Adaptive Riemannian ADMM for Nonsmooth
Optimization: Optimal Complexity without Smoothing

Kangkang Deng* Jiachen Jin*
College of Science College of Science
National University of Defense Technology National University of Defense Technology
Changsha, CHINA Changsha, CHINA
freedeng12080gmail.com jinjiachen@nudt.edu.cn
Jiang Hu

Yau Mathematical Sciences Center
Tsinghua University
Beijing, CHINA
hujiangopt@gmail.com

Hongxia Wang'
College of Science
National University of Defense Technology
Changsha, CHINA
wanghongxia@nudt.edu.cn

Abstract

We study the problem of minimizing the sum of a smooth function and a nonsmooth
convex regularizer over a compact Riemannian submanifold embedded in Euclidean
space. By introducing an auxiliary splitting variable, we propose an adaptive
Riemannian alternating direction method of multipliers (ARADMM), which, for
the first time, achieves convergence without requiring smoothing of the nonsmooth
term. Our approach involves only one Riemannian gradient evaluation and one
proximal update per iteration. Through careful and adaptive coordination of the
stepsizes and penalty parameters, we establish an optimal iteration complexity of
order O(e~?) for finding an e-approximate KKT point, matching the complexity
of existing smoothing technique-based Riemannian ADMM methods. Extensive
numerical experiments on sparse PCA and robust subspace recovery demonstrate
that our ARADMM consistently outperforms state-of-the-art Riemannian ADMM
variants in convergence speed and solution quality.

1 Introduction

Optimization over Riemannian manifolds has garnered significant interest due to its wide-ranging
applications in machine learning, statistics, signal processing, and beyond. While the theory and
algorithms for smooth manifold optimization have been extensively developed (see [, 15} 43} 22]),
recent years have witnessed a growing need to address nonsmooth objectives, which arise naturally
in tasks such as sparse PCA [28], nonnegative PCA [50} 27], and semidefinite programming [7, 45].

*Equal contribution.
"Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Formally, we consider the nonsmooth optimization problem on Riemannian manifold
rrela\r/ll f(z) + h(Az). (1)

where M is a Riemannian submanifold embedded in R”, f : R™ — R is a continuously differentiable
function, A : R® — R™ is a linear mappings, h : R™ — (—o0, +00] is a proper closed convex
function. Hence, the objective function of (I)) can be nonconvex and nonsmooth. By introducing an
auxiliary variable y = Az, one obtains the linear constrained problem

I;li;lf(l’) + h(y), st. Az =y, z € M. 2)

To tackle such constrained nonsmooth problems, a natural candidate is the alternating direction
method of multipliers (ADMM), which has emerged as a powerful framework for solving large-scale
structured optimization problems. One of the earliest attempts to extend ADMM to [2)) is the manifold
ADMM (MADMM) proposed in [31]], which adopts the following iteration scheme:

Tpy1 = arglrcreli/a f(x) — g, Az — yg) + gHAw — yell?,
Yk+1 = argmyin h(y) — (A, ATy —y) + gHAka —yll%, G)

M1 = Mk — P(AZp1 — Yrt1)-

where A\ denotes the Lagrange multiplier and p > 0 is a penalty parameter. In MADMM, the z-
subproblem is a smooth Riemannian optimization task that can be solved by using any gradient-based
Riemannian algorithm, while the y-subproblem admits a closed-form solution via a proximal operator
of h. Although this algorithm constitutes a direct generalization of the classical Euclidean ADMM,
its convergence has remained elusive due to the inherent nonconvexity of Riemannian manifolds.
More recently, Li et al. [35]] introduced a smoothing technique to reformulate the original nonsmooth
problem into a smooth approximation

min f(z) + hy (Az), @

where h,, denotes the smooth approximation of h and . is a smoothing parameter. They proposed
a smoothed ADMM scheme for solving the surrogate problem (@), and established an O(1/e*)
complexity bound. Building upon this idea, [49] further incorporated adaptive smoothing strategies,
resulting in an improved algorithm. However, all these methods are designed specifically for
smoothed formulations, which rely critically on smoothing parameters, rather than directly addressing
the original nonsmooth problem.

In this work, we are interested in the convergence analysis of original Riemannian ADMM (). A
fundamental question arises:

Can we establish convergence of Riemannian ADMM for the original nonsmooth problem (1)),
without relying on smoothing?

This question motivates our study. Our contributions can be summarized as follows:

* We propose a novel adaptive RADMM (ARADMM) for nonsmooth optimization over
compact Riemannian submanifolds. Unlike existing smoothing-based Riemannian ADMM
methods, our approach achieves convergence without smoothing the nonsmooth regularizer.
Moreover, our adaptive strategy dynamically updates the stepsize and penalty parameter
during the iterations, avoiding the expensive exact subproblem solutions required by con-
ventional Riemannian ADMM variants. Consequently, each iteration only requires one
Riemannian gradient evaluation and one proximal computation, significantly reducing the
per-iteration cost. Numerical experiments demonstrate the superior empirical performance
of our ARADMM over existing ones.

* Through careful and adaptive coordination of the stepsize and penalty parameter, we es-
tablish an optimal iteration complexity of order O(e~3) for finding an e-approximate KKT
point. This matches the best-known complexity achieved by smoothing-based Euclidean
and Riemannian ADMM methods, while entirely avoiding the need for smoothing. A key
technical innovation is the adaptive selection of dual step sizes and penalty parameters,
which explicitly bounds the differences between multipliers by the norms of the correspond-
ing primal iterate differences—an essential property for establishing convergence without
requiring exact subproblem solutions.

Table 1: Comparison of the oracle complexity results of several methods in the literature to our
method to produce an e-stationary point

Algorithms Manifold | Iteration | Without smoothing | Single-loop
MADMM [31] | compact — Yes No
RADMM [33] | compact | O(e %) No Yes
OADMM [49] | Stiefel | O(e?) No Yes

this paper compact | O(e?) Yes Yes

1.1 Related works

Most existing works focus on simplified instances of problem (). These works can be broadly
categorized into three classes. First, subgradient and proximal point methods for geodesically
convex problems have been studied in [2, [16} |14} [10, [15]. These algorithms typically require
stronger assumptions—such as geodesic convexity—and often suffer from slower convergence in
practice compared to other approaches. Second, proximal gradient-type methods, such as those
in [9l 25] 26], apply in the special case where A = Z. Each iteration of these methods involves
solving a subproblem that lacks a closed-form solution, which is typically handled using semismooth
Newton techniques. Third, primal-dual methods based on the augmented Lagrangian framework have
been developed, including operator splitting algorithms [32]], manifold-based augmented Lagrangian
methods [12} 55, [11} 47, 48], and Riemannian ADMM variants [31} 135, 49, 53]]. Among these,
ADMM is particularly attractive due to the separable structure of the objective and constraint in
problem (T)), which enables efficient and scalable updates.

In the case when the manifold M is specified by equality constraints ¢(z) = 0, e.g., the Stiefel
manifold. Problem (I)) can be regarded as a constrained optimization problem with a nonsmooth
and nonconvex objective function. Given that M is often nonconvex, we only list the related
works in case of that the constraint functions are nonconvex. Papers [37) 42] propose and study
the iteration complexity of augmented Lagrangian methods for solving nonlinearly constrained
nonconvex composite optimization problems. The iteration complexity results they achieve for an
e-stationary point are both @(6*3). More specifically, [42] uses the accelerated gradient method of
[L7] to obtain the approximate stationary point. On the other hand, the authors in [37] obtain such
an approximate stationary point by applying an inner accelerated proximal method as in [8, [30],
whose generated subproblems are convex. It is worth mentioning that both of these papers make a
strong assumption about how the feasibility of an iterate is related to its stationarity. Lin et al. [38]
propose an inexact proximal-point penalty method by solving a sequence of penalty subproblems.
Under a non-singularity condition, they show a complexity result of @(6_3). More recently, some
works [19, [13| 20] apply ADMM algorithmic framework by penalizing the nonlinear constraint.
However, those approaches do not exploit the underlying manifold geometry and essentially reduces
to penalty-based methods.

In Table[T] we summarize our complexity results and several existing Riemannian ADMM methods to
produce an e-stationary point. We do not list the algorithm in [53] since the subproblem is difficult and
requires a strong assumption on the problem: the last block variable cannot appear in the nonsmooth
objective. It can easily be shown that our algorithms achieve better oracle complexity results.

1.2 Notation

Let (-,-) and || - || be the Euclidean product and induced Euclidean norm. Given a matrix A, we use
[Al to denote the Frobenius norm, [|A||; := >, [A;;] to denote the {1 norm. For a vector z, we
use ||z||2 and ||z||; to denote its Euclidean norm and ¢; norm, respectively. The distance from x to C
is denoted by dist(x,C) := minyec ||z — y||. We use V f(z) and grad f(z) to denote the Euclidean
gradient and Riemannian gradient of f, respectively. ||.A4||,, denotes the operator norm of a linear
operator A.

2 Preliminary

2.1 Riemannian optimization

An n-dimensional smooth manifold M is an n-dimensional topological manifold equipped with a
smooth structure, where each point has a neighborhood that is diffeomorphism to the n-dimensional
Euclidean space. The tangent space of a manifold M at x is denoted by 7, M. In this paper, we
consider the case that M is a Riemannian submanifold of an Euclidean space £, the inner product
is defined as the Euclidean inner product: (1, &) = tr(n, £.). The Riemannian gradient is given
by gradf(z) = Pr,m(Vf(x)), where V f(z) is the Euclidean gradient, Pr, o4 is the projection
operator onto the tangent space 71, M. The retraction operator is one of the most important ingredients
for manifold optimization, which turns an element of 7, M into a point in M.

Definition 2.1 (Retraction, [1l]). A retraction on a manifold M is a smooth mapping R : TM — M
with the following properties. Let R, : T, M — M be the restriction of R at x. It satisfies

* R.;(0;) = x, where 0, is the zero element of T, M,
* DR, (0;) = idr, m,where idr, pm is the identity mapping on T, M.

We also give the following definition of vector transport.

Definition 2.2 (Vector transport, [1]). Given a Riemannian manifold M, the vector transport T,V is an
operator that transports a tangent vector v € T, M to the tangent space T,M, i.e., T} (v) € T, M.
In this paper, we assume T is isometric.

We have the following Lipschitz-type inequalities on the retraction on the compact submanifold.

Proposition 2.1 ([6l Appendix B]). Let R be a retraction operator on a compact submanifold M.
Then, there exist two positive constants «, B such that for all x € M and all u € T, M, we have

IR (u) — 2| < aflull, [Re(u) =z —ull < Bllull®. ®)

2.2 Stationary point and proximal operator

Next we give the definition of e-stationary point for problem (I). Let us first introduce the Lagrangian
function [: M x R™ x R” — R of (I):

l(x’ya)‘) :f(x)—i-h(y) - </\7-Ax_y>7 (6)

where A is the corresponding Lagrangian multiplier. Based on the KKT condition, we give the
definition of e-stationary point for (T):

Definition 2.3. We say x € M is an e-stationary point of (1)) if there exists y, z € R™ such that

[Pr,.m (Vf(x) = AN <€,
dist(—X, 0h(y)) <, @)
[Az —yll <

In other words, (x,y, \) is an e-KKT point pair of (I).

Note that setting ¢ = 0 gives the KKT condition of problem (TJ).

The following lemma gives the definition of proximal operator for convex function, and the related
property.

Lemma 2.1. /3| Lemma 3.3] Let h be a convex function. The proximal operator of h with parameter
w > 0is given by

1
prox,,;,(y) = arg min {h(2)+2ﬂ||2—y|2}- ®
Moreover, if h is £1,-Lipschitz continuous, it holds that

[l = prox,, (z)|| < plh. ©

3 Riemannian ADMM

Throughout this paper, we make the following assumptions.

Assumption 3.1. The following assumptions hold:

(i) The manifold M is a compact Riemannian submanifold embedded in R™. f(x) and h(x)
are both lower bounded, and let f, = inf, f(x) > —oco and h, = inf, h(x) > —oc0.

(ii) The function f is {¢-Lipschitz coninuous and U s-smooth on M. The function h is convex
and Uy -Lipschitz continuous.

(iii) The linear mapping A satisfies || Al|op < 0 4.

Assumption @] (i) includes many common manifolds, such as sphere, Stiefel manifold and Oblique
manifold, etc. This implies M is a bounded and closed set, i.e., there exists a finite constant D such
that D = max, yer ||z — yl|. Assumption [3.1](ii) implies that for any z,y € M, it holds that

IVf(x) = Vi)l < tosllz -yl (10)

3.1 Challenges in bounding dual updates in Riemannian ADMM

The convergence analysis of ADMM algorithms for nonconvex problems typically relies on estab-
lishing a sufficient descent property of the augmented Lagrangian (AL) function, which serves as a
potential function. However, since ADMM belongs to the class of primal-dual algorithms, the update
of the dual variables introduces an ascent term, commonly expressed as |[Ax+1 — Ax||. Controlling
this ascent term is critical for ensuring convergence.

In the Euclidean setting, this term is usually bounded via the optimality condition of the subproblem
associated with the primal variable, see, for example, [46} 18|21} 4]]. Consider the iterative scheme in
(3). When the manifold M = R™, the optimality condition for the z-subproblem at iteration % reads

Vf(xrs1) + pA" (Azg 1 —yr) — A"\ = 0.

Taking differences of the optimality conditions at iterations k& and k£ + 1, one can derive a bound on
[[Ak+1 — Ak|| by the difference of corresponding primal iterates using the Lipschitz continuity of V f.
However, in the Riemannian setting, the corresponding optimality condition involves projections
onto tangent spaces:

Pr

Tk4+1

M (Vf(xpsr) + pA* (Azppr — yi) — A" A) = 0.

Due to the nonlinear geometry of the manifold, the tangent space changes at each iteration, making
it impossible to directly apply the difference technique used in the Euclidean case. This leads to
significant challenges in bounding the difference between dual variables, as the projection operators
prevent the necessary alignment of optimality conditions across iterations.

A common workaround is to smooth the nonsmooth term associated with the y-variable. By replacing
the nonsmooth regularizer h with a smooth approximation h,, one can leverage the Lipschitz
continuity of the gradient Vi, to bound the difference of multipliers. Specifically, the optimality
condition for the smoothed y-subproblem becomes

0=Vh,(Yk+1) + p(Azk — Y1) — Ak

Thus the desired bound on the multipliers can be obtained by the Lipschitz continuity of Vh,,.
Please refer to [35) 49] for more details. However, this approach fundamentally changes the problem
structure from nonsmooth optimization to smooth optimization, and various gradient-based methods
can be used instead of ADMM. For instance, [41]] developed a Riemannian homotopy smoothing
algorithm based on this idea.

In contrast, our approach works directly with the original, nonsmoothed ADMM framework, without
introducing any smoothing to the problem. To overcome the challenge posed by the changing tangent
spaces and nonsmooth regularizer, we introduce an adaptive strategy for selecting the dual stepsizes
and penalty parameters. Specifically, we introduce an adaptive penalty parameter p; and replace the

Algorithm 1 Adaptive Riemannian ADMM for solving ().
Input: initial point =g, Yo, Ao, Po, Yo, Parameters c,, c..

1. fork=0,--- , K—1do

2: Update auxiliary variable y;1 via

Yk+1 = arg min L:pk (xky Y,)\k) (14)
yeRd

3: Denote &y (z) := L,, (%, yx+1, \x) and obtain 11 by single gradient step:
Th+1 :Rm(—mgrad@k(xk)). (15)

4: Update the dual step size yx1 via

Vg1 = min (YollAzo — yoll log” 2 Cy) (16)
+ [Az11 — Yo |[(k + 1)2log(k +2)" k1/31og?(k+ 1))
5: Update the dual variable \g; via
Met1 = A — Vi+1 (AZTg+1 — Yrt1)- (17)

6: end for
Output: (25, yr, Ak)-

original dual stepsize with -y, in original Riemannian ADMM (G)). Leveraging the properties of the
Moreau envelope, we then obtain

Akl — M = Va1 (ATrg1 — Yrs1)
>\k Ak >\k‘
= Y1 | Axg — Pik — ProxXp /,, Az, — E + Vi1 A@pp1 — zr) + %HE.

The first term can be bounded using properties of the proximal operator and the Moreau envelope,
as shown in (9). To further control ||\ ||, we design the dual stepsize ;.1 adaptively, ensuring that
the multiplier difference is bounded by the primal iterate difference. More details are referred to
Algorithm[T]and Lemma 3.1}

3.2 Adaptive Riemannian ADMM
We construct the corresponding augmented Lagrangian function:

Loy, N) = F(@) + h(y) = O\ Az —y) + 5]l Az — g an

Algorithm [I] details the iterative process. For the update rule of the dual variable 41, we use a
different sequence {v; } to replace original sequence {py }, and result in the following update:

Aot = Mg = Vet 1 (ATk 1 — Yrr1)- (12)

Here, we refer to v51 as the dual step size, which is updated by the following form:
Vk+1 = min (n0llAzo — yol] log™2 9) (13)

+ [Azks1 — Yyl (5 + 1)2log(k +2) k1/31og?(k + 1)

Our algorithm alternately updates the variables in the order of (y, z, \), which follows from [23]]. The
increasing sequence of penalty parameters p; and the dual update are responsible for continuously
enforcing the constraints. The particular choice of dual step sizes -y, in Algorithm [I]ensures that
the difference between the dual variables A; and Ag; remains bounded, which is crucial for the
convergence analysis.

Thanks to the careful choice of the penalty parameter and step size, we establish the following key
lemma, which ensures that the difference between successive dual variables, ||A\g+1 — Ag||, can be
effectively controlled.

Lemma 3.1. Let Assumptionshold. Suppose the sequence {xy, y,)‘k}szl is generated by the
Algorithm[l] The following inequality holds

2
s
Ikl < 211420 = goll = A (18)
Moreover we have that
[Akg1 — Akl < %21 (Ch + Amax) + Yer104l|Trr1 — 2k |- (19)

Proof of Lemma[3.1} We first show that A, is bounded. By step 5 in Algorithm[I] we have

k+1 [
el <D vl Az —wll < vl Az — will
1=1 1=1 i (20)
= 1 Yo
< — 1 2 2 < - =)\max>
where the last inequality utilize that log(l +2) > 1 for! > 1and >,°, ﬁ = %2. Again using

step 5 in Algorithmm one can bounds the difference between A;1 and \y:
k1 = Al = Y1 [AzR4+1 — Yol

)\k)\k
= Ye+1 | ATE — Ykt1 — ﬁ” + Y+ 1 Allopllzr+1 — k|| + %H”p:H

)\k Ak)\k
<Y1 ll(Azg — — — proxa (Azg — —))| + Ver1oallzrrr — 2kl + e 1| — |l
Pk Pk Pk Pk

< %H(

P gh +)\max) + 7k+1JA||xk+l - CE]C”,

(21)
where the first inequality uses || A||,, < 04 from Assumption [3.1]and the update rule of yy1 in (T4),
the second inequality follows from (9) and (20). The proof is completed.

O

Now we provide the main convergence result of our algorithm ARADMM. In particular, we show
that under certain assumptions, the ARADMM can achieve a oracle complexity of O(e~3).

Theorem 3.1. Suppose that Assumptionshold. Let the sequence {xy, yx,)‘k}szl be generated by
Algorithm Let us denote A\, = M\—1 — pr—1(Azp — i), pr = cpkl/3 and 7, = ¢, k=13, where
Cr, Cp Satisfy

1 1 }
——,————1}, ¢
C’ M’ 16c,020% " 7
where C .= (aL, 4+ ()G + a(lys +0%), M :=a?(lys+ %)+ 2GS, and G, a, 3 are given in
() and Lemma L,, ¢ are defined in Lemma@ Then for any given positive integer K > 2,
there exists v € [[K /2], K] such that

¢r < min{ >1, (22)

1Pr,, pm(—=A"Ne) + gradf ()| <

fg(x+ 1)~/

T

) 4
dl'Sl(*Alm ah(yﬁ)) < O—‘\A/ch/g

2 max —_
Az, — yull < 8oaa/c,G(K —2)72/3 + %(K —2)7 13,
’ (23)

(K +1)7/3,

where G is a constant given in the proof.

Theoremestablishes that, given € > 0, our algorithm achieves an iteration complexity of O(e=3).
Since Algorithm [T]is a single-loop method that requires only one gradient evaluation of f, one

w|f-=50C

-~ MADMM
RADMM

w+[—ARADMM,
—OADMM

o
-~--SOC

. il----80C
*l-="MADMM

Y]
RADMM RADMM
oo —ARADMM 10 j——ARADMM

— OADMM —OADMM
0 - 10? —

fl@) =1

f@) - f

o
o]/ —ARADMM
[=—oaDMM

o
e

0 10° I o 10" e 10 10° 0 10 0 0 0" 10°
CPU time CPU time CPU time CPU time

o o
N e
\ -~
. e Pty B
& w'ff---s0C £ {[--soc

well==-MADMM '} |-+~ MADMM

" RaDMM RADMM

0° j-—ARADMM 107 H|—ARADMM

S

@ -

——OADMM .Ll——OADMM
o 100 200 0 E K 100 w0

(a) n = 400, p = 50 (b) n = 400, p = 100 (¢) n = 800, p = 50 (d)n = 800, p = 100

Figure 1: Comparison with ADMM-type methods for solving with different (n, p), m = n and
w=0.01.

computation of the proximal operator of / and retraction operator per iteration—both of which are
computationally inexpensive—its overall operation complexity is of the same order as its iteration
complexity.

We would like to clarify that this condition in (22)) is not essential. For example, since 7, = crk—1/3,
the condition on ¢, is essentially imposed to ensure that 7, satisfies the required bound. This condition
can always be satisfied after a sufficiently large number of iterations without requiring c,. That is, for
any c., there exists an integer ky > 0 such that for all k& > kg, 7 satisfies the condition.

4 Applications and Numerical Experiments

In this section, we investigate the numerical performance of the proposed algorithm and report
comparative results with existing methods. All experiments are performed in MATLAB R2023b on a
64-bit laptop equipped with Intel 19-13900HX CPU and 32.0 GB RAM. We denote the final objective
values as “obj” and report the CPU time in seconds. All the results are averaged across 10 repeated
experiments with random initializations.

4.1 Sparse Principal Component Analysis

Sparse principal component analysis [28}29] is a cornerstone technique for high-dimensional data
analysis, identifying principal components with sparse loadings. Given a data matrix A € R™*", the
problem of recovering the top p (p < min{m, n}) sparse loading vectors is formulated as:

min F(X) := —%Tr(XTATAX) + p|| X |1, s.t. X € St(n, p), (24)

where 1 > 0 is a regularization parameter, Tr(X') denotes the trace of matrix X and St(n,p) =
{X e RP: XTX = I,} is the Stiefel manifold.

We evaluate our proposed Algorithm [I]to solve (24) and compare it with four ADMM-type methods:
SOC [133], MADMM |[31], RADMM [35] and OADMM [49]. For ARADMM, we set g = ¢y = 50,
po = 5, ¢, = 1 and ¢, = 0.2. For OADMM, we set { = 0.1 and other parameters are the same
as their originals. For the other three algorithms, we follow the same settings as [35]], where the
parameters are optimized through grid searches. All algorithms use identical random initializations
and terminate when |F(Xj11) — F(X})| < 1078 or after 500 iterations. The data matrix A € R"™*"
is generated randomly and the entries follow the standard Gaussian distribution. Figure[T|shows the
objective value versus iterations and CPU time, where f* is the minimum value across all methods.
ARADMM achieves significantly lower objective values and converges faster than other ADMM.

We also compare ARADMM with the Riemannian subgradient method (RSG) [14} 36] and the
accelerated manifold proximal gradient method (AManPG) [24]]. We set the step size i, = 0.005

Table 2: Comparison with RSG and AManPG for solving with o = 0.01.
Settings RSG AManPG ARADMM
(n,m,p) Obj CPU Obj CPU Obj CPU

(300,20,8) -3.9517 0.7970 -4.2671 0.8555 -4.4071 0.4264
(400, 30, 10) -5.5595 1.1105 -5.8129 1.0796 -6.0378 0.5383
(500, 40, 12) -7.1168 1.9584 -7.3048 1.3820 -7.6569 0.6888
(600, 50, 14) -7.2259 25911 -7.4608 1.7482 -7.9029 0.8701

Table 3: Comparison with ALM-type methods for solving . Here “Spa” denotes the sparsity level,
defined as the proportion of entries with a magnitude less than 10~4.

Settings ALMSSN ALMSRTR ARADMM
(n,m,p, i) Obj CPU Spa Obj CPU Spa Obj CPU Spa

(1500, 20, 8,0.5) 6.0212 1.6349 93.10 4.0169 12679 98.38 3.9552 0.9417 99.93
(2000, 40, 10,0.6) 8.9390 2.7063 94.03 59553 19281 99.85 59190 1.3272 99.95
(2500, 60, 12,0.8) 9.4527 29387 99.61 95296 3.6644 9995 94747 1.8394 99.96
(3000, 80, 15, 1) 15.7085 4.7114 94.65 14.8418 4.4791 99.96 14.8470 2.2669 99.97

for RSG, while the code of AManPG is provided by [25]. For ARADMM, we set g = ¢y = 103,
po = 102, cp=1land c; = 10~%. The termination rules are the KKT conditions with an accuracy
tolerance of 108, Table [2|shows that ARADMM consistently achieves lower objective values at a
significantly faster rate than RSG and AManPG, demonstrating both efficiency and solution quality.

Finally, we compare with two ALM-type algorithms: ALMSSN [55]] and ALMSRTR [51]], which
use a semismooth Newton method and a Riemannian trust region method, respectively, to solve the
augmented Lagrangian subproblem on manifolds. The codes for these algorithms are obtained from
related work. The parameters for ARADMM and the termination rules follow the same settings as in
above experiments. From Table[3] we can see that ARADMM generates sparse solutions faster than
ALMSSN and ALMSRTR, especially when p is large.

4.2 Regularized Linear Classifier Over Sphere Manifold

Consider a classification task involving training pairs {a;, b; } Y ,, where a; € R™ and b; € {—1,1}
for all ¢ € [IN]. The objective is to estimate a linear classifier parameter x on the sphere manifold

§ml .= {x € R™ : 2"z = 1} that minimizes a smooth nonconvex loss [54, 52] with £;-
regularization:
N) 5
! 1= 25
wEHSl}’p*1 P < 1+ eXp(—bixTai)> + MHZEHM (25)

For data generation, the true parameter x is sampled from A/(0, I,,,). and projected onto S™~ . The
features {a; f\il are sampled independently and the labels b, are set to 1 if z'a; + ¢ > 0, where
noise ¢; ~ N (0,0?), and -1, otherwise. All algorithms use the identical random initialization and
terminate when |F(Xy41) — F(X})| < 107® or after 500 iterations, with = 0.2 fixed in (23).

We set vo = pg = ¢, = 100, ¢, = 1 and ¢, = 0.05 for ARADMM, and use the same settings as in
the SPCA experiments for OADMM. For the other methods, we set penalty parameter p = 150 and
step size 7 = 0.01. From Table[d] we can see that ARADMM and MADMM quickly decrease the
objective value, whereas both ARADMM and SOC achieve a lower objective value of the outputs.
Moreover, ARADMM is more advantageous than existing methods in more challenging scenarios. In
short, ARADMM is more efficient in terms of the CPU time and objective value for test instances.

4.3 Robust Subspace Recovery and Dual Principal Component Pursuit

Robust subspace recovery (RSR) [34] 40]] addresses the challenge of fitting a linear subspace to data
corrupted by outliers. Given a data set Y = [X, O]T" € R™*(P1+P2) where columns of X € R"*P1
span a d-dimensional inlier subspace S, columns of O € R™*P2 represent outliers without a linear

Table 4: Comparison with ADMM-type methods for solving (23).
Settings SOC MADMM RADMM OADMM ARADMM
(m,n,o?) Obj CPU Obj CPU Obj CPU Obj CPU Obj CPU

(200, 1000, 1) 0.7004 1.1009 0.7340 0.0729 0.7340 0.0876 0.7282 0.1024 0.7370 0.0507
(400, 5000,5) 0.6877 2.2876 0.8267 0.1701 0.8267 0.1864 0.7288 0.2799 0.6875 0.1073
(600, 10000, 10) 0.6469 7.8231 0.9216 0.6692 0.9216 0.7153 0.6665 1.0664 0.6464 0.4197
(800, 20000, 50) 0.6606 30.7367 1.0398 2.2673 1.0396 2.7062 0.6871 2.7062 0.6602 1.4167

Table 5: Comparison with ADMM-type methods for solving (27).
Settings SOC MADMM RADMM ARADMM
D (n,p1,p2) obj CPU obj CPU obj CPU obj CPU

4 (30,100,500) 286.5284 1.4835 286.4820 0.7677 286.4599 0.0486 286.3336 0.0057
(40,125,750) 363.2060 2.6384 363.1336 1.4823 363.0977 0.0136 362.8826 0.0119
(50,150,1000) 423.6242 2.7054 423.5769 23196 423.5352 0.0378 423.2783 0.0136

6 (30,100,500) 431.2076 2.4063 431.1518 1.4842 431.1275 0.0160 431.0405 0.0089
(40,125,750) 5427145 2.8961 542.6425 0.7155 542.5957 0.0540 542.4900 0.0112
(50, 150,1000) 637.8058 2.6239 637.7484 0.7584 637.6906 0.0972 637.3598 0.0176

structure, and T' € R(P1+p2)X(P1+P2) ig an unknown permutation matrix, the goal is to recover S or
cluster the points into inliers and outliers. Dual principal component pursuit (DPCP) [44,156] is a
recently proposed approach to RSR that seeks a hyperplane containing all inliers via the nonconvex
nonsmooth optimization:
min [|Y "z, s.t. |z]lz = 1. (26)
rER™

Here Y € R™*P is a given matrix. In [44][56] it is shown that solving yields a vector orthogonal
to S, provided that outliers ps is at most of the order of O(p?). For known d, one can recover S as
the intersection of the p := n — d orthogonal hyperplanes containing X', which amounts to solve the
following matrix optimization problem:

min F(X):= |V X1, st. XX =1I,. 27)

X eRnxp

We focus on the DPCP formulation of the RSR problem, and compare our ARADMM with
SOC [33], MADMM [31]] and RADMM [35]. For ARADMM, we set ¢, = 1, y9 = 700, pg = 5,
¢; = 1072 and ¢, = 0.6. The codes of other methods are provided by [33], where we set the stepsize
7 = 1075. All methods terminate when |F(X}. 1) — F(X})| < 107° or after 5000 iterations. Table
[5]shows that, for all cases, ARADMM consistently achieves lower objective values and very shorter
computation times than SOC, MADMM and RADMM. This efficiency is due to: ARADMM has
a cheap per-iteration complexity, where all steps have closed-form solutions; the adaptive penalty
parameter p;, and the dual step size 7, dynamically balance the enforcement of constraints with the
convergence of the algorithm in an effective manner. More numerical results see Appendix

5 Conclusion

Our work introduces an adaptive Riemannian ADMM (ARADMM) that, for the first time, solves
composite optimization on compact manifolds with a nonsmooth regularizer without any smoothing,
while requiring only one Riemannian gradient evaluation and one proximal update per iteration. By
dynamically tuning both stepsizes and penalty parameters—and carefully relating dual increments
to primal changes—we prove that ARADMM attains the optimal O(e~?) iteration complexity for
finding an e-approximate KKT point, matching the best-known guarantees of smoothing-based
methods at a far lower per-iteration cost. Extensive experiments on sparse PCA and robust subspace
recovery confirm that our adaptive scheme converges faster and yields higher-quality solutions than
existing Riemannian ADMM variants.

Limitations:While ARADMM demonstrates strong theoretical guarantees and practical performance,
our current analysis is limited to a general nonconvex nonsmooth setting without leveraging specific
structural properties such as the Kurdyka—t.ojasiewicz (KL) inequality, which could potentially yield
sharper convergence rates.

10

Acknowledgments

We sincerely thank four anonymous reviewers for their valuable and constructive feedback, which
has greatly improved our work. This work was supported by the following grants: the National Key
Research and Development Program of China (No. 2020YFA(0713504), the National Natural Science
Foundation of China (Grant No. 12471401, 12401419).

References

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds.
Princeton University Press, Princeton, NJ, 2008.

[2] Glaydston C Bento, Orizon P Ferreira, and Jefferson G Melo. Iteration-complexity of gradient,
subgradient and proximal point methods on Riemannian manifolds. Journal of Optimization
Theory and Applications, 173(2):548-562, 2017.

[3] Axel Bohm and Stephen J Wright. Variable smoothing for weakly convex composite functions.
Journal of Optimization Theory and Applications, 188(3):628-649, 2021.

[4] Radu Ioan Bot and Dang-Khoa Nguyen. The proximal alternating direction method of multi-
pliers in the nonconvex setting: convergence analysis and rates. Mathematics of Operations
Research, 45(2):682-712, 2020.

[5] Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University
Press, Cambridge, England, 2023.

[6] Nicolas Boumal, P-A Absil, and Coralia Cartis. Global rates of convergence for nonconvex
optimization on manifolds. IMA Journal of Numerical Analysis, 39(1):1-33, 2019.

[7] Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization. Mathematical Programming, 95(2):329-357,
2003.

[8] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for
nonconvex optimization. SIAM Journal on Optimization, 28(2):1751-1772, 2018.

[9] Shixiang Chen, Shigian Ma, Anthony Man-Cho So, and Tong Zhang. Proximal gradient
method for nonsmooth optimization over the Stiefel manifold. SIAM Journal on Optimization,
30(1):210-239, 2020.

[10] Glaydston de Carvalho Bento, Jodo Xavier da Cruz Neto, and Paulo Roberto Oliveira. A new
approach to the proximal point method: convergence on general Riemannian manifolds. Journal
of Optimization Theory and Applications, 168(3):743-755, 2016.

[11] Kangkang Deng, Jiang Hu, Jiayuan Wu, and Zaiwen Wen. Oracle complexities of augmented
lagrangian methods for nonsmooth manifold optimization. arXiv preprint arXiv:2404.05121,
2024.

[12] Kangkang Deng and Zheng Peng. A manifold inexact augmented lagrangian method for
nonsmooth optimization on riemannian submanifolds in euclidean space. IMA Journal of
Numerical Analysis, 43(3):1653-1684, 2023.

[13] Lahcen El Bourkhissi, Ion Necoara, and Panagiotis Patrinos. Linearized admm for nonsmooth
nonconvex optimization with nonlinear equality constraints. In 2023 62nd IEEE Conference on
Decision and Control (CDC), pages 7312-7317. IEEE, 2023.

[14] OP Ferreira and PR Oliveira. Subgradient algorithm on Riemannian manifolds. Journal of
Optimization Theory and Applications, 97(1):93-104, 1998.

[15] OP Ferreira and PR Oliveira. Proximal point algorithm on Riemannian manifolds. Optimization,
51(2):257-270, 2002.

11

[16] Orizon P Ferreira, Mauricio Silva Louzeiro, and Leandro F Prudente. Iteration-complexity of
the subgradient method on riemannian manifolds with lower bounded curvature. Optimization,
68(4):713-729, 2019.

[17] Saeed Ghadimi and Guanghui Lan. Accelerated gradient methods for nonconvex nonlinear and
stochastic programming. Mathematical Programming, 156(1-2):59-99, 2016.

[18] Ke Guo, DR Han, and Ting-Ting Wu. Convergence of alternating direction method for minimiz-
ing sum of two nonconvex functions with linear constraints. International Journal of Computer
Mathematics, 94(8):1653-1669, 2017.

[19] Le Thi Khanh Hien and Dimitri Papadimitriou. An inertial admm for a class of nonconvex
composite optimization with nonlinear coupling constraints. Journal of Global Optimization,
89(4):927-948, 2024.

[20] Le Thi Khanh Hien and Dimitri Papadimitriou. Multiblock admm for nonsmooth nonconvex
optimization with nonlinear coupling constraints. Optimization, pages 1-26, 2024.

[21] Le Thi Khanh Hien, Duy Nhat Phan, and Nicolas Gillis. Inertial alternating direction method
of multipliers for non-convex non-smooth optimization. Computational Optimization and
Applications, 83(1):247-285, 2022.

[22] Jiang Hu, Xin Liu, Zai-Wen Wen, and Ya-Xiang Yuan. A brief introduction to manifold
optimization. Journal of the Operations Research Society of China, 8(2):199-248, 2020.

[23] Feihu Huang, Songcan Chen, and Heng Huang. Faster stochastic alternating direction method
of multipliers for nonconvex optimization. In International conference on machine learning,
pages 2839-2848. PMLR, 2019.

[24] Wen Huang and Ke Wei. An extension of fast iterative shrinkage-thresholding algorithm to
riemannian optimization for sparse principal component analysis. Numerical Linear Algebra
with Applications, 29(1):e2409, 2022.

[25] Wen Huang and Ke Wei. Riemannian proximal gradient methods. Mathematical Programming,
194(1):371-413, 2022.

[26] Wen Huang and Ke Wei. An inexact Riemannian proximal gradient method. Computational
Optimization and Applications, 85(1):1-32, 2023.

[27] Bo Jiang, Xiang Meng, Zaiwen Wen, and Xiaojun Chen. An exact penalty approach for optimiza-
tion with nonnegative orthogonality constraints. Mathematical Programming, 198(1):855-897,
2023.

[28] Ian T Jolliffe, Nickolay T Trendafilov, and Mudassir Uddin. A modified principal component
technique based on the LASSO. Journal of computational and Graphical Statistics, 12(3):531-
547, 2003.

[29] Michel Journée, Yurii Nesterov, Peter Richtarik, and Rodolphe Sepulchre. Generalized power
method for sparse principal component analysis. Journal of Machine Learning Research,
11(2):517-553, 2010.

[30] Weiwei Kong, Jefferson G Melo, and Renato DC Monteiro. Complexity of a quadratic penalty
accelerated inexact proximal point method for solving linearly constrained nonconvex composite
programs. SIAM Journal on Optimization, 29(4):2566-2593, 2019.

[31] Artiom Kovnatsky, Klaus Glashoff, and Michael M Bronstein. Madmm: a generic algorithm
for non-smooth optimization on manifolds. In Computer Vision—-ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14, pages
680-696. Springer, 2016.

[32] Rongjie Lai and Stanley Osher. A splitting method for orthogonality constrained problems.
Journal of Scientific Computing, 58(2):431-449, 2014.

12

[33] Rongjie Lai, Zaiwen Wen, Wotao Yin, Xianfeng Gu, and Lok Ming Lui. Folding-free global
conformal mapping for genus-0 surfaces by harmonic energy minimization. Journal of Scientific
Computing, 58(3):705-725, 2014.

[34] Gilad Lerman, Michael B McCoy, Joel A Tropp, and Teng Zhang. Robust computation of linear
models by convex relaxation. Foundations of Computational Mathematics, 15(2):363-410,
2015.

[35] Jiaxiang Li, Shigian Ma, and Tejes Srivastava. A Riemannian alternating direction method of
multipliers. Mathematics of Operations Research, 0(0):1-21, 2024.

[36] Xiao Li, Shixiang Chen, Zengde Deng, Qing Qu, Zhihui Zhu, and Anthony Man-Cho So.
Weakly convex optimization over Stiefel manifold using Riemannian subgradient-type methods.
SIAM Journal on Optimization, 31(3):1605-1634, 2021.

[37] Zichong Li, Pin-Yu Chen, Sijia Liu, Songtao Lu, and Yangyang Xu. Rate-improved inexact
augmented Lagrangian method for constrained nonconvex optimization. In International
Conference on Artificial Intelligence and Statistics, pages 2170-2178. PMLR, 2021.

[38] Qihang Lin, Runchao Ma, and Yangyang Xu. Inexact proximal-point penalty methods for
constrained non-convex optimization. arXiv preprint arXiv:1908.11518, 2019.

[39] Zhaosong Lu, Sanyou Mei, and Yifeng Xiao. Variance-reduced first-order methods for deter-
ministically constrained stochastic nonconvex optimization with strong convergence guarantees.
arXiv preprint arXiv:2409.09906, 2024.

[40] Tyler Maunu, Teng Zhang, and Gilad Lerman. A well-tempered landscape for non-convex
robust subspace recovery. Journal of Machine Learning Research, 20(1):1348—-1406, 2019.

[41] Zheng Peng, Weihe Wu, Jiang Hu, and Kangkang Deng. Riemannian smoothing gradient
type algorithms for nonsmooth optimization problem on compact Riemannian submanifold
embedded in Euclidean space. Applied Mathematics & Optimization, 88(3):1-32, 2023.

[42] Mehmet Fatih Sahin, Armin Eftekhari, Ahmet Alacaoglu, Fabian Latorre Gémez, and Volkan
Cevher. An inexact augmented Lagrangian framework for nonconvex optimization with nonlin-
ear constraints. In Proceedings of NeurIPS 2019, pages 13966—13978, 2019.

[43] Hiroyuki Sato. Riemannian optimization and its applications. Springer Cham, Cham, 2021.

[44] Manolis C. Tsakiris and René Vidal. Dual principal component pursuit. Journal of Machine
Learning Research, 19(1):684-732, 2018.

[45] Yifei Wang, Kangkang Deng, Haoyang Liu, and Zaiwen Wen. A decomposition augmented
Lagrangian method for low-rank semidefinite programming. SIAM Journal on Optimization,
33(3):1361-1390, 2023.

[46] Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of ADMM in nonconvex nons-
mooth optimization. Journal of Scientific Computing, 78(1):29-63, 2019.

[47] Meng Xu, Bo Jiang, Ya-Feng Liu, and Anthony Man-Cho So. A Riemannian alternating
descent ascent algorithmic framework for nonconvex-linear minimax problems on Riemannian
manifolds. arXiv preprint arXiv:2409.19588, 2024.

[48] Meng Xu, Bo Jiang, Ya-Feng Liu, and Anthony Man-Cho So. On the oracle complexity of a
Riemannian inexact augmented Lagrangian method for nonsmooth composite problems over
riemannian submanifolds. Optimization Letters, pages 1-19, 2025.

[49] Ganzhao Yuan. Admm for nonsmooth composite optimization under orthogonality constraints.
arXiv preprint arXiv:2405.15129, 2024.

[50] Ron Zass and Amnon Shashua. Nonnegative sparse PCA. Advances in Neural Information
Processing Systems, pages 1561-1568, 2006.

[51] Chenyu Zhang, Rufeng Xiao, Wen Huang, and Rujun Jiang. Riemannian trust region methods
for sc 1 minimization. Journal of Scientific Computing, 101(2):32, 2024.

13

[52] Dewei Zhang and Sam Davanloo Tajbakhsh. Riemannian stochastic variance-reduced cubic
regularized newton method for submanifold optimization. Journal of Optimization Theory and
Applications, 196(1):324-361, 2023.

[53] Junyu Zhang, Shigian Ma, and Shuzhong Zhang. Primal-dual optimization algorithms over rie-
mannian manifolds: an iteration complexity analysis. Mathematical Programming, 184(1):445—
490, 2020.

[54] Lei Zhao, Musa Mammadov, and John Yearwood. From convex to nonconvex: a loss function
analysis for binary classification. In 2010 IEEE international conference on data mining
workshops, pages 1281-1288. IEEE, 2010.

[55] Yuhao Zhou, Chenglong Bao, Chao Ding, and Jun Zhu. A semismooth newton based aug-
mented lagrangian method for nonsmooth optimization on matrix manifolds. Mathematical
Programming, 201(1):1-61, 2023.

[56] Zhihui Zhu, Yifan Wang, Daniel Robinson, Daniel Naiman, Rene Vidal, and Manolis Tsakiris.
Dual principal component pursuit: Improved analysis and efficient algorithms. Advances in
Neural Information Processing Systems, pages 2175-2185, 2018.

A Useful lemmas

The following lemma shows that the Lipschitz continuity of grad f («) can be deduced by the Lipschitz
continuity of V f(z).

Lemma A.1. Suppose that M is a compact submanifold embedded in the Euclidean space, given
z,y € Mand u € T, M, the vector transport T is defined as TY(u) = DR,[E](u), where
y = Ra(€). Denote := max,ecomm) ||D*Ra(:)|| and G := maxzer ||V f ()| Let Ly, be the
Lipschitz constant of P, m over x € M in sense that for any x,y € M, & € R,

1P, 1m(&) = Pr,m (Il < Lyll€]l[lz — yll. (28)
Vi) = Vil <

For a function f with Lipschitz continuous gradient with constant L, i.e.,
L||z — y||, then we have that

lgradf(z) — 7,7 (gradf (y))|| < ((aLy +)G + aL)|[€]]. (29)

Next, we provide the definition of retraction smoothness. This concept plays a crucial role in the
convergence analysis of the algorithm proposed in the following section.

Definition A.1. [I6] Retraction smooth] A function f : M — R is said to be retraction smooth (short
to retr-smooth) with constant £ and a retraction R, if forV x,y € M it holds that

4
Fy) < f(@) + (gradf (@), m) + 5l (30)
wheren € TyM andy = R, (n).
We next demonstrate that @y (x) is retr-smooth with some constant Lj by Definition The
Euclidean gradient V® () has the following form:
Vo (z) = Vf(r) + prA" (A — yry1 — A/ pr)- (31)
The following lemma provides the essential insight.

Lemma A.2. Suppose that Assumption @] holds. If ¢, > 1, there exists finite M such that ®y, is
retr-smooth in the sense that

M
u(Ro(n) < u(a) + (0, grad®i(x)) + —L=]| (32)

foralln € T, M, where M := o*({gs + 0%) + 2GS

Proof. By Assumption [3.1] one can easily shows that V@, is Lipschitz continuous with constant
Uy ¢ + pro?. Since Vi, is continuous on the compact manifold M, there exists G > 0 such that
IV (x)|| < G for all z € M and any k > 0. Then the proof is completed by combining (3) with
Lemma 2.7 in [6]. O

14

B Proof of Section 3.2

We now give the following descent lemma in term of augmented Lagrangian function.
Lemma B.1. Suppose that Assumptions|3.1|hold. Let the sequence {xy, y,)\k}szl be generated by
Algorithm Let pi, = cpkjl/3 and T, = ch‘_l/S, where c, satisfies

1
Cr S M7Cp 2 1 (33)
where M is defined in Lemma[3.1|and G, «, B are defined in Lemmal[A.2] Then
‘CPk+1 (xk+17 Yk+1,)\k+1) - ‘CPk (xk, Yk Ak)

(34)

1 A1 2 Tk
< 4+ r Merr — Mell” — = llgrad, £,, (g, yer1, M) ||
("/kJrl 3 %3+1P%> | + 2 T~ Pk +

Proof. By the step 2 in Algorithm[I] we have
Lo (T, Yrt1, M) < Loy (Thoy Yooy M) 35)
It follows from (T3) and Lemma[AZ2] that

M pp12
Qp(vrt1) < Pr(ar) + (grad®p(zy), —Trgrad Py (v)) + %Hgmdq’k(zk)ﬂz G6)

Tk
< Oy (wg) — ?ngad@k(fﬂk)ﬂza
where the second inequality uses 75, < ﬁ This is due to the fact that p;, = cpkl/ 3 and ¢, satisfies
([22). Therefore, we have from the definition of @, in Algorithm|T]that

-
Loy (Th415 Ykt 1, Ak) < Loy (Ths Yrt1, Ak) — Ek”gra‘dzﬁpk (ks Y1, An) |2 (37
For the dual variable, it follows from (T2) that
Loy (Trg1, Ykt1: Met1) — Lo (Thg1, Y1, M) = — g1 — Xell” (38)
+

Combining (33), and (38)), we have
Lowir (@rg1: Yka1: A1) — Loy, (Th Unr Ak
Loy (Thr1s Yer1, Aer1) = Lo (Trts Y1 A1) + Lo (Trts Yot A1) — Loy (T, Yrr Ak)

k+1 — Pk 1 Tk
<L PR Ay — gt [P+ —— kr = Ml = Elgrad, £, (2, gisr, Ae) |2
2 Vh+1 2
Pk+1 — Pk 1 2 _ Tk
<= A1 — el + A1 — Aell” = - llgrad, Lo, (zk, yes1, Ae) |17
2V Vi+1 2

(39)
where the last inequality uses (I2). Now we bound the first term. Consider p(z) = z1/3, it follows
from the first order characterization that p(z + 1) < p(z) + p/(2) = 2'/% + 127%/3. Then we have
that
%
3p
Plugging this into (39) completes the proof. O

Cp, _
pri1 — pr = cp((k+ 1Y — k1/3) < gpk 2/3 =

a-w‘ =

Lemma B.2. Suppose that Assumptions|3.1|hold. Let the sequence {x, yx, Ak}szl be generated by
Algorithm Let us denote M\, = Aj—1 — Pr—1(AxE — yk), pr = cpkl/?’ and 1, = ¢, k3, where
¢ and ¢, satisfies

.11
cr < mm{a, M},cp > 1. (40)
where C'is defined in the proof and M is given in Lemma[A2] Then
1P, m(=A"Xe) + gradf(zp)|| < 2|lgradLy, _, (w1, Y Au-1) |, (41)
dist(—= ., Oh(yx)) < oacllgradl,, | (Trk—1,yr, \e—1) ||, (42)
E +)\max
Az, — yi|| < % + oaati_1||gradl,, | (Tr—1,Yk, Ae—1) |- (43)

15

Proof of Lemmal[B.2] 1t follows from the formulas of A; and £, , (2, Yk, Ag—1) that

Ak—1))
Ph_1 (44)

grad, Lo, (T, Yk, A1) = Pr,, m (Vf(xk) + pr—1 A" (Azg, — yr, —

= PTTkM (Vf(l‘k) - A*S\k) .

Since that V,.£,, , (zk, Yk, \k—1) is Lipscitz continuous with constant {y ¢ + pi—10%, it follows
from Lemmathat grad, L, | (Zk—1, Y, Ak—1) is Lipschitz continuous with

by = (aLy +)G + allyy + pr-10%) < Cpr_1,
where C := (aL, + ()G + a(fy s + %), which is due to py_; > 1.

1Pr, m (V) = A M) || = llerad, Loy, 2k, yrs As—1) ||
<72k erad, Lo (Tr—1,Yks Ak—1) || + [|lgrad, Lo, (ks Yy, A1) — Tk grad, Lo, (Tk—1, Yk, Ak—1) ||
<|lgrad, L, , (Tr—1, Yk Ae—1) [| + Cpp—1lTe—18rad, Lo, (T—1,Yks Ae—1) ||
<2||grad, L, | (Tk—1,Yr: Ak—1) ||,

where the second inequality follows from Lemma [A.T] and the fact that 7 is isometric, the last
inequality uses 7,1 < ﬁ by the condition for ¢,. It follows from (T4) that

0€ X1 — pr—1(Azi—1 — yr) + Oh(yx).

By the definition of A\, we have that

dist(—Ar, Oh(yx)) = pr—10allzr — x|
< oaapr_1Tk—1|grad, L, | (Tr—1,Yx, Ae—1) ||
<oaalgrad, Ly, | (Tr-1,Yk: Ak—1) [|,

where the first inequality uses (3)), the second inequality follows 75, < 1/Lj, < 1/py, which is implied
by (36). For {@3), it follows that

1
lAzr — yrll = —[|Ax = Ae—1]|
Vi

L+ A
< DTImA 4 G|k — x|
Pk—1
gh +)\m X
< Td +oaamllgrad, Lo, (Tr—1,Yrs Ak-1) [|,
-1

where the first inequality uses (I9), the second inequality follows (3). The proof is completed.
O

Theorem B.1. Suppose that Assumptionshold. Let the sequence {xy, yr, /\k}kK:1 be generated
by Algorithm Let py, = cpkl/?’ and T, = c; k=13, where c., cp satisfy

1 1

¢r <min{—,—, ——=1}, ¢
T = {C’M’16cya20124}’ °

=1, (45)

where G, 8 are defined in LemmalA:2} There exists an constant G such that

K

Tk
> Z”gradﬁpk Tk, ks, M) [P < G
k=1

16

Proof. Combining with Lemmas[3.1]and [B.1]yields
.
Lo (Trr1, Uk, A1) — Loy, (T, Yoy Ar) < _?k‘lgradwﬁpk (Thos Yot 15 i) ||

1 A o1 2v2
+ +L2—— < ML (U + Amax)? + 292105 |2k s1 — zk||2>
Yo+l 3 Via1Pk :

Tk 29k+1 2c50%

< - 7||gradmﬁpk (ks Y1, k) ||2 + (2Jr)(gh + AmaX) (2'7k+1‘7A + p72)|‘xk+1 - $k||2
2 J5 3 Py
Tk 2 (26 1 2 -3 2

< = g lerad Loy (@ yeis W) P+ (s 4 O + Amax

< Sl Ly (nstiss NP+ (g g Kl)

+ 47k+17’]§0{20'124 ngadwﬁpk (‘rka Yk+1, >\k> ||2

T 2c _
<~ Pjgrad, £, (i, M) I+ 2 E7) (4 A)?

¢ Flog(k+2) | 3¢,
where the third inequality follows from (3)) and step 3 in Algorithm[I] and
Pur 2 2 12

Py 3k ¢ klog®(k+2) 3¢
the last inequality follows 7, < ¢, <

)

1 : _ .
T60, Q707 - Summing over k = 1 to K:
K

Tk
E Zngadﬂpk (T, Yt 1, M) 12 < Loy (21,91, M) = Logers (Tr41, Y41 A1)
=1

26, (h + Amax)? 1 2(h + Mnax)?
n y(h +) 3 _ +(h+) DU
Cp klog®(k +2) 3¢p

k=1 k=1

—_——
b c

Now we bound a, b, ¢, respectively. For a, let us denote ¢y, := L, (Tk, Yi, Ax), then we have
b = flar) + hlyi) = (e Az — ye) + B[Ay — 2
= flak) + h(ye) = Akl AzE — i
> Fothe = A (B) (46)
> fu+ hu = Amax(bn + Amax + 04D).

Welet Cy := fi + hs — Amax(n + Amax + 04D), and obtain a < ¢ — C;. For b, following [42],
there exists a constant Co such that

Z T < Cy. (47)

For ¢, since 4/3 > 1, the sequence Z b1 k‘ 4/ 3 s convergence, there exists a constant Cs such that
¢ < C3. Combining with those terms, one concludes that
K

T 2¢c 2
> f lgradL,, (21, yks1,) |2 < Cr 4 (Z2Co + =——C3) (0 + Amax)?- (48)
P cp 3cp

Let us denote G := C; + (QC&CQ + B%Cg)(éh + Amax)?. The proof is completed.
P P

O
Proof of Theorem 3.1} Tt follows from Theorem [B.1] that
K
i dc 1y M) |2
e lleradCo,y (2i-1 v k) | k—(zx:m i
(49)
K
S Z Tk“grad‘cpk—l (xk—layk;)\k—l) ||2 S 4ga
k=[K/2]

17

which implies that

4G
i dc _ e P < ————.
[K/%HSI}CSK llgradl,, | (Th—1,yr, Ae—1) |7 < kK:[K/ﬂ ™ (50)
Now we bound ZkK: (ko) The Since 7 = c+k~1/3 and the function z='/3 is monotonically
decreasing, one has that
K K k+1
doomze Y / a3 da
k=K /2] k=[K/2]"F
=3
—c. k41 2/3—1:2/3]
" a2
3¢, - (51
= S0 [+ 12— (/24 1)
3C 2 1/3
> 3 [2 (1 1) (1 1) - (/24 1)
= SE(E+1)7% > T(K +1)/°,

where the second inequality uses concavity of x2/3. Together with [@9), there exists x € [[K/2], K]
such that 166
P <—

T

leradl,, ., (Zrn—1, Y Ao—1) (K +1)7%/3. (52)

Using (52)) and Lemma|[B.2] it is easily shown that

8VG

IPr,, aa(—A"N) + gradf (o) < ZZ (K + 1)1,

40 400/G
B
which proves the first two term in @ For the last term, we have that

Ch + Amax

Pr—1

(53)

dist(—\,, Oh(y,)) < (K +1)7/3.

H-Axn - yRH < UAaTn—lngradﬁpmfl (xn—la Yss /\n—l) ” +

2 max _
<80’Aa\/; -1/3 K+) 1/3_'_@(1(_2) 1/3 (54)
P

< 8o aay/erG(K — 22/ 4 2 Amed) g gy
Cp
where we use 7, = ¢, (k— 1)V < ¢ (552) 713 < 20, (K —2)7Y3 and pr—1 = ¢,(k—1)1/3 >
cp(E52)1/3 > S (K — 2)/3. Combining with (33) completes the proof. O

18

~ a0

I [--soc
of [--=MADMM @t |=—"MADMM
RADMM

! |—ARADMM

1 |---MADMM
RADMM
w0} [——ARADMM

o |--"MADMM
RADMM
't |—ARADMM

RADMM
—ARADMM
o

10" 10° 0 0 101 0 0° 10 100 0 101 10 10° o 10 s 0 0" 10°
CPU time CPU time CPU time CPU time

1020 @ 700
—-S0C ~--50C —--S0C ’ —--S0C
--~"MADMM --~-MADMM --~-MADMM “ --=-MADMM
RADMM “h RADMM RADMM RADMM
— ARADMM =l — ARADMM - —ARADMM e — ARADMM

0 2000 2500 0 500
I It

(@n=30,p=14 b)yn=30,p=6 ©)n=60,p=14 (dn=60,p=06

Figure 2: Comparison with ADMM-type methods for solving with different (n, p) and (p1, p2) =
(150, 1000).

C More numerical results

This section emphasizes that the condition in (22)) is not essential. Here, we consider the condition
¢, > 1 and focus on the DPCP formulation @ comparing our ARADMM method with SOC [33]],
MADMM [31] and RADMM [35]. For ARADMM, we reset vg = 103 , ¢, = 0.6 and retain pg, ¢, ¢,.
The parameter settings for the baseline algorithms follow [35]]. We report the average results over
10 trials with random initializations in Tables[6]and[7] The function values for the sequence on the
manifold versus CPU time (in seconds) and iteration number are recorded in Figures %d@ Itis
shown that the results remain consistent with those reported using ¢, = 1 in subsection

From a theoretical point of view, the condition appears initially in Lemma[A.2] where it was used to
simplify the expression in the following inequality:

o?(byy +0%) + 2GS

2
- Il

@1(Re(n)) < Pr(x) + (1, grad®y(z)) +

Assuming c, > 1 implies p;, > 1, which simplifies the bound to:

A?(by s+ 0%) +2GB < (Q®(by s + 04) +2GB)px

However, this assumption is not strictly necessary. In fact, we can relax it by identifying a threshold
index k& > 0, such that for all k& > k, we have pr > 1. This does not affect the final convergence
guarantees—the same convergence rate still holds. This type of strategy has been employed in prior
work (e.g., [39]]) to mitigate the reliance on precise problem constants. This is why ¢, = 0.6 also
works well empirically here. In fact, the condition for other parameters can also be eliminated by this
strategy.

Table 6: Numerical results of ADMM-type methods for solving with different (n,p) and
(p1,p2) = (150, 1000).

Settings SOC MADMM RADMM ARADMM
(n,p) Obj CPU Obj CPU Obj CPU Obj CPU
(30,4) 568.6116 6.8864 568.4316 18.0771 569.3725 0.7801 568.3537 0.0244
(30,6) 852.8768 2.0746 852.8180 9.3013 852.8157 0.4351 852.8125 0.0191
(60,4) 366.1369 2.6194 365.8585 162287 365.9267 0.8130 365.6622 0.0245
(60,6) 553.5725 3.6961 553.5749 43.4826 554.0265 1.0868 553.5650 0.1541

19

' [-soc
-~-MADMM

i RADMM

“1 |—ARADMM|

-—S0C
i |~~"MADMM

" RADMM
—ARADMM

-—S0C

af [~-"MADMM
0 RADMM
anf |—ARADMM

' |--=-MADMM

RADMM

| [T—ARADMM

w0
CPU time

0°
CPU time

10" 10°
CPU time

0" 10°
CPU time

--—SOC

----MADMM
RADMM

— ARADMM

-—S0C

-~ MADMM
RADMM

— ARADMM

-—S0C

-~ MADMM
RADMM

—ARADMM

-—S0C

-~ MADMM
RADMM

— ARADMM

(a) p1 = 100, p2 = 600

It

(b) p1 = 100,p2 = 1600 (c) p1 =

Tter

200, p2 = 600

(d) p1 = 200, p2 = 1600

Figure 3: Comparison with ADMM-type methods for solving with different (p1,p2) and

(n,p) = (45,5).

Table 7: Numerical results of ADMM-type methods for solving with different (p;,p2) and

(n,p) = (45,5).
Settings SOC MADMM RADMM ARADMM
(p1,p2) obj CPU obj CPU obj CPU obj CPU
(100,600) 317.0240 1.9779 316.9943 29.2210 317.3680 0.8800 316.8880 0.0238
(100,1600) 859.3896 3.5202 859.3150 26.3167 859.3417 0.2115 859.0431 0.0206
(200,600) 356.6751 2.5096 356.5580 30.6229 357.4611 0.8100 356.4748 0.0273
(200,1600) 908.4715 5.2544 908.0242 12.7438 909.4992 0.7122 907.8516 0.1086

20

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

i Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

ii Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Sec. conclusion

Guidelines:

21

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

iii Theory assumptions and proofs

iv

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

22

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

v Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will release the code after the review process.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

vi Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

vii

viii

ix

Answer: [Yes]
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Guidelines:

24

https://neurips.cc/public/EthicsGuidelines

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

x Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

xi Safeguards

Xii

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

25

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

xiii New assets

Xiv

XV

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Guidelines:

26

paperswithcode.com/datasets

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

xvi Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related works
	Notation

	Preliminary
	Riemannian optimization
	Stationary point and proximal operator

	Riemannian ADMM
	Challenges in bounding dual updates in Riemannian ADMM
	Adaptive Riemannian ADMM

	Applications and Numerical Experiments
	Sparse Principal Component Analysis
	Regularized Linear Classifier Over Sphere Manifold
	Robust Subspace Recovery and Dual Principal Component Pursuit

	Conclusion
	Useful lemmas
	Proof of Section 3.2
	More numerical results

