
1
  Corresponding author: Fanfei Meng 

 Email: fanfeimeng2023@u.northwestern.edu 439 

 

Vol. 06, No. 2 (2024) 439-452, doi: 10.24874/PES06.02.001 

 

Proceedings on Engineering  

Sciences 
 

www.pesjournal.net 

 

 

 

SAMPLE-BASED DYNAMIC HIERARCHICAL 

TRANSFORMER WITH LAYER AND HEAD 

FLEXIBILITY VIA CONTEXTUAL BANDIT  

 

 

Fanfei Meng 
1
  

Lele Zhang 

Yu Chen 

Yuxin Wang 

Received 29.03.2023. 

Received in revised form 14.06.2023. 

Accepted 21.08.2023. 

UDC – 004.032.26 
 

Keywords: 

AutoML, Network Compression, 

Transformer and Deep Learning 

A B S T R A C T 

Abstract: Transformer requires a fixed number of layers and heads which makes 

them inflexible to the complexity of individual samples and expensive in training 

and inference. To address this, we propose a sample-based Dynamic Hierarchical 

Transformer (DHT) model whose layers and heads can be dynamically configured 

with single data samples via solving contextual bandit problems. To determine the 

number of layers and heads, we use the Uniform Confidence Bound algorithm 

while we deploy combinatorial Thompson Sampling in order to select specific 

head combinations given their number. Different from previous work that focuses 

on compressing trained networks for inference only, DHT is not only 

advantageous for adaptively optimizing the underlying network architecture 

during training but also has a flexible network for efficient inference. To the best 

of our knowledge, this is the first comprehensive data-driven dynamic transformer 

without any additional auxiliary neural networks that implement the dynamic 

system. According to the experiment results, we achieve up to 74% computational 

savings for both training and inference with a minimal loss of accuracy. 

© 2024 Published by Faculty of Engineering  

 

 

 

 

1. INTRODUCTION  
 

Transformers have demonstrated significant success in 

various linguistic tasks, including text classification 

(Shahen et al., 2020; Korthikanti et al., 2023), machine 

translation (Vaswani et al., 2017; Baid et al., 2023), and 

knowledge graphs (Bosselut et al., 2019). These 

achievements are attributed to the powerful multi-head 

attention, which projects sequential tokens into parallel 

attention subspaces at relatively low memory and 

computational costs. Following the transformer 

framework, BERT (Devlin et al., 2019) and GPT-3 

(Brown et al., 2020; Hassani et al., 20203) are proposed 

to train specific linguistic tasks using pre-trained 

weights. 

 

Although transformers are powerful in various aspects, 

it is still difficult to embed such a large network into 

mobile devices constrained by limited power and 

memory, and standard transformer is still expensive in 

both training and inference. Furthermore, traditional 

network compression (Hoffman and Crament, 2019; 

Neil, 2020; Lee and Hwang, 2021) methods require a 

full layer training firstly and then reduce the model size 



Meng et al.,Navigating resilience: analyzing government policies for fostering sustainable MSME  
growth in India 

 440 

through layer-wise network compression or knowledge 

distillation (Hinton et al., 2015; Jiao et al., 2015; Tang 

et al., 2019; Pope et al., 2023; Xiao et al., 2023). On the 

one hand, this two-step compression procedure can be 

of high time complexity. On the other hand, different 

tasks may require different light-weight transformers 

making the uniform compression inflexible. Therefore, 

we would like to design a dynamic, data-driven 

transformer model whose size can be optimized during 

training, skipping the separate compression step while 

maintaining a decent predicting capability. 

 

Inspired by neural architecture search (NAS) and 

network compression (Zoph and Le, 2017; Han et al., 

2016), we propose a sample-based Dynamic 

Hierarchical Transformer (DHT) to bring dynamics to 

both layers and heads and formulate an adaptive 

network routine for every data sample. Instead of highly 

complex neuron-based NAS, we shed light on searching 

for self-attention space and limit the maximum search 

space by first obtaining the number of layers needed for 

a sample, and then moving forward to prune heads 

layer-by-layer to further reduce the network size. In 

order to determine the configurations of layers and 

heads for each sample in a real-time fashion, we 

integrate Uniform Confidence Bound multi-arm 

contextual bandits (UCB) (Li et al., 2010) and 

Thompson Sampling semi-bandits (TSP) (Wang et al., 

2017) into our DHT model, where the UCBs are 

responsible for determining the number of layers as well 

as the number of heads to keep in each layer, and the 

TSB the combination of heads to keep in each layer. 

  

A very unique aspect of our approach is the fact that the 

underlying layers and heads are sample specific, 

exploiting the strategy that customizes the number of 

layers and heads for each single sample. In addition, 

considering the effect of head interactions and the order 

samples appear during training, our work formulate 

rewards of batch level rather than one-step gains, which 

successfully mitigates model performance reductions. 

 

The major contribution of our model is that it alleviates 

researchers in deep learning from fine-tuning 

transformer configurations by learning to fine-tune them 

automatically. Specifically, (i) our work designed a 

dynamic transformer model that may have different, 

customized number of layers, number of heads, or head 

combinations for each individual sample to reduce 

model size and training time, while maintaining good 

predicting performance; (ii) our work pioneered a new 

transformer training mechanism by adopting UCB to 

determine the optimal number of layers and heads and 

adopting TSB to select at each layer the optimal head 

combination for a given sample; (iii) our work study the 

effect of different subsets of transformer heads, while 

former approaches, to the best of our knowledge, merely 

study the effect of each individual head, lacking a more 

holistic observation on multi-head attention pruning that 

we achieve. 

The structure of this paper is as follows. First, our work 

list existing work similar to ours and compare how our 

work is distinct from them in. We further introduce in 

two algorithms upon which our methodology is 

founded. Then, our work introduce our methodology in 

and describe its implementation in. After that, our work 

explain the experiments we perform, and show and 

analyze the result in. Lastly, our work summarize this 

work in. 

 

2. RELATED WORK 
 

Network size compression research is progressing at a 

exhilarating pace. Some offer inspiring insights of 

applying compression to multiple deep models (Hinton 

et al. 2015; Han et al., 2015; Luo et al., 2015; Ullrich et 

al., 2017; Kim et al., 2019; Molchanov et al., 2019), 

while others dynamically compress layers using 

knowledge distillation and network compression for 

efficient inference (Hou et al, 2020; Liu et al., 2020; 

Xiao et al., 2019; Li et al., 2021). With respect to 

transformers, network quantization is developed while 

imposing specific bandwidth precision compatibility for 

devices (Chung et al., 2020; Bhandare et al., 2019). The 

role of each head is revealed and the semantic and 

syntax functions for each corresponding sample are 

visualized (Jo and Myaeng, 2020), allowing the 

development of a head pruning method based on head 

importance score metrics (Michel et al., 2019). 

Furthermore, work has been done to shed light on 

linguistic representations of different heads and employ 

differential L0 normalization to dynamically prune the 

heads (Voita, et al., 2019). 

 

In addition to the head pruning strategy, there are 

methods focusing on explaining attention dynamics. 

One work illustrates similarities among heads to learn 

an optimal attention span for controlling the 

computational time (Sukhbaatar et al., 2020;. Following 

this work, another explores the deployment of deep Q-

learning to achieve a dynamic attention span (Kumar et 

al., 2020). Moreover, adaptive depth of transformers is 

investigated, where the layer depth is determined step-

by-step (Elbayad et al., 2020). 

 

Sample-based architecture trainings (McCallum, 1996; 

Wang et al., 2019; Zhang et al., 2020) are investigated 

for improving training effects by adaptively tackling the 

complexity of each sample. One work reveals the 

variance of a data sample in model training (Chang et 

al., 2017). Following this work, another tests the effect 

of each sample in back-propagation, and reveals that the 

learning effect of a single sample varies for the whole 

network even when the same learning rate is used 

(Lopes et al., 2017). Inspired by the experiment, 

dynamic, sample-based learning rate is proposed to train 

networks more effectively, where the loss is used to 

optimize the learning rate (Takase et al., 2018). 

 



Proceedings on Engineering Sciences, Vol. 06, No. 2 (2024) 439-452, doi: 10.24874/PES06.02.001 

 

 441 

All these works lay foundations for our sample-based 

implementation. However, in addition to the training 

loss, we also utilize such model configuration 

information as the number of model layers and number 

of heads at each layer. Such information serves as 

reward factors that help decide the best model 

configuration for efficient training and inference by 

enabling adaptive underlying network updates. 

Furthermore, our work take a more comprehensive 

approach to multi-head attention pruning, as the 

research study the effect of head combinations instead 

of the effect of individual ones. 

 

3. BACKGROUND 
 

In this section, our paragraph describe the two 

algorithms that serve as the foundation for our 

methodology: Uniform Confidence Bound and 

Thompson Sampling Semi-Bandits. 

 

3.1 Uniform Confidence Bound 
 

Contextual bandit is used to find the actions for d-

dimensional input samples X = {x1,…, xn} ∈ R
d 

given a 

finite arm set Z. The aggregated vector corresponding to 

arm γ with arm feature vector zγ is constructed as wi,γ = 

[xi ; zγ]∈ R
2d 

(for simplicity assume that both have 

dimension d). The aggregated vector corresponding to 

arm γ with arm feature vector zγ is constructed as wk,γ = 

[xk ; zγ]. The expected reward rk,γ with trainable θγ ∈ 

R
2d 

is defined as follows (Li et al., 2010): 

 

  𝑟              
     

 

Let Di,γ ∈ R
k×2d 

be the design matrix reflecting prior 

k sample i and Ci,γ ∈ R
k×2d 

be the reward matrix 

obtained from the previous observations. Following 

regression the optimal parameters θi,r read 

 

         
               

       

 

where λ is the ridge regularization factor. 

 

UCB contextual bandit is summarized in Algorithm 1. 

 

Initialize: Aγ ← λId×d, bγ ← 0d×1 for each arm γ 

Observe features of all arms γ ∈ Z and obtain wi,γ ; 

 

     
     

𝑓        
     √    

   
       

 

Select arm          
 ∈ 

 𝑓    and observe reward 𝑟     

 

                  
  

        𝑟          

 

 
Algorithm 1. UCB contextual bandit 

 

3.2 Thompson Sampling Semi-Bandits 
 

In the architecture, loss is directly related to rewards of 

all contextual bandits, resulting in the obstacles in 

quantifying combinatorial head contribution due to the 

more significant parts that dynamic layers play. Besides, 

it is much tougher to measure combinatorial dynamics 

by modelling continuous value compared with the 

concrete number selections of numerical dynamics. To 

address the issues, our work simplify the observations 

of superarm as binary values, whose feedback is 

polarily classified as one otherwise zero. To this end, 

our work are able to detect the most efficient head 

combinations by dynamically clustering all heads into 

two groups. 

 

Let us assume that reward ri ∈ 0, 1 is Bernoulli 

distributed with Pr(ri = 1|wi,γ ) (Wang et al., 2017) 

 

Let us initialize the mean vector as gi,γ = I2d×1 and 

inverse covariance as sγ = 02d×2d. In order to learn the 

likelihood probability of reward 1, the learnable weight 



Meng et al.,Navigating resilience: analyzing government policies for fostering sustainable MSME  
growth in India 

 442 

vector pi,γ ∈ R
2d 

approximates Ei,γ = Pr(ri = 1|wi,γ ) 

as 

 

            
    

           
       

 

 

where σ is the sigmoid function and N is the normal 

distribution. The learner chooses K actions out of the 

whole set Z, thus the optimal combinatorial subset is 

selected according to the K highest Ei,γ . Here denote 

the optimal subset as 

 

                     
 

After the TSB is executed, our model receive a binary 

reward ri as the feedback of Φ
  

to refresh N. The 

estimation on refreshed ĝγ is to find the maximizer 

(Bishop, 2006): 

 

      
  

  
 

 
∑   

  

   

       
 

 ∑ 𝑜𝑔   𝑟   
        

 

   

     

 

where j is the index of feature dimension of the vector, λ 

is the regularization parameter. Then update sγ 

 

      ∑    
             

            
 

 

   

  

 
4. PROPOSED METHODOLOGY 

 
In this section, we will discuss our sample-based search 

on transformer attention space. Our model begin by 

recalling the multi-head attention and head masking 

mechanism. Then, our paper introduce the definitions of 

states, actions for deciding heads and layers. Lastly, our 

paper demonstrate how to formulate rewards to update 

all contextual bandits based on the searching routine. 

 

Our core objective is to flexibly fabricate multiple 

bandits into the transformer framework to search for 

optimal network update routine given each input. Our 

work design two search modes to demonstrate DHT 

training, constructing UCB as numerical dynamics and 

TSB as combinatorial dynamics for selecting the 

number of heads (layers) and head combinations, 

respectively. 

 

4.1 Multi-Head Attention and Pruning 
 

Given the input feature vector xl ∈ R
d 

at l-th layer of 

an input sample x ∈ R
d

, the pruned multi-attention 

layer function fl(xl) can be formulated as follows 

(Vaswani et al., 2017; Michel et al., 2019) 

 

𝑓      ∑                
      

      
    

  

   

 

where Att is the single-head attention parameterized by 

          
      

      
∈     ,    is the number of 

full heads, and  ℎ is the masking variable with values in 

{0,1} and each value corresponds to heads in relative 

positions. Simplifying the notation of the single 

attention for a head ℎ in Equation ([multi]) as      our 

model define the combinatorial heads as    
               

     
  . If all  ℎs are equal to 1, the 

formula corresponds to the multi-attention layer in a 

vanilla Transformer model. If some  ℎ have values of 0, 

the corresponding heads are pruned in the layer. The 

preserved number of heads is hence    ∑   
  
    

 

4.2 Architecture Space Search 
 

Let the maximum number of layers a Transformer can 

have be  𝐿, sample 𝑥 only needs to go through 𝐿≤ 𝐿 

layers as search limit during training or inference to 

obtain good performance. 

 

To balance the trade-off between searching 

comprehensiveness and computational efficiency, we 

present two searching modes to enhance searching 

flexibility: tree search and integrated search, with the 

former focusing on comprehensiveness and the latter 

efficiency. In the case of tree search, there are two 

UCBs: UCB𝐿 and UCB  to make decisions on 𝐿 and 

  , respectively. UCB𝐿 is executed once to determine 𝐿, 

namely the number of layers a sample 𝑥 needs to go 

through. UCB  and TSB are utilized to jointly 

determine the number of heads to preserve and which 

heads to preserve for each layer, respectively. To speed 

up the training, our work employ UCB  and TSB not 

for every single layer  , but rather for a group of 𝑐 

adjacent layers, to determine the pruning information 

for all 𝑐 layers at once. In the case of integrated search, 

instead of determining the number of layers 𝐿 and the 

number of heads at each layer    separately, our work 

use one complex UCB𝑐𝑝 to determine 𝐿 and   at once, 

i.e. the number of heads to keep at each layer is the 

same. However, our work still apply TSB on every 𝑐 

adjacent layers to determine the combination of heads   
to keep. 

 

The optimal arms are Φ𝐿 , Φ ,  or Φ𝑐𝑝 , and the 

optimal superheads are Φ𝑡𝑠,   at  -th depth. To obtain 

the arm features, our model pass all samples through all 

layers of the full model once, without back propagation. 

For each option of layer numbers in our DHT model 

(i.e. 𝐿=3, 𝐿=6, etc.), our model take all sample outputs 

of the model (feature representation matrices) and 

compute an average as the arm feature for UCB𝐿 

file:///C:/Users/xpboj/Downloads/vertopal.com_method.html%23multi


Proceedings on Engineering Sciences, Vol. 06, No. 2 (2024) 439-452, doi: 10.24874/PES06.02.001 

 

 443 

corresponding to the layer depth. e.g., the arm feature of 

𝐿=3 is the average of all sa ples’ output matrices at the 

end of 3rd layer, the arm feature of 𝐿=6 is the average of 

all sa ples’ output matrices at the end of 6th layer. 

Similarly, to obtain UCB , each sample is randomly 

and evenly assigned a head number given each layer. 

Our model average all sample feature representation 

matrices as the arm feature corresponding to the same 

head number. If the searching mode is complex, the arm 

feature of UCB𝑐𝑝 is the average of all sa ples’ feature 

vector at both corresponding same layer depth and head 

number, such as the arm feature of 𝐿=3, =8 is the 

average of all feature representation matrices at 3rd 

layer with 8 preserved heads. In terms of the arm feature 

of TSB, our model collect all feature representation 

matrices at all layers with all kinds of head numbers, 

and split each vector into    sub-matrices along the 

embedding dimension space. Each averaged sub-matrix 

corresponds to a specific head, formulating the arm 

feature of the corresponding TSB arm feature. Thus 

there are    TSB arms in total. 

 

In the following, our work illustrate both searching 

modes using an example sample 𝑥. Because our model 

need some contextual information of 𝑥 during each 

training epoch, the first 𝑏 layers of the model are kept 

unpruned. All remaining layers are dynamic and 𝑐 is a 

hyperparameter serving as the number of adjacent layers 

UCB  and TSB jointly operate on to determine the 

number of heads and the combination of heads to keep. 

𝑤𝐿, 𝑤 , are the aggregated vectors at  -th layer for 

UCB𝐿 and UCB . 

 

4.2.1 Tree Search 
 

Step 1   = 𝑏 

 
𝑥 initially passes through the first 𝑏 layers to reach state 

𝑆1. Our work combine 𝑥  with the arm feature vector to 

formulate a set of aggregated vector 𝑤𝐿. The weights of 

𝑏 layers are inherited from 𝑡−1. UCB𝐿 selects Φ𝐿  to 

find 𝐿, the number of layers 𝑥 needs to pass through. 

 

Step 2   = 𝑏 

 
𝑥 repasses through the first 𝑏 layers to reach 𝑆2,0, 

during which layer weights are updated through back-

propagation. Our model continue to execute UCB  to 

obtain all    for the next group of of c layer(s). 

Similarly, our model construct the aggregated vector 

𝑤 ,  = [𝑥  ; 𝑍 , ; 𝑒 ], where 𝑒  is a column one-hot 

vector to mark the layer depth. According to Φ ,  , 

TSB is employed to select Φ𝑡𝑠,   to obtain 𝛱 . Note that 

for all upcoming c layer(s), the heads to be pruned are in 

the same relative positions. 

 

Step 3   = 𝑏+𝑜𝑐 

 

Our model increment 𝑜 by one, where 𝑜 is the number 

of times UCB  and TSB have been executed. If  <𝑏+𝐿, 

go back to step 2 and repeat UCB  and TSB; otherwise, 

go to step 4. 

 

Step 4   = 𝑏+𝐿 

 

Our model observe the reward 𝑟Φ𝐿 ,𝑟Φ ,   and 

𝑟Φ𝑡𝑠,   and begins the back-propagation. 

 

4.2.2 Integrated Search 
 

Step 1 and 2  =𝑏 

 

Similar to step 1 and 2 in the tree search, our model first 

utilize UCB𝑐𝑝 to obtain both 𝐿 and   for 𝑥 at 𝑆1. Then, 

𝑥 proceeds through the first 𝑏 layer(s) again and stop at 

𝑆2,0. 

 

Step 3   = 𝑏+𝑜𝑐 

 

Our model increment 𝑜 by one and, if  <𝑏+𝐿, go back to 

step 2 and run the TSB and obtain the head 

combinations 𝛱  with   heads; otherwise, our model 

move forward to step 4. 

 

Step 4   = 𝑏+𝐿 

 

Our model observe the reward 𝑟Φ𝑐𝑝  and 𝑟Φ𝑡𝑠,   and 

begins the back-propagation. 

 

4.3 Reward Formulation 
 

According to the rule of Markov Decision Process, the 

current state depends on the previous one. Therefore, 

our model formulate rewards through comparing loss 

and the number of heads and layers between the current 

batch samples and the past batch samples together to 

maximize the cumulative training rewards. Given a 

sequential input batch samples 𝑋 = {𝑥1,…, 𝑥𝑖} at time 

stamp 𝑡, 𝐿𝑡,𝑖 and  𝑡,𝑖, , the number of layers and heads 

selected for 𝑥𝑡,𝑖, serve as the search limit, and 𝛿𝐿,𝑡,𝑖, 
defined below, is the product of loss and 𝐿𝑡,𝑖. 
 

𝛿       𝑜𝑠𝑠       𝐿     
 

The reward 𝑟Φ𝐿,,  at timestamp 𝑡 for 𝑖-th sample is 

 

𝑟      
    

 ∑ 𝛿       
  

   
  𝑏𝑠

𝛿   

  

where   is the positive hyper-parameter. A smaller 

𝛿𝐿,𝑡,𝑖 in Equation ([eq:r2]) denominator represents 

fewer loss (better training results) and fewer layers 

(fewer costs) for the sample at the ongoing round in 

relative to averaged gains during the last round, so the 

reward will be higher to encourage this trend. 

Similarly, with 𝛽1 and 𝛽𝑐𝑝 as the hyper-parameters for 

head tuning, 𝛿 ,𝑡,𝑖,  and 𝛿𝑐𝑝,𝑡,𝑖,  as the products of 

file:///C:/Users/xpboj/Downloads/vertopal.com_method.html%23eq:r2


Meng et al.,Navigating resilience: analyzing government policies for fostering sustainable MSME  
growth in India 

 444 

loss, number of layers and heads at the  -th layer for 

UCB  and UCB𝑐𝑝, defined below 

𝑟        
  𝛽  

 ∑ 𝛿         
  

   
  𝑏𝑠

𝛿       

  

 

𝑟       
  𝛽   

 ∑ 𝛿        
  

   
  𝑏𝑠

𝛿      

  

 

Inspired by a work that illustrates some positional heads 

steadily contribute significantly and others work 

incrementally or negatively (Voita et al., 2019), we 

simplify our observations of combinatorial heads        

as binary values, where 1 is more effective and 0 is less 

effective when compared with superheads in the 

previous batch         . 

 

𝑟       
   

 𝑟      
  𝑟         

     

 𝑟      
  𝑟         

     
 

 

  passes the first 𝑏 layer weights at last round and stops 

at 𝑆1; 

Run UCB_L 𝑎𝑛𝑑𝑜𝑏𝑡𝑎𝑖𝑛 𝐿←Φ𝐿 ∈𝑍𝐿; 

 

  repasses the first 𝑏 layer weights and stops at 𝑆2,0; 

Run UCB_H 𝑡𝑜𝑜𝑏𝑡𝑎𝑖𝑛   ←Φ ,  ∈𝑍 ; 

 

Run TSB to obtain the head combination         
  

heads; 

 

 ← +𝑐 

 

Sample(s) proceed(s) 𝑐 layer(s) with \emph   heads and 

stops at 𝑆2,; 

 

𝑥 finishes (𝑏+𝐿) layer(s) with adaptive heads and obtain 

the loss of 𝑥; 

 

Receive rewards: 𝑟  
  𝑟    

  𝑟   
  and 𝑟     

  as Equation 

([eq:r2]) - ([eq:r6]); Update all contextual bandits; 

 

5. IMPLEMENTATION 
 

During training, our model first construct arm feature 

vectors for all contextual bandits. Then, our model train 

all samples dynamically by utilizing sample-dependent 

layer and head combination information provided by 

UCB𝐿, UCB  and TSB, as described in Section 4. 

Because each sample corresponds to different number 

of layers, as is determined by UCB𝐿, our model cannot 

directly group samples into batches since our model will 

not have known the appropriate model with the right 𝐿 

layers for those samples. Therefore, our model 

implement a queuing strategy that categorizes each 

sample into a particular queue based on the optimal 

𝐿=𝐿 , determined for it enabling the parallel execution 

of UCBs and TSB. 

 

Let 𝑄={𝑄𝐿1,...,𝑄𝐿𝑛} be a set of queues corresponding 

to a set of layer numbers {𝐿1,...,𝐿𝑛}, where each queue 

has a size of 𝑞. After the execution of UCB𝐿 or UCB𝑐𝑝, 

𝑥𝑡, with 𝐿𝑛 is allocated to the corresponding queue 

Q𝐿𝑛. When the number of samples inside Q𝐿𝑛 reaches 

𝑞, all are dequed to form a batch. Otherwise, samples 

will temporarily stay in the queue and wait for more 

corresponding samples to be added. There is no training 

or inference until one queue is full at 𝑆1. 

 

It is probable that the samples in one queue come from 

different time rounds, so our model just use the 

historical weights of the first 𝑏-th layer to obtain 𝑆1 

without updating any neutral networks until the training 

batch is created. 𝑆2,0 is reached upon all samples 

having passed the first 𝑏-th layers. In this way, our 

model stabilize the accuracy of gradient descent and 

ensure the training effects. Our queuing strategy is 

summarized in Algorithm 3. 

 

Allocate 𝑥𝑖,𝑡 to join 𝑄h𝐿𝑛 at 𝑆1; All samples in 𝑄𝐿𝑛 are 

released and proceed as line 7 - 16 in Algorithm 2; 

 

 𝑒𝑛    
    

 

 
Algorithm 2. Architecture Space Search 



Proceedings on Engineering Sciences, Vol. 06, No. 2 (2024) 439-452, doi: 10.24874/PES06.02.001 

 

 445 

 
Figure 1. Illustration of DHT model training. Here, a solid arrow means the data is pass to model layers and a a 

dotted arrow means the information determined by UCBs and TSBs at a particular state S is used to formulate the 

upcoming c layers in the dynamic model. Our model first determine the number of layers needed for a particular 

sample x, L  in our example. Then, our model put x into a queue corresponding to the required number of layers L . 

Once a queue for L  is filled up, our model compile all samples in the queue to form a batch xL  . Afterwards, our 

model pass xL  through the first b layers in order to obtain such information as the number of heads and head 

combinations for the upcoming c layers. Our model repeat the process o time such that L = b + oc. Lastly, our model 

update our model with rewards computed based on y hat. 

 

Illustration of DHT model training. Here, a solid arrow 

means the data is pass to model layers and a a dotted 

arrow means the information determined by UCBs and 

TSBs at a particular state S is used to formulate the 

upcoming c layers in the dynamic model. Our model 

first determine the number of layers needed for a 

particular sample x, L^* in our example. Then, our 

model put x into a queue corresponding to the required 

number of layers L^*. Once a queue for L^* is filled up, 

our model compile all samples in the queue to form a 

batch bf{x}_{L^*}. Afterwards, our model pass 

bf{x}_{L^*} through the first b layers in order to obtain 

such information as the number of heads and head 

combinations for the upcoming c layers. Our model 

repeat the process o time such that L=b+oc. Lastly, our 

model update our model with rewards computed based 

on y hat. Illustration of DHT model training. Here, a 

solid arrow means the data is pass to model layers and a 

a dotted arrow means the information determined by 

UCBs and TSBs at a particular state S is used to 

formulate the upcoming c layers in the dynamic model. 

Our model first determine the number of layers needed 

for a particular sample 𝑥, 𝐿  in our example. Then, our 

model put 𝑥 into a queue corresponding to the required 

number of layers 𝐿 . Once a queue for 𝐿  is filled up, 

our model compile all samples in the queue to form a 

batch 𝑥𝐿 . Afterwards, our model pass 𝑥𝐿  through the 

first 𝑏 layers in order to obtain such information as the 

number of heads and head combinations for the 

upcoming 𝑐 layers. Our model repeat the process o time 

such that 𝐿=𝑏+𝑜𝑐. Lastly, our model update our model 

with rewards computed based on y hat. 

 

 
Algorithm 3. Queuing Strategy 

 

6. EXPERIMENTS 
 

In this section, our work first describe our experiment 

configurations. Then, the section describes the baseline 

models to be compared with and the dataset on which 

our work run the experiments, and analyze the 

experiment results. 

 

6.1 Reward Formulation 
 

Our work experiment with four configurations under the 

standard 12-layer and 12-head framework. The 

embedding size is 768 and sequence length varies 

among datasets. The hyperparametersc𝑏 and 𝑐 are 3. 

Along with the preset configurations for 𝐿, this 



Meng et al.,Navigating resilience: analyzing government policies for fostering sustainable MSME  
growth in India 

 446 

guarantees that 𝐿−𝑏 is dividable by 𝑜, the number of 

times UCB  and TSB get executed. 

 

Tree-search DHT (T-DHT): Following the tree search 

mode, the options for the number of T-DHT layer (L) 

are 3,6,9,12, and and the options for number of heads 

(H) at each layer are 8,10,12, each corresponding to 70, 

28, 1 type(s) of head combination(s). 

 

Specialized DHT (S-DHT): Following the integrated 

search mode, this configuration only applies specialized 

dynamics to DHT to explore the least contextual bandits 

execution. The available options of UCB𝑐𝑝 are 3L12H, 

6L12H, 9L12H, 12L8H, 12L10H, 12L12H. 

Specifically, 3L12H means the model has three layers 

and each layer has twelve heads. 

 

Full DHT (F-DHT): Following the integrated search 

mode, this configuration concentrates on full dynamics 

for DHT. The available options of UCB𝑐𝑝 are 3L12H, 

6L8H, 6L10H, 6L12H, 9L8H, 9L10H, 9L12H, 12L8H, 

12L10H, 12L12H. 

 

Partial-frozen DHT (P-DHT): First, model training 

follows the configuration of Full DHT (F-DHT) for two 

epochs. Afterwards, our work train all but the last two 

layers by freezing their weights. The available options 

of UCB𝑐𝑝 are 1L8H+2L12H, 1L10H+2L12H, 

1L12H+2L12H, 4L8H+2L12H, 4L10H+2L12H, 

4L12H+2L12H, 7L6H+2L12H, 7L9H+2L12H, 

7L12H+2L12H, 10L8H+2L12H, 10L10H+2L12H, 

10L12H+2L12H. Specifically, 1L8H+2L12H means 

there are three layers in total, where the first layer has 

eight heads and the last two layers have twelve heads 

each. 

 

 

 
Figure 2. The trends of layer number and head number throughout training. It could be observed that the selection 

of 3-layer configuration with 12 heads on each layer becomes dominant as training progresses forward. This indicates 

that our DHT models indeed adapt themselves to reduce com- putational cost for training and inference (From left 

upside to right upside: P-DHT Dynamics for Ag. News: Layer number, head number selection; From left 

downside to right donwside: S-DHT Dynamics for Ag. News: Layer number, head number selection). 

 

6.2 Baselines, Datasets and Analysis 
 

Our work use four text classification datasets (Zhang et 

al., 2016) to evaluate the DHT configurations: Dbpedia 

Dataset (Dbpedia), Ag News Dataset (Ag. News) , 

Yelp Review Polarity Dataset (Yelp.P) and Yelp 

Review Full Dataset (Yelp.F).Ag. News contains 

120,000 training datasets and 7,600 testing datasets with 

four classes. Our work set 128 as sequence length. 

Dbpedia contains 560,000 training datasets and 70,000 



Proceedings on Engineering Sciences, Vol. 06, No. 2 (2024) 439-452, doi: 10.24874/PES06.02.001 

 

 447 

testing datasets with fourteen classes. Our work set 128 

as sequence length. Yelp. P contains 560,000 training 

datasets and 38,000 testing datasets with two classes. 

Our work set 300 as sequence length. Yelp. F contains 

650,000 training datasets and 50,000 testing datasets 

with five classes. Our work set 300 as sequence length. 

 

Floating-point operation (FLOP) is a measure of the 

computational complexity of models. Our work quantify 

computational efficiency using a FLOP ratio regarding 

the full vanilla BERT with 12 layers and 12 heads as the 

baseline. That is, if our configuration is twice as 

efficient as the vanilla BERT model, then our FLOP 

ratio is 0.50x, etc.. In addition, our work record F1-

score to characterize the accuracy of classification tasks. 

 

Our work compare DHT from scratch against three 

baselines, including sample-based lightening, layer only 

distillation and the vanilla BERT model. For the FLOP 

ratio comparison, DHT is compared with baseline 1 

(BL1) for training and with all baselines for inference. 

Baseline 2 and 3 are trained with full layers and heads. 

All FLOP ratios are estimated based on the layer/head 

number selection in comparison with a model with full 

layers and full heads. 

 

BL1: Full Vanilla BERT (12-VaBERT) with 12 layers 

and 12 heads. Our work define our benchmark FLOP 

ratio (1.00x) in training and inference based on its 

FLOP count. 

 

BL2: DistilBERT (Sanh et al., 2020) released by 

Huggingface with 1, 3, 6 distilled layers, where each 

configuration of distilled layers corresponds to FLOP 

ratio of 0.08x, 0.25x, 0.50x regarding 12-VaBERT. 

This is the most classical methods for reducing BERT 

inference complexity. Our work denote them as as 1, 3, 

6-DisBERT, respectively. 

 

BL3: Adaptive sample-based FastBERT using 

knowledge distillation. The decision on depth selection 

relies on the preset inference speedup: 0.1x, 0.5x, and 

0.8x (approximately FLOP ratios of 0.08x, 0.25x, 0.50x 

regarding 12-VaBERT, depending on different 

datasets). Our work denote them as 1, 3, 6-FastBERT, 

respectively. 

 

Table 1. Training Comparisons: Inference F1 scores (F1.) and ratios of the FLOP count of our four DHT configurations 

to that of BL1. 

Datasets 

Models 

Ag. News Dbpedia Yelp. P Yelp. F 

F1. FLOPs F1. FLOPs F1. FLOPs F1. FLOPs 

BL 1 12-VaBERT 0.944 1.00x 0.993 1.00x 0.960 1.00x 0.659 1.00x 

DHT 

T-DHT 0.945 0.42x 0.992 0.43x 0.958 0.47x 0.635 0.45x 

P-DHT 0.935 0.59x 0.993 0.41x 0.955 0.44x 0.634 0.58x 

S-DHT 0.941 0.38x 0.994 0.39x 0.956 0.26x 0.632 0.29x 

F-DHT 0.943 0.59x 0.993 0.58x 0.957 0.29x 0.639 0.43x 

 

Table 2. Inference Comparisons: F1 scores (F1.) and ratios of the FLOP count of our four DHT configurations to that 

of the BL1, BL2 and BL3 

Datasets 

Models 

Ag. News Dbpedia Yelp. P Yelp. F 

F1. FLOPs F1. FLOPs F1. FLOPs F1. FLOPs 

BL 1 12-VaBERT 0.944 1.00x 0.993 1.00x 0.960 1.00x 0.659 1.00x 

BL 2 

6-DisBERT 0.946 0.50x 0.991 0.50x 0.953 0.50x 0.642 0.50x 

3-DisBERT 0.939 0.25x 0.990 0.25x 0.932 0.25x 0.635 0.25x 

1-DisBERT 0.928 0.08x 0.989 0.08x 0.916 0.08x 0.585 0.08x 

BL 3 

6-FastBERT 0.943 0.28x 0.992 0.10x 0.959 0.31x 0.659 0.95x 

3-FastBERT 0.931 0.10x 0.990 0.09x 0.960 0.16x 0.659 0.95x 

1-FastBERT 0.925 0.08x 0.990 0.09x 0.960 0.08x 0.647 0.46x 

DHT 

T-DHT 0.945 0.81x 0.992 0.76x 0.958 0.83x 0.635 0.87x 

P-DHT 0.935 0.39x 0.993 0.41x 0.955 0.28x 0.634 0.35x 

S-DHT 0.941 0.37x 0.994 0.44x 0.956 0.26x 0.632 0.26x 

F-DHT 0.943 0.35x 0.993 0.29x 0.957 0.31x 0.639 0.29x 

 

From Table 1, most DHT training costs are lower than 

0.5 in relative to the vanilla BERT model. In particular, 

the cost of S-DHT is even lower than 0.3 for Yelp. P 

and Yelp. F. That means, in theory, our DHT models 

can be trained more efficiently. From Table 2, DHT 

models also have competitive accuracy with significant 

complexity mitigation. Specifically, in comparison with 

baseline 2, our DHT models outperform the uniform-

level knowledge distillation in both model complexity 

and inference accuracy. In comparison with baseline 3, 

our work have competitive inference performance in 

terms of more economic training costs. That is, even 

though our inference costs are higher than those of 

FastBERT, our accuracy does not decrease as 

dramatically. Integrating both inference and training 

costs, DHT are apparently more advantageous than 

DisBERT. 

 

Furthermore, the mechanism of DHT is different from 

that of DisBERT and FastBERT, where the level of 

computational complexity is reduced in the beginning. 

DHT takes care of training effects and costs 



Meng et al.,Navigating resilience: analyzing government policies for fostering sustainable MSME  
growth in India 

 448 

simultaneously and dynamically, so the accuracy loss is 

minimal even if tremendous speedup, such as 0.26x 

speedup for both training and inference of S-DHT for 

Yelp. P but accuracy loss is only 0.6% in relative to 

vanilla BERT, 0.29x speedup for training and 0.26x for 

inference of S-DHT for Yelp. F but only 4.1% accuracy 

loss, according to Table 2. 

 

 
Figure 3. Loss Trends: P-DHT for Ag. News, S-DHT for Ag. News and F-DHT for Yelp. P 

 

6.3 Dive into the Dynamics: Layer, Head and 

Training Stability 
 

From Figure 2, the 3-layer option is selected less 

frequently in the beginning and more frequently after 5 

episodes. In contrast, other layer options demonstrate 

downtrends as training progresses forward. This 

indicates that, throughout time, the less complex option 

regarding the number of layers is chosen by the trained 

UCB𝐿 model, so training costs are gradually decreasing. 

With respect to head selection, the 12-head option is 

dominant towards the end of the training. 

 

From Figure 3, although the layer routine is adaptive 

across the training, the loss maintains the downtrend 

and then converges smoothly. It proves that the dynamic 

training is effective for mitigating complexity without 

hurting training stability. 

 

7. CONCLUSIONS 
 

Our work propose to search optimal layers and heads 

hierarchically via contextual bandits. Contextual bandits 

are deployed at low costs and successfully reduce the 

computational complexity for both model training and 

inference while maintaining the model performance. 

The objective of DHT is to maintain the model 

performance with self-adaptive training and inference 

mechanism, which takes care of both the goal of 

automatic machine learning (AutoML) and model 

compression. Our work investigate many aspects in the 

paper such as dynamic weights training, weight pruning 

and sample-based training. 

 

Different from traditional network compression 

methods, our approach is customized by layerwise and 

headwise dynamics with more sample-oriented 

flexibility, which means less inference accuracy loss. 

On the other hand, the down-to-top order optimization 

is much more efficient than top-to-down streaming in 

NAS. In the future, the team hope to extend this 

methodology into more deep learning frameworks. 

 

7.1 Sampling Methods 
 

In natural language processing, the input has three 

dimensions, i.e. batch size 𝑏𝑠, sequence length 𝑠  and 

embedding size 𝑒𝑚𝑏, our sampling is based on one 



Proceedings on Engineering Sciences, Vol. 06, No. 2 (2024) 439-452, doi: 10.24874/PES06.02.001 

 

 449 

instance (𝑏𝑠=1). Because each sample corresponds to 

𝑠 ×𝑒𝑚𝑏 features, keeping all features can be very 

memory expensive. Therefore, for all contextual 

bandits, we use mean pooling as the sampling method to 

generate context or arm vectors in order to reduce the 

memory footprint. 

In terms of either 𝑠  or 𝑒𝑚𝑏, we perform mean pooling 

iteratively and interchangeably. The elements in one 

dimension is sequentially and evenly split into: 1, 2, 4, 

6, 8, ..., 2𝑛 parts. Depending on the choice of 𝑛 and 

initial value 𝑚 for 𝑖, we have ∑𝑖=𝑚𝑛2𝑖 sampled 

features for this dimension. For example, if we are 

sampling for the sequence length (𝑠 ) dimension and 

𝑛=2 and 𝑚=0, the new feature is composed of seven 

sampled vectors: mean(𝑠 1,1), mean(𝑠 2,1), 

mean(𝑠 2,2), mean(𝑠 4,1), mean(𝑠 4,2), mean(𝑠 4,3), 

mean(𝑠 4,4). There are two values in each subscript. 

The first one indicates for the selected dimension (i.e. 

𝑠 ) how many parts the original input is split, and the 

second one indicates for which segment of the split 

input we compute the mean value for. 

 

In our experiment, we first sample from 𝑠  and then 

sample from 𝑒𝑚𝑏. Specifically, for UCB𝐿 and UCB𝑐𝑝 

we first sample (1+2)=3 𝑠  features and 4+8+16=26 

𝑒𝑚𝑏 features; for UCB  we first sample (1+2)=3 𝑠  
features and 2+4+8=14 𝑒𝑚𝑏 features; for TSB we first 

sample (1)=1 𝑠  features and 4+8=12 𝑒𝑚𝑏 features. As a 

result, the dimension of the sampled UCB𝐿 and UCB𝑐𝑝 

context vectors is (1,3×36), the dimension of the 

sampled UCB  context vector is (1,3×14) and the 

dimension of the sampled TSB context vector is 

(1,1×12). 

 

7.2 Normalization Methods 
 

In this end, the context vectors are sampled from 

instance representations in time step, so they appear in 

time series and rolling (running) normalization is better 

for fitting linear distributions of users. The 

normalization algorithm is introduced by. 

 

7.3 Contextual Bandits Settings 
 

We set the size of training sample vector of UCB𝐿 

(UCB𝑐𝑝), UCB  and TSB as 168, 87, 13 respectively. 

The learning rate are adaptive to the types of datasets, 

we normally run the whole training process for 3 to 6 

epochs. Each experiment is conducted on NVIDIA GTX 

1080, GTX 2080, Tesla V100 16G GPU separately. 

 

7.4 Supplementary Results and Analysis 
 

We complement analysis on different configurations 

besides Section 6.3. S-IDHT in Figure 7 aligns with the 

trends with Figure 3 in content. From Figure 4 

concerning F-IDHT, 3 layers is also selected mostly but 

the frequency is stable, 6 layers is secondary and stable 

as well. In terms of Figure 6 concerning T-DHT, 12 

layers are the least one firstly and gradually dominant 

(≈ 1.0) after 4 episodes. With regards to head selection, 

12 heads presents downtrend and 8 heads and 12 heads 

are in uptrend for F-IDHT. 8 heads and 12 heads are 

preferable by T-DHT after 3 episodes. 

 

For TSB superhead selection, as long as the incomplete 

multi-heads attentions are chosen, two figures align with 

previous analysis that some heads are less contributive 

to model performances and maintain their roles across 

the training. From loss trends, the tendencies for two 

configurations are the same that training stability is not 

negatively affected by dynamic layer routines. 

 

Acknowledgments: The statements, opinions and 

data contained in all publications are solely those of 

the individual author(s) and contributor(s) and not of 

MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or 

property resulting from any ideas, methods, 

instructions or products referred to in the content. 

 

References: 
 

Baid, G., Cook, D. E., Shafin, K., Yun, T., Llinares-López, F., Berthet, Q., Belyaeva, A., Töpfer, A., Wenger, A. M., 

Rowell, W. J., et al. (2023). DeepConsensus improves the accuracy of sequences with a gap-aware sequence 

transformer. Nature Biotechnology, 41(2), 232–238. 

Bhandare, A., Sripathi, V., Karkada, D., Menon, V., Choi, S., Datta, K., & Saletore, V. (2019). Efficient 8-bit 

quantization of transformer neural machine language translation model. arXiv. https://arxiv.org/abs/1906.00532 

Bishop, C. M. (2006). Pattern recognition and machine learning (Information science and statistics). Springer-Verlag. 

Bosselut, A., Rashkin, H., Sap, M., Malaviya, C., Celikyilmaz, A., & Choi, Y. (2019). COMET: Commonsense 

transformers for automatic knowledge graph construction. arXiv. https://arxiv.org/abs/1906.05317 

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., 

Askell, A., et al. (2020). Language models are few-shot learners. arXiv. https://arxiv.org/abs/2005.14165 

Chang, H. S., Learned-Miller, E., & McCallum, A. (2017). Active bias: Training more accurate neural networks by 

emphasizing high variance samples. Advances in Neural Information Processing Systems, 30, 1002–1012. 

Chung, I., Kim, B., Choi, Y., Kwon, S. J., Jeon, Y., Park, B., Kim, S., & Lee, D. (2020). Extremely low bit transformer 

quantization for on-device neural machine translation. arXiv. https://arxiv.org/abs/2009.07453 

https://arxiv.org/abs/1906.00532
https://arxiv.org/abs/1906.05317
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2009.07453


Meng et al.,Navigating resilience: analyzing government policies for fostering sustainable MSME  
growth in India 

 450 

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for 

language understanding. arXiv. https://arxiv.org/abs/1810.04805 

Elbayad, M., Gu, J., Grave, E., & Auli, M. (2020). Depth-adaptive transformer. arXiv. https://arxiv.org/abs/1910.10073 

Han, S., Mao, H., & Dally, W. J. (2016). Deep compression: Compressing deep neural networks with pruning, trained 

quantization and Huffman coding. arXiv. https://arxiv.org/abs/1510.00149 

Han, S., Pool, J., Tran, J., & Dally, W. J. (2015). Learning both weights and connections for efficient neural networks. 

arXiv. https://arxiv.org/abs/1506.02626 

Hassani, A., Walton, S., Li, J., Li, S., & Shi, H. (2023). Neighborhood attention transformer. In Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6185–6194). 

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv. 

https://arxiv.org/abs/1503.02531 

Hoffman, J. (2019). Cramnet: Layer-wise deep neural network compression with knowledge transfer from a teacher 

network. arXiv. https://arxiv.org/abs/1904.05982 

Hou, L., Huang, Z., Shang, L., Jiang, X., Chen, X., & Liu, Q. (2020). DynaBERT: Dynamic BERT with adaptive width 

and depth. arXiv. https://arxiv.org/abs/2004.04037 

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., Wang, F., & Liu, Q. (2020). TinyBERT: Distilling BERT for 

natural language understanding. arXiv. https://arxiv.org/abs/1909.10351 

Jo, J. Y., & Myaeng, S. H. (2020). Roles and utilization of attention heads in transformer-based neural language models. 

In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 3404–3417). 

Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.acl-main.311 

Kim, H., Khan, M. U. K., & Kyung, C. M. (2019). Efficient neural network compression. In Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 

Korthikanti, V. A., Casper, J., Lym, S., McAfee, L., Andersch, M., Shoeybi, M., & Catanzaro, B. (2023). Reducing 

activation recomputation in large transformer models. In Proceedings of Machine Learning and Systems (Vol. 5). 

Kumar, S., Parker, J., & Naderian, P. (2020). Adaptive transformers in RL. arXiv. https://arxiv.org/abs/2004.03761 

Lee, E., & Hwang, Y. (2021). Layer-wise network compression using Gaussian mixture model. Electronics, 10(1). 

https://doi.org/10.3390/electronics10010072 

Li, L., Chu, W., Langford, J., & Schapire, R. E. (2010). A contextual-bandit approach to personalized news article 

recommendation. In Proceedings of the 19th international conference on World Wide Web - WWW ’10. 

https://doi.org/10.1145/1772690.1772758 

Li, Z., Zhang, Z., Zhao, H., Wang, R., Chen, K., Utiyama, M., & Sumita, E. (2021). Text compression-aided 

transformer encoding. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1. 

https://doi.org/10.1109/TPAMI.2021.3058341 

Liu, W., Zhou, P., Zhao, Z., Wang, Z., Deng, H., & Ju, Q. (2020). FastBERT: A self-distilling BERT with adaptive 

inference time. arXiv. https://arxiv.org/abs/2004.02178 

Lopes, A. T., De Aguiar, E., De Souza, A. F., & Oliveira-Santos, T. (2017). Facial expression recognition with 

convolutional neural networks: Coping with few data and the training sample order. Pattern Recognition, 61, 610–

628. 

Luo, J. H., Wu, J., & Lin, W. (2017). ThiNet: A filter level pruning method for deep neural network compression. In 

Proceedings of the IEEE International Conference on Computer Vision (ICCV). 

McCallum, R. (1996). Hidden state and reinforcement learning with instance-based state identification. IEEE 

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26, 464–473. 

https://doi.org/10.1109/3477.499796 

Michel, P., Levy, O., & Neubig, G. (2019). Are sixteen heads really better than one? In Advances in Neural Information 

Processing Systems (Vol. 32, pp. 14014–14024). Curran Associates, Inc. 

Michel, P., Levy, O., & Neubig, G. (2019). Are sixteen heads really better than one? arXiv. 

https://arxiv.org/abs/1905.10650 

Molchanov, P., Mallya, A., Tyree, S., Frosio, I., & Kautz, J. (2019). Importance estimation for neural network pruning. 

arXiv. https://arxiv.org/abs/1906.10771 

Neill, J. O. (2020). An overview of neural network compression. arXiv. https://arxiv.org/abs/2006.03669 

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury, J., Heek, J., Xiao, K., Agrawal, S., & Dean, J. (2023). 

Efficiently scaling transformer inference. In Proceedings of Machine Learning and Systems (Vol. 5). 

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2020). DistilBERT, a distilled version of BERT: Smaller, faster, 

cheaper and lighter. arXiv. https://arxiv.org/abs/1910.01108 

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1910.10073
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1904.05982
https://arxiv.org/abs/2004.04037
https://arxiv.org/abs/1909.10351
https://doi.org/10.18653/v1/2020.acl-main.311
https://arxiv.org/abs/2004.03761
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1109/TPAMI.2021.3058341
https://arxiv.org/abs/2004.02178
https://doi.org/10.1109/3477.499796
https://arxiv.org/abs/1905.10650
https://arxiv.org/abs/1906.10771
https://arxiv.org/abs/2006.03669
https://arxiv.org/abs/1910.01108


Proceedings on Engineering Sciences, Vol. 06, No. 2 (2024) 439-452, doi: 10.24874/PES06.02.001 

 

 451 

Shaheen, Z., Wohlgenannt, G., & Filtz, E. (2020). Large scale legal text classification using transformer models. arXiv. 

https://arxiv.org/abs/2010.128714 

Sukhbaatar, S., Grave, E., Bojanowski, P., & Joulin, A. (2019). Adaptive attention span in transformers. arXiv. 

https://arxiv.org/abs/1905.07799 

Takase, T., Oyama, S., & Kurihara, M. (2018). Effective neural network training with adaptive learning rate based on 

training loss. Neural Networks, 101, 68–78. 

Tang, R., Lu, Y., Liu, L., Mou, L., Vechtomova, O., & Lin, J. (2019). Distilling task-specific knowledge from BERT 

into simple neural networks. arXiv. https://arxiv.org/abs/1903.12136 

Ullrich, K., Meeds, E., & Welling, M. (2017). Soft weight-sharing for neural network compression. arXiv. 

https://arxiv.org/abs/1702.04008 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). 

Attention is all you need. arXiv. https://arxiv.org/abs/1706.03762 

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., & Titov, I. (2019). Analyzing multi-head self-attention: Specialized 

heads do the heavy lifting, the rest can be pruned. arXiv. https://arxiv.org/abs/1905.09418 

Wang, B., Qiu, M., Wang, X., Li, Y., Gong, Y., Zeng, X., Huang, J., Zheng, B., Cai, D., & Zhou, J. (2019). A minimax 

game for instance-based selective transfer learning. In Proceedings of the 25th ACM SIGKDD International 

Conference on Knowledge Discovery Data Mining (pp. 34–43). Association for Computing Machinery. 

https://doi.org/10.1145/3292500.3330841 

Wang, Y., Ouyang, H., Wang, C., Chen, J., Asamov, T., & Chang, Y. (2017). Efficient ordered combinatorial semi-

bandits for whole-page recommendation. In Proceedings of the Thirty-First AAAI Conference on Artificial 

Intelligence (pp. 2746–2753). AAAI Press. 

Xiao, H., Li, L., Liu, Q., Zhu, X., & Zhang, Q. (2023). Transformers in medical image segmentation: A review. 

Biomedical Signal Processing and Control, 84, 104791. 

Xiao, L., Wang, H., & Ling, N. (2019). Image compression with deeper learned transformer. In Proceedings of the 2019 

Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) (pp. 53–

57). https://doi.org/10.1109/APSIPAASC47483.2019.9023342 

Zhang, L., Guo, L., Gao, H., Dong, D., Fu, G., & Hong, X. (2020). Instance-based ensemble deep transfer learning 

network: A new intelligent degradation recognition method and its application on ball screw. Mechanical Systems 

and Signal Processing, 140, 106681. https://doi.org/10.1016/j.ymssp.2020.106681 

Zhang, X., Zhao, J., & LeCun, Y. (2016). Character-level convolutional networks for text classification. arXiv. 

https://arxiv.org/abs/1509.01626 

Zoph, B., & Le, Q. V. (2017). Neural architecture search with reinforcement learning. arXiv. 

https://arxiv.org/abs/1611.01578 

 

Fanfei Meng 
Department of Electrical and Computer 

Engineering,  

Northwestern University,  

Evanston, 60208, IL,  

United States 

fanfeimeng2023@u.northwestern.edu  

ORCID 0009-0009-9272-0665 

Lele Zhang 
Inistitute of Computing Technology, 

Chinese Academy of Science,  

Beijing,  

100190, China 

zhanglele@ict.ac.cn 

ORCID 0000-0001-9661-2543 

Yu Chen 
Inistitute of Computing Technology, 

Chinese Academy of Science,  

Beijing, 100190,  

China 

chenyu19s@ict.ac.cn 

ORCID 0000-0002-9363-105X 

Yuxin Wang 
Department of Electrical and Computer 

Engineering,  

Northwestern University,  

Evanston, 60208, IL,  

United States 

yuxinwang2023@u.northwestern.edu 

  

 

 

 

 

 

 

  

https://arxiv.org/abs/2010.128714
https://arxiv.org/abs/1905.07799
https://arxiv.org/abs/1903.12136
https://arxiv.org/abs/1702.04008
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1905.09418
https://doi.org/10.1145/3292500.3330841
https://doi.org/10.1109/APSIPAASC47483.2019.9023342
https://doi.org/10.1016/j.ymssp.2020.106681
https://arxiv.org/abs/1509.01626
https://arxiv.org/abs/1611.01578


Meng et al.,Navigating resilience: analyzing government policies for fostering sustainable MSME  
growth in India 

 452 

 


