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ABSTRACT

Conformal prediction has attracted significant attention as a distribution-free
method for uncertainty quantification in black-box models, providing prediction
sets with guaranteed coverage. However, its practical utility is often limited when
these prediction sets become excessively large, reducing its overall effectiveness.
In this paper, we introduce a novel approach to conformal prediction for classifi-
cation problems, which leverages a multi-dimensional nonconformity score. By
extending standard conformal prediction to higher dimensions, we achieve bet-
ter separation between correct and incorrect labels. Utilizing this we can focus
on regions with low concentrations of incorrect labels, leading to smaller, more
informative prediction sets. To efficiently generate the multi-dimensional score,
we employ a self-ensembling technique that trains multiple diverse classification
heads on top of a backbone model. We demonstrate the advantage of our approach
compared to baselines across different benchmarks. 1

1 INTRODUCTION

Deep learning models become increasingly dominant in almost every domain, ranging from
computer vision and natural language processing to speech recognition. However, as deep learning
models are deployed in safety-critical applications, such as healthcare (Lambert et al., 2024)
and autonomous driving (Muhammad et al., 2020), it is important to certify their reliability and
safety. This highlights the need for robust uncertainty quantification methods that can determine
when models are uncertain about their predictions and suggest alternative estimates. Conformal
prediction offers a powerful, distribution-free, and model-agnostic framework for uncertainty
quantification, providing finite-sample guarantees (Vovk et al., 2015; Lei et al., 2013; Barber et al.,
2021; Angelopoulos et al., 2020). Its core principle is to transform pointwise predictions from any
model into prediction sets or intervals that contain the true value with high probability.

Conformal prediction relies on a nonconformity score that quantifies how unusual or atypical a new
input-label pair is relative to the given data. While conformal prediction guarantees valid coverage
for any model and data distribution, its practical effectiveness is influenced by both the performance
of the model and the choice of the nonconformity score (Romano et al., 2020; Angelopoulos et al.,
2020). The efficiency of the resulting prediction sets is typically measured by their size, with
smaller sets leading to more informative and precise predictions. Consequently, there is active
research aimed at developing methods that produce the most efficient and concise prediction sets.
This includes proposing new nonconformity scores (Sadinle et al., 2019; Romano et al., 2020;
Angelopoulos et al., 2020; Huang et al., 2024; Luo & Zhou, 2024a), training models using loss
functions that promote efficiency (Stutz et al., 2021; Einbinder et al., 2022), and combining different
models, scores, or data augmentations (Bai et al., 2021; Luo & Zhou, 2024b; Lu, 2023).

The common approach across existing methods is to optimize a single nonconformity score, while
the calibration process—generally involving the computation of a threshold based on a quantile
of the calibration scores—remains unchanged. In this paper, we present a novel perspective
that extends the standard conformal prediction framework from a one-dimensional score to a
higher-dimensional space defined by multiple nonconformity scores. The intuition behind this

1Our code is available at: https://github.com/yamtawa/Multi-CP
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Figure 1: A demonstration of the proposed multi-score conformal prediction for the 2-dimensional
case. On the left, an illustration of our proposed self-ensemble model with two classification heads.
We compute a nonconformity score for each head. On the right, the 2-dimensional score space is
presented, where red circles correspond to scores of true labels, and light-blue x-marks correspond
to scores of false labels. Selected cells are colored in blue and their centers have black edge color.
We see that cells with low number of false labels are chosen.

is that higher-dimensional spaces can better separate correct from incorrect labels, potentially
leading to more efficient prediction sets with fewer false labels. However, selecting a region in this
higher-dimensional space that guarantees exact coverage while optimizing efficiency is non-trivial,
as there are infinitely many ways to partition the space. To tackle this challenge, we propose
a simple yet effective method that splits the multi-dimensional score space into cells, with cell
centers defined by the calibration samples, as illustrated in Fig. 1. The cells are ranked bottom-up
based on the ratio of incorrect to correct labels that they contain. Then, we select the top-ranked
cells that meet the desired coverage. At test time, the prediction set consists of all labels with
scores falling within the selected region. Additionally, we introduce a flexible self-ensembling
technique that constructs a multi-dimensional score by combining predictions from multiple diverse
classification heads built on top of a single backbone model. We provide theoretical guarantees that
this high-dimensional region selection maintains valid coverage and show that it is equivalent to
optimizing the size of the prediction set, under coverage constraint. Extensive experimental results,
demonstrate that our multi-dimensional framework offers superior efficiency compared to baseline
methods across various settings.

Our main contributions can be summarized as follows:

1. Propose a new multi-dimensional conformal prediction framework that can better identify regions
with a large amount of true labels and a small amount of false labels. Our approach is parameter-
free, requires no optimization procedures, and is not restricted to a specific coverage level.

2. Theoretically show that this high-dimensional selection procedure maintains the desired coverage
with finite-sample guarantees.

3. Present a flexible and cheap self-ensemble approach to obtain multi-dimensional nonconformity
scores by training multiple classification heads, while encouraging diversity.

4. Our experimental results demonstrate the superiority of the proposed method over competing
baselines, consistently producing smaller and more efficient prediction sets.

2 RELATED WORK

Enhanced nonconformity scores. Improving the efficiency of conformal prediction has been a
central focus of recent research. Several studies have derived enhanced nonconformity scores aimed
at reducing the size of the prediction sets or improving conditional coverage (Sadinle et al., 2019;
Romano et al., 2020; Angelopoulos et al., 2020; Huang et al., 2024; Luo & Zhou, 2024a). Another
approach involves performing conformal prediction in the feature space, then mapping the intervals
from the embedding space back to the output space (Teng et al., 2022). Our approach addresses the
use of multiple nonconformity scores, as previous research has demonstrated that combining multi-
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ple scores can be more efficient than relying on a single score (Yang et al., 2023b). We introduce a
practical method for generating multiple scores without the need for training multiple models or per-
forming additional inference steps. This approach can be applied to any base score and is orthogonal
to the advancements in developing improved nonconformity scores.

Improving conformal prediction via training. Although conformal prediction is usually
considered as a wrapper around black-box models, recent approaches suggested to directly train
models to improve conformal prediction efficiency. Stutz et al. (2021) introduced a differentiable
conformal prediction pipeline that optimizes the size of the prediction sets. In (Einbinder et al.,
2022), a regularization term was added to the training loss, encouraging the distribution of the
nonconformity scores to match a uniform distribution. Additionally, Bai et al. (2021) explored opti-
mizing conformal prediction within broader function classes. These methods rely on differentiable
approximations that may not fully align with the actual target objective, and are often designed for
a specific coverage level, requiring retraining for each new level. In contrast, our approach avoids
optimization altogether and offers greater flexibility by being independent of the coverage level and
the base nonconformity score.

Combining nonconformity scores. Several works explore conformal prediction in the context
of model fusion and combining nonconformity scores. Ensemble learning methods, which
train multiple models on different subsets of the data, have been widely applied to conformal
prediction (Linusson et al., 2020). Notable approaches include cross-conformal predictors (Vovk,
2015), bootstrap conformal predictors (Vovk, 2015), and out-of-bag calibrated conformal predic-
tors (Devetyarov & Nouretdinov, 2010). Other methods for combining nonconformity scores have
also been investigated. For example, Luo & Zhou (2024b) proposed using a weighted average of
multiple scores derived from the same output, with weights learned through optimization. Similarly,
Lu (2023) suggested combining nonconformity scores obtained via test-time augmentations of the
same image. A more recent work explored the aggregation of multiple prediction sets, assuming
no direct access to the underlying scores (Gasparin & Ramdas, 2024). In contrast to existing
approaches that focus on combining nonconformity scores via weighted aggregation or majority
voting, we propose a general framework that identifies promising regions with low concentrations
of false labels in the multi-dimensional score space.

Ensemble methods. Model ensembles have been shown to enhance various metrics for uncertainty
quantification beyond conformal prediction efficiency, such as calibration error (Hansen & Salamon,
1990; Lakshminarayanan et al., 2017). However, ensembles are often considered computationally
expensive, as they require training and deploying multiple independent models. To mitigate this,
Qendro et al. (2021) proposed an early-exit ensemble, which leverages multiple prediction heads
from intermediate layers to improve uncertainty quantification while maintaining a single model.
This approach has been shown to enhance computational efficiency (Cai et al., 2020) and improve
adversarial robustness (Qendro & Mascolo, 2022). Building on these insights, we propose a self-
ensemble model with multiple classification heads to generate a multi-dimensional nonconformity
score without significant additional costs.

3 BACKGROUND - CONFORMAL PREDICTION

Let X ∈ X represent an input, associated with a label Y ∈ Y , where Y = {1, . . . , Q}. Consider
a classifier π(x) ∈ [0, 1]Q that outputs a probability distribution over Q classes (e.g., a neural
network with a softmax layer, producing probabilities for each class). Conformal prediction starts
by computing a nonconformity score s : X × Y → S ⊆ R, which quantifies the uncertainty of the
classifier’s prediction for the pair (X,Y ) with respect to existing data. Given a set of calibration
points {(Xi, Yi)}mi=1, we can form a prediction set for a new test point Xm+1. Provided that the
points {(Xi, Yi)}m+1

i=1 are exchangable, this set is constructed to have at least 1− α coverage of the
true label, where α ∈ (0, 1) is set by the user. The prediction set is defined as:

Γλ(Xm+1) = {y ∈ Y : s(Xm+1, y) ≤ λ}, (1)

where the threshold λ is set to the quantile of the calibration nonconformity scores:

λ := Quantile
(
⌈(m+ 1)(1− α)⌉

m
; {s(Xi, Yi)}mi=1

)
. (2)
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(a) (b) (c)

Figure 2: Binary classification example. (a) P(x|y) for y = {−1, 1}. (b) The 2-dimensional score
space defined by s1(x, y) and s2(x, y). (c) The set-sizes obtained for different x domains based on
s0(x, y), s1(x, y), s2(x, y) and our multi-score method using both s1(x, y) and s2(x, y).

This procedure ensures that the true label Ym+1 is included in the prediction set with at least 1− α
probability, as stated in the following theorem.

Theorem 1. (Conformal calibration coverage guarantee) .Let {(Xi, Yi)}m+1
i=1 be exchangeable data

points. For any score function s : X × Y → S and any significance level α ∈ (0, 1), define the
quantile λ by Eq. (2) and the prediction set Γλ(Xm+1) by Eq. (1). We have:

P (Ym+1 ∈ Γλ(Xm+1)) ≥ 1− α. (3)

Commonly used nonconformity scores are described in Appendix A.1.

4 PROPOSED METHOD

4.1 MULTI-SCORE CALIBRATION

We now consider a multi-dimensional nonconformity score s : X × Y → S, constructed by
concatenating n individual nonconformity scores as s(x, y) = [s1(x, y), . . . , sn(x, y)]

T , where
S := S1 × · · · × Sn ⊆ Rn. Before discussing different approaches to handling multi-dimensional
nonconformity scores and presenting our proposed method, we first introduce a toy example to
highlight the advantages of using a multi-dimensional score over a single-dimensional one.

Example 4.1 (Toy setting). Assume a binary classification problem with Y = {−1, 1} and prior
probabilities P(Y = 1) and P(Y = −1). The input X is generated from a mixture of two Gaussians,
with P(X|Y ) = N (Y, σ2

y). In this example, we can compute the posterior P(Y |X) using Bayes rule.
Let P(y|x) = P(Y = y|X = x), we consider the following three classifiers:

π0(x) = P(y|x), π1(x) :=

{
P(y|x), if x < 0,
(ϵ, 1− ϵ), if x > 0

, π2(x) :=

{
(ϵ, 1− ϵ), if x < 0,
P(y|x), if x > 0

(4)

where ϵ ∼ N (0, 1). Here, π0(x) is the ideal classifier, while π1(x) and π2(x) are identical to the
ideal classifier over half the range of X , but uninformative over the remaining half. Let si(x, y)
denote the nonconformity score computed over the i-th classifier, it is clear that performing confor-
mal prediction over s0(x, y) would be the most efficient, however, using either s1(x, y) or s2(x, y)
will lead to suboptimal results in the uninformative regions. Performing conformal prediction in the
2-dimensional space, defined by s(x, y) = [s1(x, y), s2(x, y)]

T , is advantageous as the individual
scores provide complementary information for different ranges of the input X . This can be seen
from Fig. 2 (b), where taking both axes into account can help to identify regions with high density
of true points versus false points. Setting α = 0.1, we obtain the following average set sizes: 1.05
for s0(x, y), 1.48 for s1(x, y), 1.47 for s2(x, y) and 1.24 for our proposed method. Figure 2 (c)
compares the set sizes per x-domain. As expected, s0(x, y) produces two-element sets, only in the
middle region, where the Gaussians overlap. In contrast, s1(x, y) and s2(x, y) produce a higher pro-
portion of two-element sets in the corresponding noisy regions. Our method, which relies on both
scores, closely matches the behavior of the ideal score. Further details are provided in Appendix A.2.

We now turn to the analysis of the multi-dimensional score space. The construction of such scores
is discussed in § 4.4. In standard conformal prediction, where n = 1, the threshold λ in Eq. (2)
divides the real line into two regions: scores less than or equal to λ are included in the prediction
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set, while scores greater than λ are excluded. This simple thresholding approach is effective
because nonconformity scores are expected to be low for true labels, which conform to the patterns
in the data, and high for false labels, which deviate from the expected behavior, as explained in § 3.
When n > 1, we have a multi-dimensional score. Intuitively, scores that are close to the minimum
value in all dimensions correspond to the most conforming labels, while increasing any component
of s(x, y) leads to less conforming scores. However, unlike the one-dimensional case, it is not
immediately clear how to optimally partition the score space S into regions that should be included
or excluded from the prediction set.

A common approach for handling multiple nonconformity scores is to use their weighted sum:

sw(x, y) =

n∑
i=1

wisi(x, y), (5)

where the weights wi are optimized to minimize the size of the prediction set while maintaining
the desired coverage level (Bai et al., 2021; Luo & Zhou, 2024b). Geometrically, this is equivalent
to splitting the score space S with a hyperplane of the form w1s1(x, y) + · · · + wnsn(x, y) = λ,
and including only those scores that lie below this hyperplane, i.e. scores satisfying
w1s1(x, y) + · · · + wnsn(x, y) ≤ λ. However, this method imposes a rigid structure on the
partitioning, which may not align with the optimal regions that yield the smallest possible pre-
diction sets. Moreover, it requires tuning the weights for a specific coverage level, making it less
flexible and potentially unsuitable for different values of α.

We propose a more flexible approach for managing the multi-dimensional score space that
eliminates the need for weight optimization. Our method begins by partitioning the calibra-
tion data into two disjoint subsets: Dcal = Dcells ∪ Dre-cal, where Dcells = {(Xi, Yi)}ki=1 and
Dre-cal = {(Xi, Yi)}mi=k+1, with m − k = r. The subset Dcells is used for partitioning the score
space S into distinct regions (cells) and evaluating the quality of each region. Next, the subset
Dre-cal is utilized for calibrating the total selection region, ensuring that the resulting prediction sets
achieve the desired coverage level. Thus, our method consists of three main stages: (i) partitioning,
(ii) scoring and ranking, and (iii) calibration, as detailed below.

(i) Partitioning. We aim to partition the score space S into cells and later decide which cells to
include in the prediction sets. Using a uniform grid is computationally expensive and not scalable
with increasing number of dimensions n. Additionally, the score distribution is typically uneven,
with some regions being densely populated and others sparse, making uniform partitioning ineffi-
cient. Instead, we partition S into k cells, centered at s(X1, Y1), . . . , s(Xk, Yk) for all samples in
Dcells. Specifically, each point in S is assigned to the closest center:

Ci =

{
s̃ ∈ S

∣∣∣ i = argmin
1≤j≤k

∥s̃− s(Xj , Yj)∥

}
, i ∈ {1, . . . , k}. (6)

This way, the cell resolution adapts to the score density, with smaller cells in high-density regions
and larger cells in low-density areas. Note also that this approach is analogous to standard conformal
prediction, where the calibration scores define segments of varying lengths, and the final selected in-
terval is the union of all segments to the left of the computed quantile (2). Thus, our cell partitioning
method can be seen as a generalization of the standard partitioning process to higher dimensions.

(ii) Scoring and ranking. In the next stage, we determine which cells to include in the prediction
sets by computing a ratio that quantifies the balance between false and true labels within each cell.
Let Fi =

∑k
j=1

∑Q
q=1 1{s(Xj , q) ∈ Ci} · 1{Yj ̸= q} and Ti =

∑k
j=1 1{s(Xj , Yj) ∈ Ci} denote

the number of scores with false labels and true labels, respectively. We define the cell scores Di as
follows:

Di :=
Fi + Ti

Ti
=

Fi

Ti
+ 1, i ∈ {1, . . . , k}. (7)

This ratio reflects the relative amount of false to true labels within each cell Ci. We normalize
by the number of true scores in each cell, accounting for the possibility of multiple identical true
scores (overlapping cells), though this occurrence becomes increasingly rare as n increases. Note
that a definition of D′

i = Fi

Ti
results in the same score ordering. However, we keep the definition

of Eq. (7), as it is essential for showing the equivalence between our scoring and ranking procedure
and solving the set-size optimization problem, described in § 4.2.
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In order to improve conformal prediction efficiency and obtain smaller set sizes at test time, we
prioritize regions with a low false-to-true label ratio while avoiding regions with high false-to-true
ratio. Let k′ denote the number of unique cells, where multiple identical scores are treated as a
single cell. We then rank the sequence of unique cells C(1), C(2), . . . , C(k′) according to Di, from
lowest to highest, i.e., D(1) ≤ D(2) ≤ · · · ≤ D(k′).

(ii) Calibration. The final step is selecting the regions that will ensure exact coverage. In this stage,
we utilize the re-calibration setDre-cal. We start from the cell with lowest Di score, and progressively
add cells until the desired coverage is achieved over Dre-cal. Formally, we define the selected region
Cηin as the union of the top-ranked cells up to index η:

Cηin =

η⋃
i=1

C(i).

The required η is determined by:

η∗ = min {η ∈ {1, . . . , k′} | Yi ∈ Cηin for at least ⌈(1− α)(r + 1)⌉ samples (Xi, Yi) ∈ Dre-cal} ,
(8)

and Cη
∗

in is the final selected region. It is essential to use a separate calibration set rather than reusing
Dcells. This is because the cell scores are derived from Dcells, and selecting cells based on the
same data would introduce bias, ultimately leading to undercoverage (see Appendix A for further
justification).

At test time, given a new test point Xm+1 with an unknown label Ym+1, we compute the multi-
dimensional score s(Xm+1, y) for each possible y ∈ Y . We then include only the labels that fall
within the selected region Cη

∗

in , yielding the following prediction set:

Γη∗(Xm+1) =
{
y ∈ {1, . . . , Q} | s(Xm+1, y) ∈ Cη

∗

in

}
. (9)

Our method, Multi-Score Conformal Prediction, is summarized in Algorithm 1. Unlike the single-
score thresholding approach (1) or the hyperplane splitting for weighted scores (5), our approach
defines an unstructured selection region in the multi-dimensional score space. This flexibility
enables us to prioritize regions with fewer false labels, leading to smaller prediction sets. Notably,
our method differs from vector quantile regression (VQR), which extends quantile regression to
multivariate settings (Carlier et al., 2016; Feldman et al., 2023; Rosenberg et al., 2022). While VQR
captures the central 1 − α portion of the output distribution, our approach focuses on optimizing
the selection region to minimize set size while ensuring valid coverage.

4.2 THEORETICAL ANALYSIS

Although our construction seems different from standard conformal prediction, it still provides
coverage guarantees, as stated in the following proposition.
Proposition 2. (Multi-score conformal calibration coverage guarantee). Let Dcells = {Xi, Yi}ki=1

and Dre−cal = {Xi, Yi}mi=k+1 be two disjoint datasets, and the samples {(Xi, Yi)}m+1
i=k+1 are ex-

changeable. For any multi-dimensional score function s : X × Y → S ⊆ Rn and any significance
level α ∈ (0, 1), the prediction set Γη∗(Xm+1) defined by Eq. (9) satisfies:

P (Ym+1 ∈ Γη∗(Xm+1)) ≥ 1− α (10)

The proof, detailed in Appendix A.3, is based on defining a mapping function from the multi-
dimensional score to the corresponding cell ratio score, defined in Eq. (7). By formulating the
predicted set in Eq. (9) using a thresholding operation over this score, our method is aligned with
standard one-dimensional conformal prediction, ensuring valid coverage.

We show now that our approach is similar to previous works, optimizing the set size, subject to a
coverage constraint (Stutz et al., 2021; Bai et al., 2021; Kiyani et al., 2024). Since the space of
all possible prediction sets is overly complex, the problem must be relaxed. Bai et al. (2021) pro-
posed to optimize an arbitrary class of prediction sets Γθ parametrized by θ, while Stutz et al. (2021)
optimize a parametrized score sθ(x, y). Kiyani et al. (2024) considered structured prediction sets
Γh(x) = {y ∈ Y |s(x, y) ≤ h(x)} with a learned adaptive threshold h : X → R. In contrast, we
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Algorithm 1 Multi-Score Conformal Prediction
Definitions: s(x, y) is a multi-dimensional score function. Dcal is the calibration data of size
m. Xm+1 is a new test sample, α is the miscoverage level, k is the number of samples for cell-
partitioning and scoring, and r = m− k is the number of samples for re-calibration.

1: function MULTI-SCORE-CP(s(x, y), Dcal, α)
2: Randomly split Dcal to Dcells = {(Xi, Yi)}ki=1 and Dre-cal = {(Xi, Yi)}mi=k+1

3: Compute the scores s(Xi, Yi), i ∈ {1, . . . ,m}
4: Segment S into cells {Ci}ki=1 centered at {s(Xi, Yi)}ki=1
5: Compute Di, i = 1, . . . , k according to Eq. (7)
6: Remove duplicate cells C1, C1, . . . , Ck′

7: Rank the cells C(1), C(2), . . . , C(k′) according to D(1) ≤ D(2) ≤ . . . ≤ D(k′)

8: η∗ ← min{η ∈ {1, . . . , k′} | Yi ∈ Cηin for at least ⌈(1− α)(r + 1)⌉ samples in Dre-cal}
9: Cη

∗

in ← ∪
η∗

i=1C(i)
10: return Cη

∗

in

11: function MULTI-SCORE-EVALUATION(s(x, y), Xm+1, Cη
∗

in )
12: Compute the scores s(Xm+1, y), y ∈ {1, . . . , Q}
13: Construct the prediction set Γη∗(Xm+1) =

{
y ∈ {1, . . . , Q} | s(Xm+1, y) ∈ Cη

∗

in

}
14: return Γη∗(Xm+1)

work in the multi-score domain and consider sets defined as a union of cells in Dcells, i.e. ΓI(x) =
{y ∈ Y|s(x, y) ∈ ∪i∈ICi} with I ⊆ 2k. We obtain the following relaxed optimization problem:

argmin
I⊆2k

Lsize := E
[
size(ΓI(X))

]
s.t. Lcoverage := P

(
Y ∈ ΓI(X)

)
≥ 1− α. (11)

where size(ΓI(X)) =
∑Q

q=1 1{q ∈ ΓI(X)}. In the following lemma, we relate this optimization
problem to our defined cell scores (see the proof in Appendix A.4).

Lemma 3. The optimization problem in Eq. (11) admits the following finite sample representation:

argmin
I⊆2k

1

k

∑
i∈I

Di s.t. L̂coverage :=
|I|
k
≥ 1− α. (12)

It immediately follows that solving Eq. (12) does not require enumerating all possible sets I . Instead,
we can rank cells according to Di and select a proportion of 1−α cells with highest ranks. However,
this does not guarantee exact coverage, thus, we perform re-calibration by choosing the top-ranked
cells covering ⌈(1−α)(r+1)⌉ samples of Dre-cal. This is summarized in the following proposition.

Proposition 4. Algorithm 1 is equivalent to solving a finite sample approximation of Eq. (11), as
defined by Eq. (12), followed by a re-calibration stage, ensuring valid coverage (Eq. (10)).

4.3 ADDITIONAL VARIANTS OF MULTI-SCORE CONFORMAL PREDICTION

In the following, we present two additional variants of our proposed method.

Jackknife+ Multi-Score Conformal Prediction. A limitation of our approach is that it uses only
part of the data to perform the calibration, which may impact efficiency. This is especially critical
if the sample size m is small. An alternative solution is to adopt a jackknife+ approach (Romano
et al., 2020; Barber et al., 2021), which is computationally more intensive but often provides tighter
prediction sets. This approach is summarized in Algorithm B.1. The key idea is to leverage the entire
calibration dataset while systematically excluding the ith point from both the set of centers and the
score computation in Eq. (7). For each possible label y ∈ Y , we assign it to the nearest center after
removing the ith center, and similarly, we compute the assignment for the score s(Xi, Yi). We then
compare the ranks of the selected cells and include y in the final prediction if its rank is smaller than
⌈(1−α)(m+1)⌉ hold-out calibration ranks. This ensures a theoretical coverage of 1−2α. However,
in practice, the achieved coverage is close to 1− α, even without the adjustment α′ = α/2.
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Soft Multi-Score Conformal Prediction. We introduce a generalized variant of our approach,
replacing hard assignment to the nearest center with a soft assignment to the b nearest neighbors.
This variant, outlined in Algorithm B.2, selects the b closest neighbors and includes a point in the
prediction set if at least half of them belong to the chosen region.

4.4 MULTI-SCORE CONSTRUCTION

Multi-dimensional nonconformity scores can be constructed in several ways. Multiple scores can be
obtained from a model ensemble, which can be resource-intensive. Alternatively, test-time augmen-
tations can be used to generate multiple scores for different input augmentations (Lu, 2023). Simi-
larly to ensembling, test-time augmentation requires multiple forward passes, and is generally more
appropriate for image data. A more efficient approach is to derive multiple types of scores from a sin-
gle model output (Luo & Zhou, 2024b). While this requires only a single forward pass, all scores are
generated from the same output, which may limit their ability to fully capture predictive uncertainty.

Our multi-dimensional approach is applicable to any of the previously mentioned multi-scores.
However, we introduce a novel method for generating diverse nonconformity scores that capture var-
ied perspectives without increasing computational complexity. To achieve this, we attach multiple
classification heads, {πi(x)}ni=1, to the penultimate layer (second-to-last layer) of the model. Train-
ing these heads solely with cross-entropy (CE) loss often leads to highly similar outputs, limiting
their usefulness for uncertainty estimation. To mitigate this, we adopt the regularization technique
from (Qendro et al., 2021), encouraging diversity by minimizing similarity among the heads. This
aligns with the intuition from Example 4.1, where complementary predictions—specialized for dis-
tinct input regions—can be combined to enhance uncertainty quantification across the entire range.
The classification heads are trained using the following loss function:

L =
1

n

n∑
i=1

LCE(πi(x), y)−
β

n(n− 1)

n∑
i=1

∑
i ̸=j

sim(πi(x), πj(x)), (13)

where LCE(·, ·) denotes CE loss, sim(·, ·) denotes cosine similarity, and β is a regularization
weight, set to 1 in our experiments. While (Qendro et al., 2021) proposed generating classification
heads from various layers and depths of the network, our empirical findings revealed that, as
expected, heads from shallower layers tend to be weaker, and thus have minimal contribution in
the multi-score setting. By attaching the classification heads to the penultimate layer and applying
diversity regularization as in Eq. (13), we achieve robust and diverse classification heads.

5 EXPERIMENTS

5.1 DATASETS AND MODELS

We test our method over three image classification datasets, with varying number of classes and
difficulty levels: CIFAR100 (Krizhevsky et al., 2009), Tiny ImageNet (Le & Yang, 2015), and
PathMNIST (Yang et al., 2023a). For all datasets we use a ResNet50 backbone model pretrained
on ImageNet. We first attach a single classification head and fine-tune the full model with CE loss.
Next, we add additional 6 classification heads (n = 7 heads in total), freeze the backbone model,
and train the heads using the loss defined in Eq. (13). Based on the heads’ output probabilities,
we compute the nonconformity scores, where we use either regularized adaptive prediction
sets (RAPS) (14) or sorted adaptive prediction sets (SAPS) (15) as base scores. We refer to
Appendix C for further details on datasets, model architectures, and the training procedure.

5.2 EVALUATION

We compare the proposed multi-score method to the following baselines:

• Best single head (Best head) - Conformal prediction is applied independently to each classi-
fication head using the entire Dcal dataset, as opposed to our method that performs calibration
only over Dre-cal. We report the results for the head that achieves the smallest set size among the
evaluated heads.
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(a) CIFAR100 (α = 0.1) (b) CIFAR100 (α = 0.1)

(c) PathMNIST (α = 0.01) (d) PathMNIST (α = 0.01)

(e) Tiny ImageNet (α = 0.1) (f) Tiny ImageNet (α = 0.1)

Figure 3: Results for RAPS. Empirical coverage (left), and mean set size (right) as a function of the
number of classification heads.

• Uniform average (Uniform) - We average the scores obtained for each head and perform
standard conformal prediction on the entire Dcal dataset.

• Optimized weights (Optimized) - We use the weighted score sW defined in Eq. (5). We perform
constrained optimization, minimizing the mean set size with a constraint that the empirical mis-
coverage does not exceed α. The weights are optimized using Optuna (Akiba et al., 2019) over
Dcells with 100 optimization steps. Then, we perform standard conformal prediction over Dre-cal.

• Norm-based score (Norm) - Conformal prediction is performed over Dcal with a norm-based
score, defined as sN(x, y) = ∥s(x, y)∥2 =

√∑n
i=1 s

2
i (x, y).

We evaluate the different methods in terms of the empirical coverage 1
|Dtest|

∑
(X,Y )∈Dtest

1{Y ∈
Γ(X)} and the mean set size 1

|Dtest|
∑

(X,Y )∈Dtest
|Γ(X)|, computed over the test data Dtest. We

report the average results and the standard deviation over 10 random splits to calibration and test.

5.3 RESULTS

Varying number of heads. Results as a function of the number of heads are shown in Figs. 3
and D.2, with RAPS and SAPS as base scores, respectively. Results for additional α levels are
provided in Figs. D.1 and D.3. As expected, all methods obtain the required coverage. We observe
that the proposed method leads to smaller prediction sets, with decreased sizes as the number of
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(a) α = 0.2 (b) α = 0.1 (c) α = 0.05

Figure 4: Selection regions for a 2-dimensional score (n = 2) using RAPS on Tiny ImageNet at
different α levels. Our method’s selected region is shaded in blue, while the unselected region is in
orange. Baseline decision boundaries are shown as dashed lines, with selected regions lying to the
left of the ‘Best head’ boundary and below the boundaries for all other baselines. True test points are
shown as green circles, while those associated with incorrect labels are marked with purple x-marks.
heads increases. Similar trends are observed for both RAPS and SAPS scores. Figure D.7 illustrates
how the set size distribution evolves as the number of heads increases, demonstrating the advantage
of our method in generating smaller set sizes compared to baselines, especially as n grows.

Selection region. Figure 4 demonstrates the results obtained for the 2-dimensional case (n = 2).
We present the region selected by the proposed method (blue area), and the decision boundaries for
the baseline methods. In addition, the test scores for true and false labels are presented. We observe
that the test scores are concentrated in two distinct square regions: the bottom-left corner, where
true labels dominate, and the top-right corner, where false labels are more prevalent. Our method
effectively focuses on regions with fewer false labels, whereas the baselines, constrained by their
fixed structure, inevitably include areas with a high density of false labels. Figure D.4 illustrates the
cell selection order defined by Eq. (7). Here too, we observe that cells near the bottom left corner
are preferable, as well as cells that have low score in either dimension.

Additional results. We briefly highlight additional results presented in Appendix D. Tables D.1
and D.2 report the performance in terms of the conditional coverage, with groups defined by either
set-size or random projections, respectively. We observe that all methods exhibit similar behav-
ior regarding the maximum coverage violation. Figure D.6 presents the set sizes obtained for Thr
and APS scores, highlighting the superiority of our method when temperature scaling is applied to
spread out the score distribution. Additionally, we conducted several experiments to demonstrate
the versatility of our approach in other multi-score settings, including: (i) a standard ensemble, (ii)
test-time augmentation, and (iii) different score types computed for a single head. Moreover, we
conducted experiments on text classification (Tab. D.8), and ImageNet (Tab. D.9) verifying that our
method is suitable for other data types and large datasets. We evaluated the two additional variants
of our method, presented in § 4.3, and found that the Jackknife+ version yields smaller sets, while
the soft version with b > 1 generally offers no advantage over the basic version with b = 1. We also
performed an ablation study over the regularization weight λ in Fig. D.11, highlighting the benefit of
adding diversity regularization. Furthermore, we show that our method is not highly sensitive with
respect to the sample size ofDcal (Fig. D.12) andDcells (Tab. D.4), and maintains robust performance
regardless of the underlying model (Tab. D.7) and the scores’ hyperparameters (Tabs. D.5 and D.6).

6 CONCLUSIONS

We introduce a multi-score conformal prediction framework that combines multiple nonconformity
scores to select regions in the high-dimensional score space. This approach ensures the desired
coverage while minimizing the inclusion of false labels. Unlike existing methods, our technique
requires no optimization—neither black-box nor gradient-based—and is applicable to any coverage
level. To achieve this, we construct the score using a cost-efficient self-ensemble model with multi-
ple classification heads, trained with both CE and diversity losses. Experimental results demonstrate
that our multi-score framework outperforms state-of-the-art baselines across multiple benchmarks.
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A MATHEMATICAL DETAILS

A.1 NONCONFORMITY SCORES

A commonly used nonconformity score is based on the confidence of the predicted probabilities,
defined as sThr(x, y) = 1 − π(x)y (Sadinle et al., 2019). However the Thr score can sometimes
undercover hard examples and overcover trivial ones. Hence, a popular alternative is the adaptive
prediction sets (APS) method (Romano et al., 2020), which is based on the cumulative probability
sAPS(x, y) :=

∑Q
q=1 π(x)q1 [π(x)q > π(x)y] + u · π(x)y , where u a uniform random value that

breaks potential ties between different scores. However, the APS method often results in large
prediction sets, which is undesirable. To address this, RAPS score was introduced (Angelopoulos
et al., 2020), which encourages smaller prediction sets by penalizing less likely labels. The RAPS
score is defined as:

sRAPS(x, y) :=

Q∑
q=1

π(x)q1 [π(x)q > π(x)y] + u · π(x)y + ν ·max(o(x, y)− κ, 0), (14)

where o(x, y) denotes the rank of class y, and ν and κ are hyperparameters that control the penalty
strength. More recently, alternative scoring methods have been proposed that rely on the relative
rank of the prediction (Huang et al., 2024; Luo & Zhou, 2024a). For example, the SAPS score is
defined as (Huang et al., 2024):

sSAPS(x, y) :=

{
u · πmax(x), if o(x, y) = 1,
πmax(x) + (o(x, y)− 2 + u) · ξ, otherwise, (15)

where ξ is a hyperparameter that controls the weight of the ranking information, and πmax(x) is the
maximum softmax probability.

A.2 TOY EXAMPLE DETAILS AND ADDITIONAL JUSTIFICATION FOR MULTI-DIMENSIONAL
CONFORMAL PREDICTION

Assume a binary classification problem with Y ∈ {−1, 1} and prior probabilities P(Y = 1) and
P(Y = −1). The input X is generated from a mixture of two Gaussians, with P(X|Y ) = N (Y, σ2

y).
In this example, we can compute the posterior P(Y |X) using Bayes rule:

P(Y = a|X) =
P(Y = a)P(X|Y = a)

P(Y = 1)P(X|Y = 1) + P(Y = −1)P(X|Y = −1)
, a = {−1, 1}. (16)

We set P(Y = 1) = P(Y = −1) = 0.5, σ2
1 = σ2

−1 = 0.75. Let P(x, y) = P(Y = y|X = x),
consider the following three classifiers:

π0(x) = P(y|x), π1(x) :=

{
P(y|x), if x ≤ 0,
(ϵ, 1− ϵ), if x > 0

, π2(x) :=

{
(ϵ, 1− ϵ), if x ≤ 0,
P(y|x), if x > 0

(17)

where ϵ ∼ N (0, 1). The classifiers are illustrated in Fig. A.1 . Here π0(x) represents the ideal
classifier, and π1(x) and π2(x) are ideal only in half of the range of x and uninformative for the
other half. We generate 2000 points based on P(X|Y ), and use 1000 for validation and 1000 for
calibration. We compute the Thr nonconformity score. Results are averaged over 20 random trials.

When P(y|x) = P(Y = y|X = x) is known, it was shown that the optimal set with minimal
size under coverage constraint is given by Γ∗(x) = {y ∈ Y|P(x, y) > qα} (Lei & Wasserman,
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(a) π0(x) (b) π1(x) (c) π2(x)

Figure A.1: The three classifiers in the toy example binary classification problem.

2014; Sadinle et al., 2019; Kiyani et al., 2024). This implies that the optimal set is a level set of the
distribution P(x, y). Thus, in our toy example, thresholding s0(x, y) = 1 − P(x, y) results in the
optimal set. Using only s1(x, y) and s2(x, y) the optimal set can be equivalently defined as:

Γ∗(x) = {y ∈ Y|(1{x ≤ 0} · s1(x, y) + 1{x > 0} · s2(x, y)) < 1− qα}
= {y ∈ Y|sT (x, y) · ix(x) < 1− qα}

where ix(x) = [1{x ≤ 0},1{x > 0}]⊤. Thus, we obtain that the optimal set is a function of the 2-
dimensional nonconformity score s(x, y). In this example, each classifier specializes on a different
subdomain of the input space X .

Another practical case is when classifiers specialize on different parts of the output space Y . For
example, consider Y = {0, 1, 2}, and the following three classifiers:

πa(x) :=

{ P(y = a|x), if y = a,
ϵ, if y = (a+ 1) mod 3,
1− P(y = a|x)− ϵ, if y = (a+ 2) mod 3

a ∈ {0, 1, 2}, (18)

where ϵ ∼ N (0, 1). In this case, the optimal set is given by:

Γ∗(x) = {y ∈ Y|sT (x, y) · iy(y) < 1− qα} (19)

where iy(y) = [1{y = 1},1{y = 2},1{y = 3}]⊤. We conclude that whenever P(x, y) =
ϕ(s(x, y);x, y), where ϕ : S × X × Y → [0, 1] is a non-degenerate function of the multi-score
vector, the optimal set relies on s(x, y), i.e.:

Γ∗(x) = {y ∈ Y|ϕ(s(x, y);x, y) < 1− qα}. (20)

In contrast, relying solely on a single score will result in a suboptimal solution. Note that, according
to Eq. (20), the ideal set corresponds to a level set of ϕ(s(x, y);x, y), rather than s(x, y) itself.
This implies that, in general, the decision boundaries in the multi-dimensional score space can be
arbitrarily complex, depending on the properties of ϕ.

We conclude that in practical scenarios, where a single score does not provide the full information
on the conditional distribution P(y|x), we benefit from using a multi-dimensional score s(x, y). It
may appear that optimizing for set size efficiency in the multi-score space exponentially increases the
number of possible prediction sets to be considered, which makes the optimization more challenging
compared to the single-dimensional case. However, our cell partitioning and ranking procedure
relaxes the problem to a convenient structured prediction with a simple selection rule that does
not require any iterative optimization procedures. Note that the number of cell centers and the
summation operation over all scores that fall in the chosen region, remain fixed regardless of the
dimensionality of s(x, y). However, as n increases the cells move apart from each other, when
the scores are nonidentical and provide complementary information. Moreover, if each dimension
contributes information about the actual conditional distribution P(Y |X), we anticipate an improved
separation between true and false scores. Consequently, the selected subset of cells is expected
to exhibit lower Di values, leading to smaller prediction sets. This is demonstrated in Fig. A.2
presenting the distribution of Di for the chosen cells. We observe that as n increases, the values of
Di become smaller.
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Figure A.2: Histogram of cell scores Di for the selected number of cells, comparing different num-
ber of heads. Values correspond to CIFAR100 dataset, RAPS scores and α = 0.1

A.3 PROOF OF PROPOSITION (2)

Proof. For a pair of test input Xm+1 and a (candidate) label y ∈ Y we compute the multi-
dimensional score s(Xm+1, y) = [s1(Xm+1, y), . . . , sn(Xm+1, q)]

T . We define a combined score
function smulti : X×Y → R that maps the multi-dimensional score s(x, y) into a single-dimensional
score smulti(x, y). The mapping is defined as follows:

smulti(Xm+1, y) = argmin
1≤j≤k′

∥∥s(Xm+1, y)− s(X(j), Y(j))
∥∥ (21)

where (j) denotes the index of the samples in Dcells after sorting according to the ratio values in
Eq. (7) and eliminating repeating elements, i.e. (X(1), Y(1)), . . . , (X(k′), Y(k′)) are the centers of the
cells C(1), . . . , C(k′) where D(1) ≤ D(2) ≤ · · · ≤ D(k′). This way each pair (Xm+1, y) is associated
with the closet center and the ranking of this cell serves as the one-dimensional score, defined in
Eq. (21).

The prediction set Γη∗(Xm+1) is defined in Eq. (9) by including predictions associated with scores
that reside in the selected region. This can be equivalently written in terms of a threshold operation
over smulti, as we can write:

Γη∗(Xm+1) =
{
y ∈ {1, . . . , Q} | s(Xm+1, y) ∈ Cη

∗

in

}
=

y ∈ {1, . . . , Q} | s(Xm+1, y) ∈
η∗⋃
i=1

C(i)


=

y ∈ {1, . . . , Q} |
η∗⋃
i=1

[
s(Xm+1, y) ∈ C(i)

]
(6)
=

y ∈ {1, . . . , Q} |
η∗⋃
i=1

[
i = argmin

1≤j≤k′

∥∥s(Xm+1, y)− s(X(j), Y(j))
∥∥]

(21)
=

y ∈ {1, . . . , Q} |
η∗⋃
i=1

[i = smulti(Xm+1, y)]


= {y ∈ {1, . . . , Q} |smulti(Xm+1, y) ≤ η∗} .

(22)

This formulation is the same as a standard one-dimensional conformal prediction procedure, where
we define the prediction set by thresholding a one-dimensional score function. The threshold η∗ was
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chosen to obtain exact coverage over the held-out data Dre-cal, therefore:

η∗ = min{η ∈ {1, . . . , k′} | Yi ∈ Cηin for at least ⌈(1− α)(r + 1)⌉ samples (Xi, Yi) ∈ Dre-cal}
(22)
= min{η ∈ {1, . . . , k′} | smulti(Xi, Yi) ≤ η for at least ⌈(1− α)(r + 1)⌉ samples in Dre-cal}

= Quantile
(
⌈(r + 1)(1− α)⌉

r
; {smulti(Xi, Yi)}mi=k+1

)
.

Thus, assuming that Dre-cal and (Xm+1, Ym+1) are exchangeable , we obtain that:

P (Ym+1 ∈ Γη∗(Xm+1)) ≥ 1− α (23)

following Theorem (1).

Note that the split of Dcal to two disjoint subsets Dcells and Dre-cal is critical here, since we cannot
claim that the samples in Dcells and the test pair (Xm+1, Ym+1) are exchangable as Dcells serves for
the computation of the score defined in (21) (in a similar way to the fact that the training data cannot
be used for calibration in standard conformal prediction).

A.4 EQUIVALENCE BETWEEN CELL SELECTION AND SET-SIZE OPTIMIZATION

We start by proving Lemma 3.

Proof. Let Fi =
∑k

j=1

∑Q
q=1 1{s(Xj , q) ∈ Ci} · 1{Yj ̸= q} and Ti =

∑k
j=1 1{s(Xj , Yj) ∈ Ci}

denote the number of scores with false labels and true labels, respectively. Let I ′ ⊆ 2k
′

denote the set
of disjoint cell indexes, removing duplicates. Using these definitions, a finite-sample approximation
of the expected set-size Lsize over Dcells, can be written as:

L̂size =
1

k

k∑
j=1

Q∑
q=1

1{q ∈ ΓI(Xj)}

(9)
=

1

k

k∑
j=1

Q∑
q=1

1{S(Xj , q) ∈ ∪i∈ICi}

=
1

k

k∑
j=1

Q∑
q=1

1{S(Xj , q) ∈ ∪i∈I′Ci}

=
1

k

k∑
j=1

∑
i∈I′

Q∑
q=1

1{s(Xj , q) ∈ Ci}

=
1

k

∑
i∈I′

Fi + Ti

=
1

k

∑
i∈I

Fi + Ti

Ti

=
1

k

∑
i∈I

Di, (24)

where the final equality directly follows from the definition of the cell score in Eq. (7). For the
coverage constraint, we obtain:

L̂coverage =
1

k

k∑
j=1

1{Yj ∈ ΓI(Xj)} =
1

k

∑
i∈I′

Ti =
1

k

∑
i∈I

1 =
|I|
k

(25)

The proof of Proposition 4 follows directly, as we now state.
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Algorithm B.1 Jackknife+ Multi-Score Conformal prediction
Definitions: s(x, y) is a multi-dimensional score function. Dcal is the calibration data of size
m. Xm+1 is a new test sample, α is the miscoverage level, k is the number of samples for cell-
partitioning and scoring, and r = m− k is the number of samples for re-calibration.

1: function MULTI-SCORE-CP(s(x, y), Dcal, α)
2: Compute the scores s(Xi, Yi), i ∈ {1, . . . ,m}
3: Segment S into cells {Ci}ki=1 centered at {(Xi, Yi)}ki=1
4: Remove duplicate cells C1, C1, . . . , Ck′

5: for i ∈ {1, . . . , k} do
6: Compute D−i

j , j = 1, . . . , i− 1, i+ 1, . . . , k′ using Eq. (7), excluding the i-th point
7: Rank the cells C(1), C(2), . . . , C(k′−1) according to D−i

(1) ≤ D−i
(2) ≤ . . . ≤ D−i

(k′−1)

8: E−i
i ← argminj∈{1,...,k′−1}

∥∥s(Xi, Yi)− s(X(j), Y(j))
∥∥

9: E−i
m+1(y)← argminj∈{1,...,k′−1}

∥∥s(Xm+1, y)− s(X(j), Y(j))
∥∥ , y ∈ Y

10: ΓJK+(Xm+1) =
{
y ∈ {1, . . . , Q} |

∑m
i=1 1{E

−i
i < E−i

m+1(y)} < (1− α)(m+ 1)
}

11: return ΓJK+(Xm+1)

Proof. Lets first assume that there are no duplicates, i.e. Ti = 1,∀1 ≤ i ≤ k. Let I∗ denote the
(1− α) proportion of cells with the smallest Di values, we obtain that:

L̂∗
coverage =

|I∗|
k

= 1− α. (26)

By construction, I∗ has the smallest empirical set size compared to any other set Iα with |Iα| =
|I∗| = 1− α:

L̂∗
size =

1

k

∑
i∈I∗

Di ≤
1

k

∑
i∈Iα

Di = L̂α
size. (27)

Thus, when there are no duplicates, the solution to the optimization problem in Eq. (12) is obtained
by ordering the cells according to Di and selecting the top-ranked 1− α proportion of cells. When
duplicates exist, it can be interpreted as selecting the same cell Ti times. In this case, the solution to
the optimization problem in Eq. (12) is obtained by ordering the cells according to Di and selecting
the top-ranked cells until a 1− α proportion of k is selected, subject to the constraint that all dupli-
cates must be selected together. It is possible for some disjoint cells to have the same Di scores with
different Ti values, which would make it ambiguous to determine which cell to select first. However,
this will only make difference when approaching the selection limit and since, anyway, duplicates
are rare in dimensions higher than one, this ambiguity has a negligible effect.

Finally, re-calibration over Dre-cal, as defined in Eq. (8), guarantees exact coverage, as follows from
Proposition 2.

B ALGORITHMS

The jackknife+ variant, as described in Section D.6, is provided in Algorithm B.1, while the soft
centers variant, as detailed in Section D.6, is presented in Algorithm B.2.

C IMPLEMENTATION AND DATASET DETAILS

Datasets and Implementation. The details of each dataset and the corresponding data splits are
summarized in Table C.1, where Tiny ImageNet, CIFAR100 and PathMNIST are used in our main
results while ImageNet and 20 Newsgroups are used for the additional experiments, described in § D.
The calibration data is split into half for cell computation, and re-calibration.
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Algorithm B.2 Soft Multi-Score Conformal Prediction
Definitions: s(x, y) is a multi-dimensional score function. Dcal is the calibration data of size
m. Xm+1 is a new test sample, α is the miscoverage level, k is the number of samples for cell-
partitioning and scoring, and r = m − k is the number of samples for re-calibration and b is the
number of neighbors.

1: function SOFT MULTI-SCORE-CP(s(x, y), Dcal, α,b)
2: Randomly split Dcal to Dcells = {(Xi, Yi)}ki=1 and Dre-cal = {(Xi, Yi)}mi=k+1

3: Compute the scores s(Xi, Yi), i ∈ {1, . . . ,m}
4: Segment S into cells {Ci}ki=1 centered at {(Xi, Yi)}ki=1
5: Compute Di, i = 1, . . . , k according to Eq. (7)
6: Remove duplicate cells C1, C1, . . . , Ck′

7: Rank the cells C(1), C(2), . . . , C(k′) according to D(1) ≤ D(2) ≤ . . . ≤ D(k′)

8: T b(i)← b nearest cells of s(Xi, Yi) in {C(i)}k
′

i=1, i ∈ {k + 1, . . . ,m}
9: η∗ ← min

{
η
∣∣∣∑m

i=k+1 1
{(∑b

t=1 1
{
T b
t (i) ⊆ Cη

in

})
> ⌈0.5 · b⌉

}
≥ ⌈(1− α)(r + 1)⌉

}
10: Cη

∗

in ←
⋃η∗

i=1 C(i)
11: return Cη

∗

in

12: function SOFT MULTI-SCORE-EVALUATION(s(x, y), Xm+1, Cη
∗

in )
13: Compute the scores s(Xm+1, y), y ∈ {1, . . . , Q}
14: T b(y)← b nearest cells of s(Xm+1, y) in {C(i)}k

′

i=1, y ∈ Y
15: Γη∗(Xm+1) =

{
y ∈ Y|

(∑b
t=1 1

{
T b
t (y) ⊆ Cη∗

in

})
> ⌈0.5 · b⌉

}
16: return Γη∗(Xm+1)

Table C.1: Datasets Details

Dataset # Classes Train Validation Calibration Test Average Accuracy

Tiny ImageNet 200 71,500 11,000 16,500 11,000 0.58
CIFAR100 100 39,000 6,000 9,000 6,000 0.69

PathMNIST 9 69,667 10,718 16,077 10,718 0.94
20 Newsgroups 20 9,800 2,449 3,298 3,299 0.87

ImageNet 1,000 1,281,184 10,000 20,000 20,000 0.71

For the first three datasets we used ResNet50 model with pretrained weights on ImageNet. Each
head is a 3 layer feed-forward neural network with, BatchNorm, ReLU activation and dropout with
p = 0.1.

In the first stage, the full model with a single classification head was fine-tuned on each task with
20, 100 and 200 epochs for Tiny ImageNet, CIFAR100 and PathMNIST, respectively. In the second
stage, we freeze the backbone model and train only the classification heads for 20 epochs, using the
loss defined in Eq. (13). In both stages, we use Adam optimizer with cosine annealing scheduler,
momentum decay of 0.95, weight decay of 1e− 5, and batch size of 16.

For the computation of the RAPS score we used λ = 0.05 and κ = 5, and for the SAPS score we
set ξ = 0.3. Performance with respect to other parameter values is reported in Tables D.5 and D.6
for RAPS and SAPS, respectively.

D ADDITIONAL RESULTS

D.1 EVALUATING OTHER PERFORMANCE ASPECTS

Conditional Coverage. We assess performance in terms of conditional coverage, evaluated using
size-stratified coverage violation (SSCV) and worst-slice coverage (WSC). For SSCV, we define a
set of disjoint strata {Sj}Jj=1, where ∪Jj=1Sj = {1, . . . , Q}. We partition the data into groups with
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(a) CIFAR100 (α = 0.02) (b) CIFAR100 (α = 0.02)

(c) PathMNIST (α = 0.02) (d) PathMNIST (α = 0.02)

(e) Tiny ImageNet (α = 0.2) (f) Tiny ImageNet (α = 0.2)

Figure D.1: Conformal prediction with RAPS as a function of the number of classification heads.
Results compare multi-score conformal prediction and the baselines (Best head, Optimized, Uni-
form, and Norm) across two metrics: empirical coverage (left column), and mean set size (right
column), over: CIFAR100, Tiny ImageNet and PathMNIST.

equal numbers of samples. Let qj = Quantile
(
j
J ; {|Γ(Xi, Yi)|}i

)
, j = 0, . . . , J , denote the j

J -th
quantile of the set sizes. The jth group is then defined as Gj = {i : qj−1 ≤ |Γ(Xi, Yi)| ≤ qj} for
j ∈ {1, . . . , J}. Accordingly, the SSCV is defined as (Angelopoulos et al., 2020):

SSCV({Sj}Jj=1) = sup
j

∣∣∣∣ |{i : Yi ∈ Γ(Xi, Yi), i ∈ Gj}|
|Gj |

− (1− α)

∣∣∣∣ (28)

For this evaluation, we divided the data into J = 10 groups. The results, summarized in Table D.1,
indicate that all methods achieve similar SSCV scores, with no method showing a clear advantage
over the others.

Additionally, we evaluate the WSC, as defined in (Romano et al., 2020), which quantifies the worst-
case coverage along a random projection within a local region of the distribution. The results,
summarized in Table D.2, indicate that the multi-score method performs comparably to the baselines
in terms of WSC, confirming that the proposed approach maintains conditional coverage.

Results with SAPS scores. To examine the robustness of the multi-score method with respect to
the choice of nonconformity scores, we compare the results achieved using the SAPS nonconformity
score across different levels of α and datasets. The results are presented in figs D.2 and D.3. As
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(a) CIFAR100 (α = 0.01) (b) CIFAR100 (α = 0.01)

(c) PathMNIST (α = 0.01) (d) PathMNIST (α = 0.01)

(e) Tiny ImageNet (α = 0.1) (f) Tiny ImageNet (α = 0.1)

Figure D.2: Conformal prediction with SAPS as a function of the number of classification heads.
Results compare multi-score conformal prediction and the baselines (Best head, Optimized, Uni-
form, and Norm) across two metrics: empirical coverage (left column), and mean set size (right
column), over: CIFAR100, Tiny ImageNet and PathMNIST.

expected, all methods achieve the required coverage. The proposed multi-score calibration produces
smaller prediction sets, with significant improvements as the number of heads increases.

Results with Thr and APS scores. In general, our proposed method can be applied over any
type of score. However, we have seen that it is not fully optimal for Thr and APS. The reason is
that for these scores the values are more concentrated on specific levels, while for SAPS and RAPS
the values are more spread. In order to improve this behavior we use temperature scaling, i.e. we
divide the logits by T before applying Softmax(). As T increases the entropy of the probabilities
increases and they become more spread, as illustrated in Fig. D.5. Figure D.6 presents the set
sizes obtained for all methods with respect to different temperatures. We see that the efficiency the
proposed method greatly improves as T increases for both Thr and APS, while the performance of
the baseline methods is less effected by T . For RAPS and SAPS the proposed method outperforms
the baselines regardless of the temperature due to the inherent spread of these scores.

The distribution of set sizes. Figure D.7 illustrates how increasing the number of heads (from 1
to 7) shifts the set size distribution toward smaller values, indicating more samples with smaller set
sizes. Notably, the multi-score method responds more effectively to the increase in heads compared
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(a) CIFAR100 (α = 0.02) (b) CIFAR100 (α = 0.02)

(c) PathMNIST (α = 0.02) (d) PathMNIST (α = 0.02)

(e) Tiny ImageNet (α = 0.2) (f) Tiny ImageNet (α = 0.2)

Figure D.3: Conformal prediction with SAPS as a function of the number of classification heads.
Results compare multi-score conformal prediction and the baselines (Best head, Optimized, Uni-
form, and Norm) across two metrics: empirical coverage (left column), and mean set size (right
column), over: CIFAR100, Tiny ImageNet and PathMNIST.

to the baselines, achieving set size values in a smaller range (2−41), while for the other methods the
sizes range from 11− 41. This highlights again that our multi-score method leads to more efficient
and precise sets.

D.2 RESULTS WITH OTHER TYPES OF MULTIPLE SCORES

Standard Ensemble. We conduct an experiment with a standard ensemble, consisting of
multiple different models that are trained separately on the same dataset. We use ImageNet
dataset for evaluation with an ensemble of 5 models pretrained on ImageNet: VGG16, Incep-
tion, ResNet50, ResNet152 and DenseNet161. Results are shown in Fig. D.8 for RAPS score and
α = [0.03, 0.05, 0.1]. Similarly to our main results with self-ensemble, here too the proposed
method obtains the smallest prediction set sizes. This indicates that our method can be applied to
self-ensemble models as well as regular ensembles.
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Figure D.4: Visualization of cell selection order over CIFAR100 with RAPS score and α = 0.1.
Darker cells were selected earlier in the sequence while lighter cells are selected at a later stage.

Table D.1: SSCV measure for CIFAR100 with RAPS score

α Head Methods

Multi-score Best head Uniform Optimized Norm

0.1

1 0.174 0.034 0.174 0.159 0.174
2 0.167 0.108 0.114 0.194 0.141
3 0.240 0.104 0.066 0.162 0.277
4 0.298 0.204 0.178 0.167 0.264
5 0.106 0.155 0.167 0.200 0.252
6 0.131 0.153 0.172 0.308 0.125
7 0.056 0.159 0.062 0.191 0.175

0.2

1 0.190 0.037 0.190 0.157 0.190
2 0.362 0.249 0.292 0.221 0.330
3 0.342 0.200 0.132 0.187 0.098
4 0.379 0.206 0.167 0.166 0.279
5 0.361 0.192 0.159 0.209 0.331
6 0.220 0.180 0.071 0.274 0.276
7 0.186 0.203 0.200 0.171 0.245

Test-Time Augmentation. We evaluate our method on a multi-dimensional score that is formed by
test-time augmentations (Lu, 2023). We use ImageNet dataset with Inception-V3 model. We use a
simple common test-time augmentation policy (Krizhevsky et al., 2012), which consists of a random
crop and a horizontal flip. The random crop pads the original image by 4 pixels and takes a 256x256
crop of the resulting image. We draw five augmentations using this policy. Figure D.9 presents the
results for RAPS score and α = [0.03, 0.05, 0.1]. Our method outperforms the baselines in terms of
prediction set size. We conclude that test-time augmentation can serve as a possible alternative for
generating multiple nonconformity scores within our multi-score conformal prediction framework.

Multiple scores computed over a single head. We examined a setting where instead of considering
multiple classification heads, we use a single head and compute different conformity scores: Thr,
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Table D.2: WSC Results on CIFAR100 and TinyImageNet (10 trials)

α Dataset Score Method

Multi-score Best head Uniform Optimized Norm

0.1
CIFAR100 RAPS 0.901 0.905 0.903 0.905 0.901

SAPS 0.903 0.908 0.906 0.895 0.894

TinyImageNet RAPS 0.905 0.903 0.896 0.896 0.892
SAPS 0.900 0.902 0.900 0.901 0.909

0.2
CIFAR100 RAPS 0.801 0.801 0.797 0.799 0.803

SAPS 0.812 0.819 0.800 0.813 0.817

TinyImageNet RAPS 0.796 0.791 0.801 0.800 0.802
SAPS 0.808 0.802 0.808 0.806 0.807

(a) Thr (T = 1) (b) APS (T = 1)

(c) Thr (T = 5) (d) APS (T = 5)

Figure D.5: Demonstration of APS and Thrt scores’s distribution with different Temperatures on
CIFAR-100 and α = 0.1.

APS, RAPS and SAPS. To ensure all scores are comparable and fall in the range between [0, 1],
we apply Softmax() over each score. Table D.3 summarizes the results for all datasets. We see
that combining multiple scores improves the results compared to the best single score, and that
the proposed method obtains the smallest prediction sets in almost all cases. The advantage of this
score fusion is that it does not require any additional modifications to the model or further fine-tuning
iterations.

23



Published as a conference paper at ICLR 2025

(a) ThR (b) APS

(c) RAPS (d) SAPS

Figure D.6: Set size as a function of the temperature for different nonconformity scores. Results are
shown for CIFAR100 with 7 heads and α = 0.1

(a) Multi-score (b) Best head (c) Uniform (d) Optimized (e) Norm

Figure D.7: Histograms of the set size distribution across different numbers of classification heads
with RAPS score on Cifar100 and α=0.1. Rows represent 1, 2, and 7 heads, while columns corre-
spond to different methods.

D.3 ROBUSTNESS TO HYPERPARAMETERS

Influence of training with diversity regularization. We conducted an ablation study to examine
the affect of adding diversity regularization to the loss used for training the classification heads,
defined in Eq. (13). We use the same fine-tuned model in the first training stage and change only
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Figure D.8: Results for ImageNet with a standard ensemble of five different models, using RAPS
score.

Figure D.9: Results for ImageNet with test-time augmentations, using RAPS score.

Table D.3: Set-size comparison for a single classification head and multiple types of scores.

α Dataset Method

Multi-score Best head Uniform Optimized Norm

0.1 CIFAR100 33.90 35.12 35.32 34.96 35.54
TinyImageNet 58.08 61.62 62.96 62.70 78.45

0.15 CIFAR100 18.33 27.88 28.12 27.52 28.18
TinyImageNet 35.84 48.55 49.47 49.48 55.75

0.2 CIFAR100 8.25 9.34 9.19 8.35 13.02
TinyImageNet 19.99 24.94 27.49 26.94 34.49

0.01 PathMNIST 6.26 6.69 6.67 6.5 6.56

0.02 PathMNIST 3.31 4.56 2.98 2.96 3.07

the second stage to optimize the regularized loss in Eq. (13) with different values of λ, controlling
the strength of the diversity regularization. Figure D.10 shows the similarity between heads with
and without the diversity regularization. As expected, the similarity between heads is smaller for the
model trained with the regularized loss. Figure D.11 compares the set sizes obtained for different
values of λ, demonstrating that adding the regularization results in smaller sets. The optimal value
of λ is around 0.8, after which an increase in set size is observed, apparently due to the fact that
increasing head diversity comes at the cost of decreasing the accuracy of each head.

Influence of the of size Dcal. We examine how the performance is affected by the size of the
calibration data. Here, we vary the proportion p of samples from Dcal that are actually used, i.e., we
select a subset Dp

cal ⊆ Dcal, where |Dp
cal| = p · |Dcal|. Then, as before, Dp

cal is split into half for cell
computation, and re-calibration. Figure D.12 presents the set sizes for different values of p. It can
be seen that the proposed method is almost always preferable, with its advantage becoming more
pronounced as the size of the calibration data increases.
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Figure D.10: Similarity matrix between prediction heads for heads trained with (left) or without
(right) diversity regularization on CIFAR100 dataset.

Figure D.11: Set size as a function of the regularization parameter λ for CIFAR100 with RAPS
score and 7 heads.

(a) CIFAR100 (b) Tiny ImageNet (c) PathMNIST

Figure D.12: Sensitivity of the results to the size of Dcal. We select a subset Dp
cal ⊆ Dcal, where

|Dp
cal| = p · |Dcal|. The set sizes obtained for different values of p are reported for RAPS score on 7

heads. Upper row for α = 0.1 and lower row for α = 0.2.

Influence of the of size Dcells. We investigated the effect of k, the size of Dcells, on the results.
Recall that Dcells is responsible to the definition of the cells in Eq. (6) and the computation of the
ratio-based scores in Eq. (7). In this experiment, the dataset is divided, as before, into three fixed
subsets: Dcells, Dre-cal, and Dtest. We vary the proportion p of samples from Dcells that are actually
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Table D.4: Sensitivity of the set-size to the size of Dcells. We select a subset Dp
cells ⊆ Dcells, where

|Dp
cells| = p · |Dcells|. The set sizes obtained for different values of p are reported for CIFAR100

dataset and 7 heads.

Method Score α Proportion

100% 95% 90% 85% 80% 70% 60% 50% 25% 10%

Multi-score
RAPS 0.1 15.32 15.66 15.68 15.69 15.92 16.26 16.68 17.32 19.04 22.13

0.2 2.33 2.33 2.34 2.35 2.37 2.49 2.54 2.64 3.09 4.16

SAPS 0.1 15.46 15.46 15.76 15.72 15.88 16.04 16.32 16.91 19.01 22.17
0.2 2.36 2.36 2.37 2.41 2.42 2.54 2.6 2.64 3.09 3.61

Optimized
RAPS 0.1 22.47 22.27 22.04 22.09 21.85 21.71 22.47 22.52 23.4 24.2

0.2 6.53 6.31 6.21 6.3 6.73 6.49 6.14 6.55 6.54 7.21

SAPS 0.1 21.8 21.83 21.71 21.68 21.51 21.63 21.55 21.66 23.24 25.11
0.2 6.8 6.45 6.4 6.45 6.31 .6.14 5.93 5.93 7.4 8.611

used, i.e., we select a subset Dp
cells ⊆ Dcells, where |Dp

cells| = p · |Dcells|. The set sizes obtained for
different values of p are presented in Table D.4. As expected, the set size increases as p decreases.
However, the overall behavior remains stable, with only 9.4 − 13.3% increase in set size for 50%
reduction in the number of samples in Dcells. In addition, we compare to the Optimized baseline,
where the set Dp

cells is used for optimizing the weights for combining the scores. We see for all p
values Multi-score is advantageous over Optimized.

Influence of the nonconformity score’s parameters . We examined the influence of the different
parameters of the non-conformal RAPS and SAPS scores on the methods performances . The re-
sults for the RAPS score are detailed in Table D.5, while those for the SAPS score are presented in
Table D.6. Overall, our findings indicate that the Multi-Score method remains consistently advanta-
geous, regardless of the parameter settings.

Influence of the underlying model. To demonstrate that our method improves the efficiency of
conformal prediction (CP) regardless of the underlying model, we conducted an experiment using
a more powerful ViT model Dosovitskiy et al. (2020) Results are presented on table D.7, showing
similar trends to those observed in our main results.

D.4 RESULTS ON OTHER DATASETS

Results on text data classification. To show that our method can be applied across different types
of data, we conducted an experiment with a text classification task. We use the 20 Newsgroups
dataset, which comprises newsgroup posts on 20 topics. We use a BERT-base model (Devlin et al.,
2019), and attach additional classification heads in a similar way to the other models. The results
on Table D.8 show that Multi-Score outperforms all the baselines. Here, the norm baseline is the
closest in the performance to the proposed method.

Results for ImageNet. Table D.9 presents the results obtained for ImageNet. Here the classification
heads consist of a single linear layer, and are all initialized by the weights of the pretrained model.
Here too we can see the benefit of the proposed method over the baselines.

D.5 ADDITIONAL BASELINES

L1 Norm baseline. We examined an additional baseline, where we use the L1 norm instead of
the L2 norm. Table D.10 compares the two baselines for CIFAR-100 dataset and RAPS score. We
observe that both baselines obtain similar performance.

Set-size comparison to vanilla baseline. We examined a vanilla baseline, where the CP procedure
is performed over the original classification head, without the addition of multiple classification
heads. We observe that the results are similar to the Best head baseline defined above. Table D.11
summarizes the results
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Table D.5: Set-size comparison between the baselines for different values of κ and λ, used in RAPS
score, on CIFAR100, α = 0.1 and 7 heads.

Method κ λ = 0.001 λ = 0.01 λ = 0.1 λ = 1.0

Multi-score

1 12.79 14.83 15.10 15.45
2 12.84 14.26 15.11 15.53
3 12.88 14.29 15.30 15.54
4 12.81 14.45 15.36 15.53
5 12.80 14.44 15.51 15.70

Best head

1 32.04 32.11 32.11 32.11
2 24.41 24.00 24.00 25.00
3 23.01 23.02 23.04 22.79
4 20.77 21.12 21.63 22.70
5 20.32 21.21 23.60 22.60

Uniform

1 24.38 24.76 24.91 24.96
2 24.41 23.59 24.87 25.05
3 23.10 23.75 25.44 26.14
4 21.20 21.84 23.26 23.33
5 20.40 21.41 22.63 22.75

Optimized

1 24.45 24.89 25.26 25.84
2 24.52 24.00 24.76 25.10
3 23.09 23.32 24.64 25.07
4 20.82 21.20 22.30 22.70
5 20.34 21.40 22.80 22.60

Norm

1 18.01 19.62 19.80 22.59
2 18.01 22.99 24.53 24.66
3 22.82 23.05 27.74 28.50
4 20.80 21.21 21.75 23.60
5 20.34 21.21 23.86 25.04

Table D.6: Set-size comparison between the baselines for different values of ξ, used in SAPS score,
on CIFAR100, α = 0.1 and 7 heads.

Method ξ = 0.01 ξ = 0.05 ξ = 0.1 ξ = 0.5 ξ = 1.0

Multi-score 14.70 16.17 16.28 16.89 17.06
Best head 34.49 35.11 35.21 35.43 35.48
Uniform 19.15 21.73 21.91 22.55 22.57
Optimized 18.51 21.00 21.60 21.90 22.07
Norm 18.61 21.31 23.12 24.56 24.59

Table D.7: ResNet vs. ViT model set size comparison on CIFAR100 with α = 0.1 and 7 heads.

Model Acc. Score Method

Multi-score Best head Uniform Optimized Norm

ViT 0.8 RAPS 4.34 22.11 16.21 15.93 5.51
SAPS 2.33 12.77 2.43 2.45 2.60

ResNet50 0.69 RAPS 15.32 35.29 22.37 22.47 22.49
SAPS 15.46 35.41 22.05 21.80 22.79
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Table D.8: Set-size comparison across different methods on the 20 Newsgroups dataset, with 7
heads, using the BERT-base model fine-tuned for news topic classification.

α Score Method

Multi-score Best head Uniform Optimized Norm

0.08 RAPS 1.46 9.61 9.58 9.49 1.5
SAPS 1.47 10.66 2.09 2.18 2.35

0.05 RAPS 2.29 10.1 10.01 10.07 2.32
SAPS 1.97 10.9 2.4 2.46 2.62

0.02 RAPS 4.28 11.73 11.73 11.47 4.36
SAPS 3.28 11.57 3.45 3.34 3.65

Table D.9: Set-size comparison across different methods on the ImageNet dataset, with 7 heads,
demonstrating the performance with a large-number-of classes.

α Score Method

Multi-score Best head Uniform Optimized Norm

0.1 RAPS 4.1 4.36 13.47 14.63 13.47
SAPS 4.94 5.36 13.85 14.99 13.85

0.2 RAPS 1.82 2.4 2.1 2.1 2.1
SAPS 1.57 1.68 2.04 2.06 2.04

Table D.10: Set-Size comparison between L1 and L2 Norm methods on CIFAR100 and 7 heads.

α Score Method

L1 L2 Multi-score

0.1 RAPS 22.98 22.49 15.32
SAPS 22.25 22.79 15.46

0.2 RAPS 6.75 7.51 2.33
SAPS 7.62 7.85 2.36

Table D.11: Set-size comparison between the vanilla baseline and the multi-score methods on CI-
FAR100, with RAPS score and 7 heads.

α
Set Size

Multi-score Vanilla RAPS Best head

0.1 15.32 39.27 35.29
0.2 2.33 8.09 9.37

D.6 VARIANTS OF MULTI-SCORE CONFORMAL PREDICTION

Jackknife+ Multi-score conformal prediction. We compare our split version in Algorithm 1 to
the jackknife+ version in Algorithm B.1. We obtained that the required 1-α coverage is achieved
in both settings, and the set sizes are summarized in Table D.12. As expected jackknife+ obtains
smaller set sizes. However, the improvement appears to be insignificant in this case and may not
justify the additional computational cost.
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Table D.12: Comparison between Jackknife+ and Multi-score methods on CIFAR100 and 7 heads.

α Score Method

Multi-score Jackknife+ Multi-score

0.1 RAPS 14.85 15.32
SAPS 14.61 15.46

0.2 RAPS 2.26 2.33
SAPS 2.22 2.36

Table D.13: Comparison of soft centers approach with different number of neighbors b on CIFAR100
and 7 heads.

α Score Method

b = 200 b = 100 b = 50 b = 10 Multi-score (b = 1)

0.1 RAPS 23.68 22.73 19.32 16.48 15.32
SAPS 23.53 22.44 19.12 17.14 15.46

0.2 RAPS 3.01 2.89 2.75 2.26 2.33
SAPS 3.04 2.87 2.81 2.29 2.36

Soft Multi-score conformal prediction. We evaluate the soft version of our proposed approach.
The set sizes obtained for different number of neighbors are summarized in Table D.13. We observe
that in almost all cases b = 1 (Algorithm 1) is preferable.
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