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Abstract

Sampling from an unnormalized probability distribution is a fundamental problem
in machine learning with applications including Bayesian modeling, latent factor
inference, and energy-based model training. After decades of research, variations
of MCMC remain the default approach to sampling despite slow convergence.
Auxiliary neural models can learn to speed up MCMC, but the overhead for
training the extra model can be prohibitive. We propose a fundamentally different
approach to this problem via a new Hamiltonian dynamics with a non-Newtonian
momentum. In contrast to MCMC approaches like Hamiltonian Monte Carlo,
no stochastic step is required. Instead, the proposed deterministic dynamics in
an extended state space exactly sample the target distribution, specified by an
energy function, under an assumption of ergodicity. Alternatively, the dynamics
can be interpreted as a normalizing flow that samples a specified energy model
without training. The proposed Energy Sampling Hamiltonian (ESH) dynamics
have a simple form that can be solved with existing ODE solvers, but we derive a
specialized solver that exhibits much better performance. ESH dynamics converge
faster than their MCMC competitors enabling faster, more stable training of neural

network energy models.

1 Introduction

While probabilistic reasoning is crucial for sci-
ence and cognition [1], distributions that can be
directly sampled are rare. Without sampling it is
difficult to measure likely outcomes, especially
in high dimensional spaces. A general purpose
method to sample any target distribution, the
Metropolis algorithm for Markov Chain Monte
Carlo (MCMOQ), is considered one of the top
algorithms of the 20th century [2]. The “Monte
Carlo” in MCMC refers to the essential role of
stochasticity, or chance, in the approach: start
with any state, propose a random update, and
accept it according to a weighted coin flip.

The most widely used methods for sampling
mainly differ in their choice of proposals for
the next state of the Markov chain. The most
prominent example, Hamiltonian Monte Carlo
(HMC), uses Hamiltonian dynamics to suggest
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Figure 1: Sampling with 50 gradient evaluations
per method. A special property of our proposed
deterministic dynamics using a non-Newtonian mo-
mentum, proportional to line thickness, is that it
ergodically samples from the target distribution.

proposals that quickly move over large distances in the target space [3]. HMC using the No U-
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Turn Sampling (NUTS) heuristic for choosing hyper-parameters [4] forms the backbone of modern
probabilistic programming languages like Stan [5]. In the limit of one discrete HMC step per proposal,
we recover the widely used discrete Langevin dynamics [3; 6]. Many approaches train neural
networks to improve sampling either through better proposal distributions or flexible variational
distributions [7; 8; 9; 10; 11; 12; 13; 14], but these can be expensive if, for instance, the target
distribution to be sampled is itself being optimized.

We propose a new Hamiltonian dynamics, based on the introduction of a non-Newtonian momentum,
which leads to a deterministic dynamics that directly samples from a target energy function. The
idea that deterministic dynamics in an extended space can directly sample from a Gibbs-Boltzmann
distribution goes back to Nosé [15]. This principle is widely used in molecular dynamic (MD)
simulations [16] but has had limited impact in machine learning. One reason is that direct application
of techniques developed for MD often exhibit slow mixing in machine learning applications.

Our contribution stems from the recognition that many of the design considerations for molecular
dynamics samplers are to enforce physical constraints that are irrelevant for machine learning
problems. By returning to first principles and discarding those constraints, we discover a Hamiltonian
whose dynamics rapidly sample from a target energy function by using a non-physical form for the
momentum. This is in contrast to the more physical, but slower, alternative of introducing auxiliary
“thermostat” variables that act as a thermal bath [17; 18; 19; 20]. The result is a fast and deterministic
drop-in replacement for the MCMC sampling methods used in a wide range of machine learning
applications. Alternatively, our method can be viewed as a normalizing flow in an extended state
space which directly samples from an unnormalized target density without additional training.

The most significant impact of our approach is for applications where minimizing memory and
computation is the priority. For training energy-based models, for example, sampling appears in
the inner training loop. Re-training a neural sampler after each model update is costly and entails
complex design and hyper-parameter choices. While MCMC sidesteps the training of an extra model,
MCMC converges slowly and has led to widespread use of a number of dubious heuristics to reduce
computation [21; 22]. Because our energy sampling dynamics does not have the stochastic, random
walk component of MCMC, it converges towards low energy states much faster, especially in the
transient regime, and explores modes faster as shown in Fig. 1 and demonstrated in experiments.

2 Energy Sampling Hamiltonian (ESH) Dynamics

We define a separable Hamiltonian, H (x,v), over position x € R? and velocity v € R? (we use
momentum and velocity interchangeably since we set mass to 1).

H(x,v) = E(x)+ K(v)

The potential energy function, FE(x), is the energy for the target distribution with unknown normal-
ization, Z, that we would like to sample, p(x) = e~ #*)/Z, and is defined by our problem. We
consider an unusual form for the kinetic energy, K (v), where vi=v-v.

Kpsu(v) = 42log(v?/d) (1)

For contrast, HMC uses Newtonian kinetic energy, K (v)

= 1/2 v2. Hamiltonian dynamics are
defined using dot notation for time derivatives and using g(x) = Ox

E(x). We also suppress the time
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Figure 2: For Newtonian dynamics, the roller coaster spends most of its time in high energy states
(left). For ESH dynamics, the time spent in the region (z, 4 dx) is 1/ which is exactly proportional
to the Boltzmann sampling probability, e~ (*) (right plot). Thus, sampling the ESH dynamics over
time is equivalent to sampling from the target distribution.



dependence, x(t), v(t), unless needed.

General Hamiltonian ESH Dynamics HMC/Newtonian Dynamics
x = 0yH(x,V) x =v/(v?/d) X=v )
V= —0xH(x,v) v =—g(x) v =—g(x)

Hamiltonian dynamics have a number of useful properties. Most importantly, the Hamiltonian is
conserved under the dynamics. Secondly, via Liouville’s theorem we see that dynamics are volume
preserving (or more generally, symplectic). Finally, the dynamics are reversible. While the difference
in form between ESH dynamics and Newtonian dynamics appears slight, the effect is significant as
we show with an example.

Imagine riding a roller-coaster running infinitely around a circular track shown in Fig. 2. E(x) is
the potential energy from gravity at a point in the loop specified by a scalar angle = € [0, 27]. At
the bottom, potential energy is small while kinetic energy is large. Under Newtonian physics the
speed is slowest at the top so most of a rider’s time is spent in dreadful anticipation of the fall, before
quickly whipping through the bottom. In both cases, the “momentum” is largest at the bottom, but
for the ESH dynamics we see a different outcome. Changes in the roller-coaster position, &, happen
in slow motion at the bottom when momentum is large and then go into fast-forward at the top of the
track where the momentum is small. A spectator will see the rider spending most of their time at the
bottom, with low potential energy, and the time spent in each region is exactly proportional to the
Boltzmann distribution, as we show mathematically in the next section.

An intriguing connection between Newtonian and ESH dynamics is discussed in Appendix A.1,
which mirrors a thermodynamic effect emerging from Tsallis statistics that leads to anomalous
diffusion [23]. Note that v?> = 0 is a singularity in the dynamics in Eq. 2. For 1-D dynamics, this
could be an issue, as the velocity can never change signs. However, in higher dimensions, dynamics
always avoid the singularity (Appendix A.2).

2.1 Ergodic ESH Dynamics Sample the Target Distribution

Assume that we have an unnormalized target (or Gibbs) distribution specified by energy E(x) as
p(x) = e~ P /Z with an unknown (but finite) normalization constant, Z. The reason for defining
the non-standard Hamiltonian dynamics in Eq. 2 is that the uniform distribution over all states with
fixed energy, c, gives us samples from the Gibbs distribution after marginalizing out the velocity.

p(x,v) = 8(E(x) + Kpsu(v) —c)/Z' =  px)=e "Xz 3)
The proof is as follows.
p(x) = /dv p(x,v)=1/7' /dv § (E(x) + d/2logv*/d — c)
=1/7 / J(¢) dep p*~' dp § (E(x) 4 dlogp — ¢ — d/2log d)
=1/7' / J(@) dp p*~" dp p/d 3(p — e PO/ dteldtifzlond) — =BG 7 ]

In the second line, we switch to hyper-spherical coordinates, with p = |v| and angles combined in ¢.
In the third line, we use an identity for the Dirac delta that for any smooth function, i(z), with one
simple root, z*, we have §(h(z)) = 6(z — z*)/|h/(2*)| [24]. Finally we integrate over p using the
Dirac delta, with the ¢ integral contributing constants absorbed into the normalizing constant.

This proof resembles results from molecular dynamics [15], where an auxiliary scalar “thermostat™
variable is integrated over to recover a “canonical ensemble” in both the coordinates and momentum.
In our case, the momentum variables are already auxiliary so we directly use the velocity variables in
a role usually filled by the thermostat. The form of the energy is inspired by the log-oscillator [25].
Although log-oscillator thermostats never gained traction in molecular dynamics because they violate
several physical properties [26], this is not relevant for machine learning applications.

Although Eq. 3 gives us the target distribution as the marginal of a uniform distribution over constant
energy states, this is not helpful at first glance because it is not obvious how to sample the uniform



distribution either. At this point, we invoke the ergodic hypothesis: the dynamics will equally occupy
all states of fixed energy over time. More formally, the (phase space) average over accessible states
of equal energy is equal to the fime average under Hamiltonian dynamics for sufficiently long times.

T
Ergodic hypothesis: 1 / dxdv §(H(x,v) —¢) h(x,v) = lim l/ dt h(x(t),v(t)) ()
A T—oo T

The importance and frequent appearance of ergodicity in physical and mathematical systems has
spurred an entire field of study [27] with celebrated results by Birkhoff and von Neumann [28; 29;
30] explaining why ergodicity typically holds. Ergodicity for a specific system depends on the
details of each system through F/(x), and the appearance of hidden invariants of the system breaks
ergodicity [19; 31; 24]. While we do not expect hidden invariants to emerge in highly nonlinear
energy functions specified by neural networks, systems can be empirically probed through fixed point
analysis [20] or Lyapunov exponents [32]. Standard MCMC also assumes ergodicity, but the use of
stochastic steps typically suffices to ensure ergodicity [3].

The key distinction to MCMC is that our scheme is fully deterministic, and therefore we use ergodic
dynamics, rather than randomness in update proposals, to ensure that the sampler explores the entire
space. As an alternative to relying on ergodicity, we also give a normalizing flow interpretation.

2.2 Numerical Integration of the Energy Sampling Hamiltonian (ESH) ODE

The leapfrog or Stormer-Verlet integrator [33] is the method of choice for numerically integrating
standard Hamiltonian dynamics because the discrete dynamics are explicitly reversible and volume
preserving. Additionally, the error of these integrators are O(e?) for numerical step size, . Volume
preservation is not guaranteed by off-the-shelf integrators like Runge-Kutta [18]. The analogue of the
leapfrog integrator for our proposed dynamics in Eq. 2 follows.

v(t+¢/2) = v(t) — /2 g(x(t)) Newtonian/HMC ESH
x(t+e)=x(t) +esv(t+¢2) s=1 s =d/v(t + ¢/2)
V(t+e) = v(t+/2) — /2 g(x(t +¢)) )

Unfortunately, for ESH the effective step size for x can vary dramatically depending on the magnitude
of the velocity. This leads to very slow integration with a fixed step size, as we will illustrate in the
results. We consider two solutions to this problem: adaptive step-size Runge-Kutta integrators and a
leapfrog integrator in transformed coordinates. Although Runge-Kutta integrators do not give the
same guarantees in terms of approximate conservation of the Hamiltonian as symplectic integrators,
the Hamiltonian was stable in experiments (App. E.1). Moreover, looking at Eq. 3, we see that the
exact value of the Hamiltonian is irrelevant, so results may be less sensitive to fluctuations.

Transformed ESH ODE  The adaptive time-step in the Runge-Kutta ODE solver is strongly
correlated to the magnitude of the velocity (App. E.1). This suggests that we might be able to make
the integration more efficient if we chose a time-rescaling such that the optimal step size was closer
to a constant. We chose a new time variable, ¢, so that d¢t = dt |v|/d, leading to the transformed
dynamics x = v/|v|,v = —|v|/d g(x) (for notational convenience, we omit the bar over ¢ and
continue using dot notation to indicate derivative with respect to the scaled time). Next, we re-define
the variables as follows: u = v/|v|,r = log |v|. The transformed ODE follows.

ESH Dynamics dt = dt d/|v] Xx=u (6)
x =v/(v?/d) with u=v/v| = u=—(1T—-uul)gx)/d
v =—g(x) r = log|v| r=—u-g(x)/d

Interestingly, the previously troublesome magnitude of the velocity, captured by r, plays no role in
the dynamics of x. However, we must still solve for » because at the end of the integration, we need
to re-scale the time coordinates back so that the time average in Eq. 4 can be applied. Again, we can
solve this ODE with general-purpose methods like Runge-Kutta or with a leapfrog integrator.

Leapfrog integrator for the time-scaled ESH ODE dynamics  Correctly deriving a leapfrog
integrator for the time-scaled ODE is nontrivial, but turns out to be well worth the effort. The updates
for x, u are below with the full derivation including r update in App. B.1.

u(t+¢/2) = f(e/2,g(x(t)), u(t)) Half step in u
x(t+¢€) =x(t) +eu(t+¢€/2) Full step in x @)
u(t+e) =1f(e/2,g(x(t +¢)),u(t +¢/2)) Half step in u



u + e (sinh (e |g|/d) + u- ecosh (e |g|/d) —u - e)
cosh (¢ |g|/d) + u - esinh (¢ |g|/d)

The update for u is towards the direction of gradient descent, e. If the norm of the gradient is large

u — e and the dynamics are like gradient descent. The update form keeps u a unit vector.

with f(e,g,u) = ande = —g/|g]

Ergodic sampling with the transformed ESH ODE  The solution we get from iterating Eq. 7
gives us x(¢), u(t), r(¢) at discrete steps for the scaled time variable, ¢ = 0, ¢, 2¢, ..., T, where
we re-introduce the bar notation to distinguish scaled and un-scaled solutions. We can recover
the original time-scale by numerically integrating the scaling relation, dt = dt |v(#)|/d to get

t(t) = fof dt'|v(t)|/d = f; dt’e™) /d. Using this expression, we transform our trajectory in the
scaled time coordinates to points in the un-scaled coordinates, (¢,x(t), v(t)), except that these values

are sampled irregularly in ¢. For an arbitrary test function, h(x), sampling works by relating target
expectations (left) to trajectory expectations (right).

Be 02 1030)] "L B 23] % Bpapo,ry R(x(1)] = Bgio.ry[v(E) /D h(x(8))]

The approximation is from using a finite 7" rather than the large 7" limit. The penultimate form
justifies one procedure for ergodic sampling — we uniformly randomly choose ¢ ~ U0, T'], then
take x(¢) as our sample. Because the time re-scaling might not return a sample that falls exactly
at t, we have to interpolate between grid points to find x(¢). Alternatively, the last expression is a
weighted sample (by |v|) in the time-scaled coordinates. We can avoid storing the whole trajectory
and then sampling at the end with reservoir sampling [34]. See App. D for details.

2.3 Alternative Interpretation: Jarzynski Sampling with ESH as a Normalizing Flow

We can avoid the assumption of ergodicity by interpreting the ESH dynamics as a normalizing flow.
The idea of interpreting Hamiltonian dynamics as a normalizing flow that can be weighted to sample
a target distribution goes back to Radford Neal’s unpublished [35] but influential [36; 12; 37] work
on Hamiltonian Importance Sampling. Jarzynski’s equality [38; 39] can be related to importance
sampling [40] and has been applied to Hamiltonian dynamics [39; 24] which motivates our approach.
Neal’s Hamiltonian importance sampling required an annealing schedule to move the initial high
energy Newtonian dynamics closer to the low energy target distribution. This is not required for ESH
dynamics as our Hamiltonian directly samples the target.

We initialize our normalizing flow as x(0), v(0) ~ qo(x,v) = e~ F0®) /Z, §(|v| — 1)/A4, where
E is taken to be a simple energy model to sample with a tractable partition function, Z, like a
unit normal. Then we transform the distribution using deterministic, invertible ESH dynamics to
q+(x(t), v(t)). The change of variables formula for the ODE in Eq. 6 (App. C) is

log g1 (x(t), v(t)) = log go(x(0), v(0)) + log [v(0)| — log [v(t)].
Then, using importance sampling, we can relate g; to the target distribution p(x) = e~ #®) /7.

w(x v Z
Eq, (x(t) v () [€” OV h(x(t))] = ZEP(X) [h(x)] ®)

w(x(t),v(t)) = Eo(x(0)) — E(x(0)) + log |[v(t)| — log |v(0)]

For the weights, we should formally interpret x(0), v(0) as functions of x(¢), v(¢) under the inverse
dynamics. This expression holds for any h, including h(x) = 1, which gives us the partition function
ratio E,, [e*] = Z/Z,. We use this relation to replace Z/Z, when calculating expectations, which
is known as self-normalized importance sampling. Note that as in ergodic sampling in the time-
scaled coordinates, the weight is proportional to |v(¢)|. We give a full derivation and tests using
ESH-Jarzynski flows to estimate partition functions and train EBMs in App. C, but primarily focus
on ergodic sampling results in the rest of the paper.

3 Results

ESH dynamics provide a fundamentally different way to sample distributions, so we would like
experiments to build intuition about how the approach compares to other sampling methods, before
considering applications like sampling neural network energy functions. We introduce some standard
synthetic benchmarks along with variations to help contrast methods.
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Figure 3: (Left) A single chain integrated with 200 gradient evaluations with various ESH ODE
solvers on the 2D MOG energy function. (Right) Maximum Mean Discrepancy (MMD) as a function
of the number of gradient evaluations. Solutions to the original, unscaled ODE are labeled orig.

Mixture of Gaussian (2D MOG) is a mixture of 8 Gaussians with separated modes.

Mixture starting with informative prior (2D MOG-prior) is the same as 2D MOG but initial-
izes samplers from a mode of the distribution. This simulates the effect of using “informative
priors”[22] to initialize MCMC chains, as in persistent contrastive divergence (PCD) [41]. The
danger of informative initialization is that samplers can get stuck and miss other modes.

1l Conditioned Gaussian (50D ICG) from [3] has different length scales in different dimensions.
Strongly Correlated Gaussian (2D SCG) with a Pearson correlation of 0.99.

Strongly Correlated Gaussian with bias (2D SCG-bias) is the same as 2D-SCG except we bias the
initialization toward one end of the long narrow distribution (as in Fig. 5). This tests the ability of
samplers to navigate long, low energy chasms.

Funnel (20D Funnel) A challenging test case where the length scale in one region is exponentially
smaller than other regions. Our implementation is from [10].

Metrics Our goal is to obtain high quality samples from the target distribution. With the rise of
multi-core CPUs, GPUs, and cloud computing, most practitioners prefer to simulate many Markov
chains in parallel for the minimum amount of time, rather than to simulate one chain for a very long
time [42; 21]. Therefore, we imagine running a number of samplers in parallel, and then we measure
how well they resemble the target distribution after some time, as a function of number of serial
gradient evaluations per chain. For neural network energy functions, gradient evaluation dominates
the computational cost. To measure how well the samples resemble true samples from the distribution
we use the (unbiased) kernel estimator of the squared Maximum Mean Discrepancy (MMD) [43],
with Gaussian kernel with bandwidth chosen via the median heuristic. MMD is easy to compute with
minimal assumptions, converges to zero if the sampling distributions are indistinguishable, and has
high statistical power. In line with previous work, we also calculate the popular Effective Sample
Size (ESS) using the method in [4]. We caution readers that ESS is a measure of the variance of our
estimate assuming we have sampled the Markov chain long enough to get unbiased samples. For this
reason, many MCMC samplers throw away thousands of initial steps in a “burn-in” period. While we
perform our experiments without burn-in in the transient regime, ESS can be interpreted as a proxy
for mixing speed, as it depends on the auto-correlation in a chain. Cyclic dynamics would violate
ergodicity and lead to high auto-correlation and a low ESS, so this can be understood as evidence for
ergodicity. Additional empirical evidence of ergodicity is given in Sec. E.2.

3.1 Comparing ESH Integrators

For ESH dynamics, we compare a variety of methods to solve the dynamics. First of all, we
consider solving the original dynamics (orig), Eq. 2, versus the time-scaled dynamics, Eq. 6. For
each dynamics, we compare using an adaptive Runge-Kutta (RK) solver [44] (fifth order Dormand-
Prince [45]) to the leapfrog solvers (1eap) in Eq. 5 and 7 respectively. In Fig. 3 the scaled dynamics
are preferable to the original and the leapfrog integrator is preferable to Runge-Kutta. Sec. E.1
confirms that the leapfrog integrator for the scaled ODE is the best approach across datasets.

For leapfrog integrators, there is only one hyper-parameter, the step size, and for Runge-Kutta
integrators we need to choose the tolerance. In experiments we set these to be as large as possible
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Figure 4: Maximum Mean Discrepancy (MMD) as a function of the number of gradient evaluations
performed for different samplers.

on a logarithmic grid without leading to numerical errors. This leads us to use a value of e = 0.1 in
subsequent experiments. For the Runge-Kutta integrators we were forced to use rather small sizes
for the relative tolerance (10~°) and absolute tolerance (10~%) to avoid numerical errors. Since the
Hamiltonian should be conserved, it is a good measure of a solver’s stability. We plot the Hamiltonian
for different solvers in App. E.1. Monitoring the error in the Hamiltonian could potentially make
an effective scheme for adaptive updating of the step size. The scaled solver makes a step of fixed
distance in the input space, but for distributions with varying length scales, this may be undesirable.

3.2 Comparing ESH with Other Samplers

We compare with the following sampling methods in our experiments that also use gradient informa-
tion to sample from energy models.

* Metropolis-Adjusted Langevin Algorithm (MALA) [46] is a popular sampling method that uses
gradient information in the Langevin step, along with a Metropolis-Hastings rejection step to
ensure convergence to the target distribution.

Unadjusted Langevin Algorithm (ULA) skips the Metropolis-Hastings rejection step, with the

argument that if the step size is made small enough, no rejections will be necessary [6].

* Hamiltonian Monte Carlo (HMC) [3] uses Hamiltonian dynamics to propose Markov steps that
traverse a large distance while still having a high likelihood of being accepted. In the experiments
we use k = 5 steps to see if it improves over MALA/ULA. If more steps are beneficial, we expect
this to be discovered by automatic hyper-parameter selection using NUTS.

* No-U-Turn Sampler (NUTS) [4] is a version of HMC with automatic hyper-parameter selection.

* Nosé-Hoover Thermostat (NH) is a deterministic dynamics in an extended state space that intro-
duces a “thermostat” variable in addition to velocity. Based on the original works of Nosé [15]
and Hoover [17], we used a general numerical integration scheme proposed by Martyna et al. [20]
with the specific form taken from [47].

Results are summarized in Fig. 4 and Table 3.2, with a visualization in Fig. 14. Langevin dynamics
give a strong baseline. Nosé-Hoover and HMC give mixed results, depending on the energy. While
automatic hyper-parameter selection with NUTS is useful in principle, the overhead in gradient
computation makes this approach uncompetitive in several cases. ESH is competitive in all cases and
a clear favorite in certain situations. Fig. 5 illustrates why ESH is particularly effective for the biased
initialization examples. Langevin dynamics have a hard time navigating long low energy chasms
quickly because of random walk behavior. On the other hand, far from deep energy wells with large
gradients, Langevin makes large steps, while ESH is limited to constant length steps in the input space.
For this reason, ESH slightly lags Langevin in the ill-conditioned and strongly correlated Gaussians.
While we may get the best of both worlds by smartly initializing ESH chains, we investigate only the



Table 1: Effective Sample Size (with Standard Deviation)

Sampler ESH-leap (Ours) HMC k=5 MALA 0.1 NH NUTS ULA 0.1

Dataset

20D Funnel 1.0e-03 (3.0e-04) 9.6e-04 (1.6e-04) 8.8e-04 (1.1e-04) 9.4e-04 (1.5e-04) 1.0e-03 (1.8e-04) 8.8e-04 (1.1e-04)

2D MOG 2.1e-02 (1.6e-02) 2.5e-03 (1.6e-03) 4.1e-03 (1.3e-03) 3.6e-03 (1.3e-03) 2.2e-03 (2.8e-03) 8.8e-03 (4.6e-03)

2D MOG-prior 2.6e-02 (1.8e-02) 3.0e-03 (8.4e-04) 4.2e-03 (1.5e-03) 2.7e-03 (3.8e-04) 4.6e-03 (2.0e-03) 8.5e-03 (4.5e-03)

2D SCG 2.4e-02 (1.4e-02) 7.6e-03 (4.8e-03) 1.3e-02 (8.0e-03) 1.0e-02 (5.7e-03) 1.2e-02 (1.1e-02) 1.3e-02 (8.1e-03)

2D SCG-bias 8.9e-03 (1.2e-02) 9.6e-04 (2.1e-03) 2.9e-03 (5.1e-03) 1.8e-03 (3.5e-03) 2.5e-03 (4.9¢-03) 3.7e-03 (6.0e-03)

50D ICG 1.6e-04 (2.6e-04) 2.8e-05 (4.0e-05) 7.4e-04 (5.0e-04) 1.8e-04 (2.2e-04) 1.2e-04 (1.4e-04) 7.8e-04 (5.1e-04)

ESH dynamics Newtonian dynamics ESH dynamics Newtonian dynamics
M }vﬁr\L
Langevin dynamics Langevin dynamics

Figure 5: (Left) Navigating long energy valleys with 50 gradient evaluations. (Right) Entering deep
energy wells with 5 gradient evaluations.

basic algorithm here. The large scores for effective sample size in Table 3.2 show that ESH dynamics
mix quickly. All methods, including ESH, failed on the Funnel example, see App. E.3.

3.3 Sampling from Neural Network Energy Models

We consider sampling from a pre-trained neural network energy model, JEM [48]. Fig. 6 shows
example chains for samplers starting from random initialization, and Fig. 19 shows samplers initialized
from a replay buffer constructed during training. We also plot the average energy for a batch of
examples. In both cases, ESH finds much lower energy samples than the algorithm used for training,
ULA. Nosé-Hoover makes a surprisingly strong showing considering its poor performance on several
synthetic datasets. We included an ESH leapfrog integrator with a larger step size of € = 1, which
performed the best, especially with few gradient evaluations. HMC and MALA do poorly using
noise initialization because most proposal steps are rejected. This is because JEM and similar works
implicitly scale up the energy in order to take larger Langevin gradient steps that overcome random
walk noise [49; 48; 22] as described in [21]. Those papers use the common argument that ULA
approximates MALA for small step size [6], but with the large energy scaling employed this argument
becomes dubious, as demonstrated by the large gap between ULA and MALA. The large energy scale
is introduced to reduce random walk behavior, but ESH dynamics completely avoid random walks.

3.4 Training Neural Network Energy-Based Models

Next, we want to compare the quality of results for training neural network energy models using
the current state-of-the-art methods which all use Langevin dynamics [50; 51; 52; 48; 21] to the
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Figure 6: (Left) Example of sampling chains from random initialization with 200 gradient evaluations
per method. (Right) Average energy over time for a batch of 50 samples using different samplers.
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Figure 7: (Top) Samples from the persistent buffer at the end of training. (Middle) Example illustrating
sampling from noise. (Bottom) Generated samples initializing from noise and using 15,000 gradient
evaluations.

exact same training using ESH dynamics for sampling. In all cases, an informative prior is used for
sampling, persistent contrastive divergence(PCD) [53; 41; 52]. Our synthetic results suggest ESH
can be particularly beneficial with informative priors. The justification for persistent initialization
in MCMC is that the target distribution is invariant under the dynamics, so if the buffer samples
have converged to the target distribution then the dynamics will also produce samples from the target
distribution. We show in App. B.2 that ESH dynamics also leave the target distribution invariant,
justifying the use of PCD.

For our experiment, we used a setting resulting from the extensive hyper-parameter search in [21].
We train a convolutional neural network energy model on CIFAR-10 using a persistent buffer of
10,000 images. For each batch, we initialize our samplers with random momentum and image
samples from the buffer, then sample using either Langevin or ESH dynamics for 100 steps, and
then replace the initial image samples in the buffer. Following prior work [49] we also used spectral
normalization [54] for training stability and used ensembling by averaging energy over the last ten
epoch checkpoints at test time. Hyper-parameter details for training and testing are in Sec. D.4. For
efficient ergodic sampling with the ESH dynamics, we do not store the entire trajectory but instead
use reservoir sampling (Alg. 3).

Fig. 7 shows that the samples in the persistent buffer produced over the course of training look
reasonable for both methods. However, this can be misleading and does not necessarily reflect
convergence to an energy model that represents the data well [22]. Generating new samples with
chains initialized from noise using 15,000 gradient evaluations per chain reveals a major difference
between the learned energy models. The energy model trained with ESH dynamics produces markedly
more realistic images than the one trained with Langevin dynamics.

We also tried the Jarzynski sampler for training energy-based models, with some results on toy
data shown in Fig. 8. In this case, the unbiased Jarzynski sampler is very effective at learning to
crisply represent boundaries with a small number of total gradient evaluations. However, for higher-
dimensional data like CIFAR we found that the higher variance of the sampler becomes problematic.
Training details, additional results, and discussion are in App C.3.
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Figure 8: Trained neural energy models with ULA versus ESH sampling using a total of 500k gradient
evaluations over the entire course of training.

4 Related Work

Over half a century of research on simulating Molecular Dynamics (MD) has focused on a core issue
that also vexes machine learning: how to sample from an energy model. The methods employed
in both fields have little overlap because MD is concerned with accurately simulating all physical
properties of the target system, including momentum, dynamics of thermalization, and interaction
between system and heat bath. Our experiments with Nosé-Hoover and other thermostats [15; 17]
often oscillated or converged slowly because the thermostat variable is only weakly coupled to the
physical, Newtonian momenta, which are then coupled to the only variables of interest in our case,
the original coordinates. A recent review of MD research outlines different methods for constructing
thermostats [55] including iso-kinetic thermostats [56] which have some similarities to ESH.

Ideas from physics like Hamiltonian dynamics and nonequilibrium thermodynamics have inspired
many approaches in machine learning [3; 35; 36; 37; 40; 12; 57; 58; 59; 60]. Recent work also
explores novel ways to combine Hamiltonian dynamics with Jarzynski’s equality to derive non-
equilibrium samplers [61; 62]. Another popular twist on HMC is Riemannian HMC [63], where
K (v x) = 1/2vT M (x)v still represents a Newtonian momentum but in curved space. This approach
requires second order information like Hessians to define the curvature, and we only considered
first order approaches in this paper. Another promising line of research recognizes that many of the
properties that make Hamiltonian dynamics useful for MCMC come from being part of the class
of involutive operators [64] or more general orbits [65]. Another recent line of work also explores
sampling via deterministic, continuous dynamics [66].

5 Conclusion

We presented a new approach for sampling based on deterministic, invertible dynamics and demon-
strated its benefits. Removing stochasticity leads to faster mixing between modes and could enable
applications where backpropagation through the sampler is desired. State-of-the-art generative models
directly model the score function, the gradient of the energy function, [67] which can be used to
sample with Langevin dynamics but could also potentially benefit from faster mixing with ESH
dynamics. While we introduced an ergodic assumption to motivate the approach, we also provided
an intuitive normalizing flow interpretation that does not require ergodicity. ESH dynamics provide a
simple, fast, and deterministic drop-in replacement for sampling methods like HMC and Langevin
dynamics with the potential to impact a wide range of applications such as Bayesian modeling [68]
and latent factor inference [69].
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