
Published as a conference paper at ICLR 2025

FROM PROMISE TO PRACTICE: REALIZING
HIGH-PERFORMANCE DECENTRALIZED TRAINING

Zesen Wang†, Jiaojiao Zhang†, Xuyang Wu‡, Mikael Johansson†

†KTH Royal Institute of Technology, ‡Southern University of Science and Technology
{zesen,jiaoz}@kth.se, wuxy6@sustech.edu.cn, mikaelj@kth.se

ABSTRACT

Decentralized training of deep neural networks has attracted significant attention for
its theoretically superior scalability compared to synchronous data-parallel methods
like All-Reduce. However, realizing this potential in multi-node training is chal-
lenging due to the complex design space that involves communication topologies,
computation patterns, and optimization algorithms. This paper identifies three key
factors that can lead to speedups over All-Reduce training and constructs a runtime
model to determine when and how decentralization can shorten the per-iteration
runtimes. To support the decentralized training of transformer-based models, we
introduce a decentralized Adam algorithm that overlaps communications with
computations, prove its convergence, and propose an accumulation technique to
mitigate the high variance caused by small local batch sizes. We deploy our solu-
tion in clusters with up to 64 GPUs, demonstrating its practical advantages in both
runtime and generalization performance under a fixed iteration budget1.

1 INTRODUCTION

With the rapid advancement of deep neural networks (DNNs), distributed training has become
the mainstream approach for efficiently scaling up models. Among the various parallelization
strategies, data parallelism has emerged as the most straightforward and commonly used approach for
distributing training across multiple devices. One of the most popular algorithms used in data-parallel
training is All-Reduce (Li et al., 2020), known for its simplicity and its ability to maintain consistency
with single-machine training.

However, All-Reduce training relies on high-speed network connections and homogeneous computa-
tional devices to ensure its efficiency (Zhang et al., 2020; Tandon et al., 2017). Large companies with
abundant resources address these challenges by investing in specialized high-performance computing
(HPC) clusters optimized for large-scale distributed training (Shoeybi et al., 2019). These clusters
are equipped with cutting-edge uniform hardware and high-speed interconnects, making them ideal
for All-Reduce-based training. Unfortunately, such resources are often inaccessible to the broader
research community. Most researchers rely on self-built servers or shared clusters by universities or
cloud service providers, which may lack the high-speed networking infrastructure necessary to fully
leverage All-Reduce, thereby limiting the potential of the available computational resources.

Decentralized algorithms, which originally gained attention in the fields of consensus algorithms
(Johansson et al., 2007; Shi et al., 2015) and privacy-preserving techniques (Yan et al., 2012),
have recently been explored as alternatives to All-Reduce in distributed training, especially in
environments with suboptimal network conditions. By replacing the costly All-Reduce operations
with decentralized communication patterns, these algorithms can significantly reduce communication
overhead. Over the past few years, decentralized algorithms have demonstrated promising practical
speedup in setups with poor network performance (Lian et al., 2017; Assran et al., 2019; Yuan et al.,
2022). Research in this area has focused on the convergence properties of gossiping on different
communication topologies (Ying et al., 2021a; Takezawa et al., 2024), decentralized optimization
algorithms (Lin et al., 2021; Yuan et al., 2021), and alternative communication patterns (Cattivelli &

1The experiment code is open-source at https://github.com/WangZesen/Decentralized-Training-Exp, and the
extension code is open-source at https://github.com/WangZesen/Decent-DP.

1

https://github.com/WangZesen/Decentralized-Training-Exp
https://github.com/WangZesen/Decent-DP


Published as a conference paper at ICLR 2025

Sayed, 2009). Despite this growing interest, decentralized approaches have yet to achieve the same
level of popularity as All-Reduce-based methods in distributed training.

We believe there are several reasons for this: (1) Simply combining the best of each line of work
does not necessarily lead to an effective overall system. The potential speedup of decentralized
algorithms in real-world environments remains underexplored and poorly understood (Assran et al.,
2019). (2) The generalization performance of models trained with decentralized methods often falls
short compared to those trained with All-Reduce under the same iteration budget, raising concerns
about the effectiveness of decentralized training (Lian et al., 2017; Assran et al., 2019). (3) Despite
the growing interest in large language models (LLMs), there is still no well-suited decentralized
version of the Adam optimizer, which is crucial for efficiently training transformer-based models in a
decentralized setting.

This paper aims to develop a deeper understanding of decentralized training in practical setups and
includes the following key contributions:

1. We propose a simple yet accurate runtime model that quantifies the impact of key environ-
mental parameters and estimates potential speedups. This model enables the optimization of
decentralized training configurations to achieve the best performance in different settings.

2. We design and analyze a decentralized variant of the Adam optimizer. Our algorithm
leverages a collective gossip communication mechanism to enable parallelism between
computation and communication. In addition, it introduces a novel accumulation technique
that enhances performance and delivers promising experimental results.

3. We implement a PyTorch extension for decentralized training across multiple GPUs and
nodes. Our implementation demonstrates strong performance on typical machine learning
workloads, including image classification, machine translation, and GPT-2 pre-training.
Extensive experiments validate the feasibility and practical benefits of decentralized training.

1.1 RELATED WORK

Decentralized training The combination of SGD updates with gossip communication (Lin et al.,
2021; Yuan et al., 2021) has gained significant attention for its theoretical benefits: it retains the
convergence rate as centralized/synchronous mini-batch SGD at a reduced communication cost.
One line of work (Neglia et al., 2020; Koloskova et al., 2020; Ying et al., 2021a; Takezawa et al.,
2024) focuses on the design of the communication topology to improve the guaranteed convergence
rate in terms of the number of iterations. However, these papers demonstrate improvements in the
number of iterations but do not show if these results translate to actual speedups in terms of total
training time. A handful of more practical studies, e.g., (Lian et al., 2017; Assran et al., 2019) report
actual speedups of decentralized training with multiple workers, but they do not isolate system-level
bottlenecks or bound the potential speedups. Moreover, Lian et al. (2017) focuses on low-bandwidth
scenarios, and the implementation in Assran et al. (2019) groups GPUs in a node as a single unit
for decentralization, which makes it sensitive to intra-node stragglers. Another line of work that is
orthogonal to decentralized data parallelism is the slow momentum (Wang et al., 2019; Lin et al.,
2021), which maintains an outer-loop momentum to improve the training loss. However, the method
introduces additional communication and new hyperparameters.

Variance in computation time In the training of language models, one way to preprocess the
input data is to group samples with similar lengths (Vaswani et al., 2017), but this may introduce
the straggler effect because of non-uniform batches. Increasing the number of local mini-batches
(Ott et al., 2019) or dropping samples on stragglers (Giladi et al., 2024) mitigate the problem but
may worsen the generalization performance by altering the effective batch size (Keskar et al., 2016).
In pre-training LLMs, it is common to pack the sequences from different documents (Raffel et al.,
2020) to create uniform batches. However, the sequence pack technique has a negative influence
on the training quality (Ding et al., 2024). Another possibility is to pad sequences to a fixed length
(Smith et al., 2022), but this leads to lower resource utilization. Moreover, the methods are not
compatible with tasks like video processing and seq-to-seq tasks. As for the performance of the
decentralized training on imbalanced workloads, in Assran et al. (2019), the authors argued that
decentralized training is more resilient to computation time variance by showing a smaller runtime
variance. However, the speedup advantage brought by decentralized training remains unexplored.
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Figure 1: Timelines and dependency relations of decentralized training. F : forward pass, B: backward pass, C:
decentralized communication/aggregation of model parameters with other workers, U : update model parameters.
An arrow from task X to Y means that task Y can start only after X finishes.

Orthogonal scalability techniques There are many other ways to improve scalability that are
orthogonal to this work. This includes compression of gradients (Vogels et al., 2019) and models
(Tang et al., 2018) to reduce the communication time, as well as model parallelism (Xu & You, 2023)
and pipeline parallelism (Li & Hoefler, 2021) to scale up distributed training. These approaches could
potentially be combined with our work to improve its scalability further.

2 IMPORTANT ASPECTS OF MULTI-NODE DECENTRALIZED TRAINING

The basic idea behind many decentralized optimization algorithms is to replace the global model
parameter x ∈ RD by local copies xi ∈ RD at each worker i = 1, 2, . . . , N and require that the local
models reach consensus. In this spirit, a decentralized learning problem can be written as

minimize
{x1,...,xN}

1

N

∑N

i=1
Fi(xi), subject to xi = xj , ∀i, j, (1)

where Fi(xi) is the expected training loss of the local model xi on the data held by worker i. In our
theoretical analysis, we let Fi(x) = Eξi∼D[ℓ(x; ξi)] where ξi is a local data point of worker i drawn
from the distribution D, and ℓ(·) is a non-convex but smooth function. The assumption that each
worker can draw samples from the same distribution D is reasonable if not for the privacy-preserving
purpose (Ying et al., 2021a; Lian et al., 2017).

Decentralized algorithms for solving (1) allow the local model xi to disagree during the training
process but drive them towards the same stationary point of the global training loss. We focus on
adaptive momentum versions of decentralized gradient descent,

x
(t)
i ← −α

(t)d
(t)
i +

∑
j∈N (t)

i

w
(t)
ij x

(t−1)
j . (2)

Here, α(t) is the learning rate, −d(t)

i is an update direction that reduces the value of Fi at x(t−1)

i
and the final term accounts for the averaged model parameters of neighboring workers and drives
the local parameters towards the same first-order stationary point. For decentralized SGD, d(t)

i =
∇ℓ(x(t−1)

i ; ξ(t)

i ) while the expression is more complex for the adaptive momentum variations that we
develop in § 4. The weights w(t)

ij satisfy w(t)

ij > 0 if i and j communicate at iteration t or i = j, and 0

otherwise. We define N (t)

i as the set of workers j (including i itself) such that w(t)

ij > 0. The weights
are selected so that if d(t)

i = 0 for all i and all t in (2), the local models will converge to the same
value; see § 4 for details.

Next, we will describe three factors that are essential to consider in order to implement (2) efficiently.

2.1 EXPLOITING OVERLAPPING COMMUNICATION AND COMPUTATION

Modern accelerators like Nvidia GPUs are capable of interleaving communications with computations.
After deciding which training scheme to use, hiding communication by computation is one of the
key optimizations in the design of an efficient distributed training system. For the decentralized
implementation of (2), a general idea of achieving it is to restrict the search direction di to only
depend on the local model. While for DNN training, we can take this idea further.

Inspired by the gradient bucketing technique used in data-parallel training in PyTorch (Li et al.,
2020), we divide both gradients and models into buckets corresponding to specific layers or groups of
layers. Due to the sequential nature of backpropagation, we can begin communicating the gradients
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Setups \ Topology Complete One-peer Exp. One-peer Ring Alternating Exp Ring

4×4×A100, 100Gbps 55.31 s 55.44 s 32.97 s 29.55 s

4×4×A40, 25Gbps 395.99 s 429.47 s 217.90 s 185.93 s

Table 1: Communication time of performing averaging operations for 8196 iterations over three
25MB FP32 tensors (selection of 25MB is based on the default bucket size used in PyTorch DDP (Li
et al., 2020)). Setup 1: 16 A100 GPUs on 4 nodes inter-connected by 100Gbps Infiniband. Setup
2: 16 A40 GPUs on 4 nodes inter-connected by 25Gbps Ethernet. Here, Complete means global
averaging. All other topologies are illustrated in Appendix A.4.

of earlier finished layers while the gradients of later layers are still being computed. As illustrated in
Figure 1, we split the execution of the backward pass into buckets and interleave the corresponding
local model updates. After updating a bucket, the corresponding communication can be initiated, and
its results are not needed by the worker and its neighbors until the update of the same bucket in the
next iteration. This significant overlap is possible because we have made the decentralized update
independent of neighbor information within the same iteration. For All-Reduce training2, which
aggregates gradients instead of models, communication cannot overlap with the forward pass and the
backward pass of the last bucket. This is because the forward pass needs the complete aggregation
of gradients from the last iteration, and no gradient is available before the backward pass of the last
bucket. This indicates that decentralized training, using the scheme described in equation 2, can
utilize simultaneous computational resources more efficiently.

Making the update direction calculation independent of the local models at other workers in the
same iteration is essential for overlapping computations and communications. Updates on the form
x(t)

i ←
∑

j∈N (t)
i

w(t)

ij (x
(t−1)

j − α(t)d(t)

j ), as used in (Lin et al., 2021; Gao & Huang, 2020), cannot
easily achieve this; see Appendix B.2.

2.2 RESPECTING HETEROGENEOUS COMMUNICATION COSTS

A key advantage of well-designed decentralized training over All-Reduce training is the reduced com-
munication cost due to the sparsity of gossip communication. Unlike All-Reduce, where all workers
must participate in each iteration, decentralized training allows workers to communicate only with
their immediate neighbors. A drawback with gossiping is that it only provides an approximate average
that converges asymptotically to the true global average. Several studies have characterized how the
convergence rate of gossiping, affecting both iteration complexity and generalization performance in
decentralized training, is influenced by the communication topology (Xiao & Boyd, 2004; Shi et al.,
2015; Nedić et al., 2018; Ying et al., 2021a; Takezawa et al., 2024). In practical cluster environments,
latency and bandwidth can vary significantly between nodes. While communication between GPUs
within a single compute node is very fast, communication between nodes is slower and subject
to congestion at switches and other network interfaces. Thus, when designing a communication
topology for decentralized training in such environments, it is crucial to consider both the degree of
connectivity, which affects the speed of information propagation, and the heterogeneity of networking
connections, which impacts the execution time of each communication round.

To demonstrate the practical impact of topology and heterogeneous connections on communication
time, we set up an experiment with two scenarios: four nodes, each equipped with four Nvidia
GPUs, are interconnected by either 25Gbps Ethernet or 100Gbps Infiniband, Table 1 shows the
communication time of performing averaging operations with different communication topologies.
Even though the One-peer Exponential topology enjoys rapid convergence of consensus errors in
terms of iterations, it requires more time than the Complete topology in this setup due to frequent
inter-node communication. The One-peer Ring topology nearly halves the per-iteration communi-
cation time compared to the Complete topology. However, it exhibits a slower convergence rate
of consensus errors than both the Complete and the One-peer Exponential topology in terms of
communication rounds, which could potentially influence the theoretical generalization guarantees.
However, experiments in (Kong et al., 2021) have shown that as long as the consensus error is below

2We provided the pseudocode of the distributed algorithm using All-Reduce in Appendix A.1 and its timeline
in Appendix A.3. All-Reduce is also considered in our experiments for comparison.
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a certain value, it does not negatively affect performance. We have observed the same phenomenon
in our practical deployments.

Figure 2: Comparison of consensus er-
rors by communication rounds with four
4-GPU nodes.

Unlike other implementations of decentralized training,
such as those described in Assran et al. (2019); Lin et al.
(2021); Ying et al. (2021a) which perform decentralized
communication on the node level, we do not synchronize
gradients within nodes. This implementation choice can
provide significant resilience to variations in computation
time, which will be discussed in § 2.3.

To adapt to the communication imbalance in the two clus-
ters used in our experiments, we designed an Alternating
Exponential Ring (AER) topology, see Figure 12 in Ap-
pendix A.4. The last column in Table 1 and the comparison
in Figure 2 demonstrate that the proposed topology offers
advantages in both communication time and convergence
rate. Additionally, our numerical experiments in Section
5 demonstrate that it is able to strike a favourable balance
between the connectivity of communication topologies and per-iteration runtime while maintaining
comparable test accuracy.

It is important to note that the effectiveness of a specific topology may vary depending on the opera-
tional environment. By quantifying the communication costs associated with different connections
and the congestion caused by concurrent communications, one can formulate an optimization problem
that targets both the convergence rate and average runtime as objectives. We leave this as future work.

2.3 REDUCING THE SENSITIVITY TO VARYING COMPUTATION TIMES

The timeline in Figure 1 shows a single worker and assumes that all other workers run their cor-
responding tasks in perfect synchrony. This is certainly not realistic. Even in homogeneous HPC
environments, variable computation times appear due to system noise (Hoefler et al., 2010) and
workload imbalance (Ott et al., 2019). Figure 3 shows the distribution of actual gradient computation
times for two different tasks. For image classification with ResNet-50 (He et al., 2016), even though
all mini-batches are of identical size, the variance still exceeds 0.001. For neural machine translation,
the variance is much higher since mini-batches vary in size even if we batch together sequences with
similar lengths (Vaswani et al., 2017; Ott et al., 2019).

In All-Reduce training, workers have to wait for the slowest one, which makes the approach sensitive
to workload variability. If the computation times of workers would be i.i.d. and follow a normal
distribution, the expected value of the maximum of the N computation times is asymptotically
Θ(
√
logN) (Giladi et al., 2024). Hence, we can expect it to be less efficient as N increases. For

decentralized training, as shown in Appendix A.5, it is still possible to hide some (and in some
cases all) workload variability. Simulations of the runtimes of All-Reduce and decentralized training,
shown in Figure 4, confirm these predictions. The runtime for All-Reduce increases with N , while
the runtime for decentralized training remains essentially constant. This suggests that decentralized
training could achieve better strong scaling efficiency (fixed global batch size).

In other decentralized frameworks like SGP (Assran et al., 2019)3, intra-node gradient synchronization
is typically performed before the local update, and the parameter communication occurs at node level.
However, this design becomes suboptimal in terms of runtime when the variance in computation
time is non-negligible, since gradient synchronization is susceptible to intra-node stragglers. To
better leverage the resilience of decentralized training to variations in computation time, we decouple
the dependency of the local update on the gradient information of its neighbors within the same
iteration. To demonstrate the benefits of the new design, we perform transformer experiments under
heavy computation workloads (2×4×A100 and 100K tokens as global batch size) and fast network
connections (NVLink within the node and 100Gbps Infiniband inter-connecting nodes) to make sure
the network is not the bottleneck. The results show that removing the dependency decreases the
per-iteration runtime by 10.95% (from 225.09 ms to 200.43 ms). For more comparisons, see § 5.2.

3https://github.com/facebookresearch/stochastic gradient push
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Figure 3: Distributions of normalized computation
times of ResNet-50 training for an image classifi-
cation task and of transformer training for neural
machine translation. The variances of the normalized
computation time for the image task and the transla-
tion task are 0.0017 and 0.0134, respectively.

Figure 4: Comparison of the predicted runtime by
runtime model and the actual runtime for transla-
tion task based on transformer model. The lines are
predicted runtime based on the runtime model with
scaling to the real runtime in milliseconds. The scat-
ters are the measured runtime.

3 RUNTIME MODEL AND DESIGN INSIGHT

In this section, we propose a runtime model that characterizes how the per-iteration runtime depends
on critical system parameters and workload characteristics. The model is simple yet surprisingly
accurate when validated against experiments on real systems (see Appendix A.5), and helps to identify
when and with what means we can obtain significant reductions in the per-iteration runtime.

The model considers neural network training in an environment with N workers and assumes that the
model parameters are organized into b buckets. It uses the time that a single worker needs to process
the forward pass with the global batch size as unit time. In this way, the forward pass of one worker
takes 1/N time units while the backward pass is assumed to take 2/N time units. The time to update
a bucket is θ time units. To characterize the system and the training workload, we introduce three
additional parameters: (1) γ ∈ (0,∞) is the time taken for a global All-Reduce on one bucket; this
parameter is large in systems with slow communication or many workers, (2) ω ∈ (0, 1] is the ratio of
the time taken by a decentralized communication round and a global All-Reduce. A small ω means
a sparse decentralized communication topology, and (3) σ2 is the variance of a truncated normal
distribution that models the varying computation time. A large σ2 means the computation time taken
by the forward pass and backward pass may vary significantly. Based on the workload measurements
in Figure 3, we restrict the computation time between 0.5x and 1.5x of its average value.

The model is detailed in Appendix A.5. In brief, it simulates randomly varying forward and backward
pass calculation times and respects the dependency relationships between communication and update
tasks described in Figure 1 and Figure 13.

Figure 5: Simulation by the runtime model. In the simulation, N = 8 (8 workers), b = 4 (4 buckets, from
ResNet-50 experiments), θ = 0.2 (time taken by updating one bucket is 0.2 unit time), and the communication
topology of decentralized training is complete topology4.

Figure 5 shows some representative results generated by the runtime model. The leftmost figure
illustrates how the per-iteration runtime of All-Reduce and decentralized training depends on γ when
ω = 1 and σ2 = 0. For decentralized training, the communication time can be completely hidden by
the corresponding forward, backward, and bucket update times, as long as the network is fast enough
(γ ≤ (3 + θ)/N). After this point, the per-iteration time increases as Θ(bγ). In All-Reduce training,
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on the other hand, the last bucket can never be hidden and the per-iteration time increases also for
small values of γ. More importantly, since the All-Reduce time of buckets can only be hidden by the
corresponding backward pass, the more rapid increase in runtime starts already at γ = 2/N .

Figure 5 (middle) shows the relative speedup of decentralized training over All-Reduce as a function
of ω for different values of γN . For ω = 1 and a fixed value of γN , the speedup is just the ratio of the
two curves shown in the leftmost figure. Decreasing ω reduces the time for a bucket communication in
the decentralized setting, which effectively moves us to the left along the decentralized runtime graph.
This leads to increasing speed-ups until ωγ = (3 + θ)/N , after which no runtime improvements are
obtained by decreasing ω further. This explains why no effect of ω is seen when γN ≤ (3 + θ), and
the speed-ups saturate below ω = (3 + θ)/γN . The model can also be used to estimate the best
possible speedup. Specifically, when σ2 = 0, we find

best possible speedup(γ) =

{
1 + 1

b ·
Nγ

3+θN γ ∈ (0, 2/N ],

1 + Nγ−2+2/b
3+θN γ ∈ (2/N,∞).

(3)

As N grows large, the second case suggests that the speedup tends towards 1+γ/θ. Since γ increases
with N , the model suggests that the speedups will increase in larger networks.

Figure 5 (right) shows the resilience of the computation time variance of decentralized training. The
three combinations of γ and ω represent the scenarios that (a) computation-bound (γ = 1/N , ω = 1)
(b) communication-bound (γ = 4/N , ω = 1) (c) communication-bound and using a decentralized
communication topology (γ = 4/N , ω = 0.6). In the three scenarios, increasing σ2 brings moderate
improvement in the speedup of decentralized training.

As for the influence of communication topologies on runtime, they do influence runtime because of
the changes in the dependencies of the operations, but the influences caused by adapting decentralized
training and reduced communication cost by sparser topologies (see § A.5.2 in appendix).

In Figure 4, we validate the accuracy of the runtime model by comparing the predictions with the
actual runtime as γ increases. The parameters b = 7, N = 32, θ = 0.364, σ2 = 6.95 × 10−3

measured from the profiling results are used for the predictions, and we manipulate the global batch
size to mimic different values of γ. Given its simplicity, the model is surprisingly accurate.

4 DECENTRALIZED ADAM AND CONVERGENCE

The per-iteration runtime that we have just studied is only part of the story. Equally important is
the ability of the decentralized optimization algorithm to converge quickly and reliably toward a
solution with good generalization properties. This section introduces a decentralized Adam algorithm
(DAdam, described in Algorithm 1) that enables overlapping communications and computations and
proves its convergence. The notations are defined in Appendix B.1.1.

Algorithm 1 Decentralized Adam on worker i

1: m
(0)
i , v

(0)
i ← 0; x(0)

i ← x(0)

2: for t = 1, 2, . . . , T do
3: g

(t)
i ← ∇ℓ

(
x
(t−1)
i ; ξ

(t)
i

)
4: m

(t)
i ← β1m

(t−1)
i + (1− β1)g

(t)
i

5: v
(t)
i ← β2v

(t−1)
i + (1− β2)

[
g
(t)
i

]2
6: x

(t)
i ← −α

m
(t)
i /(1−βt

1)√
v
(t)
i /(1−βt

2)+ϵ
+
∑

j∈Ni
wijx

(t−1)
j

7: end for

Algorithm 1 can be cast into the form of equation 2 with a particular search direction. For simplicity,
we use a static topology with mixing matrix W , i.e., W (t) = W for all t. In every iteration, each
worker i first draws a mini-batch from its local data and computes a local stochastic gradient gi.
Then, it proceeds similarly to the standard Adam scheme to update the local first- and second-order
momentum mi and vi, respectively. Subsequently, worker i implements the mixing of neighbor
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models and uses the result to update the local model where α is a step-size and ϵ, β1, β2 are parameters.
Note that mi, vi and the resulting search direction do not depend on models xj of neighboring workers.
Therefore, the algorithm supports overlapping communication and computations as discussed in
Section 2.1. The comparison of Algorithm 1 with other decentralized Adam-based methods is in
Appendix B.2.

Next, we establish convergence of Algorithm 1, based on the following Assumptions.
Assumption 1. For each worker i, the gradient∇Fi is L-Lipschitz continuous:

∥∇Fi(x)−∇Fi(y)∥2 ≤ L∥x− y∥2, ∀x, y ∈ RD.

Assumption 2. There exists a constant R ≥
√
ϵ such that ∥∇ℓ(x; ξi)∥∞ ≤ R−

√
ϵ almost surely.

Assumption 3. The mixing matrix W = [wij ] is symmetric, non-negative, and doubly stochastic.
The eigenvalues of W in order satisfies 1 = λ1 > λ2 ≥ · · · ≥ λN > −1.

Assumptions 1 and 2 are used in Défossez et al. (2020) to provide a simple analysis for centralized
Adam. Assumption 3 is standard in decentralized learning and holds when the underlying communi-
cation topology is connected. Under Assumption 3, we denote λ = max{|λ2|, |λN |} ∈ [0, 1). Fix
the number of iterations as T . We define τT as a random index from {0, . . . , T − 1} with distribution

∀ t̃ < T, P[ τ = t̃ ] ∝ 1− βT−t̃
1 , (4)

and denote F (x̄) := 1
N

∑N
i=1 Fi(x̄) where x̄ = 1

N

∑N
i=1 xi. Then, we have the following theorem.

Theorem 4.1. Under Assumptions 1–3, if 0 < β1 < β2 < 1, for Algorithm 1, we have

E
[∥∥∥∇F (x̄(τ))

∥∥∥2
2

]
≤ 4R

αT̃

(
F (x̄(0))− F∗

)
+ E

[
1

T̃
ln

(
1 +

R

ϵ(1− β2)

)
− T

T̃
ln(β2)

]
, (5)

where x̄(t) = 1
N

∑N
i=1 x

(t)
i , τ is defined in equation 4, T̃ = T − β1

1−β1
, F∗ is the optimal

value of equation 1, and E = 24DR2√1−β1√
1−β2(1−β1/β2)3/2

+ 2αDLR(1−β1)
(1−β2)(1−β1/β2)

+ 4α2L2Dβ1

(1−β1/β2)(1−β2)3/2
+

8α2(1+λ2)RL2D
√
1−β1

(1−λ2)2(1−β2)(1−β1/β2)
√
ϵ
.

We refer the readers to Appendix B.4 for the proof. Compared to Défossez et al. (2020, Theorem 4)
for the single-machine Adam, the error bound in Theorem 4.1 only has one additional term – the last
term in E which is proportional to α2 and can be ignored for sufficiently small values of α.

5 NUMERICAL EXPERIMENTS

In this section, we compare decentralized training with All-Reduce training and assess the generaliza-
tion performance and practical training-time speedups in cluster environments. We consider three
large-scale tasks: neural machine translation, image classification, and GPT-2 pretraining. For neural
machine translation, following Vaswani et al. (2017), we trained the transformer (∼65M parameters
for base variant and ∼213M parameters for big variant) on the English-German and English-French
WMT14 dataset (Bojar et al., 2014). In each run, we evaluate the trained model by BLEU (Papineni
et al., 2002) and METEOR (Banerjee & Lavie, 2005) on the test set. In the image classification task,
we trained ResNet-50 (He et al., 2016) on ImageNet-1K (Deng et al., 2009). In each run, we evaluate
the trained model by Top-1 and Top-5 accuracies on the validation set. For the GPT-2 pretraining
task, we trained GPT-2 (small) (Radford et al., 2019) on OpenWebText Gokaslan et al. (2019), and
we report the training and validation losses of the trained models. The baseline, All-Reduce training,
uses Adam-based optimizers for all experiments. Detailed descriptions of all tasks and experimental
setups can be found in Appendix A.6.

5.1 GENERALIZATION PERFORMANCE

To make decentralized training useful, it should not compromise the generalization performance of
the trained model. As shown in Tables 2 and 3, decentralized training can obtain a generalization per-
formance that is comparable with All-Reduce training. In all experiments, AccumAdam outperforms
the others, while DAdam and All-Reduce perform similarly.
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BLEU ↑ / METEOR ↑
Method Topology En-De / Transformer (base) En-Fr / Transformer (big)

AllReduce Complete 27.79 ± 0.16 / 0.5465 ± 0.0018 45.70 ± 0.30 / 0.6676 ± 0.0017

DAdam
AER 27.58 ± 0.06 / 0.5440 ± 0.0013 45.60 ± 0.12 / 0.6664 ± 0.0014

Complete 27.60 ± 0.18 / 0.5445 ± 0.0021 45.65 ± 0.22 / 0.6670 ± 0.0017

AccumAdam
AER 27.71 ± 0.09 / 0.5481 ± 0.0027 46.05 ± 0.03 / 0.6715 ± 0.0029

Complete 27.80 ± 0.34 / 0.5474 ± 0.0027 46.18 ± 0.20 / 0.6704 ± 0.0017

Table 2: Neural Machine Translation on WMT14 (Bojar et al., 2014): The results show the
generalization performance of training transformer (base) on English-to-German and transformer
(big) on English-to-French. The last checkpoint of each method is evaluated by BLEU score (Papineni
et al., 2002) and METEOR (Banerjee & Lavie, 2005) the corresponding newtest2014 testset. The
number of workers is 16 and the number of workers per node is 4 for all experiments. The error
bands with ±2σ based on 3 runs are reported.

Methods
Top-1 Acc. ↑ / Top-5 Acc. ↑ / Train Loss ↓

Alternating Exp Ring Complete

AllReduce 76.01 / 93.05 / 1.864
DAdam 75.31 / 92.54 / 1.998 75.27 / 92.60 / 1.993

AccumAdam 76.54 / 93.18 / 1.836 76.34 / 93.15 / 1.835

Table 3: Image Classification on ImageNet-1K (Deng et al., 2009): The results are show the
generalization of training ResNet-50 on ImageNet-1K for image classification. Top-1 and Top-5
accuracies and averaged training loss in the last epoch are reported, and the accuracies are evaluated
on the ImageNet validation set. The number of workers is 32 and the number of workers per node is
8 for all experiments.

5.2 PER-ITERATION RUNTIME AND SCALABILITY

We will now demonstrate the practicality of decentralized training by showing its superior runtime
compared to All-Reduce training in various scenarios, including communication-bound, straggler-
bound, and computation-bound cases. For a fair comparison, we report strong scaling performance
in Figure 6. Other works, such as Assran et al. (2019); Wang et al. (2019), present weak scaling
performance which keeps the worker batch size fixed. However, this results in fewer iterations and a
larger effective global batch size for the same number of epochs, which alters the training dynamics.

As shown in Figure 6, the results align with the proposed runtime model: (1) a sparse communica-
tion topology enables more significant speedups in communication-limited scenarios compared to
computation-limited scenarios; (2) decentralized training has better resilience to computation time
variance; (3) decentralized training is more efficient than All-Reduce training in all tested scenarios.
Additionally, we re-implement 1-OSGP (Assran et al., 2019) (the best asynchronous variant of SGP)
with the one-peer exponential graph for comparison. Due to the extra intra-node broadcast required
to synchronize the parameters, 1-OSGP may experience longer per-iteration runtimes when the
intra-node connection is not significantly faster than the inter-node connection (nodes with 8×T4
GPU with 100Gbps InfiniBand connection, for example). Consistent with the analysis in § 2.3, our
implementations outperform 1-OSGP in all setups, especially in computation-bound scenarios.

To demonstrate the relationship between generalization performance and runtime, we present training
curves for an En-De translation task in Figure 7, showing a ∼ 60% speedup at the same validation
loss.

We also conducted experiments on the pre-training of GPT-2 (small) (Radford et al., 2019). Compared
to All-Reduce training, decentralized training with AccumAdam and the Alternating Exponential
Ring graph achieves better training loss (2.8419 vs. 2.8468), validation loss (2.8561 vs. 2.8626),
and runtime (30.41 hours vs. 32.461 hours) after 600k training steps on OpenWebText (Gokaslan
et al., 2019) using 4×4×A40 GPUs. Even though the workloads are balanced among the workers, it
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still achieves a relative speedup of 6.31%. More speedup can be expected by replacing the sequence
packing with other batching strategies that may introduce imbalance in workloads.

Due to space limitations, we defer the presentation of other speedup results to § A.8 in the appendix.

Figure 6: The results show the strong scaling performance (fixed global batch size, 25K tokens) of
All-Reduce, SGP (Assran et al., 2019) and our implementations by reporting the per-iteration runtime
with various numbers of workers and network settings. Here, Exp and AER stand for one-peer
exponential graph and alternating exponential ring, respectively.

Figure 7: Training a transformer (base) model on the English-to-German translation task on four
4xA40 nodes with 25Gbps Ethernet connections. The error bands of ±2σ are based on three runs.
The red dashed line on the left is the baseline (27.3 BLEU score) from Vaswani et al. (2017).

6 CONCLUSIONS

This paper has aimed to address practical and sometimes overlooked aspects of decentralized training,
to make it superior to All-Reduce in terms of total training time and generalization performance in
practical settings. We identified key sources of speed-up in decentralized training of deep neural
networks and developed a simple model to optimize per-iteration runtimes. We introduced a decen-
tralized Adam algorithm that supports overlapping communication and computation and proposed an
accumulation mechanism to mitigate the high variance that occurs in small local batch sizes. Numer-
ous deployments of our methods in practical environments validated their effectiveness, achieving a
faster training speed than standard All-Reduce training without compromising generalization.
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A APPENDIX / SUPPLEMENTARY MATERIAL

A.1 ALL-REDUCE ADAM IN THE COMPARISON OF EXPERIMENTS

The All-Reduce Adam is shown as Algorithm 2. In contrast to the decentralized algorithms in Sec-
tion 4, it averages gradients instead of models and uses All-Reduce instead of gossip communication.

Algorithm 2 All-Reduce Adam on worker i

1: m
(0)
i , v

(0)
i ← 0 ; x(0)

i ← x(0)

2: for t = 1, 2, . . . , T do
3: g

(t)
i ← ∇ℓ

(
x
(t−1)
i ; ξ

(t)
i

)
4: ḡ(t) ← 1

N

∑N
i=1 g

(t)
i (All-Reduce)

5: m
(t)
i ← β1m

(t−1)
i + (1− β1)ḡ

(t)

6: v
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i ← β2v

(t−1)
i + (1− β2)

[
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(t+1)
i ← −α m

(t)
i /(1−βt

1)√
v
(t)
i /(1−βt

2)+ϵ
+ x

(t)
i

8: end for

A.2 HETEROGENEOUS COMMUNICATIONS IN HPC CLUSTERS

Although there is no single HPC architecture, a typical HPC cluster with many GPU nodes includes
high-performance CPUs and GPUs, high-speed interconnects, scalable storage solutions, and manage-
ment and software stack to handle various computational tasks. Figure 8 shows the typical topology
that we have encountered in our experiments on different clusters. Here, the GPUs within a node
communicate with high bandwidth and low latency, while communication through the switch is much
more limited. While Figure 8 shows one example of cluster topology, there are many other possible
topologies such as (1) fast NVLinks inter-connecting intra-node GPUs (2) star, ring, tree, mesh,
or hybrid connection topologies that link nodes together as a cluster. Different topologies impose
different limitations on the communication between GPUs in the same and in different nodes.

Figure 8: In this HPC environment, each of the two nodes comprises four workers interconnected via PCIe
(Peripheral Component Interconnect Express) switches and Network Interface Cards (NICs). The nodes are
linked to each other through a switch. We use line thickness to indicate the bandwidth of these connections:
wider lines represent higher bandwidth, facilitating faster communication within nodes, while thinner lines
depict the narrower bandwidth of the switch, resulting in more time-consuming inter-node communication.

A.3 TIMELINES AND DEPENDENCY GRAPHS OF DIFFERENT DATA PARALLEL SCHEMES

To better illustrate the capability of our scheme in overlapping communication and computation, we
consider two comparison schemes, including the vanilla scheme and a well-optimized scheme that is
also used in modern distributed training frameworks like PyTorch’s DataDistributedParallel (Paszke
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Figure 9: Timelines and dependency relations of decentralized training. F : forward pass, B: backward pass, C:
communication/aggregation of gradients or model parameters, U : update model parameters. Arrow from X to
Y means that Y can start only after X finishes.

et al., 2017) and Horovod (Sergeev & Balso, 2018). We visualize the communication&computation
of all three schemes in Figure 9. In the vanilla scheme, a communication operation only begins to
aggregate the gradients among all the workers after completing both a forward pass and a backward
pass. The update of the model only happens after the aggregation ends, and the computation does not
overlap with the communication. Similar to our scheme, in the PyTorch DDP & Horovod scheme,
the model parameters are divided into buckets (the parameters are divided into 3 in the example in
Figure 9). The communication of the bucket can start immediately after its corresponding backward
pass finishes. In this scheme, some time of the communication interleaves with the computation,
which greatly improves the utilization. However, the communication still can not be interleaved with
the computation of the forward pass and the last bucket of the backward pass. In contrast to the two
comparison schemes, our decentralized scheme hides all communications by computations.

A.4 DECENTRALIZED COMMUNICATION TOPOLOGIES

We display the One-peer Ring (Figure 10), the One-peer Exponential (Figure 11), and the Alternating
Exponential Ring (Figure 12) topologies in this subsection.

Figure 10: One-peer Ring for a 16-worker example where workers are distributed in four nodes.
Dashed lines are the boundaries of the compute nodes.
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Figure 11: One-peer Exponential graph for a 16-worker example where workers are distributed in four nodes.
Dashed lines are the boundaries of the compute nodes.

Figure 12: Alternating Exponential Ring topology (ours) for a 16-worker example where workers are distributed
in four nodes. Dashed lines are the boundaries of nodes. The loops mean All-Reduce across workers in the loop.

A.5 RUNTIME MODEL

Our runtime model is constructed under some reasonable settings and experimental results. It assumes
that there are N workers and that the neural network model parameters are divided into b buckets so
that the average computation and communication time of each bucket are all the same. The global
batch size is fixed and the time needed to process the forward pass on a single worker takes 1 unit
time. According to Kaplan et al. (2020) and our profiling results, the time taken by the backward
pass is roughly twice as the forward pass. With the workload evenly distributed on N workers, the
time taken by the forward pass is then 1/N unit time and the time taken by the backward pass is 2/N
unit time. We also assume the time that it takes to update one bucket is θ time units where θ is the
same for All-Reduce training and decentralized training and independent of the number of workers.
Three additional factors are introduced to characterize the system setup and workload:

1. γ ∈ (0,∞) is the time of an All-Reduce communication of one bucket. Note that γ is the actual
communication time, while the actual time of the All-Reduce operation could be longer due to
synchronization across workers. The γ parameter is influenced by several factors:

(a) Network technology. A poor network connection leads to a slower All-Reduce and a larger γ.
(b) The number of workers. More workers lead to a slower All-Reduce and a higher value of γ.

2. ω ∈ (0, 1] is the ratio of the time of a decentralized communication round and an All-Reduce
operation. Note that ω could exceed one, but in that case it would always be better to use
All-Reduce (as discussed in Section 2.2). Using a more sparse communication topology could
potentially decrease ω.

3. σ2 ∈ [0,∞) is the variance in the truncated normal distributions used to model the variance in
the computation time. For worker i at iteration t, a random number p(t)i is sampled from the
truncated normal distribution with mean 1, variance σ2, and support [0.5, 1.5] (chosen to match our
experimental results in Figure 3). The random number is used as a multiplier for the computation
time of worker i at iteration t, i.e. the time for both forward and backward passes are multiplied
by the same p(i,t).

With these quantities, we further take the dependency relationship into consideration. We denote the
completion time of task X at worker i in iteration t by T

(i,t)
X . Then, based on the dependency relation
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Figure 13: Timelines of two workers in decentralized training. In the example, worker 1 has uniform
computation time across two iterations while worker 2 has a faster iteration and then a slower one. In the first
iteration, C3 of worker 2 is prolonged because it needs to synchronize with worker 1 to start the communication.

of All-Reduce training, we have

T
(i,t)
F = T

(i,t−1)
U + p(i,t)

b

N

T
(i,t)
Bk

=

{
p(i,t) 2

N + T
(i,t)
F if k = b

p(i,t) 2
N + T

(i,t)
Bk+1

if k ∈ {1, . . . , b− 1}

T
(i,t)
Ck

=

{
γ +maxj∈[N ]{T

(j,t)
Bk
} if k = b

γ +maxj∈[N ]{T
(j,t)
Bk

, T
(j,t)
Ck+1
} if k ∈ {1, . . . , b− 1}

T
(i,t)
U = T

(i,t)
C1

+ θb

(6)

where all out-of-bound finish times like T
(i,0)
U are defined to be zero.

To state similar dependency relations for decentralized training, we denote the set of neighbors of
worker i in iteration t as N (t)

i . Then, we have

T
(i,t)
F = T

(i,t−1)
U1

+ p(i,t)
1

N

T
(i,t)
Bk

=

{
p(i,t) 2

N + T
(i,t)
F if k = b

p(i,t) 2
N + T

(i,t)
Uk+1

if k ∈ {1, . . . , b− 1}

T
(i,t)
Uk

= max{T (i,t)
Bk

, T
(i,t−1)
Ck

}+ θ

T
(i,t)
Ck

=

 ωγ +max
j∈N (t)

i
{T (j,t)

Uk
, T

(j,t−1)
C1

} if k = b

ωγ +max
j∈N (t)

i
{T (j,t)

Uk
, T

(j,t)
Ck+1
} if k ∈ {1, . . . , b− 1}

(7)

where all out-of-bound finish times like T
(i,0)
U1

and T
(i,0)
Ck

are defined as zeros.

When σ2 > 0, we need to simulate the model and perform Monte Carlo simulations to draw
conclusions. When the workloads are deterministic, on the other hand, the model can be used to
derive closed-form expressions to guide the design; see Section 3 in the main document.

A.5.1 SEQUENTIAL TIMELINE ON THE MAIN THREAD

Algorithm 3 describes the main thread of one worker and relates the different steps to the sequential
timeline in Section A.5 of the appendix. In Algorithm 3 below, F (i,t) stands for the forward pass
of worker i at iteration t, B(i,t)

k stands for the backward pass on bucket k of worker i at iteration t,
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U
(i,t)
k stands for the optimizer update on bucket k of worker i at iteration t, and C

(i,t)
k stands for the

decentralized communication of bucket k of worker i at iteration t.

Algorithm 3 Decentralized Training on worker i

1: for t← 1, 2, · · · , T do
2: Perform forward pass: F (i,t) ▷ Time taken: p(i,t) b

N
3: for k ← b, b− 1, · · · , 1 do
4: Perform backward for k-th bucket: B(i,t)

k ▷ Time taken: p(i,t) 2
N

5: Wait for the comm. op. (C(i,t−1)
k ) in the last iteration. ▷ Time taken: T (i,t)

Uk
− T

(i,t)
Bk

6: Update the parameters in k-th bucket: U (i,t)
k ▷ Time taken: θ

7: Launch comm. op. for k-th bucket asynchronously: C(i,t)
k ▷ Time taken: ∼ 0

(non-blocking)
8: end for
9: end for

A.5.2 INFLUENCE OF COMMUNICATION TOPOLOGY ON RUNTIME

To demonstrate the influence of the communication topology on the runtime, we conduct simulations
under various topologies but keep ω = 1, which can exclude the impact of communication topology
on reduced communication cost. The simulation result is in Figure 14. Compared with the speedup
by adapting decentralized training and reduced ω, the simulation result shows that the changes in
the event dependencies caused by the communication topology do not have a significant influence.
The difference becomes even more insignificant when the communication cost is the bottleneck
(Nγ > 3.3).

Figure 14: Simulated runtime under various communication topologies. The parameters are b = 4,
θ = 0.02, and the number of workers in one node is 4.
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A.6 TASKS AND DETAILED EXPERIMENT SETUPS

All of our experiment implementation is based on PyTorch (Li et al., 2020). As for the implemen-
tation of All-Reduce training baselines, we use DistributedDataParallel (DDP) module. In all our
experiments, we use full-precision training and activate tensor cores for devices that support the
feature.

Neural machine translation. Following (Vaswani et al., 2017), we trained the base transformer
(∼65M parameters) on the WMT14 English-German dataset (Bojar et al., 2014) using the global
batch size which is roughly 25K source and target tokens, and the models were trained for ∼130,000
steps (or 24 epochs) in total. We trained the big transformer (∼213M parameters) on the WMT14
English-French dataset using the same batch size, and the models were trained for ∼300,000 steps
(or 5 epochs) in total. The All-Reduce training baselines use Adam optimizer (Kingma & Ba, 2014).
In each run, the last checkpoint is used to be evaluated by BLEU score (Papineni et al., 2002) on the
corresponding test sets.

Image classification. As for the image classification task, we trained ResNet-50 (He et al., 2016) on
ImageNet-1K (∼1.28M images and 1K classes) (Deng et al., 2009). Similar to the translation task,
All-Reduce training baselines use Adam optimizer. In all experiments, the models were trained for
90 epochs with 1024 as the global batch size. In each run, the last checkpoint is used to be evaluated
by top-1 and top-5 accuracies.

Note that, for all experiments, we fix the global batch sizes of tasks. Unlike the experiments in
(Lian et al., 2017) and (Assran et al., 2019) which keep the local batch sizes fixed, we argue that
using fixed global batch sizes yields a more fair comparison with All-Reduce training because (1)
increasing the global batch size as scaling up the number of workers may impose negative effects
on the generalization performance of All-Reduce training (Keskar et al., 2017), (2) increasing the
global batch size but keeping the total number of epochs fixed leads to speedup in runtime because
of the fewer number of updates, and (3) it’s important to have same number of iterations to achieve
comparable performance under fixed epoch budget.

A.6.1 NEURAL MACHINE TRANSLATION

As for the model architecture, we use the transformer implementation provided by PyTorch. We
adopt the scripts open-sourced by Fairseq5 to prepare and clean the raw data.

Transformer(base) on WMT14 En-De Following the experiments in (Vaswani et al., 2017), the
sentence pairs are encoded using the byte-pair encoder tokenizer, which has a shared vocabulary
with size 37056. The global batch size is fixed to around 25k tokens for source tokens and target
tokens, respectively. The sentence pairs with similar lengths are batched together in the training. All
experiments use 0.1 as the dropout rate and 0.1 as the label smoothing. The learning rate schedule is
the inversed square root with 1 epoch of linear warmup. In the experiments of All-Reduce baselines,
the learning rate is 0.0007, and the betas for the Adam optimizer are (0.9, 0.98), which are taken from
Vaswani et al. (2017). In the experiments of decentralized Adam, the betas for the Adam optimizer
are set to (0.974, 0.999) where the choice of β1 is inspired by AccumAdam when setting s = 4
(defined in Algorithm 4) and the choice of β2 is from Devlin et al. (2018). The choice of betas
empirically shows much better performance than (0.9, 0.98), so we use the setting for all experiments
of decentralized Adam. The base learning rates are 0.0020, 0.0028, and 0.0038 for 8, 16, and 32
workers, respectively. In the experiments of AccumAdam, the betas for the AccumAdam optimizer
are (0.9, 0.999), and the number of accumulation iterations s is N/4. The base learning rate is 0.0008
for 8 workers and 0.0012 for 16 and 32 workers.

Transformer(big) on WMT14 En-Fr Following the experiments in Vaswani et al. (2017), the
sentence pairs are encoded using the word-piece encoder tokenizer, which has a shared vocabulary
with size 32000. The global batch size is fixed to around 25k tokens for source tokens and target
tokens, respectively. The sentence pairs with similar lengths are batched together in the training. All
experiments use 0.1 as the dropout rate and 0.1 as the label smoothing. The learning rate schedule is
the inversed square root with 1 epoch of linear warmup. In the experiments of All-Reduce baselines,

5https://github.com/facebookresearch/fairseq/tree/main/examples/translation
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the learning rate is 0.0007, and the betas for the Adam optimizer are (0.9, 0.98) (Vaswani et al., 2017).
In the experiments of decentralized Adam, the betas for the Adam optimizer are set to (0.974, 0.999).
The base learning rate is 0.0012 for 8 workers. In the experiments of AccumAdam, the betas for the
AccumAdam optimizer are (0.9, 0.999), and the number of accumulation iterations s is N/4. The
base learning rate is 0.0008 for 8 workers.

A.6.2 IMAGE CLASSIFICATION

ResNet50 on ImageNet For the experiment setup of the image classification task, we follow the
training recipe used to train the weights by torchvision6. To avoid the bottleneck caused by the
data loading and preprocessing on CPU, we use DALI7 for the pipeline of preprocessing. In the
preprocessing and the data augmentation, the images are: (1) randomly cropped (aspect ratio is
from 3/4 to 4/3, random area is from 0.08 to 1.0) (2) resized to 224×224 (3) randomly flipped
horizontally with 0.5 probability (4) normalized by channel means and variances. In all experiments,
the global batch size is fixed to 1024, the learning rate schedule is cosine annealing with 5 epochs
of linear warmup, the weight decay is 3 × 10−5 on non-batch-normalization parameters, and the
label smoothing is 0.1. In the experiments of All-Reduce baselines, the optimizer is Adam, the base
learning rate is 0.001, and the betas are (0.9, 0.999). In the experiments of decentralized Adam, the
base learning rate is 0.0024, 0.0048, and 0.0070 for 8, 16, and 32 workers, respectively. The betas are
(0.974, 0.999). In the experiments of AccumAdam, the base learning rate is 0.002 for all numbers of
workers, the betas are (0.9, 0.999), and s is set to N/4.

A.6.3 GPT-2 PRETRAINING

GPT-2 (small) on OpenWebText For the experiment setup of the LLM pretraining, we follow the
training recipe from nanoGPT8. The batching strategy used in the repository is sequence packing,
and the global batch size is around 0.5 million tokens. The hyperparameters of the baseline are the
same as in the repository. The baseline uses AdamW optimizer. For the AccumAdam experiments
with 16 A100 GPUs, we only change β2 and s to 0.999 and 8, respectively, and keep the other
hyperparameters the same as the baseline.

A.7 PYTORCH EXTENSION FOR DECENTRALIZED TRAINING

The implementation of the PyTorch extension facilitates decentralized training (with the same scheme
as in Eq. 2). The design is inspired by the DistributedDataParallel(DDP) module in
PyTorch (Li et al., 2020).

The main idea of the implementation is as follows. The implementation is a wrapper of the Py-
Torch models (torch.nn.Module). By using the hook mechanism in PyTorch, we register
the backward hook for all weights before the first forward and backward passes. Then, in the
first backward pass, the wrapper collects the computation order of weights, groups the weights
into buckets by their order, removes the hooks, and registers new hooks on the last weight in the
buckets using register post accumulate grad hook (available from PyTorch 2.1). The
post accumulate grad hook indicates the event that the corresponding gradient of one weight
is computed and accumulated, which means the weight will no longer be used in this iteration and it’s
ready for update. In the hook, the wrapper checks if the decentralized communication for the bucket
in the last iteration is finished, updates the weights in the bucket, and launches the decentralized
communication for the next iteration. Another module is implemented for scheduling the neighbors
of workers in each iteration, and it makes the extension flexible for various topologies.

Subject to the complexity of implementation and limited time, the implemented wrapper only supports
one GPU per worker, and it does not support automatic mixed precision and sparse gradients like in
DDP, but the improvements are planned for wider applications in the future.

The implementation is based on the Python API provided by PyTorch. We believe that further practical
speedups could be achieved by modifying the low-level implementation of the communication to

6https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/
7https://github.com/NVIDIA/DALI
8https://github.com/karpathy/nanoGPT
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optimize it for gossip communication. However, for a fair comparison with DDP in PyTorch, our
implementation is at the appropriate level of optimization.

The code bases for the PyTorch extension and the experiments are open-source at
https://github.com/WangZesen/Decent-DP and https://github.com/WangZesen/Decentralized-
Training-Exp, respectively.

A.7.1 COMPARISON WITH IMPLEMENTATION IN STOCHASTIC GRADIENT PUSH

In the implementation of stochastic gradient push (SGP) (Assran et al., 2019), to utilize the fast
connections (NVLinks between GPUs in one node), it groups the GPUs in one node. In each
iteration, the workers in one node will aggregate the gradients and update the model shared in
the node combining with the received communication messages. Therefore, the communication
topology discussed in Assran et al. (2019) is on the node level. One of the advantages is that the
design of topology does not involve the significant heterogeneity caused by intra-node and inter-node
connections. However, heterogeneity in connections still exists because the characteristics of inter-
node connections may differ depending on the cluster topology and congestion caused by concurrent
communications.

Compared with our design, it’s different in that workers always exchange the model parameters
instead of gradients, and our communication topology is defined on the worker level. As for the
topology, we could utilize the connections in the same way as SGP’s implementation as the worker-
level topology is a superset of node-level topology. Moreover, we argue that our implementation is
more advantageous in the resilience to the variance because aggregating the gradients will cause the
straggler problem within the node.

We demonstrate the difference by making one change in the dependency relationship of the update
task. In SGP’s implementation, the update on one bucket does not only depend on the corresponding
backward and the communication from the last iteration of the work itself but also its local neighbors’
backward pass and communication. Therefore, compared with the runtime model of decentralized
training (Eq. 7), the finish time of Uk is changed to

T
(i,t)
Uk

= max
j∈L(i)

{T (j,t)
Bk

, T
(j,t−1)
Ck

}+ θ (8)

where L(i) is the workers that are in the same node as worker i.

Note that in this simplified model, we ignore the time taken by the head worker to broadcast gossip
updates to other workers in the node. In most cases, the operation does not incur significant cost to
the per-iteration runtime, but only when the intra-node connection is comparable with the inter-node
connection (the T4 GPU setup in § 5.2, for example).

Figure 15: Comparison with Stochastic Gradient Push
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The results of the simulation by the runtime models are shown in Figure 15. It shows that, with in-
creasing variance in computation time, our implementation has better speedup (hence better resilience
to computation time variance) than SGP when it’s computation-bound. In the communication-bound
case, since the communication time dominates the runtime, both implementations have the same
speedup.

Since the dependency libraries of the open-source code of SGP9 have been deprecated due to the
fast updates of dependencies, we can not reproduce the runtime results on our hardware. Instead,
we re-implemented 1-OSGP (the best asynchronous version of SGP) in our numerical experiments.
The relative comparisons between 1-OSGP and All-Reduce training are as similar as in Assran
et al. (2019). The comparisons of runtime performance in § 5.2 justify the advantages of our
implementation.

9https://github.com/facebookresearch/stochastic gradient push
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A.8 ADDITIONAL EXPERIMENTS

The section presents the experiment results that are not shown in the main text due to space limitation.

A.8.1 GENERALIZATION PERFORMANCE

Table 4 shows the generalization performance of the training transformer (big) on WMT14 English-
to-French, and it shows that both DAdam and AccumAdam outperform All-Reduce training baseline,
and AccumAdam outperforms DAdam in most of the metrics.

Table 4: Neural Machine Translation on WMT14 (Bojar et al., 2014): The results show the
generalization performance of training transformer (base) on English-to-German and transformer
(big) on English-to-French. The last checkpoint of each method is evaluated by BLEU score (Papineni
et al., 2002) and METEOR (Banerjee & Lavie, 2005) the corresponding newtest2014 testset. The
number of workers is 8 and the number of workers per node is 4 for all experiments. The error bands
with ±2σ based on 3 runs are reported. Some entries are empty because of limited resources.

Method Topology En-De / Transformer (base) En-Fr / Transformer (big)

AllReduce Complete 27.72 ± 0.37 / 0.5476 ± 0.0036 45.69 ± 0.30 / 0.6676 ± 0.0017

DAdam
Ring 27.59 ± 0.61 / 0.5452 ± 0.0054 -
AER 27.83 ± 0.11 / 0.5472 ± 0.0018 -

Complete 27.84 ± 0.59 / 0.5467 ± 0.0062 45.90 ± 0.32 / 0.6693 ± 0.0023

AccumAdam
Ring 27.61 ± 0.20 / 0.5447 ± 0.0014 -
AER 27.78 ± 0.41 / 0.5471 ± 0.0020 -

Complete 27.82 ± 0.13 / 0.5473 ± 0.0015 46.20 ± 0.22 / 0.6718 ± 0.0009

A.8.2 SPEEDUP

In Tables 5, we present the per-iteration runtime of both All-Reduce training and decentralized
training (both with Adam optimizer) and the relative speedup of decentralized training over All-
Reduce training on the image classification task. Since we conducted the experiments with a fixed
iteration budget, the relative speedup of per-iteration runtime also reflects the relative speedup of total
runtime.

Combined with the results of generalization performance, the experiments demonstrate the practicality
of decentralized training.

Table 5: Results of speedup of training ResNet-50 on ImageNet dataset for the image classification task.

Node Setup /
Inter-Connection Workers Methods Comm.

Topology
Per-iteration

Runtime (ms) Speedup

4×A40 Node /
25Gbps Ether.

8 AllReduce complete 344.44 -
Decentralized complete 333.07 3.30%

16 AllReduce complete 176.72 -
Decentralized complete 163.68 7.38%

8×T4 Node /
100Gbps Infini.

16 AllReduce complete 645.59 -
Decentralized complete 617.75 4.31%

32 AllReduce complete 331.51 -
Decentralized complete 313.56 5.41%

Scalability Experiments with FFCV Additional experiments were performed by integrating our
implementation of decentralized training with FFCV Leclerc et al. (2023). The code is adapted from
the official repository of FFCV for fast training on ImageNet10. The following are some important
details about the environment used for these tests:

10https://github.com/libffcv/ffcv-imagenet/tree/main
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• Key software: PyTorch 2.5.1, CUDA 12.1, ffcv 1.0.2.

• Hardware configuration: 16 CPU cores11 and 64 GB RAM per GPU. For nodes with
4×A10012 each, the nodes are interconnected with 100Gbps InfiniBand. For nodes with
4×A4013 each, the nodes are interconnected with 25Gbps Ethernet.

• Preprocessing: All images were converted to bento format by FFCV and compressed with
384 pixels as the maximal size. The size of the processed training set is ∼40GB (same
as the statistics from ffcv14), which can be fully loaded into memory for best data loading
performance.

• Data loader: 12 workers for each GPU, which is the default setting.

• Network architecture: ResNet-50.

The input images are resized to the size of 160×160 pixels (default input size at the beginning of the
training). We measured the per-iteration and per-epoch runtime for 1, 2, and 4 nodes with the same
global batch size of 2048 using two types of nodes, respectively.

Iteration Time (ms) / Epoch Time (s) / Relative Speedup over AllReduce

Number of Nodes 1 2 4

AllReduce 123.61 / 77.26 / 0.00% 70.23 / 43.89 / 0.00% 41.88 / 26.17 / 0.00%
DT – Complete 123.00 / 76.88 / 0.49% 67.98 / 42.49 / 3.20% 40.57 / 25.36 / 3.13%
DT – AER N/A 67.07 / 41.92 / 4.49% 38.97 / 24.36 / 6.94%

Table 6: The table shows the runtime performance on nodes with 4×A100 each. The nodes are
interconnected with 100Gbps InfiniBand. The statistics are generated by the mean of runtime of 3
epochs. The architecture of the neural network is ResNet-50, the global batch size is fixed to 2048,
and the input image size is 160×160 pixels. The AER topology needs at least two nodes.

Iteration Time (ms) / Epoch Time (s) / Relative Speedup over AllReduce

# of Nodes 1 2 4

AllReduce 274.73 / 171.70 / 0.00% 151.06 / 94.41 / 0.00% 121.36 / 75.85 / 0.00%
DT – Complete 273.97 / 171.23 / 0.27% 149.48 / 93.42 / 1.05% 120.19 / 75.12 / 0.96%
DT – AER N/A 145.14 / 90.71 / 3.91% 85.76 / 53.60 / 29.33%

Table 7: The table shows the runtime performance on nodes with 4×A40 each. The nodes are
interconnected with 25Gbps Ethernet. The statistics are generated by the mean of runtime of 3 epochs.
The architecture of the neural network is ResNet-50, the global batch size is fixed to 2048, and the
input image size is 160×160 pixels. The AER topology needs at least two nodes.

The results show that increasing the number of nodes can still enable significant speedups: for
AllReduce with A100 nodes, the per-epoch runtime reduces from 76.876s with 1 node to 25.355s
with 4 nodes. This demonstrates that the advantages of scaling up beyond 1 node remain even
when we incorporate FFCV. Moreover, the decentralized training outperforms AllReduce training
in all experiments even with complete topology. With Alternating Exponential Ring (AER), the
decentralized training outperforms AllReduce training by a clear margin in runtime (up to 29.33% on
four 4×A40 nodes).

11Intel(R) Xeon(R) Gold 6338 CPU @ 2GHz
12NVIDIA Tesla A100 HGX GPU with 40GB vRAM
13NVIDIA Tesla A40
14https://docs.ffcv.io/benchmarks.html
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A.8.3 TRAINING CURVES

Training Curves for GPT-2 Pre-training This section provides additional details about the
experiments of pre-training GPT-2 (small) (Radford et al., 2019) on OpenWebText dataset (Gokaslan
et al., 2019).

The curves in Fig. 16 and Fig. 17 demonstrate the cross-entropy loss for next-word prediction where
the x-axes are the number of iterations and training time, respectively. The figures illustrate that
decentralized training attains comparable generalization performance to AllReduce, but at a speedup
of ∼6.31%.

The training details including datasets, source code, number of iterations, and training time were
not revealed in the original paper (Radford et al., 2019). The code for the experiments was adapted
from the open-source implementation of GPT-215 which, to the best of our knowledge, is the most
comprehensive pre-training repository available. The hyperparameters of the AllReduce training
baseline use the default settings in the repository (the batch size is ∼0.5 million tokens). In the
repository, the training was conducted for 400k steps, which we extended to 600k to better validate
the performance of decentralized training.

The experiments were conducted on 4 nodes with 4×A100 each. Since the workloads are balanced
(sequence packing is used as the batching strategy) and the network is relatively fast (nodes are
interconnected by 100Gbps InfiniBand), using sparser topologies will not significantly improve
runtime for this case. Therefore, we used the complete topology in the experiment of decentralized
training.

Figure 16: The curves of train and validation losses where the x-axis is the number of iterations. AR:
AllReduce training. Decent: Decentralized training with AccumAdam.

Figure 17: The curves of train and validation losses where the x-axis is training time. AR: AllReduce
training. Decent: Decentralized training with AccumAdam.

15https://github.com/karpathy/nanoGPT
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B CONVERGENCE ANALYSIS

B.1 PRELIMINARIES

B.1.1 NOTATION

Our convergence analysis uses the following, relatively standard, notation.

• ∥ · ∥2 (∥ · ∥∞ ): the ℓ2- (ℓ∞-) norm.

• N : the number of workers.

• D: the number of dimensions of model parameters.

• x
(t)
i ,m

(t)
i , v

(t)
i ∈ RD: the local model and the local momentums of worker i at iteration t.

• x
(t)
i,d,m

(t)
i,d, v

(t)
i,d ∈ R: the d-th entry of the local model and the local momentums of worker i

at iteration t.

• F , Fi: the global objective function and the local objective function of worker i.

• g
(t)
i := ∇fi(x(t−1)

i ) := ∇ℓ(x(t−1)
i ; ξ

(t)
i ) ∈ RD: the stochastic gradient evaluated by the

local model x(t−1)
i and the local sample ξ

(t)
i on the loss function ℓ.

•
[
g
(t)
i

]2
: the entry-wise square of vector g(t)i

• ∇dfi: the d-th entry of∇fi.
• W = [wij ] ∈ RN×N : the mixing matrix where wij is the ij-th entry.

• W∞ ∈ RN×N : a matrix with all entries equal to 1/N .

• 1N ∈ RN×N : an N ×N matrix with all entries equal 1.

• Ni: the set of neighbours of worker i (wij = wji > 0).

• [N ] := {1, 2, . . . , N}
• Et−1 [·]: the conditional expectation given all stochastic gradients before the t-th iteration.

By assumption, it holds that

Et−1

[
g
(t)
i

]
= ∇Fi(x

(t−1)
i ).

B.2 COMPARION WITH RELATED DECENTRALIZED METHODS

Ability of overlap To achieve the overlap of communication and computation, we use a combine-
then-adapt (CTA) type of decentralized gradient descent (DGD) in Algorithm 1. In contrast, another
type, adapt-then-combine (ATC) DGD in the form of x(t)

i ←
∑

j∈N (t)
i

w
(t)
ij (x

(t−1)
j −α(t)d

(t)
j ) cannot

straightforwardly achieve this overlap, even though it has been shown faster convergence in terms of
communication rounds Cattivelli & Sayed (2009). Specifically, for worker i to compute x

(t)
i , assume

that a neighbor j ∈ N (t)
i takes a very long time to calculate its direction d

(t)
j and then take a long

time to send x
(t−1)
j − α(t)d

(t)
j to worker i. Worker i must then wait for receiving x

(t−1)
j − α(t)d

(t)
j

from the straggler j before it can compute x
(t)
i . In contrast, with the CTA type algorithm, worker i

only needs the previous iterate x
(t−1)
j from the straggler j which is already on the way, not the d

(t)
j

which is being calculated with x
(t−1)
j . This allows for the overlap of computation of d(t)j and the

communication of x(t−1)
j . In other words, the communication task of the straggler worker j, x(t−1)

j ,

is hidden within the computation of d(t)j .

Comparison with state-of-art decentralized Adam-based methods The authors in Nazari et al.
(2022) proposed DADAM for online optimization over a decentralized network, with the algorithm
based on the principle of CTA. Following CTA, the authors in Chen et al. (2023) introduced a
unifying decentralized adaptive gradient framework, which involves communication not only of the
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local models but also of the second-order momentums vi. While this enhances the convergence
accuracy of the algorithm, it also increases the communication cost. The authors in Ying et al. (2021b)
proposed DAG-Adam, which incorporates consensus constraints as a penalty in the objective function.
Based on the gradient of this penalized augmented objective function, the DAG-Adam algorithm is
proposed, improving accuracy in non-iid data scenarios for decentralized Adam. Although DAG-
Adam theoretically explains that using different vi across workers i can lead to inexact convergence
when data are non-iid, our algorithm is applied under the iid assumption, which holds for our HPC
environments. Additionally, the paper Lin et al. (2021) introduces QG-ADAM which uses momentum
technique to handle non-iid data. Since QG-ADAM uses the ATC approach, each worker must wait
to receive all neighboring workers’ local messages before updating its local model, thus limiting the
ability to effectively overlap computation and communication.

B.2.1 USEFUL INEQUALITIES

∀a, b ∈ Rd and ∀β > 0, ⟨a, b⟩ ≤ β

2
∥a∥22 +

1

2β
∥b∥22. (9)

∀xi ∈ Rd and n ∈ N+,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

2

≤ n

n∑
i=1

∥xi∥22. (10)

∀A ∈ Rn×n and x ∈ Rn, ∥Ax∥22 ≤ λ2
max ∥x∥

2
2 , (11)

where λmax is largest singular value of A.

We first establish the theorem for β1 = 0.
Theorem B.1 (Without Heavy-ball Momentum). Under Assumptions 1–3, for Algorithm 1, we have

1

T

T∑
t=1

∥∥∥∇dF (x̄(t−1))
∥∥∥2
2
≤ 4R

αT

[
F
(
x̄(0)

)
− F∗

]
+ E

[
1

T
ln

(
1 +

R2

ϵ(1− β2)

)
− ln(β2)

]
where x̄(t) = 1

N

∑N
i=1 x

(t)
i and

E :=
8DR2

√
1− β2

+
2αDLR

(1− β2)
+

8α2(1 + λ2)L2DR

(1− λ2)2(1− β2)3/2
√
ϵ
.

The proof can be found in Appendix B.3. Compared with (Défossez et al., 2020, Theorem 2) for the
single-machine Adam, Theorem B.1 shows that our decentralized Adam achieves the same results as
Défossez et al. (2020) (ignoring scaled constants), except that there is an additional third term in E,
which is related to the second largest absolute value eigenvalue of the mixing matrix λ. Since a λ
close to 1 indicates poor connectivity of the topology, it increases the third term in E. Notably, this
term is proportional to the square of the step size, α. By selecting a smaller α, we can effectively
mitigate this term.

B.3 PROOF OF THOREM B.1: DECENTRALIZED ADAM WITHOUT HEAVY-BALL MOMENTUM

B.3.1 ALGORITHM UPDATE UNDER ANALYSIS

We set β1 = 0, which means that there is no heavy-ball momentum. We have the algorithm update
under analysis is

g
(t)
i = ∇ℓ(x(t−1)

i ; ξ
(t)
i ), v

(t)
i,d = β2v

(t−1)
i,d +

[
g
(t)
i,d

]2
,

αt = α

√
1− βt

2

1− β2
, x

(t)
i,d = −αt

g
(t)
i,d√

ϵ+ v
(t)
i,d

+
∑
j∈Ni

wijx
(t−1)
j,d .

(12)

Taking the average across workers and using the Assumption 3, we get that the (virtual) update of the
globally averaged model is

x̄
(t)
d = −αt

N

N∑
i=1

g
(t)
i,d√

ϵ+ v
(t)
i,d

+ x̄
(t−1)
d . (13)
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We denote ṽ
(t)
i := β2v

(t−1)
i + Et−1

[(
g
(t)
i,d

)2]
which differs from v

(t)
i,d by replacing the last term of

v
(t)
i,d with its conditional expectation. To simplify the notation, we denote

Ḡ
(t)
d := ∇dF

(
x̄(t−1)

)
=

1

N

N∑
i=1

∇dFi

(
x̄(t−1)

)
and G

(t)
i,d := ∇dFi(x

(t−1)
i ). (14)

B.3.2 TECHNICAL LEMMAS

Lemma 1 (adaptive update approximately follow a descent direction) Under Assumption 2, for
Algorithm 1, we have

κ ≥ 1

4

N∑
i=1

[
∇dF

(
x̄(t−1)

)]2√
ϵ+ ṽ

(t)
i,d

−
N∑
i=1

[
∇dFi

(
x
(t−1)
i

)
−∇dF

(
x̄(t−1)

)]2√
ϵ+ ṽ

(t)
i,d

−2R
N∑
i=1

Et−1


(
∇dfi(x

(t−1)
i )

)2
ϵ+ v

(t)
i,d


(15)

where

κ := Et−1

∇dF
(
x̄(t−1)

) N∑
i=1

∇dfi

(
x
(t−1)
i

)
√

ϵ+ v
(t)
i,d

 .

Proof. According to the definition of κ, we have

κ = Ḡ
(t)
d Et−1

 N∑
i=1

g
(t)
i,d√

ϵ+ v
(t)
i,d


= Ḡ

(t)
d Et−1

 N∑
i=1

g
(t)
i,d

 1√
ϵ+ v

(t)
i,d

± 1√
ϵ+ ṽ

(t)
i,d


= Ḡ

(t)
d Et−1

 N∑
i=1

g
(t)
i,d√

ϵ+ ṽ
(t)
i,d

+ Et−1

Ḡ(t)
d

N∑
i=1

 g
(t)
i,d√

ϵ+ v
(t)
i,d

−
g
(t)
i,d√

ϵ+ ṽ
(t)
i,d


= Ḡ

(t)
d

N∑
i=1

G
(t)
i,d√

ϵ+ ṽ
(t)
i,d︸ ︷︷ ︸

A

+Et−1

Ḡ(t)
d

N∑
i=1

 g
(t)
i,d√

ϵ+ v
(t)
i,d

−
g
(t)
i,d√

ϵ+ ṽ
(t)
i,d


︸ ︷︷ ︸

B

.

(16)

Firstly, for the term A, we have

A = Ḡ
(t)
d

 N∑
i=1

G
(t)
i,d ± Ḡ

(t)
d√

ϵ+ ṽ
(t)
i,d

 = Ḡ
(t)
d

 N∑
i=1

G
(t)
i,d − Ḡ

(t)
d√

ϵ+ ṽ
(t)
i,d

+

N∑
i=1

[
Ḡ

(t)
d

]2
√
ϵ+ ṽ

(t)
i,d

. (17)

By applying the Young’s inequality (9) for N times on the first term on the right hand of equation 17
and letting

γ =
1

2
√
ϵ+ ṽ

(t)
i,d

, a = Ḡ
(t)
d , b =

G
(t)
i,d − Ḡ

(t)
d√

ϵ+ ṽ
(t)
i,d

,

we have

A ≥ −1

4

N∑
i=1

[
Ḡ

(t)
d

]2
√
ϵ+ ṽ

(t)
i,d

−
N∑
i=1

[
G

(t)
i,d − Ḡ

(t)
d

]2
√
ϵ+ ṽ

(t)
i,d

+

N∑
i=1

[
Ḡ

(t)
d

]2
√

ϵ+ ṽ
(t)
i,d

=
3

4

N∑
i=1

[
Ḡ

(t)
d

]2
√
ϵ+ ṽ

(t)
i,d

−
N∑
i=1

[
G

(t)
i,d − Ḡ

(t)
d

]2
√
ϵ+ ṽ

(t)
i,d

.

(18)
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For the term B in (16), we have

B = Ḡ
(t)
d

N∑
i=1

 g
(t)
i,d√

ϵ+ v
(t)
i,d

−
g
(t)
i,d√

ϵ+ ṽ
(t)
i,d



= Ḡ
(t)
d

N∑
i=1

 g
(t)
i,d

(
ṽ
(t)
i,d − v

(t)
i,d

)
√
ϵ+ v

(t)
i,d

√
ϵ+ ṽ

(t)
i,d

(√
ϵ+ v

(t)
i,d +

√
ϵ+ ṽ

(t)
i,d

)


= Ḡ
(t)
d

N∑
i=1

 g
(t)
i,d

[
Et−1

[(
g
(t)
i,d

)2]
−
(
g
(t)
i,d

)2]
√
ϵ+ v

(t)
i,d

√
ϵ+ ṽ

(t)
i,d

(√
ϵ+ v

(t)
i,d +

√
ϵ+ ṽ

(t)
i,d

)
 .

(19)

Given the fact that
√
ϵ+ v

(t)
i,d > 0 and

√
ϵ+ ṽ

(t)
i,d > 0, we have√

ϵ+ v
(t)
i,d +

√
ϵ+ ṽ

(t)
i,d >

√
ϵ+ v

(t)
i,d and

√
ϵ+ v

(t)
i,d +

√
ϵ+ ṽ

(t)
i,d >

√
ϵ+ ṽ

(t)
i,d. (20)

By taking the absolute value of B, we have

|B| ≤
N∑
i=1

∣∣∣Ḡ(t)
d g

(t)
i,d

∣∣∣Et−1

[(
g
(t)
i,d

)2]
√
ϵ+ v

(t)
i,d

(
ϵ+ ṽ

(t)
i,d

)
︸ ︷︷ ︸

C

+

N∑
i=1

∣∣∣Ḡ(t)
d g

(t)
i,d

∣∣∣ (g(t)i,d

)2
√

ϵ+ ṽ
(t)
i,d

(
ϵ+ v

(t)
i,d

)
︸ ︷︷ ︸

H

. (21)

To bound C, by applying the Young’s inequality equation 9 for N times and let

γ =

√
ϵ+ ṽ

(t)
i,d

2
, a =

∣∣∣Ḡ(t)
d

∣∣∣√
ϵ+ ṽ

(t)
i,d

, b =

∣∣∣g(t)i,d

∣∣∣Et−1

[(
g
(t)
i,d

)2]
√

ϵ+ v
(t)
i,d

√
ϵ+ ṽ

(t)
i,d

,

we have

C ≤ 1

4

N∑
i=1

[
Ḡ

(t)
d

]2
√
ϵ+ ṽ

(t)
i,d

+

N∑
i=1

(
g
(t)
i,d

)2
Et−1

[(
g
(t)
i,d

)2]2
(
ϵ+ v

(t)
i,d

)(
ϵ+ ṽ

(t)
i,d

)3/2 . (22)

Given the fact that
√

ϵ+ ṽ
(t)
i,d ≥

√
Et−1

[(
g
(t)
i,d

)2]
, using Assumption 2, and taking the conditional

expectation on C, we have

Et−1[C] ≤ 1

4

N∑
i=1

[
Ḡ

(t)
d

]2
√
ϵ+ ṽ

(t)
i,d

+

N∑
i=1

Et−1


(
g
(t)
i,d

)2
ϵ+ v

(t)
i,d

 Et−1

[(
g
(t)
i,d

)2]2
(
ϵ+ ṽ

(t)
i,d

)3/2
≤ 1

4

N∑
i=1

[
Ḡ

(t)
d

]2
√
ϵ+ ṽ

(t)
i,d

+

N∑
i=1

Et−1


(
g
(t)
i,d

)2
ϵ+ v

(t)
i,d


√
Et−1

[(
g
(t)
i,d

)2]

≤ 1

4

N∑
i=1

[
Ḡ

(t)
d

]2
√
ϵ+ ṽ

(t)
i,d

+R

N∑
i=1

Et−1


(
g
(t)
i,d

)2
ϵ+ v

(t)
i,d

 .

(23)
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Now we focus on H in (21). By applying the Young’s inequality equation 9 for N times and let

γ =

√
ϵ+ ṽ

(t)
i,d

2Et−1

[(
g
(t)
i,d

)2] , a =

∣∣∣Ḡ(t)
d g

(t)
i,d

∣∣∣√
ϵ+ ṽ

(t)
i,d

, b =

(
g
(t)
i,d

)2
ϵ+ v

(t)
i,d

, (24)

we have

H ≤ 1

4

N∑
i=1

[
Ḡ

(t)
d

]2
√
ϵ+ ṽ

(t)
i,d

(
g
(t)
i,d

)2
Et−1

[(
g
(t)
i,d

)2] +

N∑
i=1

Et−1

[(
g
(t)
i,d

)2]
√
ϵ+ ṽ

(t)
i,d

(
g
(t)
i,d

)4
(
ϵ+ v

(t)
i,d

)2 . (25)

Given the fact that ϵ + v
(t)
i,d ≥

(
g
(t)
i,d

)2
and

√
ϵ+ ṽ

(t)
i,d ≥

√
Et−1

[(
g
(t)
i,d

)2]2
, using Assumption 2,

and taking the conditional expectation, we have

Et−1[H] ≤ 1

4

N∑
i=1

[
Ḡ

(t)
d

]2
√
ϵ+ ṽ

(t)
i,d

Et−1

[(
g
(t)
i,d

)2]
Et−1

[(
g
(t)
i,d
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i,d
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√
ϵ+ ṽ
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i,d
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(
g
(t)
i,d

)4
(
ϵ+ v
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i,d
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≤ 1

4

N∑
i=1

[
Ḡ

(t)
d

]2
√
ϵ+ ṽ

(t)
i,d
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(
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i,d

)2
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i,d

 .

(26)

By plugging (23) and (26) back to (21), we have

Et−1[B] ≥ −Et−1[|B|]
≥ −Et−1[|C|]− Et−1[|H|]

≥ −1

2

N∑
i=1

[
Ḡ

(t)
d

]2
√
ϵ+ ṽ

(t)
i,d

− 2R

N∑
i=1

Et−1


(
g
(t)
i,d

)2
ϵ+ v

(t)
i,d

 .

(27)

By plugging (18) and (27) back to (16), we have
κ = A+ Et−1[B]

≥ 1

4

N∑
i=1

[
Ḡ
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d
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ϵ+ ṽ

(t)
i,d

−
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[
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∇dF

(
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ϵ+ ṽ
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−
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i=1

[
∇dFi

(
x
(t−1)
i

)
−∇dF

(
x̄(t−1)

)]2√
ϵ+ ṽ

(t)
i,d

− 2R

N∑
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Et−1


(
∇dfi(x
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i )

)2
ϵ+ v

(t)
i,d

 ,

(28)

which completes the proof of Lemma 1.

Lemma 2 (sum of ratios with the denominator being the sum of past numerators) Given 0 < β2 < 1

and a non-negative sequence (at)t∈N+ , define bt =
∑t

j=1 β
t−j
2 aj for all t ∈ N+, then we have

T∑
j=1

aj
ϵ+ bj

≤ ln

(
1 +

bT
ϵ

)
− T ln(β2). (29)
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Proof. Refer to Lemma 5.2 in Défossez et al. (2020).

Lemma 3 (averaged consensus error is bounded if sampling from i.i.d. data distribution) Under
Assumptions 1–3, for Algorithm 1, we have

1

T

T∑
t=1

N∑
i=1

D∑
d=1

[
∇dFi(x

(t−1)
i )−∇dF (x̄

(t−1)
i )

]2
≤2(1 + λ2)α2NL2D

(1− λ2)2(1− β2)

[
1

T
ln

(
1 +

R2

ϵ(1− β2)

)
− ln(β2)

]
.

(30)

Proof. Denote the concatenation of the d-th dimension of all local models at t-th iteration as

x
(t)
d :=

[
x
(t)
1,d x

(t)
2,d · · · x

(t)
N,d

]⊤
∈ RN .

Denote the concatenation of N d-th dimension of the (virtual) averaged model as

x̄
(t)
d :=

[
x̄
(t)
d x̄

(t)
d · · · x̄

(t)
d

]⊤
∈ RN .

Denote the concatenation of the d-th dimension of updates of all local models at t-th iteration as

e
(t)
d = −αt

∇df1

(
x
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1

)
√

ϵ+ v
(t)
1,d

, · · · ,
∇dfN

(
x
(t−1)
N

)
√
ϵ+ v

(t)
N,d

 ∈ RN .

Denote the concatenation of N d-th dimension of updates of the (virtual) averaged model at t-th
iteration as

ē
(t)
d = −αt

N

 N∑
i=1

∇dfi

(
x
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 ∈ RN .

From the update function (12), it can be inferred that

x̄
(t)
d = x̄

(t−1)
d + ē

(t)
d =

1

N
1Nx

(t−1)
d +

1

N
1Ne

(t)
d = W∞x

(t−1)
d +W∞e

(t)
d (31)

The update of x(t)
d can be rewritten as

x
(t)
d = Wx

(t−1)
d + e

(t)
d (32)

Then we have∥∥∥x(t)
d − x̄

(t)
d

∥∥∥2
2
=
∥∥∥Wx
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Recall the definition of λ in Assumption 3. By applying the Young’s inequality equation 9 and letting

γ =
1− λ2

2λ2
> 0, a =
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N
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)(
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)
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(34)

By using (11), we have∥∥∥x(t)
d − x̄
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2
. (35)

Given that all local models start from the same point x(0), by summing up for all t ∈ [T ] and using
telescoping, we have

1− λ2
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. (36)

Given that αt ≤ α√
1−β2

and using Lemma 2, we have

1− λ2

2

T∑
t=1

∥∥∥x(t−1)
d − x̄

(t−1)
d

∥∥∥2
2
≤ 1 + λ2

1− λ2

N∑
i=1

T∑
t=1

α2
t

(
g
(t)
i,d

)2
ϵ+ v

(t)
i,d

≤ (1 + λ2)α2

(1− λ2)(1− β2)

N∑
i=1

T∑
t=1

(
g
(t)
i,d

)2
ϵ+ v

(t)
i,d

≤ (1 + λ2)α2

(1− λ2)(1− β2)

N∑
i=1

[
ln

(
1 +

v
(t)
i,d

ϵ

)
− T ln(β2)

]
.

(37)

By using Assumption 2 on the above inequality, we have

1

T

T∑
t=1

∥∥∥x(t−1)
d − x̄

(t−1)
d

∥∥∥2
2
≤ 2(1 + λ2)α2N

(1− λ2)2(1− β2)

[
1

T
ln

(
1 +

R2

ϵ(1− β2)

)
− ln(β2)

]
. (38)

We now focus on the left side of (30). By using iid assumption and Assumption 1, we have

1

T

T∑
t=1

N∑
i=1

D∑
d=1

[
∇dFi(x

(t−1)
i )−∇dF (x̄

(t−1)
i )

]2
=

1

T

T∑
t=1

N∑
i=1

D∑
d=1

[
∇dF (x

(t−1)
i )−∇dF (x̄

(t−1)
i )

]2
=

1

T

T∑
t=1

N∑
i=1

∥∥∥∇F (x
(t−1)
i )−∇F (x̄

(t−1)
i )

∥∥∥2
2

≤ L2

T

T∑
t=1

N∑
i=1

∥∥∥x(t−1)
i − x̄(t−1)

∥∥∥2
2

=
L2

T

T∑
t=1

D∑
d=1

∥∥∥x(t−1)
d − x̄

(t−1)
d

∥∥∥2
2

(39)

Plugging (38) to (39), we have

1

T

T∑
t=1

N∑
i=1

D∑
d=1

[
∇dFi(x

(t−1)
i )−∇dF (x̄

(t−1)
i )

]2
≤ 2(1 + λ2)α2NL2D

(1− λ2)2(1− β2)

[
1

T
ln

(
1 +

R2

ϵ(1− β2)

)
− ln(β2)

]
,

(40)
which completes the proof of Lemma 3.
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B.3.3 MAIN PROOF OF THEOREM B.1

From Assumption 1, we have

F
(
x̄(t)
)
≤ F

(
x̄(t−1)

)
+∇F

(
x̄(t−1)

)⊤ (
x̄(t) − x̄(t−1)

)
+

L

2

∥∥∥x̄(t) − x̄(t−1)
∥∥∥2
2
. (41)

By substituting equation 13 into equation 41 and taking the conditional expectation on both sides, we
have

Et−1

[
F
(
x̄(t)
)]
≤ F

(
x̄(t−1)

)
− αt

N

D∑
d=1

Et−1

∇dF
(
x̄(t−1)

)⊤ N∑
i=1

∇dfi

(
x
(t−1)
i

)
√
ϵ+ v

(t)
i,d



+
Lα2

t

2

D∑
d=1

Et−1


∥∥∥∥∥∥ 1

N

N∑
i=1

∇dfi(x
(t−1)
i )√

ϵ+ v
(t)
i,d

∥∥∥∥∥∥
2

2

 .

(42)

By applying (10) to (42) and letting

ai =
∇dfi(x

(t−1)
i )

N
√

ϵ+ v
(t)
i,d

,

we have

Et−1

[
F
(
x̄(t)
)]
≤ F

(
x̄(t−1)

)
− αt

N

D∑
d=1

Et−1

∇dF
(
x̄(t−1)

)⊤ N∑
i=1

∇dfi

(
x
(t−1)
i

)
√
ϵ+ v

(t)
i,d



+
Lα2

t

2N

D∑
d=1

Et−1

 N∑
i=1

[
∇dfi(x

(t−1)
i )

]2
ϵ+ v

(t)
i,d

 .

(43)

By applying Lemma 1 to (43), we have

Et−1

[
F
(
x̄(t)
)]
≤ F

(
x̄(t−1)

)
− αt

4N

D∑
d=1

N∑
i=1

[
∇dF

(
x̄(t−1)

)]2√
ϵ+ ṽ

(t)
i,d︸ ︷︷ ︸

A

+
αt

N

D∑
d=1

N∑
i=1

[
∇dFi

(
x
(t−1)
i

)
−∇dF

(
x̄(t−1)

)]2√
ϵ+ ṽ

(t)
i,d

+

(
2αtR

N
+

Lα2
t

2N

) D∑
d=1

Et−1

 N∑
i=1

[
∇dfi(x

(t−1)
i )

]2
ϵ+ v

(t)
i,d

 .

(44)

Now we focus on the term A in (44). From Assumption 2, we have
√
ϵ+ ṽ

(t)
i,d ≤ R

√
1−βt

2

1−β2
, and

recall that αt = α
√

1−βt
2

1−β2
. Then we have

A ≤ − α

4R

D∑
d=1

(
∇dF (x̄(t−1))

)2
= − α

4R

∥∥∥∇dF (x̄(t−1))
∥∥∥2
2
. (45)
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Given the fact that αt ≤ α√
1−β2

, by plugging (45) into (44), we have

Et−1

[
F
(
x̄(t)
)]
≤ F

(
x̄(t−1)

)
− α

4R

∥∥∥∇dF (x̄(t−1))
∥∥∥2
2

+
α

N
√
1− β2

D∑
d=1

N∑
i=1

[
∇dFi

(
x
(t−1)
i

)
−∇dF

(
x̄(t−1)

)]2√
ϵ+ ṽ

(t)
i,d

+

(
2αR

N
√
1− β2

+
Lα2

2N(1− β2)

) D∑
d=1

Et−1

 N∑
i=1

[
∇dfi(x

(t−1)
i )

]2
ϵ+ v

(t)
i,d

 .

(46)

By taking the total expectation and summing up (46) over t ∈ [T ], we have

E
[
F
(
x̄(T )

)]
≤ F

(
x̄(0)

)
− α

4R

T∑
t=1

∥∥∥∇dF (x̄(t−1))
∥∥∥2
2

+
α

N
√
1− β2

T∑
t=1

D∑
d=1

N∑
i=1

[
∇dFi

(
x
(t−1)
i

)
−∇dF

(
x̄(t−1)

)]2√
ϵ+ ṽ

(t)
i,d︸ ︷︷ ︸

B

+

(
2αR

N
√
1− β2

+
Lα2

2N(1− β2)

) T∑
t=1

D∑
d=1

Et−1

 N∑
i=1

[
∇dfi(x

(t−1)
i )

]2
ϵ+ v

(t)
i,d


︸ ︷︷ ︸

C

.

(47)

By applying Lemma 2 for each d ∈ [D] on C, we have

C ≤
(

2αR

N
√
1− β2

+
Lα2

2N(1− β2)

) D∑
d=1

N∑
i=1

[
ln

(
1 +

v
(t)
i,d

ϵ

)
− T ln(β2)

]

≤
(

2αR

N
√
1− β2

+
Lα2

2N(1− β2)

) D∑
d=1

N∑
i=1

[
ln

(
1 +

R2

ϵ(1− β2)

)
− T ln(β2)

]
=

(
2αDR√
1− β2

+
DLα2

2(1− β2)

)[
ln

(
1 +

R2

ϵ(1− β2)

)
− T ln(β2)

]
.

(48)

Given that
√
ϵ+ ṽ

(t)
i,d >

√
ϵ, by applying Lemma 3 on B in (47), we have

B ≤ 2(1 + λ2)α3L2D

(1− λ2)2(1− β2)3/2
√
ϵ

[
ln

(
1 +

R2

ϵ(1− β2)

)
− T ln(β2)

]
. (49)

By plugging (49) and (48) into (47), we have

1

T

T∑
t=1

∥∥∥∇dF (x̄(t−1))
∥∥∥2
2
≤ 4R

αT

[
F
(
x̄(0)

)
− F∗

]
+

1

T
ζ

[
ln

(
1 +

R2

ϵ(1− β2)

)
− T ln(β2)

]
, (50)

where

E :=
8DR2

√
1− β2

+
2DLRα

(1− β2)
+

8(1 + λ2)α2L2DR

(1− λ2)2(1− β2)3/2
√
ϵ
. (51)

which completes the proof of Theorem B.1.
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B.4 PROOF OF THEOREM 4.1: DECENTRALIZED ADAM WITH HEAVY-BALL MOMENTUM

B.4.1 ALGORITHM UPDATE UNDER ANALYSIS

With heavy-ball momentum, we set 0 < β1 < β2 < 1. We have the algorithm update under analysis
is

g
(t)
i = ∇ℓ(x(t−1)

i ; ξ
(t)
i ), m

(t)
i,d = β1m

(t−1)
i,d + g

(t)
i,d, v

(t)
i,d = β2v

(t−1)
i,d +

[
g
(t)
i,d

]2
,

αt = α(1− β1)

√
1− βt

2

1− β2
, x

(t)
i,d = −αt

m
(t)
i,d√

ϵ+ v
(t)
i,d

+
∑
j∈Ni

wijx
(t−1)
j,d

(52)

It should be noted that there is a modification on αt, which should originally be αt = α 1−β1

1−βt
1

√
1−βt

2

1−β2
.

However, 1− βt
2 could potentially make the learning rate non-monotonic. Since replacing it by 1 has

little practical influence, to simplify the proof, we replace it by 1 as in Défossez et al. (2020).

The (virtual) update of the globally averaged weights is

x̄
(t)
d = −αt

N

N∑
i=1

m
(t)
i,d√

ϵ+ v
(t)
i,d

+ x̄
(t−1)
d . (53)

We denote ṽ(t)i ∈ RD as ṽ(t)i = β2v
(t−1)
i + Et−1

[(
g
(t)
i,d

)2]
which differs from v

(t)
i,d by replacing the

last term with its conditional expectation. In addition, we denote

Ḡ
(t)
d := ∇dF

(
x̄(t−1)

)
=

1

N

N∑
i=1

∇dFi

(
x̄(t−1)

)
and G

(t)
i,d := ∇dFi(x

(t−1)
i ). (54)

We denote the d-th dimension of the local update of the i-th local model at t-th iteration without the
heavy-ball momentum as

U
(t)
i,d :=

g
(t)
i,d√

ϵ+ v
(t)
i,d

.

We denote the d-th dimension of the local update of the i-th local model at t-th iteration with the
heavy-ball momentum as

u
(t)
i,d :=

m
(t)
i,d√

ϵ+ v
(t)
i,d

=
1√

ϵ+ v
(t)
i,d

t−1∑
k=0

βk
2 g

(t−k)
i,d .

By replacing the last k terms in v
(t)
i,d with their expectation, we denote ṽ

(t,k)
i,d as

ṽ
(t,k)
i,d := βk

2 v
(t−k)
i,d + Et−k−1

 t∑
j=t−k+1

βt−j
2

(
g
(j)
i,d

)2 . (55)

B.4.2 TECHNICAL LEMMAS

Lemma 4 (adaptive update with momentum approximately follow a descent direction)

κ ≥ 1

4

D∑
d=1

t−1∑
k=0

βk
1

N∑
i=1

E


(
Ḡ

(t−k)
d

)2
√
ϵ+ ṽ

(t,k)
i,d

− D∑
d=1

t−1∑
k=0

βk
1

N∑
i=1

E


(
G

(t−k)
i,d − Ḡ

(t−k)
d

)2
√
ϵ+ ṽ

(t,k)
i,d


− 3R√

1− β1

t−1∑
k=0

(
β1

β2

)k√
k + 1

N∑
i=1

E
[∥∥∥U (t−k)

i

∥∥∥2
2

]
− α2

tL
2
√
1− β1

4R

N∑
i=1

t−1∑
l=1

E
[∥∥∥u(t−l)

i

∥∥∥2
2

] t−1∑
k=l

βk
1

√
k,

(56)
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where

κ = E

 D∑
d=1

Ḡ
(t)
d

 N∑
i=1

m
(t)
i,d√

ϵ+ v
(t)
i,d

 . (57)

Proof. According to the definition of κ, we have

κ =

D∑
d=1

t−1∑
k=0

βk
1 Ḡ

(t)
d

N∑
i=1

g
(t−k)
i,d√
ϵ+ v

(t)
i,d

=

D∑
d=1

t−1∑
k=0

βk
1 Ḡ

(t−k)
d

N∑
i=1

g
(t−k)
i,d√
ϵ+ v

(t)
i,d︸ ︷︷ ︸

A

+

D∑
d=1

t−1∑
k=0

N∑
i=1

βk
1

(
Ḡ

(t)
d − Ḡ

(t−k)
d

) g
(t−k)
i,d√
ϵ+ v

(t)
i,d︸ ︷︷ ︸

B

.
(58)

Now focus on B. By applying the Young’s inequality equation 9 and letting

γ =

√
1− β1

2R
√
k + 1

, a =
∣∣∣Ḡ(t)

d − Ḡ
(t−k)
d

∣∣∣ , b =
∣∣∣g(t−k)

i,d

∣∣∣√
ϵ+ v

(t)
i,d

,

we have

|B| ≤
D∑

d=1

t−1∑
k=0

N∑
i=1

βk
1

 √1− β1

4R
√
k + 1

(
Ḡ

(t)
d − Ḡ

(t−k)
d

)2
+

R
√
k + 1√

1− β1

(
g
(t−k)
i,d

)2
ϵ+ v

(t)
i,d

 . (59)

Given the fact that ϵ+ v
(t)
i,d ≥ ϵ+ βk

2 v
(t−k)
i,d ≥ βk

2 (ϵ+ v
(t−k)
i,d ), we have

D∑
d=1

(
g
(t−k)
i,d

)2
ϵ+ v

(t)
i,d

≤ 1

βk
2

∥∥∥U (t−k)
i

∥∥∥2
2
. (60)

By using Assumption 1 and (10), we have
D∑

d=1

(
Ḡ

(t)
d − Ḡ

(t−k)
d

)2
=
∥∥∥Ḡ(t) − Ḡ(t−k)

∥∥∥2
2

=
∥∥∥∇F (x̄(t)

)
−∇F

(
x̄(t−k)

)∥∥∥2
2

≤ L2

∥∥∥∥∥ 1

N

N∑
i=1

k∑
l=1

αt−lu
(t−l)
i

∥∥∥∥∥
2

2

≤ α2
tL

2k

N

N∑
i=1

k∑
l=1

∥∥∥u(t−l)
i

∥∥∥2
2
.

(61)

By plugging (61) and (60) back to (59), and given that k/
√
k + 1 ≤

√
k for k ≥ 0, we have

|B| ≤

(
t−1∑
k=0

α2
tL

2βk
1

√
1− β1

√
k

4R

k∑
l=1

N∑
i=1

∥∥∥u(t−l)
i

∥∥∥2
2

)
+

[
t−1∑
k=0

R
√
k + 1√

1− β1

(
β1

β2

)k N∑
i=1

∥∥∥U (t−k)
i

∥∥∥2
2

]

=
α2
tL

2
√
1− β1

4R

t−1∑
k=0

βk
1

√
k

k∑
l=1

N∑
i=1

∥∥∥u(t−l)
i

∥∥∥2
2
+

R√
1− β1

t−1∑
k=0

√
k + 1

(
β1

β2

)k N∑
i=1

∥∥∥U (t−k)
i

∥∥∥2
2

=
α2
tL

2
√
1− β1

4R

N∑
i=1

t−1∑
l=1

∥∥∥u(t−l)
i

∥∥∥2
2

t−1∑
k=l

βk
1

√
k +

R√
1− β1

N∑
i=1

t−1∑
k=0

√
k + 1

(
β1

β2

)k ∥∥∥U (t−k)
i

∥∥∥2
2
.

(62)
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Now focus on A in (58). Temporarily introduce the simplified notation as

δ2 =

t∑
j=t−k

βt−j
2

(
g
(j)
i,d

)2
, r2 = Et−k−1

[
δ2
]

G := G
(t−k)
i,d , Ḡ = Ḡ

(t−k)
d , g := g

(t−k)
i,d , v := v

(t)
i,d, ṽ = ṽ

(t,k)
i,d .

Then we have ṽ − v = r2 − δ2.

Now focus on A in (58), with the new notation, we have

E

Ḡ(t−k)
d

g
(t−k)
i,d√
ϵ+ v

(t)
i,d

 = E
[
Ḡg

(
1√
ϵ+ v

± 1√
ϵ+ ṽ

)]

= E
[
Et−k−1

[
Ḡg√
ϵ+ ṽ

]
+ Ḡg

r2 − δ2
√
ϵ+ v

√
ϵ+ ṽ(

√
ϵ+ v +

√
ϵ+ ṽ)

]

= E

 Ḡ(G± Ḡ)√
ϵ+ ṽ︸ ︷︷ ︸
C

+ Ḡg
r2 − δ2

√
ϵ+ v

√
ϵ+ ṽ(

√
ϵ+ v +

√
ϵ+ ṽ)︸ ︷︷ ︸

H

 .

(63)

Now focus on C in (63). By applying the Young’s inequality equation 9 and letting

γ =
1

2
√
ϵ+ ṽ

, a = Ḡ, b =
G− Ḡ√
ϵ+ ṽ

,

then we have

E[C] ≥ 3

4
E
[

Ḡ2

√
ϵ+ ṽ

]
− E

[
(G− Ḡ)2√

ϵ+ ṽ

]
. (64)

Now focus on H in (63). Given the fact that
√
ϵ+ v > 0 and

√
ϵ+ ṽ > 0, we have

√
ϵ+ v +

√
ϵ+ ṽ >

√
ϵ+ v and

√
ϵ+ v +

√
ϵ+ ṽ >

√
ϵ+ ṽ, (65)

and given that |r2 − δ2| ≤ r2 + δ2, we have

|H| ≤ |Ḡg| r2√
ϵ+ v(ϵ+ ṽ)

+ |Ḡg| δ2√
ϵ+ ṽ(ϵ+ v)

. (66)

By applying the Young’s inequality equation 9 to (66) and letting

γ =

√
1− β2

√
ϵ+ ṽ

2
, a =

|Ḡ|√
ϵ+ ṽ

, b =
|g|r2√

ϵ+ ṽ
√
ϵ+ v

,

we have

|Ḡg| r2√
ϵ+ v(ϵ+ ṽ)

≤
√
1− β2Ḡ

2

4
√
ϵ+ ṽ

+
g2r4√

1− β2(ϵ+ ṽ)3/2(ϵ+ v)

≤ Ḡ2

4
√
ϵ+ ṽ

+
g2r4√

1− β2(ϵ+ ṽ)3/2(ϵ+ v)
.

(67)

Given that ϵ+ ṽ ≥ r2 and taking the conditional expectation, we have

Et−k−1

[
|Ḡg| r2√

ϵ+ v(ϵ+ ṽ)

]
≤ Ḡ2

4
√
ϵ+ ṽ

+
r2

√
1− β2

√
ϵ+ ṽ

Et−k−1

[
g2

ϵ+ v

]
. (68)

Now focus on the second term in (66). By applying the Young’s inequality equation 9 and letting

γ =

√
1− β1

√
ϵ+ ṽ

2r2
, a =

|Ḡδ|√
ϵ+ ṽ

, b =
|gδ|
ϵ+ v

,
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we have

|Ḡg| δ2√
ϵ+ ṽ(ϵ+ v)

≤ Ḡ2δ2
√
1− β2

4r2
√
ϵ+ ṽ

+
g2δ2r2

√
1− β2

√
ϵ+ ṽ(ϵ+ v)2

≤ Ḡ2δ2

4r2
√
ϵ+ ṽ

+
g2δ2r2

√
1− β2

√
ϵ+ ṽ(ϵ+ v)2

.

(69)

Given that ϵ+ v ≥ δ2 and Et−k−1

[
δ2

r2

]
= 1, after taking the conditional expectation, we have

Et−k−1

[
|Ḡg| δ2√

ϵ+ ṽ(ϵ+ v)

]
≤ Ḡ2

4
√
ϵ+ ṽ

+
r2

√
1− β2

√
ϵ+ ṽ

Et−k−1

[
g2

ϵ+ v

]
. (70)

By plugging (70) and (68) back to (66), we have

Et−k−1 [|H|] ≤
Ḡ2

2
√
ϵ+ ṽ

+
2r2

√
1− β2

√
ϵ+ ṽ

Et−k−1

[
g2

ϵ+ v

]
. (71)

Given that r ≤
√
ϵ+ ṽ, and r ≤

√
k + 1R by Assumption 2, we have

Et−k−1 [|H|] ≤
Ḡ2

2
√
ϵ+ ṽ

+
2R
√
k + 1√

1− β2

Et−k−1

[
g2

ϵ+ v

]
. (72)

By recovering the temporarily introduced notation, we have

Et−k−1 [|H|] ≤

(
Ḡ

(t−k)
d

)2
2
√
ϵ+ ṽ

(t,k)
i,d

+
2R
√
k + 1√

1− β2

Et−k−1


(
g
(t−k)
i,d

)2
ϵ+ v

(t)
i,d

 . (73)

Given that ϵ+ v
(t)
i,d ≥ ϵ+ βk

2 v
(t−k)
i,d ≥ βk

2 (ϵ+ v
(t−k)
i,d ), and by taking the complete expectation, we

have

E[|H|] ≤ 1

2
E


(
Ḡ

(t−k)
d

)2
√
ϵ+ ṽ

(t,k)
i,d

+
2R
√
k + 1

βk
2

√
1− β2

E


(
g
(t−k)
i,d

)2
ϵ+ v

(t−k)
i,d

 . (74)

By plugging (74) and (64) back to (63), we have

E

Ḡ(t−k)
d

g
(t−k)
i,d√
ϵ+ v

(t)
i,d

 ≥ 1

4
E


(
Ḡ

(t−k)
d

)2
√
ϵ+ ṽ

(t,k)
i,d

− 2R
√
k + 1

βk
2

√
1− β2

E


(
g
(t−k)
i,d

)2
ϵ+ v

(t−k)
i,d


− E


(
G

(t−k)
i,d − Ḡ

(t−k)
d

)2
√
ϵ+ ṽ

(t,k)
i,d

 .

(75)
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By plugging (75) back to A in (58), we have

E[A] ≥ 1

4

D∑
d=1

t−1∑
k=0

βk
1

N∑
i=1

E


(
Ḡ

(t−k)
d

)2
√
ϵ+ ṽ

(t,k)
i,d

− 2R√
1− β2

D∑
d=1

t−1∑
k=0

βk
1

N∑
i=1

√
k + 1

βk
2

E


(
g
(t−k)
i,d

)2
ϵ+ v

(t−k)
i,d


−

D∑
d=1

t−1∑
k=0

βk
1

N∑
i=1

E


(
G

(t−k)
i,d − Ḡ

(t−k)
d

)2
√
ϵ+ ṽ

(t,k)
i,d


=

1

4

D∑
d=1

t−1∑
k=0

βk
1

N∑
i=1

E


(
Ḡ

(t−k)
d

)2
√
ϵ+ ṽ

(t,k)
i,d

− 2R√
1− β2

t−1∑
k=0

(
β1

β2

)k√
k + 1

N∑
i=1

E
[∥∥∥U (t−k)

i

∥∥∥2
2

]

−
D∑

d=1

t−1∑
k=0

βk
1

N∑
i=1

E


(
G

(t−k)
i,d − Ḡ

(t−k)
d

)2
√
ϵ+ ṽ

(t,k)
i,d

 .

(76)

By plugging (76) and (62) back to (58), we have

κ ≥ 1

4

D∑
d=1

t−1∑
k=0

βk
1

N∑
i=1

E


(
Ḡ

(t−k)
d

)2
√
ϵ+ ṽ

(t,k)
i,d

− D∑
d=1

t−1∑
k=0

βk
1

N∑
i=1

E


(
G

(t−k)
i,d − Ḡ

(t−k)
d

)2
√
ϵ+ ṽ

(t,k)
i,d


− 3R√

1− β2

t−1∑
k=0

(
β1

β2

)k√
k + 1

N∑
i=1

E
[∥∥∥U (t−k)

i

∥∥∥2
2

]
− α2

tL
2
√
1− β1

4R

N∑
i=1

t−1∑
l=1

E
[∥∥∥u(t−l)

i

∥∥∥2
2

] t−1∑
k=l

βk
1

√
k,

(77)
which completes the proof of Lemma 4.

Lemma 5 (sum of ratios of the square of a decayed sum and a decayed sum of square) Given
0 < β1 < β2 ≤ 1 and a sequence of real number (an)n∈N+ . We define bn =

∑n
j=1 β

n−j
2 a2j and

cn =
∑n

j=1 β
n−j
1 aj . Then we have

n∑
j=1

c2j
ϵ+ bj

≤ 1

(1− β1)(1− β1/β2)

[
ln

(
1 +

bn
ϵ

)
− n ln(β2)

]
. (78)

Proof. Refer to A.2 in Défossez et al. (2020).

Lemma 6 (sum of a geometric term times a square root) Given 0 < a < 1 and Q ∈ N, we have

Q−1∑
q=0

aq
√

q + 1 ≤ 1

1− a

(
1 +

√
π

2
√
− ln(a)

)
≤ 2

(1− a)3/2
. (79)

Proof. Refer to A.3 in Défossez et al. (2020).

Lemma 7 (sum of a geometric term times a square root) Given 0 < a < 1 and Q ∈ N, we have

Q−1∑
q=0

aq
√
q(q + 1) ≤ 4a

(1− a)5/2
. (80)

Proof. Refer to A.4 in Défossez et al. (2020).
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Lemma 8 (with heavy-ball momentum, averaged consensus error is bounded if sampling from i.i.d.
data distribution) Under Assumptions 1–3, if 0 < β1 < β2 < 1, we have

1

T

T∑
t=1

N∑
i=1

D∑
d=1

[
G

(t)
i,d − Ḡ

(t)
d

]2
≤ 2(1 + λ2)(1− β1)α

2NL2D

(1− λ2)2(1− β2)(1− β1/β2)

[
1

T
ln

(
1 +

R2

(1− β2)ϵ

)
− ln(β2)

]
.

(81)

Proof. Proof of Lemma 8 is similar to Lemma 3.

Since the heavy-ball momentum is introduced, the definitions of e(t)d and ē
(t)
d are changed to

e
(t)
d = −αt

 m
(t)
1,d√

ϵ+ v
(t)
1,d

, · · · ,
m

(t)
N,d√

ϵ+ v
(t)
N,d

 ∈ RN ,

ē
(t)
d = −αt

N

 N∑
i=1

m
(t)
i,d√

ϵ+ v
(t)
i,d

, · · · ,
N∑
i=1

m
(t)
i,d√

ϵ+ v
(t)
i,d

 ∈ RN .

The proof is same as Lemma 3 until (36). Now we have
T∑

t=1

∥∥∥x(t−1)
d − x̄

(t−1)
d

∥∥∥2
2
≤ 2(1 + λ2)

(1− λ2)2

T∑
t=1

∥∥∥e(t)d

∥∥∥2
2
. (82)

By applying Lemma 5, and given the fact that αT ≤ α 1−β1√
1−β2

, we have

T∑
t=1

∥∥∥e(t)d

∥∥∥2
2
=

N∑
i=1

T∑
t=1

α2
t

(
m

(t)
i,d

)2
ϵ+ v

(t)
i,d

≤ (1− β1)
2α2

1− β2

N∑
i=1

1

(1− β1)(1− β1/β2)

[
ln

(
1 +

v
(T )
i,d

ϵ

)
− T ln(β2)

]
.

(83)

By using Assumption 2, it is given that v(T )
i,d ≤ R2/(1− β2). Then we have

T∑
t=1

∥∥∥e(t)d

∥∥∥2
2
≤ (1− β1)α

2N

(1− β2)(1− β1/β2)

[
ln

(
1 +

R2

(1− β2)ϵ

)
− T ln(β2)

]
. (84)

By plugging (84) back to (82) and (39), we have

1

T

T∑
t=1

N∑
i=1

D∑
d=1

[
G

(t)
i,d − Ḡ

(t)
d

]2
≤ 2(1 + λ2)(1− β1)α

2NL2D

(1− λ2)2(1− β2)(1− β1/β2)

[
1

T
ln

(
1 +

R2

(1− β2)ϵ

)
− ln(β2)

]
,

(85)
which completes the proof of Lemma 8.

B.4.3 MAIN PROOF OF THEOREM 4.1

Firstly introduce the notation Ωt as

Ωt =

√√√√t−1∑
j=0

βj
2 ⇒ αt = (1− β1)Ωtα.

By using Assumption 1, we have

F
(
x̄(t)
)
≤ F

(
x̄(t−1)

)
+∇F

(
x̄(t−1)

)⊤ (
x̄(t) − x̄(t−1)

)
+

L

2

∥∥∥x̄(t) − x̄(t−1)
∥∥∥2
2
. (86)
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By using (10) and taking the complete expectation, we have

E
[
F
(
x̄(t)
)]
≤ E

[
F
(
x̄(t−1)

)]
− αt

N
E

 D∑
d=1

∇dF
(
x̄(t−1)

) N∑
i=1

m
(t)
i,d√

ϵ+ v
(t)
i,d

+
Lα2

t

2N2
E

∥∥∥∥∥
N∑
i=1

u
(t)
i

∥∥∥∥∥
2

2


≤ E

[
F
(
x̄(t−1)

)]
− αt

N
E

 D∑
d=1

∇dF
(
x̄(t−1)

) N∑
i=1

m
(t)
i,d√

ϵ+ v
(t)
i,d

+
Lα2

t

2N

N∑
i=1

E
[∥∥∥u(t)

i

∥∥∥2
2

]
.

(87)

From Assumption 2, we have
√
ϵ+ ṽ

(t,k)
i,d ≤ RΩt, and by applying Lemma 4, we have

E
[
F
(
x̄(t)
)]
≤ E

[
F
(
x̄(t−1)

)]
− αt

4RΩt

t−1∑
k=0

βk
1E
[∥∥∥Ḡ(t−k)

∥∥∥2
2

]

+
3Rαt

N
√
1− β1

t−1∑
k=0

(
β1

β2

)k√
k + 1

N∑
i=1

E
[∥∥∥U (t−k)

i

∥∥∥2
2

]

+
α3
tL

2
√
1− β1

4RN

N∑
i=1

t−1∑
l=1

E
[∥∥∥u(t−l)

i

∥∥∥2
2

] t−1∑
k=l

βk
1

√
k

+
αt

N

D∑
d=1

t−1∑
k=0

βk
1

N∑
i=1

E


(
G

(t−k)
i,d − Ḡ

(t−k)
d

)2
√

ϵ+ ṽ
(t,k)
i,d

+
Lα2

t

2N

N∑
i=1

E
[∥∥∥u(t)

i

∥∥∥2
2

]
.

(88)

By summing over all iterations t ∈ [T ], moving terms, and given that αt is set to be non-decreasing,
we have

1

4R

T∑
t=1

αt

Ωt

t−1∑
k=0

βk
1E
[∥∥∥Ḡ(t−k)

d

∥∥∥2
2

]
︸ ︷︷ ︸

A

≤ E
[
F
(
x̄(0)

)]
− F∗ +

Lα2
T

2N

N∑
i=1

T∑
t=1

E
[∥∥∥u(t)

i

∥∥∥2
2

]
︸ ︷︷ ︸

B

+
α3
TL

2
√
1− β1

4RN

N∑
i=1

T∑
t=1

t−1∑
l=1

E
[∥∥∥u(t−l)

i

∥∥∥2
2

] t−1∑
k=l

βk
1

√
k︸ ︷︷ ︸

C

+
3RαT

N
√
1− β1

T∑
t=1

t−1∑
k=0

(
β1

β2

)k√
k + 1

N∑
i=1

E
[∥∥∥U (t−k)

i

∥∥∥2
2

]
︸ ︷︷ ︸

H

+
αT

N

D∑
d=1

t−1∑
k=0

βk
1

N∑
i=1

T∑
t=1

E


(
G

(t−k)
i,d − Ḡ

(t−k)
d

)2
√
ϵ+ ṽ

(t,k)
i,d


︸ ︷︷ ︸

I

.

(89)

Now focus on B in (89). By using Lemma 5, and given that v(t)i,d ≤ R2/(1−β2) (from Assumption 2)
and αT ≤ α 1−β1√

1−β2
, we have

B ≤ DLα2(1− β1)

2(1− β2)(1− β1/β2)

[
ln

(
1 +

R2

(1− β2)ϵ

)
− T ln(β2)

]
. (90)

Now focus in C in (89). By introducing the index j = t− l, we have

C =
α3
TL

2
√
1− β1

4RN

N∑
i=1

T∑
j=1

E
[∥∥∥u(j)

i

∥∥∥2
2

] T−1∑
k=0

βk
1

√
k(k + 1). (91)
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By applying Lemma 7 and then Lemma 5 (similar to (90)), we have

C ≤ β1α
3
TL

2

(1− β1)2RN

N∑
i=1

T∑
j=1

E
[∥∥∥u(j)

i

∥∥∥2
2

]

≤ β1α
3
TL

2D

(1− β1)3(1− β1/β2)R

[
ln

(
1 +

R2

(1− β2)ϵ

)
− T ln(β2)

]
≤ β1α

3L2D

(1− β1/β2)(1− β2)3/2R

[
ln

(
1 +

R2

(1− β2)ϵ

)
− T ln(β2)

]
.

(92)

Now focus on H in (89). By introducing the index j = t− k (similar to (91)) and applying Lemma 6
and then Lemma 2, we have

H =
3RαT

N
√
1− β1

N∑
i=1

T∑
j=1

E
[∥∥∥U (j)

i

∥∥∥2
2

] T∑
t=j

(
β1

β2

)t−j√
1 + t− j

≤ 6Rα
√
1− β1

(1− β1/β2)3/2
√
1− β2

[
ln

(
1 +

R2

(1− β2)ϵ

)
− T ln(β2)

]
.

(93)

Now focus on I in (89). Given that
√
ϵ+ ṽ

(t,k)
i,d ≥

√
ϵ, and by introducing index j = t− k, we have

I ≤ αT

N
√
ϵ

N∑
i=1

D∑
d=1

T∑
j=1

E
[(

G
(j)
i,d − Ḡ

(j)
d

)2] T−j∑
k=0

βk
1

≤ α

N
√
ϵ
√
1− β2

N∑
i=1

D∑
d=1

T∑
j=1

E
[(

G
(j)
i,d − Ḡ

(j)
d

)2]
.

(94)

By applying Lemma 8, we have

I ≤ 2(1 + λ2)
√
1− β1α

3L2D

(1− λ2)2(1− β2)(1− β1/β2)
√
ϵ

[
ln

(
1 +

R2

(1− β2)ϵ

)
− T ln(β2)

]
. (95)

Now focus on A in (89). By introducing the index j = t− k, we have

A =
1

4R

T∑
t=1

αt

Ωt

t−1∑
k=0

βk
1E
[∥∥∥Ḡ(t−k)

d

∥∥∥2
2

]

=
α(1− β1)

4R

T∑
j=1

E
[∥∥∥Ḡ(j)

d

∥∥∥2
2

] T∑
t=j

βt−j
1

=
α

4R

T∑
j=1

(1− βT−j
1 )E

[∥∥∥Ḡ(j)
d

∥∥∥2
2

]

=
α

4R

T∑
j=1

(1− βT−j
1 )E

[∥∥∥∇F (x̄(j))
∥∥∥2
2

]
.

(96)

For any T ∈ N+, we define τ a random index with value {0, · · · , T − 1} with distribution

∀j ∈ N, j < T, P[τ = j] ∝ 1− βT−j
1 . (97)

Then we have
T−1∑
j=0

(1− βT−j
1 ) = T − β1

1− βT
1

1− β1
≥ T − β1

1− β1
. (98)
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By introducing T̃ = T − β1

1−β1
, we have

A ≥ αT̃

4R
E
[∥∥∥∇F (x̄(τ))

∥∥∥2
2

]
. (99)

By putting together (99), (95), (93), (92), and (90) into (89), we have

E
[∥∥∥∇F (x̄(τ))

∥∥∥2
2

]
≤ 4R

αT̃

(
F (x̄(0))− F∗

)
+ E

[
1

T̃
ln

(
1 +

R

ϵ(1− β2)

)
− T

T̃
ln(β2)

]
, (100)

where

E :=
2DLR(1− β1)α

(1− β2)(1− β1/β2)
+

4L2Dβ1α
2

(1− β1/β2)(1− β2)3/2
+

24DR2
√
1− β1

(1− β1/β2)3/2
√
1− β2

+
8(1 + λ2)RL2D

√
1− β1α

2

(1− λ2)2(1− β2)(1− β1/β2)
√
ϵ
,

which completes the proof of Theorem 4.1.

C DECENTRALIZED ACCUMULATED ADAM

Algorithm 4 describes the decentralized accumulated Adam. As is displayed in Section 5, the
decentralized accumulated Adam demonstrates competitive practical performances for several training
tasks compared to alternative methods.

Algorithm 4 Decentralized Accumulated Adam on worker i

1: s← # of iterations in one accumulation loop (for example, 4); T such that (T mod s) = 0

2: m̂
(0)
i , v̂

(0)
i ← 0; x(0)

i ← x0; bi ← 0
3: for t = 1, 2, . . . , T do
4: t̂← ⌈t/s⌉
5: g

(t)
i ← ∇ℓ(x

(t−1)
i ; ξ

(t)
i )

6: m
(t)
i ← β1m̂

(t̂−1)
i + (1− β1)g

(t)
i

7: v
(t)
i ← β2v̂

(t̂−1)
i + (1− β2)

[
g
(t)
i

]2
8: x

(t)
i ← −α

m
(t)
i /(1−βt̂

1)√
v
(t)
i /(1−βt̂

2)+ϵ
+
∑

j∈N (t)
i

w
(t)
ij x

(t−1)
j

9: bi ← bi +
1
sg

(t)
i

10: if t mod s == 0 then
11: m̂

(t̂)
i ← β1m̂

(t̂−1)
i + (1− β1)bi

12: v̂
(t̂)
i ← β1v̂

(t̂−1)
i + (1− β1)[bi]

2

13: bi ← 0
14: end if
15: end for

To understand Algorithm 4, let us introduce t̂ to divide the sequence of iteration index t into groups
of every s iterations:

t ∈ 1, . . . , s︸ ︷︷ ︸, s+ 1, . . . , 2s︸ ︷︷ ︸, . . . ,

(
T

s
− 1

)
s+ 1, . . . ,

T

s
s︸ ︷︷ ︸

t̂ ∈ 1, 2, . . . , T
s

For a given iteration index t, it falls in the t̂ = ⌈t/s⌉-th group, so that m(t)
i in Algorithm 4 can be

equivalently expressed as

m
(t)
i = (1− β1)

(
β0
1g

(t)
i + β1

1G
(t̂−1)
i + · · ·+ β t̂−1

1 G
(1)
i

)
, (101)
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where G
(t̂)
i := 1

s

(
g
((t̂−1)s+1)
i + · · ·+ g

(t̂s)
i

)
. The update of v(t)i is similar.

Algorithm 4 uses accumulated stochastic gradients to construct the first-order momentum m
(t)
i and

second-momentum v
(t)
i , which reduces the variance of the stochastic gradients while does not reduce

the number of model updates, i.e., within T stochastic gradient computations at worker i, the model
x
(t)
i is updated for T instead of T/s times. To see these, assume the empirically optimal batch size in

a single-machine environment is B, and we call a batch of size B a global mini-batch. The variance
of the global mini-batch gradients for the global gradient ∇F is Σ2. Under a decentralized setup,
these B batches are evenly distributed to N workers, with each worker receiving B/N samples,
which we call a local mini-batch. Then, the variance of each worker’s local mini-batch gradient for
the global gradient ∇F increases to NΣ2. This increased variance exacerbates the consensus errors
among workers. To compensate for the increased variance, a straightforward idea is to have each
worker accumulate s (proportional to N ) local mini-batch random gradients before performing an
update, which improves the variance to N

s Σ
2. However, this accumulation leads to a reduction in the

number of model update iterations, i.e., within T stochastic gradient computations, the number of
model updates is T/s instead of T . With a novel accumulation technique, this issue is avoided in
Algorithm 4. As described in Algorithm 4, when a worker computes a local mini-batch g

(t)
i , it assigns

it a weight of 1, adds it to the exponential averaging of all historical G(1) to G(t̂−1) to generate m
(t)
i

and v
(t)
i , and updates the local model once. In this way, the number of updates is equal to T instead

of T/s.

Algorithm 4 has close connections with existing well-known algorithms. On one hand, it performs
exponential moving averaging over each group of s stochastic gradients, which yields a higher weight
of the oldest information compared to the vanilla Adam (β t̂−1

1 versus βt−1
1 ; see equation 101).

This technique is similar to SlowMo Wang et al. (2019) that has been shown to be effective for
DNN training. On the other hand, Algorithm 4 updates the model upon receiving each gti , which
is similar to FedAvg Konečnỳ et al. (2016). It is worth noting that FedAvg does not communicate
every iteration and may yield a lower communication cost compared to Algorithm 4. Whether this
technique can further accelerate Algorithm 4 is a worthwhile research direction. We leave it as well
as the convergence analysis of Algorithm 4 as future work.

Similar to the changes in AdamW Loshchilov (2017) compared with Adam, AccumAdam can also
be similarly adapted to AccumAdamW.

D DISCUSSION AND LIMITATION

Our analysis of the runtime model in Section 3 and convergence guarantees in § 4 show how the com-
munication topology affects both the per-iteration runtime and the convergence. A sparser topology
shortens the per-iteration runtime but may result in a topology with slower mixing and worse training
results. Consistent with Kong et al. (2021), we have found that for a limited number of workers
(32 or less), we can obtain significant runtime improvements by sparsifying the communication
without affecting the quality of the final model. For a network with a large number of workers, the
sparse topology plays a more important role and we may need to study the runtime and optimization
aspects separately. Although decentralized training may face challenges with a large number of
workers (> 64), data parallelism is not the only approach for scaling up distributed training. For
large language models, tensor parallelism and model parallelism are also crucial techniques, and
the superiority of decentralized training in interleaving communication and computation can be a
great complement to overall efficiency. In Shoeybi et al. (2019), for example, they used 64-way data
parallel and 8-way model parallel to scale up the training to 512 GPUs. Additionally, in common
machine learning workloads, too-small local batch size could lead to low utilization for a single GPU,
and a 64-way data parallel is already sufficient for most tasks.

As for memory consumption, since the decentralized training has asynchronous communications, it
is inevitable to allocate additional memory for the communication buffers to hide the time taken by
communications. Similar implementations can be found in Assran et al. (2019); Wang et al. (2019).
Even though the decentralized training allocates more memory, it is a trade-off between memory
and per-iteration runtime if compared with All-Reduce training. Moreover, it should also be noted
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that more memory is spent on the backward pass and the optimizer states (like Adam Kingma & Ba
(2014)). The additional memory usage can be alleviated by orthogonal techniques like compression.

In our experiments, we used a time-varying mixing matrix, but for ease of convergence analysis,
we used a fixed one. Techniques from some works for time-varying topologies Nedic et al. (2017);
Saadatniaki et al. (2020); Metelev et al. (2023) can be applied here. Our accumulated Adam performs
well in practice, but it lacks theoretical analysis. It could be finished by using the analysis techniques
of the Adam method Zaheer et al. (2018) and decentralized algorithms Yuan et al. (2016); Zeng &
Yin (2018).
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