
On the Emergence of “Useless” Features in Next Token Predictors

Mark Rofin 1 Jalal Naghiyev 2 Michael Hahn 1

Abstract

Why do models trained for next token predic-
tion (NTP) learn to compute abstract features that
appear to be useless for this task? We formal-
ize three mechanisms of feature development in
Transformers, differing in their role in NTP, and
propose a method to estimate the influence of
each mechanism on the emergence of specific fea-
tures. We study this distinction experimentally by
analyzing the representations of models trained
on synthetic tasks, as well as those of an LLM.
Our findings shed light on how Transformers de-
velop and use hidden features, and how the NTP
objective affects the training outcome.

1. Introduction
Large Language Models are usually pretrained with the
objective of next token prediction (NTP). In this paradigm,
a model learns to predict each token in a sequence given all
previous tokens: in other words, it learns the distribution
p(xt+1 | x1 · · ·xt).

Thus, at each position, the model is incentivized to compute
features that help predict the immediate next token. Hence,
one could reasonably expect that the hidden representations
at position t, computed by a model trained in this way,
would contain only the information relevant for predicting
xt+1. However, a growing body of work on LLMs (and
NTP-trained Transformers in general) shows that they
know much more than that. For example, Transformers
reconstruct abstract features of the input text (Templeton
et al., 2024; Park et al., 2024b), infer the high-level structure
of the processes generating their training data, forming
‘world models’ (Li et al., 2023; Karvonen, 2024; Shai et al.,
2024), or implicitly predict the sequence multiple tokens
ahead (Pal et al., 2023; Wu et al., 2024). Motivated by these
intriguing findings, we ask:

1Saarland University 2Independent. Correspondence to: Mark
Rofin <mrofin@lst.uni-saarland.de>.

ICML 2025 Workshop on Assessing World Models. Copyright
2025 by the author(s).

Why do Transformers trained for NTP learn features that
don’t help in the prediction of the immediate next token?

Towards answering this question, we develop a classification
of features represented in Transformers. Based on the struc-
ture of information flow in causally masked Transformers,
we show that features can be classified into three distinc-
tive categories, which we refer to as direct, pre-cached, and
shared. We then use our framework to understand the roles
of those feature categories in Transformers trained on toy
tasks (§3.2), Othello transcripts (§3.3), and language (§4.2).

2. Possible Causes of Feature Emergence
2.1. Definitions

We use X to denote a variable-length input space of se-
quences x1 . . . xn. We view a model Tθ as representing a
function x1 . . . xn → x̂2 . . . x̂n+1 such that

x̂i+1(x) = hL+1
θ (rLi) r0θ,i(x) = h0

θ(xi)

rkθ,i(x) = hk
θ(r

k−1
1 . . . rk−1

i), k > 1

and rkθ,i(x) ∈ Rd. Here h0
θ and hL+1

θ are embedding and
unembedding layers, respectively, rkθ,i(x) are the values of
the residual stream, and hk

θ are Transformer blocks.

We call a learned feature any linear component of the resid-
ual stream at a specific layer and position ⟨wk

i , r
k
θ,i(x)⟩,

where a vector wk
i ∈ Rd defines the feature direction.

2.2. Information Flow Decomposition

To understand how features arise, we need to interpret the
gradient-based training signal that produces them. For
each training example in the task of NTP, the total loss
L(x, Tθ(x)) is obtained by summing L(xj+1, Tθ(x)j) over
positions j = 1 . . . N − 1. For conciseness, let L stand
for L(x, Tθ(x)), Lj stand for L(xj+1, Tθ(x)j) and L

sg(k,i)
j

stand for Lj , but with a stop-gradient operator applied to
rkθ,i(x) during the computation.

We fix position i and layer k and study all information paths
in the computational graph of the model, classifying them
by how they relate to rkθ,i(x). We argue that the gradient
training signal can flow to θ through three types of paths,
illustrated in Figure 1.

1

On the Emergence of “Useless” Features in Next Token Predictors

Firstly, a gradient signal can come from the immediate NTP
(direct learning). This includes all paths passing through
rkθ,i(x) and x̂i+1, and represents the effect of the informa-
tion encoded in rkθ,i(x) on the prediction of the immediate
next token. These paths are colored green in Figure 1. We
formalize this by comparing the overall gradient with a
gradient after a stop-gradient operator applied:

∇θL
k
i (direct) = ∇θLi −∇θL

sg(k,i)
i (1)

Secondly, the information encoded in rkθ,i(x) affects the loss
at positions j > i because attention heads at those positions
can attend to the position i. Thus, a gradient signal can
come from prediction loss at future positions, after pass-
ing through one or more attention operations (pre-caching).
This component includes the paths passing through rkθ,i and
x̂j , j > i+ 1 (blue in Figure 1).

∇θL
k
i (pre-cached) = ∇θ

∑
j ̸=i

[
Lj − L

sg(k,i)
j

]
(2)

Third, there are paths that do not pass through rkθ,i(x) at
all. Hence, some gradient signal arises independently of
rkθ,i(x). Since Transformer blocks use the same parameters
to perform the computation at every position, this signal
may influence the parameters computing it. We call this
phenomenon circuit sharing and visualize the related paths
in rose in Figure 1.

∇θL
k
i (shared) =

∑
j

∇θL
sg(k,i)
j (3)

The term pre-caching is borrowed from Wu et al. (2024),
who studied it as a possible explanation for the look-ahead
in LLMs. We discuss the relation between our work and Wu
et al. (2024) in Appendix A.

These three components provide an exhaustive decomposi-
tion of the gradient signal:

Theorem 2.1 (Loss gradients decomposition). For any layer
k and position i,

∇θL = ∇θL
k
i (direct) +∇θL

k
i (pre-cached) +∇θL

k
i (shared)

By Theorem 2.1, for each i and k, the total gradients that are
backpropagated to the model parameters after computing
the loss on one training batch can be split into three terms
distinctive in their nature.

2.3. The Causes of Feature Emergence

So far, we have argued that there are three path types along
which the loss signal, via its gradient, can pass to the model
parameters. We now use this decomposition to study the
extent to which a feature is produced, over the course of

you need is love

you need isal l

Figure 1. An illustration of the information flow decomposition for
i = 2 and k = 1 into direct, pre-cached, and shared components.
Direct and pre-cached paths must pass through the residual stream
at position i = 2 and layer k = 1; any other path is considered
shared. The turquoise rectangle indicates rk=1

θ,i=2.

training, by each of the three components of the gradient.
To this end, we aim to quantify how much each compo-
nent of the gradient signal pushes the parameters towards
developing a feature.
Definition 2.2. We call a feature mismatch the value

R(x | θ1, θ2, wk
i) =

1

2

(
⟨wk

i , r
k
θ1,i(x)⟩ − ⟨wk

i , r
k
θ2,i(x)⟩

)2
The feature mismatch quantifies how much the projections
of the residual streams onto the feature wk

i differ between
models parameterized by θ1 and θ2.

We now want to quantify the extent to which a single gra-
dient update to an intermediate checkpoint θt narrows the
feature mismatch when compared to the final checkpoint
θ∗. By separately considering the three components of the
gradient signal, we will be able to understand what role they
each have on the development of the feature. We formalize
this in terms of an influence I(θ, x, y | wk

i , θ
∗, G):

Definition 2.3. For a vector G ∈ R|θ|, we call an influence
of G the value

Iki (θ, x, y | wk
i , θ

∗, G) =
d

dε
R
(
x | θ + εG, θ∗, wk

i

) ∣∣∣∣
ε=0

Applying the decomposition from Theorem 2.1, for each
feature, we can define direct influence:

Idirect(w
k
i , θ) = I(θ, x, y | wk

i , θ
∗,∇θL

k
i (direct))

The definitions of pre-cached and shared influences are
analogous.
Remark 2.4 (informal). Consider a model Tθ, trained for
M steps of SGD with a small step size η. Then

R(x | θ0, θ∗, w) ≈ η ·
∑
s∈S

M∑
t=1

I(θt, xt, yt | wk
i , θ

∗,∇θLs)

2

On the Emergence of “Useless” Features in Next Token Predictors

2 4 6 8 10
Sequence Position

0.0

0.2

0.4

0.6

0.8

1.0

Ishared(fk
i)

Idirect(fk
i)

Ipre cached(fk
i)

5 10 15 20
Sequence Position

1.0

0.5

0.0

0.5

1.0

1.5

Ishared(fk
i)

Idirect(fk
i)

Ipre cached(fk
i)

1 2 3 4 5 6
Layer

0.0

0.1

0.2

0.3
Ipre cached (real)

Idirect (real)
Ipre cached (random)

Idirect (random)

Figure 2. Left: integrated influence for the feature “the most frequent token so far” (Majority, M = 10,K = 2). Center: integrated
influence for the feature “preceding token is A” (Conditioned Majority, M = 10,K = 10). Right: integrated influence for the board state
representations as well as random features (Othello). The values are normalized by the sum of components. In the left and center plots,
the white area represents the input phase (M tokens sampled uniformly) and the grey area represents the output phase (K tokens sampled
according to the rules of the task).

Here S = {direct,pre-cached, shared}.

Remark 2.4 holds approximately due to the first-order ap-
proximation of feature mismatch R(x | θt, θ∗, w). Indeed,
expressing the change in feature mismatch at each step
through its gradient and breaking it down into direct, pre-
cached, and shared components leads to the equality above.

The remark shows that each loss component has its own
influence on feature representation at every step of gradient
descent. Integrated over the whole training process, this
influence accounts for the discrepancy between the feature
representation in the beginning and at the end of training1.

Based on Remark 2.4, we can interpret the value
Ĩdirect(w

k
i) ≡

∑
t Idirect(w

k
i , θt) (integrated direct influ-

ence) as the overall impact of the direct loss component on
the emergence of the feature wk

i in the model, and similarly
with the other two components.

We propose to use this decomposition in order to address
the question stated in the introduction, answering which
combinations of direct, shared, and pre-cached gradient
signals produced a feature over the course of training, by
evaluating the relative magnitudes of the three integrated
components Ĩdirect(wk

i), Ĩpre-cached(w
k
i), Ĩshared(w

k
i).

This will allow us to understand how features develop even
when they are not useful for immediate NTP.

3. Experiments
3.1. Method

For a given task, we train a Transformer twice. First, we
do a standard training run, optimizing a Transformer to

1Note that the equality 2.4 does not hold for more complex
optimizers such as Adam due to the nonlinearities in momentum
and adaptive step size.

perform next token prediction. After we obtain the final
checkpoint θ∗, for each feature of interest (for example, the
color of a piece at a given position in the game of Othello),
we train layer- and position-specific linear probes (Alain
& Bengio, 2016; Belinkov, 2022), using the values of the
residual stream of the model as input. Each of those probes
represents one feature direction wk

i .

Next, our target is to understand the reason behind the de-
velopment of the direction wk

i . We retrain the model from
scratch with the same random seed and data order, repeating
the training trajectory of the first run. For each batch in the
training set, we compute Idirect(w

k
i , θ), Ipre-cached(w

k
i , θ),

and Ishared(w
k
i , θ) (details in Appendix C.1). We sum those

values across the batches, obtaining the integrated direct,
shared, and pre-cached influences for each feature.

3.2. Toy Tasks

We first study two toy tasks where we have a clear under-
standing of the circuits required to solve them: Majority
and Conditioned Majority. We train 2-layer Transformers
to solve each task.

In Majority, each example x consists of M tokens sampled
uniformly from the vocabulary of size V , and K tokens
sampled from the set of the most frequent tokens so far:
argmaxt count(t, x⩽M). The task is solved by a simple
uniform attention head computing the most frequent tokens.
We track the influence components of the feature “the most
frequent token so far”. The first M tokens can be predicted
trivially, without this feature, but the last K tokens require
it. Accordingly, the gradient signal for this feature during
training is dominated by shared paths for the first M tokens,
and direct paths at the last K tokens (Figure 2a).

Conditioned Majority is designed to bring out the impor-
tance of pre-caching. The input consists again of two parts:

3

On the Emergence of “Useless” Features in Next Token Predictors

0.0 0.2 0.4 0.6 0.8 1.0
Degree of Pre-caching

101

102

103

N
um

be
r

of
 F

ea
tu

re
s

(L
og

)

Figure 3. The distribution of pre-caching degree in SAE features
of Gemma-2 2B (Layer 15).

M uniformly sampled tokens, followed by K uniform sam-
ples from the set of those tokens that followed the token “A”
most often in the first part. The task requires a combination
of two attention layers akin to induction heads (Olsson et al.,
2022): the first layer attends to the preceding token and
the second layer attends to the tokens succeeding A. We
study the feature “the preceding token is A”. Indeed, the
feature is important for future predictions when extracted
from the first M tokens, whereas it is useless on the last K
tokens. Consequently, the gradient signal over training has
both shared and pre-cached components in the first part, but
only shared components in the second part (Figure 2b).

3.3. Board State Representation in OthelloGPT

Next, we use our method to investigate the emergence of
linear board state representations in Othello. Similar to prior
work (Li et al., 2023; Nanda et al., 2023), we train a model
for NTP on synthetically generated game transcripts. Due
to resource constraints, we use a smaller board of 6×6 cells
instead of the original 8× 8.

We choose the colors of the four pieces in the center of the
board as the features to study. We follow the methodology
from Section 3.1. We also add four random directions in the
residual space to the list of features to serve as baselines.

Results. Influence components across layers, averaged
across random or real features, are shown in Figure 2c.
Unsurprisingly, the features are mostly pre-cached in the
shallow layers; direct influence affects the development of
the features more than pre-caching in all but the first layer.
However, in each layer, pre-caching influence for the board
state features is higher than for the random features, indicat-
ing the development of some circuits transferring the board
state information between positions in every layer.

4. Feature Roles in Trained Models
So far, we have studied the question “Why has a certain
feature emerged during training?”. We now turn to a related,
but distinct question: “What is the role of that feature in

a trained model?”. We approach it by studying whether a
given feature in a trained model serves as direct (useful for
the immediate NTP), pre-cached (involved in information
transfer between positions), or shared (useless for NTP at
that position).

4.1. Measuring Pre-Caching in a Trained Model

The standard way of estimating the causal role of a feature
in a Transformer is an intervention (Mueller et al., 2024):
modifying the activations of a model during the forward
pass to alter the representation of a feature and observing
the changes in predictions. We employ this method to cal-
culate the degree to which a given feature is involved in
pre-caching.

Specifically, given an input, we run a forward pass without
the intervention and record the output distribution at each
step (pj , where j is the position of the prediction). Next,
we run one more forward pass, intervening on a feature at
i-th position, and obtain the predictions under intervention
p′j . Then, we estimate dj = DKL(p

′
j || pj) for each j ⩾ i,

and use the value (
∑

j>i dj)/(
∑

j⩾i dj) as the indicator of
pre-caching degree: how much the feature influences future
tokens compared to the immediate next one.

4.2. Pre-Caching of SAE features in Gemma 2

We employ the method described above to the features of
a State-of-the-Art LLM: Gemma 2 (Gemma Team et al.,
2024). We study the features from the Gemma-Scope
(Lieberum et al., 2024) suite of Sparse Autoencoders for this
model. During interventions, we simply ablate the SAE fea-
tures one by one, zeroing out their activations in the hidden
layer of the SAE (details in Appendix C.4).

The results are shown in Figure 3. Pre-caching degree seems
to be distributed according to a power law, with most of the
features being direct-only. The right side of the distribution,
however, is unusually heavy, indicating the presence of a
relatively high number of special pre-caching-only features.
This finding supports the conclusions of Wu et al. (2024):
pre-caching plays a relatively small role in LLMs, but that
role is nevertheless nontrivial at large scale.

5. Discussion and Future Work
Our results indicate that all three forces, namely direct learn-
ing, pre-caching, and circuit sharing, are active in practice,
and it is possible to trace the effect of each on feature learn-
ing. Moreover, the proposed approach can reveal new in-
sights about the causes of emergence of specific features in
particular tasks such as generating Othello games.

Application of our methods to tasks with more complex
and nonlinear features, as well as establishing a precise link

4

On the Emergence of “Useless” Features in Next Token Predictors

between the mechanisms behind feature emergence and the
role of that feature in the final model checkpoint are exciting
future research directions.

Acknowledgements
We thank Yash Sarrof, Aleksandra Bakalova, and Yana Veits-
man for useful discussions and feedback on paper drafts.

References
Alain, G. and Bengio, Y. Understanding intermediate

layers using linear classifier probes. arXiv preprint
arXiv:1610.01644, 2016.

Bachmann, G. and Nagarajan, V. The pitfalls of next-token
prediction. In Proceedings of the 41st International Con-
ference on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, pp. 2296–2318. PMLR,
21–27 Jul 2024. URL https://proceedings.
mlr.press/v235/bachmann24a.html.

Belinkov, Y. Probing classifiers: Promises, shortcomings,
and advances. Computational Linguistics, 48(1):207–219,
2022.

Bereska, L. F. and Gavves, E. Mechanistic interpretability
for ai safety — a review. TMLR, April 2024.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A.,
Conerly, T., Turner, N., Anil, C., Denison, C., Askell, A.,
Lasenby, R., Wu, Y., Kravec, S., Schiefer, N., Maxwell,
T., Joseph, N., Hatfield-Dodds, Z., Tamkin, A., Nguyen,
K., McLean, B., Burke, J. E., Hume, T., Carter, S.,
Henighan, T., and Olah, C. Towards monosemanticity:
Decomposing language models with dictionary learning.
Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D.,
and Dao, T. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. In Interna-
tional Conference on Machine Learning, pp. 5209–5235.
PMLR, 2024.

Dunefsky, J., Chlenski, P., and Nanda, N. Transcoders find
interpretable llm feature circuits. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024.

Engels, J., Liao, I., Michaud, E. J., Gurnee, W., and
Tegmark, M. Not all language model features are lin-
ear. arXiv preprint arXiv:2405.14860, 2024.

Ferrando, J., Sarti, G., Bisazza, A., and Costa-Jussà, M. R.
A primer on the inner workings of transformer-based lan-
guage models. arXiv preprint arXiv:2405.00208, 2024.

Gao, L., la Tour, T. D., Tillman, H., Goh, G., Troll, R.,
Radford, A., Sutskever, I., Leike, J., and Wu, J. Scal-
ing and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Gemma Team, Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahri-
ari, B., Ramé, A., et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Gloeckle, F., Idrissi, B. Y., Roziere, B., Lopez-Paz, D., and
Synnaeve, G. Better & faster large language models via
multi-token prediction. In International Conference on
Machine Learning, pp. 15706–15734. PMLR, 2024.

Hernandez, E., Sharma, A. S., Haklay, T., Meng, K., Watten-
berg, M., Andreas, J., Belinkov, Y., and Bau, D. Linearity
of relation decoding in transformer language models. In
The Twelfth International Conference on Learning Repre-
sentations, 2023.

Jenner, E., Kapur, S., Georgiev, V., Allen, C., Emmons,
S., and Russell, S. J. Evidence of learned look-ahead
in a chess-playing neural network. Advances in Neural
Information Processing Systems, 37:31410–31437, 2024.

Joshi, A., Sharma, V., and Modi, A. CheckersGPT: Learning
world models through language modeling. In Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 4: Student Research
Workshop), pp. 576–588, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-srw.48.

Karvonen, A. Emergent world models and latent variable
estimation in chess-playing language models. In First
Conference on Language Modeling, 2024.

Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H.,
and Wattenberg, M. Emergent world representations:
Exploring a sequence model trained on a synthetic task.
ICLR, 2023.

Lieberum, T., Rajamanoharan, S., Conmy, A., Smith, L.,
Sonnerat, N., Varma, V., Kramár, J., Dragan, A., Shah,
R., and Nanda, N. Gemma scope: Open sparse autoen-
coders everywhere all at once on gemma 2. arXiv preprint
arXiv:2408.05147, 2024.

Lin, J. Neuronpedia: Interactive reference and tooling
for analyzing neural networks, 2023. URL https:
//www.neuronpedia.org. Software available from
neuronpedia.org.

Lindsey, J., Templeton, A., Marcus, J., Conerly, T., Batson,
J., and Olah, C. Sparse crosscoders for cross-layer fea-
tures and model diffing. Transformer Circuits Thread,

5

https://proceedings.mlr.press/v235/bachmann24a.html
https://proceedings.mlr.press/v235/bachmann24a.html
https://www.neuronpedia.org
https://www.neuronpedia.org

On the Emergence of “Useless” Features in Next Token Predictors

2024. URL https://transformer-circuits.
pub/2024/crosscoders/index.html.

Monea, G., Joulin, A., and Grave, E. Pass: Parallel specula-
tive sampling. arXiv preprint arXiv:2311.13581, 2023.

Mueller, A., Brinkmann, J., Li, M. L., Marks, S., Pal, K.,
Prakash, N., Rager, C., Sankaranarayanan, A., Sharma,
A. S., Sun, J., et al. The quest for the right mediator:
A history, survey, and theoretical grounding of causal
interpretability. CoRR, 2024.

Nanda, N., Lee, A., and Wattenberg, M. Emergent lin-
ear representations in world models of self-supervised
sequence models. In Belinkov, Y., Hao, S., Jumelet,
J., Kim, N., McCarthy, A., and Mohebbi, H. (eds.),
Proceedings of the 6th BlackboxNLP Workshop: An-
alyzing and Interpreting Neural Networks for NLP,
pp. 16–30, Singapore, December 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.
blackboxnlp-1.2. URL https://aclanthology.
org/2023.blackboxnlp-1.2.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. In-context learn-
ing and induction heads. Transformer Circuits Thread,
2022. https://transformer-circuits.pub/2022/in-context-
learning-and-induction-heads/index.html.

Pal, K., Sun, J., Yuan, A., Wallace, B., and Bau, D. Future
lens: Anticipating subsequent tokens from a single hidden
state. In Proceedings of the 27th Conference on Computa-
tional Natural Language Learning (CoNLL), Singapore,
December 2023.

Park, K., Choe, Y. J., Jiang, Y., and Veitch, V. The geometry
of categorical and hierarchical concepts in large language
models. In ICML 2024 Workshop on Theoretical Founda-
tions of Foundation Models, 2024a.

Park, K., Choe, Y. J., and Veitch, V. The linear representa-
tion hypothesis and the geometry of large language mod-
els. In International Conference on Machine Learning,
pp. 39643–39666. PMLR, 2024b.

Piotrowski, M., Riechers, P. M., Filan, D., and Shai,
A. S. Constrained belief updates explain geometric
structures in transformer representations. arXiv preprint
arXiv:2502.01954, 2025.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rai, D., Zhou, Y., Feng, S., Saparov, A., and Yao, Z.
A practical review of mechanistic interpretability for
transformer-based language models. arXiv preprint
arXiv:2407.02646, 2024.

Shai, A., Teixeira, L., Oldenziel, A., Marzen, S., and Riech-
ers, P. Transformers represent belief state geometry in
their residual stream. Advances in Neural Information
Processing Systems, 37:75012–75034, 2024.

Templeton, A., Conerly, T., Marcus, J., Lindsey, J., Bricken,
T., Chen, B., Pearce, A., Citro, C., Ameisen, E., Jones,
A., Cunningham, H., Turner, N. L., McDougall, C.,
MacDiarmid, M., Freeman, C. D., Sumers, T. R.,
Rees, E., Batson, J., Jermyn, A., Carter, S., Olah,
C., and Henighan, T. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL https:
//transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Wu, W., Morris, J. X., and Levine, L. Do language models
plan ahead for future tokens? In First Conference on
Language Modeling, 2024.

Yuan, Y. and Søgaard, A. Revisiting the othello world model
hypothesis. In ICLR 2025 Workshop on World Models:
Understanding, Modelling and Scaling, 2025.

6

https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html
https://aclanthology.org/2023.blackboxnlp-1.2
https://aclanthology.org/2023.blackboxnlp-1.2
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

On the Emergence of “Useless” Features in Next Token Predictors

A. Related Work
Abstract features in Transformers. Our research is inspired by studies demonstrating that LLMs, and Transformers in
general, learn to implicitly compute high-level features. Without claiming exhaustiveness, we list some of them here.

For various synthetic settings, it has been shown that Transformers implicitly reconstruct the latent variables of the data
generation process, arriving to the so-called “world models”. In the domain of board games, this has been shown for Othello
(Li et al., 2023; Nanda et al., 2023; Yuan & Søgaard, 2025), chess (Karvonen, 2024), and checkers (Joshi et al., 2024). In the
controlled setting of Hidden Markov Models, Shai et al. (2024) and Piotrowski et al. (2025) have shown that Transformers
calculate the belief state of the environment, closely aligned to the theoretically optimal prediction.

A broad field of research has also focused on finding abstract features implicit in general-purpose LLMs. LLMs have
been shown to represent interpretable real-world relations linearly (Park et al., 2024b;a; Hernandez et al., 2023) and
nonlinearly (Engels et al., 2024). Perhaps most well-known, interpretable linear features have been discovered in the internal
representations of LLMs using such techniques as Sparse Autoencoders (Bricken et al., 2023; Templeton et al., 2024; Gao
et al., 2024) or their variants (Lindsey et al., 2024; Dunefsky et al., 2024).

Future token prediction in Transformers. Another line of work studies look-ahead in Transformers: the emergent ability
to predict multiple future tokens despite being trained to predict only one. Pal et al. (2023) show that future token predictions
can be decoded from the internal representations of a pretrained LLM with nontrivial accuracy using probes and learned
prompts. Jenner et al. (2024) find a similar effect in a neural network trained to play chess.

Some recent engineering efforts have been targeted to intentionally elicit look-ahead, using it to improve the performance
and efficiency of Transformers. Cai et al. (2024) and Monea et al. (2023) predict multiple future tokens during decoding to
speed up autoregressive text generation. Gloeckle et al. (2024) introduce an additional term encouraging look-ahead to the
language modeling loss, enhancing both downstream capabilities and inference speed. Bachmann & Nagarajan (2024) use a
similar method to bypass the limitations of the NTP objective.

Most relevant to our work, Wu et al. (2024) investigates the reasons behind the emergence of look-ahead and proposes
two competing hypotheses: breadcrumbs and pre-caching. The pre-caching hypothesis posits that some tokens “prepare
in advance” the information relevant for future tokens (and that information is picked by the look-ahead probes). The
breadcrumbs hypothesis on the contrary, states that the features relevant for predicting the immediate next token are generally
similar to the ones relevant for predicting future tokens, and hence the former can to some extent substitute the latter,
enabling look-ahead. The results of Wu et al. (2024) suggest that the breadcrumbs hypothesis is likely closer to the truth for
LLMs, though pre-caching plays some role in synthetic settings or large-scale models.

We build upon that work and borrow some of its terminology: most importantly, the term “pre-caching”. However, our
contribution is distinct from that of Wu et al. (2024) in several aspects. We investigate breadcrumbs in more detail, breaking
this hypothesis down into direct learning and circuit sharing. Crucially, we make a step from treating pre-caching and
breadcrumbs as two general hypotheses about Transformers’ behavior to the analysis of their roles in development of
specific features. Thus, our contribution can be seen as fine-graining the distinction between pre-caching and breadcrumbs
introduced by Wu et al. (2024) and bringing it down to the level of individual features.

LLM Interpretability Our work broadly relates to the field of LLM interpretability and its subarea of mechanistic
interpretability. We refer the reader to the surveys on this topic for the comprehensive review of its methods: Rai et al.
(2024); Bereska & Gavves (2024); Ferrando et al. (2024).

B. Proof of Theorem 2.1
Theorem B.1 (Restated from Theorem 2.1). For any layer k and position i,

∇θL(x, Tθ(x)) = ∇θL
k
i (direct) (x, Tθ(x)) +∇θL

k
i (pre-cached) (x, Tθ(x)) +∇θL

k
i (shared) (x, Tθ(x)) (4)

7

On the Emergence of “Useless” Features in Next Token Predictors

Where

∇θL
k
i (direct) (x, Tθ(x)) = ∇θL(xi+1, Tθ(x)i)−∇θL

(
xi+1, [Tθ(x)]

sg(i,k)
i

)
, (5)

∇θL
k
i (pre-cached) (x, Tθ(x)) =

∑
j ̸=i

[
∇θL(xj+1, Tθ(x)j)−∇θL

(
xj+1, [Tθ(x)]

sg(i,k)
j

)]
, (6)

∇θL
k
i (shared) (x, Tθ(x)) =

∑
j

∇θL
(
xj+1, [Tθ(x)]

sg(i,k)
j

)
(7)

Proof.

∇θL(x, Tθ(x)) = ∇θL
(
x, Tθ(x)

)
+∇θL

(
x, [Tθ(x)]

sg(i,k)
)
−∇θL

(
x, [Tθ(x)]

sg(i,k)
)
=

=

N−1∑
j=1

∇θL
(
xj+1, [Tθ(x)]

sg(i,k)
j

)
+

N−1∑
j=1

∇θL
(
xj+1, Tθ(x)j

)
−

N−1∑
j=1

∇θL
(
xj+1, [Tθ(x)]

sg(i,k)
j

)
=

=

∇θL
k
i (shared)︷ ︸︸ ︷

N−1∑
j=1

∇θL
(
xj+1, [Tθ(x)]

sg(i,k)
j

)
+

∇θL
k
i (direct)︷ ︸︸ ︷(

∇θL
(
xi+1, Tθ(x)i

)
−∇θL

(
xi+1, [Tθ(x)]

sg(i,k)
i

))
+

+
∑
j ̸=i

[
∇θL

(
xj+1, Tθ(x)j

)
−∇θL

(
xj+1, [Tθ(x)]

sg(i,k)
j

)]
︸ ︷︷ ︸

∇θLk
i (pre-cached)

C. Additional Experimental Details
C.1. Computing the Influence

In this section, we explain in more detail our methodology for computing the gradient influence terms during training.

By Definition 2.3,

Iki (θ, x, y | wk
i , θ

∗, G) =
d

dε
R
(
x | θ + εG, θ∗, wk

i

) ∣∣∣∣
ε=0

A simple application of chain rule gives us an equivalent definition:

Iki (θ, x, y | wk
i , θ

∗, G) =
〈
∇θR

(
x | θ, θ∗, wk

i

)
, G

〉
Thus, computing the influence of a given gradient term can be done by taking the inner product of that gradient term and the
gradient of the feature mismatch.

Thus, to compute Idirect(w
k
i , θ), Ipre-cached(w

k
i , θ), and Ishared(w

k
i , θ) for a given i and k, we employ the following

algorithm. First, we calculate ∇θLj for every j in a standard way. Next, we calculate ∇θL
sg(k,i)
j in a similar manner, but

during the forward pass of the model we detach the tensor corresponding to rkθ,i(x). After that, we compute the gradient
decomposition terms according to the definitions in Section 2.2.

The only thing left is the gradient of the feature mismatch. We apply the linear probe defined by wk
i to both rkθ,i(x) and

rkθ∗,i(x) and compute the feature mismatch according to Definition 2.2. We run one more backpropagation to find ∇θR and
take its inner product with the gradient decomposition terms, obtaining the desired influence values.

C.2. Toy Tasks Experiments

For both Majority and Conditioned Majority, we generate training datasets of 100k objects using vocabulary size 3 (tokens
“A”, “B”, “C”) and the input phase length M = 10. The output phase length K is 2 for Majority and 10 for Conditioned

8

On the Emergence of “Useless” Features in Next Token Predictors

Majority. We increased K for Conditioned Majority because we had observed that with low K, the strength of the training
signal was insufficient to learn the task, leading to overfitting.

We train tiny Transformers with 2 layers and a hidden dimension of size 32. We use the architecture of GPT-2 (Radford
et al., 2019). The models are trained for 2k steps with a batch size 128, a constant learning rate 10−3 and Adam optimizer.

The hidden representations for probing are extracted from the residual stream after the first Transformer block. All results
are averaged across 5 runs with different random seeds.

C.3. Othello Experiment

Following the methodology of Li et al. (2023), we generate a synthetic dataset of one million legal Othello games. The size
of the board in our experiment is 6× 6. Each token represents a coordinate pair (x, y) of the cell where a piece is placed
during the move.

Same as in the toy experiments, our model has the architecture similar to GPT-2. We use 6 Transformer layers and hidden
dimension 256. The model is trained for 4k steps with a batch size 1024 and a constant learning rate 5 · 10−4.

After training, the accuracy of legal move prediction is 0.98.

When training linear probes for the extraction of the piece color at a given position, we follow Nanda et al. (2023) and
encode the pieces belonging to the player making the move as 1, and the pieces belonging to the other player as -1.

C.4. LLM Experiment with Gemma 2

Here, we provide additional details on our methodology for evaluating the pre-caching degree of features in Gemma 2 2B
(Gemma Team et al., 2024).

We use the Gemma-Scope SAE release (Lieberum et al., 2024), specifically the SAE trained at the residual stream at layer
15 with 16k hidden features.

For each of those features, we run the following algorithm. We extract the top 5 sequences by the strength of the activation
of that feature from Neuronpedia API (Lin, 2023). Then, for those sequences we run our algorithm of measuring pre-caching
degree described in Section 4.1.

Let N be the length of the sequence. First, we run a forward pass and save the predicted logits at each position. Then, for
every i ∈ 1 . . . N , we run a forward pass again, but setting the activation of the SAE feature under study at position i (and
only there) to 0. We record the predictions under ablation and, comparing them to the predictions without the ablation,
calculate the pre-caching degree as described in Section 4.1. We track the change in prediction up to the distance of 10
tokens to the position under ablation.

We average the results across positions and sequences. This way, for each of the 16k hidden features of the SAE, we get
the estimate of its pre-caching degree. The aggregated results are shown in Figure 3, and the examples of the discovered
features with high pre-caching degree are listed below.

C.5. The Features with the Highest Pre-Caching Degree

This section demonstrates the examples of activating strings for the features with the highest pre-caching degree. For each
feature, we print an activating sequence here and show the effect of this feature on predictions for that sequence in Figure 4.
The sequences are obtained through Neuronpedia API (Lin, 2023).

The newlines are replaced with spaces and the ablated tokens are marked with **.

Note that all of those sequences turn out to be snippets of computer code. This may hint that the pre-cached features are
most needed in the domain of code generation, and that is why the top 5 pre-cached features we found are related to code.
We do not investigate this hypothesis in detail.

9

On the Emergence of “Useless” Features in Next Token Predictors

Feature 5106:

/ / T h i s s o u r c e f i l e i s p a r t ** o f ** t h e S w i f t . org open s o u r c e p r o j e c t
/ / / / C o p y r i g h t (c) 2 0 1 4 − 2 0 1 8 A p p l e I n c . and t h e S w i f t

p r o j e c t a u t h o r s / / L i c e n s e d u n d e r Apache L i c e n s e v 2 . 0 w i t h
Run t ime L i b r a r y E x c e p t i o n / / / / S e e h t t p s : / /

Feature 14059:

<bos> package o r g . base x . query . f u n c . v a l i d a t e ; i m p o r t o r g . base x
** . ** query . * ; i m p o r t o r g . base x . query . f u n c . * ; i m p o r t o r g . base x
. query . v a l u e . i t e m . * ; i m p o r t o r g . base x . u t i l . * ; / * * * F u n c t i o n
i m p l e m e n t a t i o n . * * @ a u t h o r Base X Team 2 0 0 5 − 2

Feature 14626:

O b j e c t HideFlags : 0 m Corre spond ing Source O b j e c t : { f i l e I D **:** 0 }
m P re fa b I n s t a n c e : { f i l e I D : 0 } m P re fa b A s s e t : { f i l e I D : 0

} m Name : F l o o r m Shader : { f i l e I D : 4 8 0 0 0 0 0 , g u i d : 9
3 3 5 3 2 a

Feature 6928:

S t r i n g W r i t e r ; i m p o r t o r g . apache . t i k a ** .** T i k a ; i m p o r t o r g . apache .
t i k a . e x c e p t i o n . T i k a E x c e p t i o n ; p u b l i c c l a s s App { p u b l i c

s t a t i c v o i d main (S t r i n g [] a r g s) { t r y

Feature 2656:

. xml . i n t i d = i t e m . g e t I t e m I d * * () ;** / / n o i n s p e c t i o n Simp l i f
i a b l e I f S t a t e m e n t i f (i d == R . i d . a c t i o n s e t t i n g s) {
r e t u r n t r u e ; }

Feature 7125:

. s e r v i c e s . r e k ogn i t i o n . model . t r a n s f o r m ; i m p o r t com . amazonaws ** .**
s e r v i c e s . r e k ogn i t i o n . model . * ; i m p o r t com . amazonaws . t r a n s f o r m .
S i mp le Type Json Un m a r s h a l l e r s . * ; i m p o r t com . amazonaws . t r a n s f o r m . * ;
i m p o r t com . amazonaws . u t i l . j s o n . Aws Json Reader ; / * * * JSON un
m a r s h a l l e r f o r PO JO Emot ion * / c l a s s Emot ion

10

On the Emergence of “Useless” Features in Next Token Predictors

1 5 10
0.0
0.1
0.2
0.3
0.4
0.5
0.6

KL
 D

iv
er

ge
nc

e

Feature 5106

1 5 10
0.0

0.2

0.4

0.6

0.8

1.0
Feature 14059

1 5 10
0.0
0.1
0.2
0.3
0.4
0.5
0.6

KL
 D

iv
er

ge
nc

e

Feature 14626

1 5 10
0.0

0.2

0.4

0.6

0.8

1.0
Feature 6928

1 5 10
Distance from Ablated Token

0.0

0.1

0.2

0.3

0.4

0.5

0.6

KL
 D

iv
er

ge
nc

e

Feature 2656

1 5 10
Distance from Ablated Token

0.0

0.2

0.4

0.6

Feature 7125

Figure 4. The difference between the predicted token distributions with and without ablation depending on the distance from the ablated
token. The data from one sequence is plotted for each feature.

11

