrink as D grows, the EDA has converged to a suboptimal
region of the design space, whereas DADO still has a positive slope and a lot of sampling diversity.
This suggests that were we to run more iterations, DADO would continue to improve, but the EDA
would not.

A.8.3 COLLECTED PROTEIN EXPERIMENTS

Here, we collect the four proteins shown in the main text (Fig. 3) alongside three other proteins
we tested (details of why those four were chosen in Sec. A.5). First, we plot them with − log(c −
f(x)) on the y-axis, for clarity when f(x) is high (Fig. A3). For comparison, we then show the
same experimental results with just f(x) on the y-axis (Fig. A4). Whereas AAV, Amyloid, Gcn4,
and TDP-43 have decomposition junction trees with nodes of cardinality five or less, the junction
trees for GB1 and ynzC have many nodes with cardinality over 10, and CreiLOV has nodes with
cardinality greater than 20. For GB1 and ynzC, DADO still outperforms the decomposition-unaware
baselines, but is less competitive compared to FDA, which also operates in the decomposed design
space. We hypothesize that FDA performs well relative to DADO in these cases because as the
nodes grow larger, the computed value functions become higher variance estimates, such that it can
be better to use f(x) directly. For CreiLOV, this effect would be even stronger because its nodes
are even larger. It would be interesting to test this hypothesis by implementing further variance-
reduction techniques for the value function.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

a b c

Figure A2: Comparison of a naive EDA to DADO on synthetic problems with large alphabets. We
created three random functions, f(x), each with the same randomly chosen junction tree decomposition with
maximum node size of one, and randomly chosen parameters. Each experiment used sequence length L = 100
and alphabet size a, D = 20, b, D = 50, and c, D = 100. Each of the two methods drew K = 100 samples
per iteration. For each iteration, we show the mean (solid line) and 95% confidence interval (shaded envelope)
of the 100 samples evaluated on f(x), averaged across results from 20 random seeds. P-values are from a
two-sided paired t-test that the mean at the final iteration is different between methods, over the 20 seeds.
a b c d

e f g

Figure A3: Optimization performance on protein problems, plotted on a negative log scale. For each of
seven proteins of varying length, a, AAV (also Fig. 3a), b, Amyloid (also Fig. 3b), c, Gcn4 (also Fig. 3c),
d, TDP-43 (also Fig. 3d), e, GB1, f, ynzC, and g, CreiLOV, we fit a neural network property function, f(x),
adhering to a junction tree decomposition derived from the protein’s 3D structure, and then used standard EDA
and DADO to optimize them. Each approach drew K = 1000 samples per EDA iteration. For each iteration,
we show the mean (solid line) and 95% confidence interval (shaded envelope) of the 1000 samples evaluated
on − log(c − f(x)), averaged across results from 20 random seeds. We plot this quantity to make clear the
differences between methods when f(x) is large; c is the largest f(x) on a given plot, plus a small constant for
numerical stability. P-values are from a two-sided paired t-test that the mean at the final iteration is different
between methods, over the 20 seeds.

A.8.4 INVESTIGATION OF PROTEIN PROPERTY PREDICTIVE MODEL DECOMPOSABILITY

We also sought to investigate how changing the threshold that determines the complexity of the
junction tree would affect both predictive performance and optimization performance. Specifically,
we varied the distance threshold, t, for which pairs of residues were considered contacting to ex-
plore the tradeoff between accuracy of the model and decomposability. The lower the value of t,
the stricter the decomposition (the smaller the cardinality of the largest meta-variable); thus lower
t should give DADO a larger advantage over the standard EDA, but may be overly restrictive and
yield a worse predictive model. We decided to do a case study of GB1 for K = 100 samples at each
iteration because in this setting, using the default threshold of t = 4.5Å leads to comparable per-
formance between DADO and the EDA. We wanted to see if decomposing the model further would
result in a function that’s easier for DADO to optimize without sacrificing accuracy. We find that the
largest t provides the highest holdout predictive accuracy, which is expected because the resulting
decomposed model isn’t restricted. However, decreasing this distance down to t = 2.75Å allows
most of the predictive signal to remain while substantially reducing the complexity of the junction
tree (Fig. A5a), enabling DADO to consistently converge on designs with high f(x) within only
10 iterations (Fig. A5b), whereas for t = 4.5Å and t = 9Å, DADO’s mean does not clearly con-
verge even after 100 iterations, and its distribution remains dispersed as evidenced by wide shaded

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

a b c d

e f g

Figure A4: Optimization performance on protein problems, plotted on a standard scale. For each of seven
proteins of varying length, a, AAV (also Fig. 3a), b, Amyloid (also Fig. 3b), c, Gcn4 (also Fig. 3c), d, TDP-43
(also Fig. 3d), e, GB1, f, ynzC, and g, CreiLOV, we fit a neural network property function, f(x), adhering to a
junction tree decomposition derived from the protein’s 3D structure, and then used standard EDA and DADO
to optimize them. Each approach drew K = 1000 samples per EDA iteration. For each iteration, we show
the mean (solid line) and 95% confidence interval (shaded envelope) of the 1000 samples evaluated on f(x),
averaged across results from 20 random seeds. P-values are from a two-sided paired t-test that the mean at the
final iteration is different between methods, over the 20 seeds.

envelopes (Fig. A5c,d). Additionally, DADO definitively outperforms the decomposition-unaware
EDA when t = 2.75Å (Fig. A5b). When the predictive model is less decomposed, DADO is not as
distinguishable from the EDA (Fig. A5c,d).

A.8.5 DECOMPOSITION GRAPH ROBUSTNESS

How crucial is it to guess the decomposition perfectly a priori? One way to investigate this is
to mutate the decomposition graph and observe how the resulting decomposed predictive models’
predictive accuracies change. In our first set of experiments, we varied the contact threshold (t) used
on the AlphaFold 3D structure to determine connectivity; lowering t will gradually remove more
distant contacts, whereas increasing t will gradually add more distant contacts. Given different
decomposition graphs, we then trained a decomposed predictive model for each. For our second
set of experiments, we performed random mutations to the t = 4.5Å decomposition graph (used
in Sec. 4) to study how robust prediction is to missing / extra edges. In particular, for each of N ∈
[−50,−10,−5,−1, 1, 5, 10, 50], we randomly sampled N edges to remove/add. We implemented a
check to ensure that the graph doesn’t become disconnected, so for some experiments, we cut off N
at the largest number of edges that could be removed resulting in a chain graph. We repeated this
procedure 10 times.

In both of our experiments, we considered holdout accuracy as measured by the Pearson correlation
coefficient between assay labels and model predictions. All decomposed models for each protein
used the same hyperparameters that were chosen via 5-fold cross validation on the full dataset for the
base t = 4.5Å decomposed model, for expediency. We also compared to a neural network without
any decomposition (i.e., an all-edges model), denoted “Naive NN” in our plots. For this model we
performed an additional 5-fold cross validation on the full dataset for each protein.

We observe that the holdout accuracy of the non-decomposed predictive model and the decomposed
models of varying t all tend to fall within a relatively small range (Fig. A6), suggesting that using our
decomposed predictive model does not constitute a substantial sacrifice compared to a full (naive)
model, and that our decomposition is somewhat robust to changing the contact threshold. When
we randomly mutate the decomposition graph, we find that holdout accuracy is generally concen-
trated within an even smaller range, with some exceptions when many edges are added or removed
(Fig. A7). Interestingly, for Gcn4, the decomposed predictive models outperform the naive model,
though it’s worth noting that this prediction task is especially hard due to the relatively uniform
dispersion of sequences throughout the design space, and the small size of the dataset. Both models
fit the training data well (not shown here).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

a b

c d

Figure A5: Investigation of GB1 predictive model decomposability. a, We varied the distance threshold, t,
for which pairs of residues in protein GB1’s 3D structure are considered neighbors in the junction tree, using
several values in t ∈ [0Å, 15Å], so as to explore the tradeoff between accuracy of the model and decom-
posability. The lower the value of t, the stricter the decomposition (the smaller the cardinality of the largest
meta-variable); thus lower t should give DADO a larger relative advantage over the standard EDA, but may
yield a worse predictive model from imposing a more restrictive functional structure. The Pearson correlation
on a 10% holdout set remains quite good down to and including t = 2.75Å, a point at which DADO provides a
statistically significant win over a standard EDA as seen in panel b. Blue stars denote values of t corresponding
to the experiments in panels b, t = 2.75Å, c, t = 4.5Å, and d, t = 9Å. Each method drew 100 samples per
iteration. For each iteration, we show the mean (solid line) and 95% confidence interval (shaded envelope) of
the 100 samples evaluated on f(x), averaged across results from 20 random seeds that dictated initialization
of the search distribution. P-values are from two-sided paired t-tests that AUC of the per-iteration mean is
different between methods, using the 20 mean curves.

A.8.6 DECOMPOSITION GRAPH ROBUSTNESS: BOTTOM 50% DATA

Herein, we repeated the same analyses as in Sec. A.8.5, except using the bottom half of the training
set (i.e., the datapoints with the lowest assay labels). We used the same exact holdout sets as in
Sec. A.8.5, such that decomposed predictive models are tested against sequences with both high and
low assay labels. We used the same hyperparameters for all of the predictive models before, which
were cross-validated on the full dataset.

Overall, we observe that compared to Fig. A6 and Fig. A7, holdout accuracy as measured by the
Pearson correlation coefficient between assay labels and model predictions is lower for all models
and all proteins (Fig. A8, Fig. A9). Interestingly, for several proteins, the more decomposed predic-
tive models (lower t) performed better than the less decomposed models (higher t), as well as the
full (naive) model (Fig. A8). This makes sense, as more complex models are more prone to overfit-
ting when the training data is shifted from the holdout distribution, and as the training dataset gets
smaller. This trend is also reflected in the random graph mutation experiments (Fig. A9). Generally,
the same trends observed in Sec. A.8.5 hold here, such as predictive accuracy being relatively robust
to changing t and to randomly mutating the graph (up to a point).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

a b

c d e

Figure A6: Investigation of predictive model decomposability by contact threshold. We varied the contact
threshold, t, for which pairs of residues in each protein’s 3D structure are considered neighbors in the decom-
position graph, using several values in t ∈ [0Å, 15Å], so as to explore the tradeoff between accuracy of the
model and decomposability. We studied a, AAV, b, Amyloid, c, Gcn4, d, TDP-43, and e, GB1.

a b

c d e

Figure A7: Investigation of predictive model decomposability by random graph mutation. For each of a,
AAV, b, Amyloid, c, Gcn4, d, TDP-43, and e, GB1, we randomly added or removed edges from the t = 4.5Å
decomposition graph. In particular, we randomly sampled N ∈ [−50,−10,−5,−1, 1, 5, 10, 50] edges to
remove/add. We implemented a check to ensure that the graph doesn’t become disconnected, so for some
experiments, we cut off N at the largest number of edges that could be removed resulting in a chain graph. We
repeated this procedure 10 times.

A.8.7 RUNTIME ANALYSIS

We measure the wall-clock time it takes to run a single distributional optimization algorithm for
both DADO and the naive EDA. We fix both to run for 100 iterations, drawing 100 samples at each,
using the same architectures as described in Sec. A.7.1, and on a single GPU. We report times just
to give a rough sense of runtime and scaling; one could definitely further optimize our code.

A few trends stand out. First, the EDA and DADO take roughly the same amount of time to run,
with DADO being faster sometimes. This speed-up may come from using a factorized search distri-
bution, which requires only conditioning on parent variables as opposed to all preceding variables
(autoregressive). In general, problems with larger L take longer to run, and this scaling is worse
than linear for our implementation. We also notice that when increasing D and holding L fixed at
100, the runtime is similar.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

a b

c d e

Figure A8: Investigation of predictive model decomposability by contact threshold (bottom 50% data).
We varied the contact threshold, t, for which pairs of residues in each protein’s 3D structure are considered
neighbors in the decomposition graph, using several values in t ∈ [0Å, 15Å], so as to explore the tradeoff
between accuracy of the model and decomposability. We studied a, AAV, b, Amyloid, c, Gcn4, d, TDP-43, and
e, GB1. In this set of experiments, we used the same holdout set, but only trained on the bottom 50% of data
by assay label.

a b

c d e

Figure A9: Investigation of predictive model decomposability by random graph mutation (bottom
50% data). For each of a, AAV, b, Amyloid, c, Gcn4, d, TDP-43, and e, GB1, we randomly added
or removed edges from the t = 4.5Å decomposition graph. In particular, we randomly sampled N ∈
[−50,−10,−5,−1, 1, 5, 10, 50] edges to remove/add. We implemented a check to ensure that the graph
doesn’t become disconnected, so for some experiments, we cut off N at the largest number of edges that
could be removed resulting in a chain graph. We repeated this procedure 10 times. In this set of experiments,
we used the same holdout set, but only trained on the bottom 50% of data by assay label.

In general, a single run of either DADO or EDA does not require the full memory of a 16GB GPU.
In practice, we’re able to parallelize runs within GPUs and across multiple GPUs in order to perform
our hyperparameter sweep and random seed replicates efficiently.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Problem Length (L) Alphabet size (D) EDA runtime DADO runtime
Synthetic tree 25 20 2.8 min. 2.9 min.
Synthetic tree 50 20 6.3 min. 7.0 min.
Synthetic tree 100 20 16.3 min. 16.1 min.
Synthetic tree 200 20 42.7 min. 36.2 min.
Synthetic tree 400 20 139.5 min. 114.2 min.
Synthetic tree 100 50 14.0 min. 16.0 min.
Synthetic tree 100 100 14.5 min. 18.3 min.
AAV2 capsid protein 28 20 2.1 min. 3.4 min.
TDP-43 protein 84 21 6.7 min. 10.5 min.

32

	Design in Discrete State Spaces
	Decomposition-Aware Discrete Optimization (DADO)
	Formal exposition of DADO
	Classical message-passing for non-distributional optimization
	From classical message passing to distributional optimization

	Related Work
	Experimental Results
	Discussion
	Reproducibility Statement
	Appendix
	Different ways of writing a function decomposition
	Connection to epistasis

	Decomposition-unaware EDA derivation
	DADO derivation
	Classical message-passing for non-distributional optimization
	From classical message passing to distributional optimization

	Alternate DADO Derivation: Maximum Entropy Objective
	Protein Dataset Details
	Baseline method details
	Additional implementation details
	Search distribution
	Fully synthetic functions
	Decomposed protein property predictive models

	Additional experimental results
	Synthetic functions: L=400
	Synthetic functions: increasing D
	Collected protein experiments
	Investigation of protein property predictive model decomposability
	Decomposition graph robustness
	Decomposition graph robustness: bottom 50% data
	Runtime analysis

