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ABSTRACT

Despite their dominance in modern DL and, especially, NLP domains, transformer
architectures exhibit sub-optimal performance on long-range tasks compared to
recent layers that are specifically designed for this purpose. In this work, drawing
inspiration from key attributes of long-range layers, such as state-space layers, lin-
ear RNN layers, and global convolution layers, we demonstrate that minimal mod-
ifications to the transformer architecture can significantly enhance performance
on the Long Range Arena (LRA) benchmark, thus narrowing the gap with these
specialized layers. We identify that two key principles for long-range tasks are
(i) incorporating an inductive bias towards smoothness, and (ii) locality. As we
show, integrating these ideas into the attention mechanism improves results with
a negligible amount of additional computation and without any additional train-
able parameters. Our experiments also shed light on the reasons for the inferior
performance of transformers on long-range tasks and identify critical properties
that are essential for successfully capturing long-range dependencies. Our code is
attached as supplementary.

1 INTRODUCTION

Enhancing the long-range capabilities of deep learning models is a central challenge for the field.
This aspect is crucial for real-world time-series analysis, and can significantly boost performance
in processing long-form data modalities, such as text, speech, or videos. The problem of capturing
long-range dependencies encapsulates two aspects: effectiveness and efficiency. Researchers have
proposed several transformer variants with sub-quadratic complexity to solve the efficiency problem.
However, such mechanisms may not be beneficial without solving the effectiveness problem.

Therefore, our work focuses on the effectiveness part, which is a critical bottleneck that has been
identified by Mehta et al. (2022) who observe that transformers struggle to exploit long context,
and Xiong et al. (2021), which show that full-length transformers often perform comparably to
local-attention-based transformers on long range tasks.

The lack of effectiveness of transformers in this setting was also exposed by the Long Range Arena
(LRA) benchmark (Tay et al., 2020). This benchmark highlights that standard sequence models,
such as transformers, perform poorly even on seemingly simple long-range tasks. As modern deep
learning heavily relies on transformers, understanding why transformers do not perform well on
these tasks, or how to improve those abilities is an essential research topic.

Motivated by recent advances in deep long sequence modeling, we delve into the question of why
long-range layers such as state-space layers (Gu et al., 2021b;a; Gupta et al., 2022a) and long con-
volutions (Li et al., 2022; Fu et al., 2023) perform well on the LRA benchmark and other long-range
tasks. We discern two simple yet significant conditions (i) an exponential decaying positional struc-
ture, and (ii) a regularized smooth global operator. Building upon these two principles, we introduce
Local and Smooth Attention (LaS-Attention), a variant of attention that adheres to this pair of prin-
ciples. Empirical analysis shows that this layer can boost Transformer performance on long-range
tasks and narrow the gap with state-space layers and long convolutions, with negligible additional
complexity compared to vanilla transformers.

Our main contributions encompass the following main aspects: (i) We furnish insights about
long-range sequence modeling and identify the desired properties for achieving success in long-
range tasks, (ii) We demonstrate that a smoothness-promoting inductive bias and positional locality
are vital principles for capturing long-range dependencies. Moreover, we empirically identify that
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these concepts present a crucial bottleneck affecting the long-range capabilities of current transform-
ers. (iii) We present a novel variant of attention that is empirically proven to be effective in capturing
long-range dependencies, and furthermore (iv) present an LaS-chunk variation that satisfies both the
effectiveness and efficiency criteria, by having a linear complexity while maintaining high accuracy
compared to other transformer variants. Finally, (v) We provide the first layer that does not rely on
1-D long convolution and yet achieves an average score higher than 70 on the LRA benchmark. This
is compared to 55 of the original transformer and other transformer variants such as (Kitaev et al.,
2020; Wang et al., 2020; Choromanski et al., 2020). While the new layer is not SOTA on all LRA
benchmarks, the gained insights and the design elements open the door for other transformer-based
long-range attention variants.

We note that our results are counter-intuitive at first, since locality and long-range are often viewed
as opposing concepts. Nevertheless, this is explained by the fact that long-range layers capture far-
away dependencies through a hierarchical combination of local dependencies. Such hierarchical
dependencies are challenging to capture via pairwise interactions, without introducing locality.

2 BACKGROUND

Global convolution layers Standard convolution layers are a fundamental building block of
DL (LeCun et al., 1998; Ronneberger et al., 2015). These layers parameterize filter of size L and
C channels with L*C parameters, where each element is defined explicitly. An emerging approach
implicitly defines the convolution kernel via a learnable function (Romero et al., 2021). Namely, the
kernel khi (filter) at position i and channel h is defined by a function fh such that fh(i) = ki.

These methods have three main advantages: (i) These layers can operate over an unrestricted context,
as opposed to fixed-size explicit filters. (ii) The layers have sub-quadratic time dependency on
sequence length, and (iii) As the number of parameters is decoupled from the sequence length, these
kernels are regularized by design, which appears to be necessary for their effectiveness.

S4 (Gu et al., 2021a) and state-space layers (Gu et al., 2021b) were the pioneers to show the ef-
fectiveness of this approach, by parameterizing convolution kernels via the linear state-space model
(SSM), which was then simplified using diagonal and real SSMs (Gupta et al., 2022a;b). Similar ap-
proaches by Ma et al. (2022); Lutati et al. (2023), use learnable components, including EMA and IIR
filters, instead of SSMs to formulate the parameterization. As an alternative, Hyena (Nguyen et al.,
2023) and CkConv (Romero et al., 2021) established the parameterization by applying standard
Feedforward neural network (FFN) layers that operate on positional encoding. These approaches
provide superior performance in several areas, such as NLP (Mehta et al., 2022; Wang et al., 2022;
Dao et al., 2022b), speech (Saon et al., 2023a), RL (Lu et al., 2023; David et al., 2022), time series
analysis, and more, especially in tasks that require capturing long-range dependencies.

Long range transformers Transformers (Vaswani et al., 2017) have emerged as highly effective
models for NLP Devlin et al. (2018); Radford et al. (2019), Computer Vision Dosovitskiy et al.
(2020), Audio modeling, and many other tasks. However, their widespread adoption has been chal-
lenged by the quadratic cost of the self-attention mechanism and the demonstrated poor performance
on long-range tasks. Many approaches have been applied to overcome this challenge and to create
efficient transformer architectures (Fournier et al., 2021; Tay et al., 2022).

From the perspective of efficiency, techniques such as sparse attention (Child et al., 2019), low-rank
attention (Wang et al., 2020; Winata et al., 2020), kernel-based attention (Choromanski et al., 2020),
recurrent mechanisms (Hutchins et al., 2022; Dai et al., 2019), and efficient IO-awareness-based
implementation (Dao et al., 2022a) proved efficient. From the perspective of effectiveness, Yu
et al. (2023); Ivgi et al. (2023) combine local and global attention models hierarchically, enhancing
the model’s ability to handle extensive context. Zhou et al. (2022) expands long-range capabilities
by applying attention in the frequency domain. Finally, (Gupta & Berant, 2020; Al Adel, 2022;
Al Adel & Burtsev, 2021) employ global memory-based Attention. A recent strategy to enhance
the effectivness of transformers in long-range tasks involves incorporating global convolution layers
into the transformer architecture Ma et al. (2022); Saon et al. (2023b); Fathullah et al. (2023)

Alibi Press et al. (2021) is a method that enhances length extrapolation in transformers by adding a
positional-based linear bias to the attention scores. It computes attention as follows:
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DL :=


0 0 · · · 0
1 0 · · · 0
2 1 · · · 0
...

...
. . .

...
(L− 1) (L− 2) · · · 0

 , Attention(Q,K, V ) = softmax
(
QKT −m ·DL√

dk

)
V

(1)

where DL is the distance matrix of size of the sequence length L multiplied by the causal mask.

The Long Range Arena (LRA) benchmark In recent years, numerous long-range transformer
models have been introduced to address the inherent scalability and performance issues associated
with long sequences in transformers. The LRA benchmark has emerged as a sought-after dataset
tailored for evaluating these models across a variety of long-context scenarios, tasks, and data types.
By offering a common ground for comparison, LRA scrutinizes model capabilities with sequences
ranging from 1K to 16K tokens, encompassing text, visual data, and mathematical expressions.
Recently, it has been shown that global convolution layers such as S4 Gu et al. (2021a) perform
much better than transformers on this benchmark.

3 ANALYZED LONG-RANGE DEPENDENCIES

This research starts with a systematic attempt to understand the reasons behind the inferior perfor-
mance of transformers in long-range modeling, compared to state-space layers and long convolu-
tion layers. We initiate our analysis by evaluating the transformer’s capability to model long-range
dependencies, focusing on aspects of expressiveness, optimization, and generalization, aiming to
identify the core bottleneck.

The overall claim of this section is that the observed sub-optimal performance of transformers on
long-range tasks does not arise necessarily from issues of optimization or expressiveness, which are
inherent to the architecture. Rather, it is likely a matter of generalization, which can be mitigated
effectively by incorporating appropriate inductive bias. This insight motivated our research, which
explores the nature of long-range inductive bias and how it can be incorporated into transformers.

Expressiveness Transformers are high-capacity models, which makes expressivity less likely to be
the root cause of failure in long-range tasks. To demonstrate that expressiveness is not the root of the
problem, we make two arguments: (i) We observe that when training vanilla transformers (equipped
with positional encoding) on the LRA benchmarks including the validation set, large transformers
can achieve near 100% accuracy, illustrating their capability to shatter the LRA benchmarks. (ii) In
Theorem 1, in Appendix B we show that a single layer of a transformer (with positional encoding at
the layer level) with N heads and a sufficiently large hidden dimension, can express any state-space
layer with N channels. This can be substantiated by the fact that each channel of the state-space
layer incorporates a long convolution kernel K, which can be expressed via the attention matrices.
Note that our proof holds for any kernel k, not only for kernels constructed through state-space
parametrization, and therefore it further elucidates the relationship between transformers and global
convolution layers (see Sec. 2) by demonstrating that transformers are theoretically more expressive.

Optimization Long-range dependencies are often associated with optimization issues, such as
exploding and vanishing gradient problems. The following two arguments support the view that this
is not the primary bottleneck in transformers: (i). Unlike RNNs, transformers do not process tokens
through recurrent steps. Rather, they parallelize the processing of every pair of tokens using the self-
attention mechanism, ensuring direct interaction between all pairs. Furthermore, each pair of tokens
is processed in the same manner, thus there is no reason to assume that gradients are more likely to
vanish or explode on long interactions than on short interactions. Moreover, in the insightful work
of Orvieto et al. (2023), it was empirically demonstrated that vanishing and exploding gradient issues
on the LRA benchmarks arise from a high number of non-linear operations between distant tokens,
which is identified as one of the advantages of linear over standard RNNs. Similar to linear RNNs,
in transformers the amount of nonlinearity is constant and does not depend on the distance between
tokens. (ii). Transformers make extensive use of normalization layers, such as layer normalization
and softmax, as well as residual connections, which makes them relatively stable.
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Instead of a lack of expressiveness and pathological optimization dynamics, we claim that the pri-
mary factor behind the suboptimal performance of transformers on long-range tasks is probably the
lack of generalization, caused by an unsuitable inductive bias that results in an unfavorable hypoth-
esis class. In other words, the existing transformers overfit the long-range data. We support this
claim with two observations: (i) models exhibiting exceptional performance on LRA benchmarks
tend to contain layers with strong inductive bias, such as state-space layers, Exponential Moving
Average (EMA), or other specialized layers Ma et al. (2022), and (ii) as shown in Sec. 5, there is a
significant improvement in the performance of our models on the LRA benchmark as the amount of
data increases. This does not occur as much for other transformers. This implies that with the right
type of inductive bias, the model’s ability to fit the underlying data distribution increases.

4 METHOD

We begin by exploring ways to incorporate suitable inductive bias into the transformer architecture.
By observing specially designed long-range layers, we learn that exponentially decaying kernels and
kernel smoothness are often promoted. We then explain how we incorporate these principles into
the attention layers.

Sec. 3 presents the motivation for incorporating inductive bias to shape the hypothesis class favor-
ably towards long-range dependencies, which can mitigate the generalization gap. However, the ex-
istence and specific characteristics of such inductive bias remain unclear. To address these questions,
we aim to discern the common key principles underlying the design choices in layers that success-
fully capture long-range dependencies (See Appendix E for more details). Given the wide variety
of long-range layers, including state-space layers (Gu et al., 2021b;a; Gupta et al., 2022a; Hasani
et al., 2022; Smith et al., 2022), Toeplitz NNs Qin et al. (2023a), linear diagonal RNNs Gupta et al.
(2022b); Orvieto et al. (2023), and long convolution layers Li et al. (2022); Fu et al. (2023), and the
fact that these layers are built on many design principles such as unique initialization (HIPPO Gu
et al. (2020)), regularized parameterization (NPLR Gu et al. (2021a), diagonal Gu et al. (2022);
Gupta et al. (2022a), full kernel Fu et al. (2023)), numerically stable computation Gu et al. (2021b),
and additional mechanisms such as novel gating Ma et al. (2022); Mehta et al. (2022) and normal-
ization methods Orvieto et al. (2023), discerning the exact reasons why these layers perform well,
especially when compared to Transformers, is a challenging task.

We, therefore, delve into the investigation of those layers. This discussion will be based on observing
the kernels of several long-range layers, see Fig. 1.

(a) (b) (c)

Figure 1: Examples of random kernels of several long-range layers, such as (a) S4 Gu et al. (2021a),
(b) Mega Ma et al. (2022), and (c) SGConv Li et al. (2022).

A common design choice in long-range layers is to use convolution kernels with an exponential
decaying structure (Li et al., 2022). This trend of exponential decay can be seen in Fig. 1. It is
integrated into the kernels through initialization (Fu et al., 2023), parameterization (Gu et al., 2021a;
Gupta et al., 2022a; Li et al., 2022; Ma et al., 2022), or computation (Qin et al., 2023a). All these
convolutional kernels have a decaying structure, that is, the weights for interactions with closer
neighbors are larger than for those with more distant ones.

Li et al. (2022) also suggest that having regularized convolutional kernels is essential for capturing
long-range dependencies. Following this, Fu et al. (2023) empirically demonstrate that smoothness
can be a powerful tool for kernel regularization. This smoothness can be achieved by reducing
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the size of kernel weights in the time domain using a squashing operator, which enforces sparsity,
leading to smoothness in the frequency domain. Moreover, layers such as EMA or linear-state space
layers are naturally smooth in their design, as can be seen in Fig. 1(b).

4.1 LOCAL AND SMOOTH (LAS) ATTENTION

While smooth and exponentially decaying kernels are associated with a long-range inductive bias,
it is unclear if such principles are pertinent to convolution kernels only or to any global operator.
To further explore this matter empirically, we introduce the Local and Smooth (LaS) attention, a
mechanism that modifies the attention computation by adjusting the attention matrix to incorporate
a long-range inductive bias into the attention operator.

A comprehensive depiction of the LaS attention is provided in Fig. 2. The principle of smooth-
ness is implemented by applying 1-D average pooling to each row in the attention matrix, while
the exponentially decaying principle is enacted by the element-wise multiplication of the attention
matrix at each head with a non-learnable locally decaying matrix. It is worth noting that, similarly
to self-attention, both our local and smooth operators can manage unrestricted context with varying
lengths.

Formally, one head of self-attention is given as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2)

Given this formulation, the c LaS attention head can be defined by:

LaS-Attentionc(Q,K, V ) = AP
(

softmax
(

exp(−αcDL)⊙
(
QKT

√
dk

)))
V (3)

where AP denotes an operator that executes 1-D average pooling individually for each row of the at-
tention matrix. Given an input sequence of length L, the dimensions of the attention scores

(
QKT

√
dk

)
and exp(−αcDL) are L × L. Average pooling is applied with corresponding padding to preserve
the identical shape of the original attention scores. Lastly, our LaS attention contains two opera-
tors: the smooth operator implemented by AP, and the local operator implemented by the Expo-
nentially Locally Decay (ELD) operator, which is defined by: ELD : RL×L → RL×L such that
ELD(B) = exp(−αcDL) ⊙ B, and we define the ELD matrix as exp(−αcDL). To preserve the
exponential decay trend, it is essential to establish directionality within the model. Therefore, causal
models are consistently used in our work. This is achieved by defining the matrix DL as the dis-
tance matrix multiplied by the causality mask. It is noteworthy that our added mechanism incurs
negligible computational overhead and does not introduce any additional learnable parameters.

To control the decay rate in the c-th attention head, we utilize different values of αc across various
attention heads. We utilized distinct αc values across the attention heads, instead of per position
in the sequence to facilitate each head focusing on dependencies of a uniform scale, and provide
a natural approach to operate on sequences with varying lengths. Hence, the model can capture a
spectrum of local dependencies at multiple scales within each layer. This, in turn, facilitates the
recognition of global dependencies at the level of the entire model, creating a hierarchical blend of
local interactions that translate to global long-range dependencies.

The bottom part of the rightmost panel of Fig. 2 presents sample LDM matrices for different values
of αc. Note that the ELD matrices Si,j are Toeplitz matrices, which can be succinctly represented
by their first row. The first row values for different values of αc are depicted in the top part of
the same panel of Fig. 2. It can be observed that these Toeplitz matrices bear a resemblance to
convolutional kernels, exhibiting a relatively similar structure and rule, particularly with simpler
global convolution layers, such as Mega Ma et al. (2022), see Fig. 1(b).

Initialization of αc To encourage attention heads to focus on varying types of dependencies, we
regulate the effective lengths of the LDM matrices across distinct channels. This is achieved by
creating a sequence of evenly spaced αc values in exponential space. To facilitate a straightforward
comparison with the standard transformers, we set α0 = 0 in the first attention head, and remove any
positional decaying bias, which results in a vanilla attention head. In particular, we initialized αc
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Figure 2: (Left) Our Local and Smooth (LaS) attention. (Middle) Original attention. (Right) Visu-
alization of our local operator and ELD matrices that are discussed in Sec. 4.1

exponential-uniformly in [0, B] (namely, enforce that exp(−αc) is uniformly distributed in [0, B]),
where B is a hyper-parameter in the interval (0, 1).

5 EXPERIMENTS

We empirically evaluate our method on standard long-range benchmarks. We first compare LaS-
Attention with other transformer variants and long-range layers in Sec 5.1. Then, in Sec. 5.2, we
justify our design choices by ablating each of the model’s components. Finally, in Section 5.3, we
investigate how various factors, such as the amount of training data and the context length of the
attention influence performance. The experimental setup remains consistent across all subsections,
and is described in detail in Appendix. A. Additional experiments are introduced in the appendix.
For instance, the attention matrices of LaS attention are visualized in Appendix D, and the evaluation
of LaS attention on NLP tasks is detailed in Appendix C.

5.1 RESULTS ON LONG-RANGE TASKS

In this section, we present and analyze our findings on long-range tasks, focusing on the LRA
benchmark and variations of sequential MNIST.

LRA Tab. 1 compares the performance of our method to several previously published Transformer-
based models and long-range layers. In comparison to the Transformer-based methods, including
strong sub-quadratic competitors such as Reformer Kitaev et al. (2020), Linformer Wang et al.
(2020), and Performer Choromanski et al. (2020), LaS Attention consistently improves performance
on all the evaluated tasks, and it outperforms the previous best model Luna transformer Ma et al.
(2021) in this group by a margin of 12.04%.

Specifically, on the Image task, our model outperforms all the other transformer variants by a margin
of at least 22%. This finding may be attributed to the inductive bias towards smoothness and locality
in our method, which is not only relevant for long-range tasks but also for natural signals, such as
vectorized images.

Additionally, we propose a variant with linear complexity named LaS-Chunk attention that segments
input sequences into fixed local blocks of size 128 to ensure minimal loss of local information.
As can be seen, this variant surpasses all transformer methods on all tasks, with the exception of
the Pathfinder task. LaS-Chunk even outperforms more computationally intensive models such as
vanilla transformers, which compute the full-attention matrix and have a quadratic complexity, with
an average accuracy boost of 11.34%.
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Table 1: (Long Range Arena) Accuracy on the full suite of long range arena tasks, together with
training speed and peak memory consumption comparison on the Text task with input length of 4K.

Models ListOps Text Retrieval Image Pathfinder Path-X Avg. Speed Mem.

Transformers

Transformer 36.37 64.27 57.46 42.44 71.40 – 54.39 – –
Local Attention 15.82 52.98 53.39 41.46 66.63 – 46.06 – –
XFM‡ 37.11 65.21 79.14 42.94 71.83 – 59.24 1× 1×
Reformer 37.27 56.10 53.40 38.07 68.50 – 50.67 0.8× 0.24×
Linformer 35.70 53.94 52.27 38.56 76.34 – 51.36 5.5× 0.10×
BigBird 36.05 64.02 59.29 40.83 74.87 – 55.01 1.1× 0.30×
Performer 18.01 65.40 53.82 42.77 77.05 – 51.41 5.7× 0.11×
Luna-256 37.98 65.78 79.56 47.86 78.55 – 61.95 4.9× 0.16×

Our transformers
LAS 53.05 79.28 85.56 70.44 81.62 – 73.99 – –
LAS-chunk 46.21 79.11 83.84 64.90 54.61 – 65.73 –

Models that rely on global convolutions

S4-v1 58.35 76.02 87.09 87.26 86.05 88.10 80.48 – –
S4-v2 59.60 86.82 90.90 88.65 94.20 96.35 86.09 – –
SG-Conv 61.45 89.20 91.11 87.97 95.46 97.83 87.17 – –
LongConvs 62.20 89.60 91.30 87.00 93.20 96.0 86.60 – –

MEGA 63.14 90.43 91.25 90.44 96.01 97.98 88.21 2.9× 0.31×
MEGA-chunk 58.76 90.19 90.97 85.80 94.41 93.81 85.66 5.5× 0.13×

Compared to long-range layers incorporating global convolutions, such as MEGA Ma et al. (2022)
and S4 Gu et al. (2021a), our method exhibits sub-optimal performance. This suggests that there is
more to learn from these layers in terms of improving transformer architectures and understanding
the shape of long-range inductive bias. A potential reason for this performance gap could be the
difference in directional processing. While our models operate in a causal (unidirectional) man-
ner, the global convolution layers in the discussed methods (with the exception of S4-v1) leverage
bidirectionality. In fact, moving from unidirectional processing in S4-v1 to bidirectional processing
in S4-v2 was a key upgrade, demonstrating that adopting bidirectional processing in LaS attention
(which can be easily achieved at the cost of doubled complexity and computational load) could
further decrease the performance gap between transformers and SOTA long-range layers.

Table 2: Accuracy (percents) for vec-
torized image classification on the Se-
quential (sMnist) and Permuted (PM-
nist) MNIST. All results except LaS
copied from Gu et al. (2021a)

SMNIST PMNIST

Attention-Based Models

Transformer 98.90 97.90
LaS (ours) 99.18 98.05

Non Attention-Based Models

LSTM 98.90 95.11
S4 99.63 98.70

Sequnaital MNIST The Sequential MNIST tasks
present a challenging problem by treating 2-D images
as vectors. This setup ensures that the spatial relations
present in the original images are reflected as long-range
dependencies in the vectorized image. Permuted MNIST
is a variant where the order of pixels in each image
is scrambled, intensifying the challenge and preventing
models from relying on locality and periodicity. The re-
sults are presented in Tab. 2. As can be observed, LaS at-
tention enhances performance on both tasks. For instance,
on sMNIST, the local and smooth operators boost perfor-
mance by 0.28%, improving the scores from 98.90% to
99.18%, while on pMNIST, performance is boosted by
0.15%, from 97.90% to 98.05%.

5.2 JUSTIFYING DESIGN CHOICES AND MODEL VARIANTS

Our design principles yield the following model variants: (i) the LaS-attention described in Eq. 3,
along with two ablated models, namely (ii) L-attention and S-attention, each containing only the
local (ELD) or the smoothing operator, respectively. To empirically delve into and understand the
contributions of each component, we conducted additional experiments on the LRA benchmark. To
reduce computational burdens, we employ LaS chunk attention as a baseline model, and assess the
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Table 3: (Ablations) Evaluate the contributions of the smooth and local operators within our method
by comparing the Exponentially Locally Decaying (ELD) operator with Alibi on a subset of the LRA
benchmark. The baseline utilized for this comparison is a Transformer with a chunk size of 128 (cT).

Models ListOps Text Retrieval Image Avg.

Non-Smooth Models

CT+ALIBI 39.94 66.10 77.61 42.24 56.47
CT+ELD (L-ATTENTION) 41.08 70.65 81.42 59.48 63.16

Smooth Models

CT+SMOOTH (S-ATTENTION) 46.13 75.86 80.64 61.38 66.00
CT+SMOOTH+ALIBI 40.61 66.35 81.02 51.68 59.92
CT+SMOOTH+ELD (LAS-ATTENTION) 46.21 79.11 83.84 64.90 68.52

models on the ListOps, Text, Retrieval, and Image tasks. We avoid conducting these experiments on
the Pathfinder task, since the LaS chunk struggles to generalize in this task, making the results less
informative and distinct.

As can be seen in Tab. 3, each operator contributes to the success of the method. For instance, upon
removal of the Smoothness operator, LaS attention significantly outperforms L-Attention, with a
difference of 0.08%, 3.25%, 3.2%, and 3.52% across the evaluated tasks. Alternatively, when the
contribution of the ELD operator is removed, LaS attention surpasses the resutling S-Attention by
5.13%, 8.46%, 2.42%, and 5.42% for these tasks.

Relation to and Differences from Alibi Both our Exponentially Locally Decaying (ELD) opera-
tor and Alibi Press et al. (2021) manipulate the attention matrix via the distant matrix, albeit with
varying motivations and impacts. Alibi was created with the intention of achieving length extrap-
olation, whereas our operator is designed to integrate a long-range specific inductive bias into the
attention mechanism. In this light, our global operator can be seen as a type of relative positional en-
coding designed for long-range tasks. This distinction in motivation is manifested in the subsequent
differences in the computation of the attention scores. With respect to performance and long-range
capabilities, at least on the subset of the four tasks from the LRA benchmarks including ListOps,
Text, Retrival and Image tasks, Tab. 3 presents that there is a considerable margin between the
methods, and it appears that the additional exponential decaying structure significantly contributes
to enhancing the long-range capabilities of the model, as reflected by an average improvement of
6.69% in accuracy when not using the Smooth operator (the baseline is L-attention), and 8.61%
when smoothing is added to both.

5.3 THE IMPACT OF DATA QUANTITY AND CONTEXT-LENGTH ON LONG RANGE TASKS

Effective Context Length To further understand whether our LaS transformer can capture long-
range dependencies, we modified the context length within the attention layers by gradually reducing
the chunk size. This modification forces the model to learn interactions up to the maximum length
of the chunk size at each layer. We evaluated these models on a subset of the LRA benchmarks,
including Image, Text, Listops, and Pathfinder tasks. As can be seen in Fig. 3 across all experiments,
a significant decrease in performance is observed as the context window narrows. This empirical
evidence indicates that our LaS attention can benefit greatly from an extended context.

Impact of Dataset size To delve deeper into the factors affecting the performance of our models
on long-range tasks, we conducted experiments with varying amounts of training data and assessed
their impact on model accuracy. Fig. 4 illustrates that as the quantity of training data increases, per-
formance on all assessed tasks including Image, Text, Listops, and Pathfinder consistently improves.
This trend suggests that with an increased volume of training data, the performance of transformers
improves, potentially narrowing the performance gap with long-range layers. Moreover, this trend
supports the arguments presented in Sec. 3, which proposes that the primary bottleneck for trans-
formers on long-range tasks is the generalization gap, rather than issues related to optimization or
limited expressiveness, and that this gap can be mitigated by a more suitable inductive bias.
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Figure 3: The effect of limiting the context window during training (x-axis) by decreasing the chunk
size, and the resulting model accuracy (y-axis) on a subset of datasets from the LRA benchmark.
As the context window narrows, performance decreases, highlighting that LaS attention can learn
long-range dependencies at the layer level end exploit long context.

Figure 4: The impact of varying the number of training samples (x-axis) on the model accuracy
(y-Axis) across a subset of datasets from the LRA benchmark.

6 DISCUSSION

Developing theories, tools, and well-defined concepts can significantly enhance the long-range ca-
pabilities of modern AI systems. A compelling illustration of the necessity for such tools is provided
in Liu et al. (2023), which empirically demonstrates that LLMs, despite being trained on extensive
data, struggle to exploit long contexts and that there are cases where performance continues to de-
crease as context length increases, particularly when crucial information is located in the middle of
the context. Furthermore, while layers such as Mega and state-space layers achieve exceptional re-
sults on long-range tasks, it remains unclear if such layers can scale as well as transformers, and how
they should be scaled up. Hence, finding alternative mechanisms and identifying the bottlenecks that
prevent Transformer success in long-range tasks is an important research direction.

7 CONCLUSIONS

The perceived inability of transformers to learn long-range sequences has led to a proliferation of in-
novative methods. It is now time to examine these methods and to understand the key principles that
hold transformers behind in this domain. We identify two such principles: inductive bias towards
locality and smoothness along the sequence domain. Both of these are unintuitive at first, since one
wishes to identify a distant signal and carry it without degradation, similarly to, e.g., the goal of the
memory cells in LSTM. However, not only are these properties shared among the long-range layers,
they also provide us with actionable hypotheses to verify.

Indeed, when the transformer architecture is modified such that an exponentially decaying locality
kernel modulates the attention scores, the performance in long-range tasks improves. A similar im-
provement is obtained when an attention-smoothing term is introduced. Both modifications together
bridge much of the gap in performance between transformers and the leading long-range methods.
We note that while recent long-range layers have almost solved the LRA benchmark, the domain of
long-range dependencies is still not understood. In this regard, this research represents an initial step
in identifying and characterizing the inductive bias essential for long-range tasks, shedding light on
the underlying factors required to address these dependencies.
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A EXPERIMENTAL SETUP

We conducted all our experiments using PyTorch and built our repository upon the existing S4
repository. The experiments were executed on a single V100 GPU, each running for a maximum
duration of two days. To ensure consistency, each result was obtained by averaging over three
different seed values. In all experiments, we employ causal transformers with 8 heads. Our training
procedure and hyperparameters remained aligned with the configurations pre-specified in the S4
repository for analogous tasks. Exceptions include modifications aimed at saving computational
resources, such as reducing model width, decreasing the number of epochs, and adjusting batch
size, which were not optimized. The learning rate, which was determined through a grid search over
the range [1e-3, 1e-4] and the orignal learning rate in the S4 repository for the corresponding task,
and setting the dropout for 0 in all experiments.

The hyperparameters of the LaS attention layer are: (i) the value of B, which controls the values of
αc, and (ii) the window size in the 1-D average pooling layer in the smooth operator, denoted by
P. Hyperparameter tuning was executed via grid search on the following grid: B ∈ [0.0001, 0.001],
Pin[3, 5]. The final set of hyperparameters for each task is presented in Tab 4. Hyperparameters
that changed from the original configuration of S4 and were optimized are denoted by (*).

Table 4: The values of the best hyperparameters found for the LRA benchmark. LR is learning rate
and WD is weight decay. BN and LN refer to Batch Normalization and Layer Normalization.

Depth Features H Norm Pre-norm LR* Batch Size Epochs WD P* B*
ListOps 6 256 BN False 1e-3 50 50 0.01 5 0.001
Text 4 64 BN True 1e-4 50 20 0 5 0.0001
Retrieval 6 256 BN True 0.002 64 20 0 5 0.001
Image 6 256 LN False 1e-3 50 100 0.01 3 0.001
Pathfinder 6 256 BN True 0.004 64 100 0 3 0.001

B THEOREMS AND PROOFS

Theorem 1. One head of self-attention can express one channel of state-space layer
Assumption 2. Our assumptions are: (i) We assume that the sequence length of the input to the
transformer is at most L + 1, and it include one additional empty token (similar to classification
token) at the end. (ii) The hidden dimension of the transformer is equal to L+ 1, implying that the
key, query, and value matrices have dimensions of (L+ 1)× (L+ 1). (iii) The positional encoding
function is an indicator function, defined as:

PE : R → RL+1

PEj(ui) =

{
1 if j = i,

0 otherwise.

and the positional encoding are concatenate to the input u, namely,

u′ = PE(u) ◦ u (4)

Proof. We will demonstrate that under the assumptions specified in 2, Theorem 1 holds true.

We initiate our proof by revisiting the concept of state-space layers. To maintain a level of generality
that is applicable to various forms of state-space layers, we consider a general state-space param-
eterization. The recurrent rule of such a system can be succinctly represented by a convolutional
kernel in the following manner:

y = k ∗ u
for some kernel k, where k denotes a kernel, and ∗ represents the operation of non-circular con-
volution, and u := (u0, u1, · · · , uL−1) and y := (y0, y1, · · · , yL−1) are scalar sequences, namely
u, y ∈ RL.

Traditionally for state-space layers, a kernel k is parameterized by the system matrices A and the
input and output matrices B and C, such that ki = f(A,B,C, i) = CAiB.
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The applicability of our proof extends to any convolutional kernel k := (k1, . . . , ki, . . . , kL),
which encompasses the kernels employed in various architectures like Hyena Poli et al. (2023),
CKConv Romero et al. (2021), Focus Lutati et al. (2023), TNN Qin et al. (2023a), and others.

This convolutional kernel can be expressed via matrix multiplication y = Aku as follows:

y0
y1
...
...
...

yL−1


=



k1 0 0 0 0 0

k2 k1 0
. . . . . . 0

... k2 k1
. . . . . . 0

...
. . . . . . . . . . . . 0

kL−1
. . . . . . k2 k1 0

kL kL−1 . . . . . . k2 k1





u0

u1

...

...

...
uL−1


, (5)

We will demonstrate that with a given kernel k, it is possible to manipulate the attention mechanism,
and specifically modify the keys, queries and values matrices (W k,W q,W v) to replicate the convo-
lution. To do so, we assume that the input sequence u include one additional empty token (similar
to classification token) at the end.

The construction is outlined as follows:

• W v = cIL+1, c =
∑L

t=1 kt

• W q := W q
i,j =


lnAk[i, j] if i, j ∈ [L]

ln ci, ci =
∑L

t=i+1 kt if j = L+ 1, i ∈ [L− 1]

ln c if j = L+ 1, i = L+ 1

ln 0 otherwise

=



ln k1 ln 0 ln 0 ln 0 ln 0 ln 0 ln c1

ln k2 ln k1 ln 0
. . . . . . ln 0 ln c2

... ln k2 ln k1
. . . . . . ln 0 ln c3

...
. . . . . . . . . . . . ln 0 ln ci

ln kL−1
. . . . . . ln k2 ln k1 ln 0 ln cL−1

ln kL ln kL−1 . . . . . . ln k2 ln k1 ln 0
ln 0 ln 0 . . . . . . ln 0 ln 0 ln c


(6)

• W k =
√
dkIL+1

where IL+1 is the identity matrix of size L + 1. Please note that the definition of ci and c enforces
that the sum of the exponents be identical across the rows of W q .

We begin by revisiting the formulation of self-attention:

Self-Attention(u) = softmax
(
(u′WQ)(u′WK)T√

dk

)
(u′WV ) (7)

Based on assumption 2 (iii), and for reasons of simplicity, we assume that the input u does not affect
the attention matrix. Therefore u′ = PE(u). In practice, this can be achieved by nullifying (set
to zeros) the weights associated with the input and preserving those associated with the positional
encoding (PE).

Self-Attention(u) = softmax
(
(PE(u)WQ)(PE(u)WK)T√

dk

)
(u′WV ) (8)

Note that u′ = PE(u) is the identity matrix IL+1 of size L+ 1:
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Self-Attention(u) = softmax
(
WQ

)
(uWV ) (9)

Now, since WV is a scalar matrix, it commutes. By applying the definitions of the row-softmax
function and the values of WQ matrix from Eq. 6, we obtain:

Self-Attention(u) = ZWV u = Zcu, Z = softmax
(
WQ

)
(10)

∀a, b ∈ [L] : Za,b =
exp(ln(Ak[a, b]))

c
=

Ak[a, b]

c
→ Z:L,:L = Ak

1

c
(11)

where Z:L,:L is the leading principal L-submatrix of Z.

By plugging Eq. 11 in Eq. 10, ignoring the output representation of the empty token, and assuming
that the values corresponding to the empty token are zeros, it is simple to demonstrate that:

Self-Attention(u) = Aku (12)

This construction demonstrates that for a single channel of a state-space layer characterized by a
kernel k, and the associated matrix Ak, there exist values of attention head matrices W q,W v,W q

such that the self-attention mechanism becomes equivalent to the state-space layer.

C LAS ATTENTION FOR LANGUAGE MODELING

Despite LaS-Attention not being originally designed for language modeling as it relies on non-
textual principles, we have evaluated our model on an NLP task to provide a more comprehen-
sive view of the empirical capabilities of our layer. We assessed four transformer variants on the
Wikitext-103 dataset for predicting the next token. Utilizing a BERT-like model architecture with
12 layers and a model width of 768, each model was trained with a context length of 512, and we em-
ployed same hyper-parameters across the experiments. We measured the perplexity for four variants:
(1) vanilla attention, (2) LaS attention, and two ablations: (3) L-attention and (4) S-attention, aver-
aging the results over two seeds. Fig. 5 presents the perplexity trends during training. It is evident
that L-Attention closely matches the original model’s performance, while the S-attention variants
tend to fall behind. At the conclusion of training, vanilla attention achieves a perplexity of 20.20,
just edging out L-attention, which sits at 20.34. S-attention and LaS attention record perplexities of
21.69 and 21.87, respectively.

Figure 5: Evaluating LaS-Attention variants in NLP via the wikitxt-103 benchmark.

16



Under review as a conference paper at ICLR 2024

D VISUALIZE ATTENTION MATRICES

In Fig. 6, we present a visual analysis of attention matrices obtained from both the LaS and vanilla
attention models across different layers, with both models based on a BERT-like 12-layer causal
model with context length of 512, trained on Wikitext-103 for next-token prediction with the same
training procedure. For clearer visualization we use min-max normalization, and we use examples
from the test set of wikitext-103. As can be seen in figures, the LaS attention matrices are more
attuned to long-range dependencies, especially in the upper layers, in contrast to the vanilla trans-
former, which primarily focuses on short-range dependencies. Furthermore, LaS attention produces
smoother attention matrices, which reduce self-attention bias toward pairwise interactions.

LaS Attention: Layer-2 Vanilla Attention: Layer-2

LaS Attention: Layer-4 Vanilla Attention: Layer-4

LaS Attention: Layer-6 Vanilla Attention: Layer-6

LaS Attention: Layer-8 Vanilla Attention: Layer-8

LaS Attention: Layer-10 Vanilla Attention: Layer-10

Figure 6: Visualizing the attention maps
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E LONG RANGE LAYERS AND THEIR DESIGN ASPECTS

In Tab. 5 we provide an extensive comparison of various long-range layers and their design aspects,
focusing on layers that achieve an LRA score above 0.85 or achieve new state-of-the-art results in
other long-range benchmarks.

We consider multiple design aspects: (i) “Decaying structure“ refers to layers that generate kernels
with values decreasing over time, exemplified by state space layers which parameterize a convo-
lutional kernel k := (k1, · · · , kL) such that ki = CAi−1B, exhibiting exponential decay where
|A| < 1. (ii) For regularization (’R’), we identify layers that incorporate explicit regularization
mechanisms vs. those layers where regularization is an inherent result of their parameterization.
For example, in (Li et al., 2022) the kernels were regularized explicitly by the parameterization,
and in (Fu et al., 2023) smoothness was used as a regularization tool. (iii) Unique Initialization
(’U.I’) can be manifested through the Hippo matrix Gu et al. (2020), used by SS, S4, DSS, and their
derivatives, or through other distinctive initialization strategies. (iv) The ’Numerically Stable’ desig-
nation is reserved for layers that provide explicit proof of stability or are constructed from elements
specifically designed to enhance stability.

Our comprehensive analysis extends to other aspects, such as ’G’ for layers relying on gating, ’C’
for layers that their parameterization is based on complex numbers, and ’N’ for layers explicitly
employing unique normalization techniques.

Lastly, we denote layers that can be trained without recurrent rules (which are often considered a
more stable approach for capturing long-range dependencies) by ’Non-Recurrent’.

Even though there are more criteria and layers Hasani et al. (2022); Zhang et al. (2023); Qin et al.
(2023b), the aforementioned represent the predominant design choices.

Our review indicates that all successful long-range layers have a decaying structure, and almost none
of these employ normalization or explicit regularization.

Layer Type Decaying
structure R U.I Numerically

stable G C N Non
recurrent

SS (Gu et al., 2021b) Y N Y N N N N Y
S4 (Gu et al., 2021a) Y N Y Y N Y N Y
DSS (Gupta et al., 2022a) Y N N Y N Y N Y
GSS (Mehta et al., 2022) Y N N Y Y N N Y
MEGA (Ma et al., 2022) Y N Y Y Y N N Y
S5 (Smith et al., 2022) Y N N Y N Y N N
SGCONV (Li et al., 2022) Y Y Y N N N N N
DLR (Gupta et al., 2022b) Y N N Y N Y N Y
H3 (Dao et al., 2022b) Y N Y Y Y Y N Y
FLASHBUTTERFLY (Fu et al., 2023) Y Y Y N N N N Y
LRU (Orvieto et al., 2023) Y N Y Y N Y Y N
TNN (Qin et al., 2023a) Y N N N N N N Y

Table 5: Mapping of layers to their design aspects. ’R’ for regularization, ’N’ for normalization,
’G’ for gating, ’U.I’ for Unique Initialization, ’C’ for parametrization over C. We denote by ’Non
Recurrent’ layers that can be computed without recurrent steps.
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