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Abstract

We introduce a new, highly challenging benchmark and a dataset – FungiTastic1

– based on data continuously collected over a twenty-year span. The dataset2

originates in fungal records labeled and curated by experts. It consists of about3

350k multi-modal observations that include more than 650k photographs from 5k4

fine-grained categories and diverse accompanying information, e.g., acquisition5

metadata, satellite images, and body part segmentation. FungiTastic is the only6

benchmark that includes a test set with partially DNA-sequenced ground truth of7

unprecedented label reliability. The benchmark is designed to support (i) standard8

close-set classification, (ii) open-set classification, (iii) multi-modal classification,9

(iv) few-shot learning, (v) domain shift, and many more. We provide baseline10

methods tailored for almost all the use-cases. We provide a multitude of ready-to-11

use pre-trained models on HuggingFace and a framework for model training. A12

comprehensive documentation describing the dataset features and the baselines are13

available at GitHub and Kaggle.14

1 Introduction15

Biological problems provide a natural, challenging setting for benchmarking image classification16

methods. Consider the following aspects inherently present in biological data. The species distribution17

is typically seasonal and influenced by external factors such as recent precipitation levels. Species18

categorization is fine-grained, with high intra-class and inter-class variance. The distribution is often19

long-tailed; for rare species, only a very limited number of observations is available. New species20

are being discovered, raising the need for the “unknown” class option. Commonly, the set of classes21

has a hierarchical structure, and different misclassifications may have very different costs. Think22

of mistaking a poisonous mushroom for an edible one, which is potentially lethal, and an edible23

mushroom for a poisonous one, which at worse means coming back with an empty basket. Similarly,24

needlessly administering anti-venom after making a wrong decision about a harmless snake bite may25

be unpleasant, but its consequences are incomparable to not acting after a venomous bite.26

The properties of biological data listed above enable testing of, e.g., both open-set and closed-set27

categorization methods, robustness to prior and appearance domain shift, performance with limited28

training data, and dealing with non-standard losses. In contrast, most common benchmarks operate29

under the independent and identically distributed (i.i.d.) assumption, which is made valid by shuffling30

data and randomly splitting it for training and evaluation. In real-world applications, i.i.d data are31

rare since training data are collected well before deployment and everything changes over time [37].32
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Data sources play an important role in benchmarking. In the age of LLMs and VLMs trained on33

possibly the entire content of the internet at a certain point in time, it is critical to have access to34

new, “unseen” data to guarantee that the tested methods are not evaluated on data they have indirectly35

“seen”, without knowing. Conveniently, many domains in nature are of interest to experts and the36

general public, who both provide a continuous stream of new and annotated data. The general public’s37

involvement introduces the problem of noisy training data; evaluating robustness to this phenomenon38

is also of practical importance.39

In the paper, we introduce FungiTastic, a comprehensive multi-modal dataset of fungi observations40

which takes advantage of the favourable properties of natural data discussed above. The fungi41

observations include photographs, satellite images, meteorological observations, segmentation masks,42

and textual metadata. The metadata enrich the observations with attributes such as the timestamp,43

camera settings, GPS location, and information about the substrate, habitat, and biological taxonomy.44

By incorporating various modalities, the dataset support a robust benchmark for multi-modal classi-45

fication, enabling the development and evaluation of sophisticated machine learning models under46

realistic and dynamic conditions.47

Classification of data originating in nature, including images of birds [3, 35], plants [13, 15], snakes48

[6, 24], and fungi [25, 34], has been used for benchmarking machine learning algorithms in several49

Fine-Grained Visual Categorization challenges; for a summary, see Table 1. Most of the commonly50

used datasets are small for current standards; the number of classes is also limited. The performance51

is often saturated, reaching total accuracy between 85-95 %; see the rightmost column of Tab. 1.52

Typically, the datasets are solely image-based and focused on traditional image classification; few53

of them offer basic attributes in metadata. Moreover, many popular datasets suffer from specific54

problems, e.g., regional, racial and gender biases [32], errors in labels [33, 4], and are saturated in55

accuracy.56

Table 1: Common image classification datasets selected according to Google Scholar citations. We
list suitability for closed-set classification (C), open-set classification (OS), few-shot (FS), segmenta-
tion (S), out-of-distribution (OOD) and multi-modal (MM) evaluation and modalities, e.g., images
(I), metadata (M), and masks (S), available for training. ∀ = {C, OS, FS, S, OOD, MM}

Modalities SOTA†

Dataset + citations (2022-24) Classes Training Test I M S Tasks Accuracy

Oxford-IIIT Pets [23] 1,060 37 1,846 3,669 ✓ – – C 97.1 [12]
FGVC Aircraft [21] 1,190 102 6,732 3,468 ✓ – – C 95.4 [2]
Stanford Dogs [17] 680 120 12,000 8580 ✓ – – C 97.3 [2]
Stanford Cars [19] 2,060 196 8,144 8,041 ✓ – – C 97.1 [20]
CUB-200-2011 [35] 1,910 200 5,994 5,794 ✓ ✓ ✓ C 93.1 [7]
NABirds [33] 283 555 48,562 - ✓ – – C, FS, MM 93.0 [10]
PlantNet300k [14] 30 1,081 243,916 31,112 ✓ – – C 92.4 [14]
ImageNet-1k [9] 21,200 1,000 1,281,167 100,000 ✓ – – C, FS 92.4 [11]
iNaturalist [34] 727 5,089 579,184 95,986 ✓ – – C, FS 93.8 [30]
ImageNet-21k [27] 456 21,841 14,197,122 - ✓ – – C, FS 88.3 [30]

DF20 [25] 42 1,604 266,344 29,594 ✓ ✓ – C 80.5 [25]
DF20–Mini [25] 42 182 32,753 3,640 ✓ ✓ – C 75.9 [25]

FungiTastic — 2,829 433,701 91,832 ✓ ✓ ✓ ∀ 75.3
FungiTastic–Mini — 215 46,842 10,738 ✓ ✓ ✓ ∀ 74.8
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The key contributions of the proposed FungiTastic benchmark are:57

• It includes diverse data types, such as photographs, satellite images, meteorological observations,58

segmentation masks, and textual metadata, providing a rich, multi-modal benchmark.59

• Each observation is annotated with attributes like timestamp, camera metadata, location (longitude,60

latitude, elevation), substrate, habitat, and biological taxonomy, facilitating detailed studies and61

advanced classification tasks.62

• It addresses real-world challenges such as domain shifts, open-set, and few-shot classification,63

providing a realistic benchmark for developing robust machine learning models.64

• The dataset supports various evaluation protocols, including standard classification with novel-class65

detection, non-standard cost functions, time-sorted data for test-time adaptation methods, and66

few-shot classification.67

• The test and validation data have not been published before and thus remain unseen by large68

language models (LLMs) and vision-language models (VLMs), maintaining the integrity and69

robustness of the evaluation process.70

2 The FungiTastic Dataset71

FungiTastic fungi is built on top of selected observations submitted to the Atlas of Danish Fungi72

before the end of 2023. Each observation includes at least one photograph and it is accompanied by73

additional metadata, see Figure1. In total, there are more than 650k images from 350k observations.74

The metadata include a multitude of attributes such as the timestamp, the camera settings, location75

(longitude, latitude, elevation), substrate, habitat, and taxonomy label. Not all observations have all of76

the attributes annotated, but the species attribute, which forms the basis for the primary classification77

task, has been annotated for all of the observations. Additionally, many images feature body-part78

segmentation masks and are supplemented by satellite images or meteorological data.79

Temporal division reflecting the natural seasonality in fungi distribution is provided to ensure a80

standardized approach for training and model evaluation. The FungiTastic–train dataset consists81

of all observations up to the end of 20211, the FungiTastic–val and FungiTastic–test datasets82

encompass all observations from 2022 and 2023, respectively.83

We define two types of classes, "unknown," with no examples in the training set; the remaining84

classes are tagged "known". The unknown classes are used in evaluations of open-set recognition.85

The open-set classification tasks are challenging as many of the unknown species look similar to the86

known ones. The closed-set validation and test sets include only classes present in the training set.87

1the DF20 [25] training set with observations until the end of 2020 is a subset

user provided photographs (the knife left for scale) satellite image

Date: 2023-10-13 Habitat: Natural grassland Substrate: Soil
Location: 56.84, 9.01 Taxon label: Agaricus fissuratus Elevation: 28.5m

Figure 1: An observation in FungiTastic includes one or more images of a specimen (three leftmost
columns) and possibly some of its parts, such as the microscopic image of its spores (second from
the right). Metadata available for virtually all observations are listed at the bottom. Geospatial
information is available for all observations (right), DNA sequencing for a subset.
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Figure 2: Long-tailed distribution of classes (species) in the FungiTastic–M dataset sorted by
frequency on the training set and color-coded by the set frequency, showing class prior shift between
the training, test, and validation sets. The classes are sorted by their frequency on the training set.
The number of classes in these sets are 215, 193, and 196, respectively. Best viewed in Zoom.

FungiTastic–M, where M is for mini, is a compact and challenging subset of the FungiTastic88

dataset consisting of all observations belonging to 6 hand-picked genera primarily targeted for89

prototyping. These genera form fruit bodies of the toadstool type with a large number of species. The90

FungiTastic–M comprises 46,842 images (25,786 observations) of 215 species, greatly reducing the91

computational requirements for training. The training, validation and test splits are the same as for92

the full dataset. The long-tailed class (species) distribution can be seen in Figure 2.93

FungiTastic–FS subset, FS for few-shot, is formed by species with less than 5 observations in the94

training set, which were removed from the main dataset. The subset contains 4,293 observations95

encompassing 7,819 images of a total of 2,427 species. As in the FungiTastic – closed set data, the96

split into validation and testing is done according to the year of acquisition.97

Quantitative information about the FungiTastic is overviewed in Table 2.98

Table 2: FungiTastic dataset and benchmarks – statistical overview. We provide the number of
observations, images, and classes for each benchmark and the corresponding dataset. "Unknown
classes" are those with no available data in training. DNA stands for DNA-sequenced data.

Dataset Subset Observations Images Classes Unknown
classes

M
et

ad
at

a

M
as

ks
M

ic
ro

sc
op

ic

FungiTastic – Closed Set

Train. 246,884 433,701 2,829 — ✓ – ✓
Val. 45,616 89,659 2,306 — ✓ – ✓
Test. 48,379 91,832 2,336 — ✓ – ✓
DNA 2,041 5,117 725 — ✓ ✓

FungiTastic–M – Closed Set

Train. 25,786 46,842 215 — ✓ ✓ ✓
Val. 4,687 9,412 193 — ✓ ✓ ✓
Test. 5,531 10,738 196 — ✓ ✓ ✓
DNA 211 645 93 — ✓ ✓ ✓

FungiTastic–FS – Closed Set
Train. 4,293 7,819 2,427 — ✓ – ✓
Val. 1,099 2,285 570 — ✓ – ✓
Test. 998 1,909 566 — ✓ – ✓

FungiTastic – Open Set
Train. 246,884 433,701 2,829 — ✓ – ✓
Val. 47,453 96,756 3,360 1,054 ✓ – ✓
Test. 50,085 97,551 3,349 1,013 ✓ – ✓

FungiTastic–M – Open Set
Train. 25,786 46,842 215 — ✓ – ✓
Val. 4,703 9,450 203 10 ✓ – ✓
Test. 5,587 10,914 230 34 ✓ – ✓
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2.1 Additional observation data99

For approximately 99% of the image observations, visual data is accompanied by metadata, which100

includes information on environmental attributes, location, time, and taxonomy. This metadata is101

usually provided directly by citizen scientists and enables research on combining visual data with102

metadata. We provide around ten frequently completed attributes (see Table 3 for their description),103

with the most important ones listed and described below. Apart from the photographs and metadata104

provided by citizen scientists, we provide a wide variety of additional variables such as satellite105

images, meteorological data, segmentation masks, and textual metadata. In this section, we briefly106

describe the acquisition process for the most important one, and we provide.107

Table 3: Available metadata. For all observations, we provide a comprehensive set of annotations.
For species identification, the metadata allows to improve accuracy; see [10, 25].

Metadata Description

Date of observation Date when the specimen was observed in a format yyyy-mm-dd. Besides, we
provide three additional columns with pre-extracted year, month, and day values.

EXIF Camera device attributes extracted from the image, e.g., metering mode, color
space, device type, exposure time, and shutter speed.

Habitat The environment where the specimen was observed. Selected from 32 values
such as Mixed woodland, Deciduous woodland etc.

Substrate The natural substance on which the specimen lives. A total of 32 values such as
Bark, Soil, Stone, etc.

Taxonomic labels For each observation, we provide full taxonomic labels that include all ranks
from species level up to kingdom. All are available in separate columns.

Location Location data are provided in various formats, all upscaled from decimal GPS
coordinates. Besides the latitude and longitude, we also provide administrative
divisions for regions, districts, and countries.

Biogeographical zone One of the major biogeographical zones, e.g., Atlantic, Continental, Alpine,
Mediterranean, and Boreal.

Elevation Standardized elevation value, i.e., height above the sea level.

Meteorological Data, i.e., climatic variables are vital assets for species identification and distribution108

modeling [1, 16]. In light of that, we provide 20 years of historical time-series values (2000 - 2020)109

of mean, minimum, and maximum temperature and total precipitation for all observations. We also110

provide an additional 19 annual average variables (temperature, seasonality, etc., averaged from 1981111

to 2010). All the data was extracted from climatic rasters available at Chelsa.112

Remote sensing data such as satellite images offer detailed and globally consistent environmental113

information at a fine resolution, making it a valuable resource for identification and other recognition114

tasks. To test the impact of such data and to facilitate easy use of geospatial data, we provide115

RGB satellite images in 128×128 pixel resolution (10m spatial resolution per pixel), centered on116

observation sights. The images were cropped out from rasters publicly available at Ecodatacube. As117

the raster’s raw pixel values might include extreme values, we had to process the data further to be118

in a standardized and expected form. First, we clipped the values at 10,000. Next, the values were119

rescaled to a [0, 1] range and adjusted with a gamma correction factor of 2.5 (i.e., the values were120

raised to the power of 1/2.5). Last but not least, the values were rounded and rescaled to [0, 255].121

Figure 3: Satellite images. RGB images with a 128×128 resolution extracted from Sentinel2 data.
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Body part segmentation masks of fungi fruiting body are essential for accurate identification and122

classification. These morphological features provide crucial taxonomic information distinguishing123

some visually similar species. Therefore, we provide human-verified instance segmentation masks for124

all photographs in the Funtastic mini dataset. We consider various semantic categories such as caps,125

gills, pores, rings, stems, etc. These annotations are expected to drive advancements in interpretable126

recognition methods [28], with masks also enabling instance segmentation for separate foreground127

and background modeling [5]. All segmentation mask annotations were semi-automatically generated128

in CVAT using the Segment Anything Model [18].129

Figure 4: Fruiting body part segmentation. We consider cap, gills, stem, pores, and ring.

3 Challenges and evaluation130

The diversity and unique features of the FungiTastic dataset allow for the evaluation of various131

fundamental computer vision and machine learning problems. We propose four distinct challenges,132

each with its own evaluation protocol. The remainder of this section is dedicated to a detailed133

description of each challenge and the associated evaluation metrics:134

• Fine-grained closed-set classification with heavy long-tailed distribution – Subsection 3.1.135

• Standard closed-set classification with out-of-distribution (OOD) detection – Subsection 3.1.136

• Classification with non-standard cost functions – Subsection 3.3.137

• Classification on a time-sorted dataset for benchmarking adaptation methods – Subsection 3.2.138

• Few-shot classification of species with a small number of training observations – Subsection 3.4.139

3.1 Closed and open set classification140

In closed-sed classification, the set of classes in training and evaluation are the same while open set141

classification addresses scenarios where the input may belong to an unknown category that was not142

available during training. In FungiTastic, new species are being added to the database over time,143

including newly discovered species. The goal of closed-set classification is to develop a model that144

can classify inputs into known categories while open-set classification requires a model that can also145

identify inputs that do not belong to any of the known categories.146

Evaluation: The main evaluation metric is F , the macro-averaged F1-score. For closed-set classifi-147

cation, the evaluation is standard, and for open-set, it is defined as148

F =
1

C

C∑
c=1

Fc, Fc =
2Pc ·Rc

Pc +Rc
, (1)

where Pc and Rc are the recall and precision of class c and C is the total number of classes, including149

the unknown class u.150

The F1-score of the unknown-class, Fu, and the F-score over the known classes, Fk, are also of151

particular interest, with Fk defined as152

FK =
1

|K|
∑
c∈K

Fc, (2)
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where K = {1 . . . C}\{u} is the set of known classes. The Fk also corresponds to the main evaluation153

metric for standard closed-set classification. Additional metrics reported are top-1 and top-3 accuracy,154

defined as155

Acc@k =
1

N

N∑
i=1

1 (yi ∈ qk(xi)) , (3)

where N is the total number of samples in the dataset, xi, yi are the i-th sample and its label and156

qk(x) are the top k predictions for sample x.157

3.2 Temporal Image Classification158

Each observation in the FungiTastic (FungiTastic) dataset is associated with a timestamp, enabling the159

study of how the distribution of different species evolves over time. The distribution of fungi species160

is seasonal and influenced by weather conditions, such as the amount of precipitation in previous161

days. Images from new locations may be included over time. This presents a unique real-world162

benchmark for domain adaptation methods, in particular online, continual and test-time adaptation.163

The challenge test dataset comprises images of fungi ordered chronologically. Consequently, a model164

processing an observation with a timestamp t has access to all observations with timestamp t′ where165

t′ < t.166

Evaluation: The evaluation metrics are the same as those for the open-set recognition problem.167

3.3 Classification beyond 0-1 loss function168

Evaluation of classification networks is typically based on the 0-1 loss function, such as the mean169

accuracy, which applies to the metrics defined for the previous challenges as well. In practice, this170

often falls short of the desired metric since not all errors are equal. In this challenge, we define171

two practical scenarios: In the first scenario, confusing a poisonous species for an edible one (false172

positive edible mushroom) incurs a much higher cost than that of a false positive poisonous mushroom173

prediction. In the second scenario, the cost of not recognizing that an image belongs to a new species174

should be higher.175

Evaluation: A metric of the following general form should be minimized176

L =
1

N

N∑
i=1

W (yi, q1(xi)), (4)

where N is the total number of samples, (xi, yi) are the i-th sample and its label, q1(x) is the top177

prediction for sample x and W ∈ RC×C is the cost matrix, C being the total number of classes. For178

the poisonous/edible species scenario, we define the cost matrix as179

Wp/e(y, q1(x)) =


0 if d(y) = d(q1(x))

cp if d(y) = 1 and d(q1(x)) = 0,

ce otherwise
(5)

where d(y), y ∈ C is a binary function that indicates dangerous (poisonous) species (d(y) = 1),180

cp = 100 and ce = 1. For the known/unknown species scenario, we define the cost matrix as181

Wk/u(y, q1(x)) =


0 if y = q1(x)

cu if y = u and q(x) ̸= u,

ck otherwise
(6)

where cu = 10 and ck = 1.182
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3.4 Few-shot classification183

Not only is the presented dataset highly imbalanced and the rarest species have as few as 1 obser-184

vations, new species are also discovered and added over time. A few-shot segmentation approach185

based on, i.e., metric learning may be preferable both in terms of computational efficiency (retrain-186

ing/finetuning the classifier to incorporate new species may be expensive) and accuracy.187

For these reasons, we exclude the species with less than k observations from the main training set188

and provide a dedicated sub-dataset, the FungiTastic–FS.189

Evaluation: Since the few-shot dataset does not have a severe class imbalance like the other190

FungiTastic subsets, this benchmark’s main metric is top-1 accuracy. The F-1 score and top-k total191

accuracy are also reported. This challenge does not have any “unknown” category.192

4 Baseline Experiments193

In this section, we provide a variety of strong baselines based on state-of-the-art architectures and194

methods for three FungiTastic benchmarks. A set of pre-trained models was trained (inferred in the195

case of the few-shot classification) and evaluated on the relevant FungiTastic benchmarks. Bellow,196

we report results only for the closed-set and few-shot learning, but other baselines will be provided197

later in the supplementary materials, in the documentation, or on the dataset website.198

4.1 Closed-set image classification199

We train a variety of state-of-the-art CNN architectures to establish strong baselines for closed-set200

classification on the FungiTastic and FungiTastic–M. All selected architectures were optimized with201

Stochastic Gradient Descent, SeeSaw loss [36], momentum set to 0.9 and a mini-batch size of 64 for202

all architectures, and a learning rate of 0.01 (except ResNet and ResNeXt where we used LR=0.1),203

which was scheduled based on validation loss. While training, we used a Random Augment [8] data204

augmentation with a magnitude of 0.2.205

Similarly to other fine-grained benchmarks, while the number of params, complexity of the model,206

and training time remain more or less the same as in convnets, the transformer-based architectures207

achieved considerably better performance on both FungiTastic and FungiTastic–M and two different208

input sizes (see Table 4.1). The best performing model, BEiT-Base/p16, achieved Fm
1 just around209

40% which show severe difficulty of proposed benchmark.210

Table 4: Closed-set fine-grained classification FungiTastic and FungiTastic–M A set of selected
state-of-the-art CNN- (top section) and Transformer-based (bottom section) architectures. All reported
metrics show the challenging nature of the dataset. The best result for each metric is highlighted.

FungiTastic–M – 224×224 FungiTastic – 224×224 FungiTastic–M – 384×384 FungiTastic – 384×384

Architectures Top1 Top3 Fm
1 Top1 Top3 Fm

1 Top1 Top3 Fm
1 Top1 Top3 Fm

1

ResNet-50 61.7 79.3 35.2 62.4 77.3 32.8 66.3 82.9 39.8 66.9 80.9 36.3
ResNeXt-50 62.3 79.6 36.0 63.6 78.3 33.8 67.0 84.0 39.9 68.1 81.9 37.5
EfficientNet-B3 61.9 79.2 36.0 64.8 79.4 34.7 67.4 82.8 40.5 68.2 81.9 37.2
EfficientNet-v2-B3 65.5 82.1 38.1 66.0 80.0 36.0 70.3 85.8 43.9 71.6 84.4 40.7
ConvNeXt-Base 66.9 84.0 41.0 67.1 81.3 36.4 70.2 85.7 43.9 71.2 84.2 40.0

ViT-Base/p16 68.0 84.9 39.9 69.7 82.8 38.6 73.9 87.8 46.3 74.9 86.3 43.9
Swin-Base/p4w12 69.2 85.0 42.2 69.3 82.5 38.2 72.9 87.0 47.1 74.3 86.4 43.1
BEiT-Base/p16 69.1 84.6 42.3 70.2 83.2 39.8 74.8 88.3 48.5 75.3 86.7 44.5
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Table 5: Few shot classification on FungiTastic–Few-Shot. (Left) – Pretrained deep descriptors
with the nearest centroid and 1-NN nearest neighbor classification. All pre-trained models are based
on the ViT-B architecture, CLIP, and BioCLIP with patch size 32 and DINOv2 with patch size 16.
(Right)– Standard classification with cross-entropy-loss. Best result for each metric is highlighted.

Model Method Top1 Fm
1 Top3

CLIP [26] 1-NN 6.1 2.8 –
centroid 7.2 2.2 13.0

DINOv2 [22] 1-NN 17.4 8.4 –
centroid 17.9 5.9 27.8

BioCLIP [31] 1-NN 18.8 9.1 –
centroid 21.8 6.8 32.6

Architecture Input size Top1 Fm
1 Top3

BEiT-B/p16 224×224 11.0 2.1 17.4
384×384 11.4 2.1 18.4

ConvNeXt-B 224×224 14.0 2.7 23.1
384×384 15.4 2.9 23.6

ViT-B/p16 224×224 13.9 2.7 21.5
384×384 19.5 3.7 29.0

4.2 Few-shot image classification211

Three baseline methods are implemented. The first baseline is standard classifier training with the212

Cross-Entropy (CE) loss. The other two baselines are nearest-neighbour classification and centroid213

prototype classification based on deep image embeddings extracted from large-scale pretrained vision214

models, namely CLIP [26], BioCLIP [31] and Dinov2 [22].215

Standard deep classifiers are trained with the CE loss to output the class probabilities for each216

input sample. Nearest neighbours classification (k-NN) constructs a database of training image217

embeddings. At test time, k nearest neighbours are retrieved and the classification decision is made218

based on the majority class of the nearest neighbours. Nearest-centroid-prototype classification219

constructs a prototype embedding for each class by aggregating the training data embeddings of the220

given class. The classification is performed based on the image embedding similarity to the class221

prototypes. These methods are inspired by prototype networks proposed in [29].222

While DINOv2 [22] embeddings greatly outperform CLIP [26] embeddings, BioCLIP [31] (CLIP223

finetuned on biological data) outperforms them both, highlighting the dominance of domain-specific224

models. Further, the centroid-prototype classification always outperforms the nearest-neighbour225

methods in terms of accuracy, while nearest-neighbour wins over centroid-prototype in F-score.226

Finally, the best standard classification models trained on the in-domain few-shot dataset underperform227

both Dinov2 and BioCLIP embeddings in F-score, which shows the power of methods tailored to the228

few-shot setup. For results summary, refer to Table 5.229

5 Conclusion230

In this work, we introduced the FungiTastic, a comprehensive and multi-modal dataset and benchmark.231

The dataset includes a variety of data types, such as photographs, satellite images, meteorological ob-232

servations, segmentation masks, and textual metadata. Biological data have many aspects interesting233

to the community such as long-tailed distribution or distribution shift over time. These aspects make234

the FungiTastic a rich and challenging benchmark for developing machine learning models.235

The benchmark’s challenging nature is demonstrated by classification-SOTA-based baselines. The236

best closed-set and few-shot classification models achieve an F-score of only 39.8 and 9.1, respectively,237

unlike many standard benchmarks, where state-of-the-art performance is approaching saturation.238

Limitations. The data distribution is influenced by the data collection process, potentially introducing239

biases where certain species may be overrepresented due to their prevalence in frequently sampled240

areas or collector preferences. Nevertheless, we do not see how these biases could influence the241

image classification method evaluation. Additionally, not all meteorological data are available for242

every observation, which can affect of multi-modal classification approaches relying on such data.243

Future work includes organizing ongoing challenges to monitor progress in image classification in244

various scenarios, regularly adding novel data and increasing the annotation coverage.245
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