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ABSTRACT

We propose Characteristic-Neural Ordinary Differential Equations (C-NODEs), a
framework for extending Neural Ordinary Differential Equations (NODEs) beyond
ODEs. While NODE models the evolution of latent variables as the solution to an
ODE, C-NODE models the evolution of the latent variables as the solution of a
family of first-order partial differential equations (PDEs) along curves on which
the PDEs reduce to ODEs, referred to as characteristic curves. This reduction
along characteristic curves allows for analyzing PDEs through standard techniques
used for ODEs, in particular the adjoint sensitivity method. We also derive C-
NODE-based continuous normalizing flows, which describe the density evolution
of latent variables along multiple dimensions. Empirical results demonstrate the
improvements provided by the proposed method for irregularly sampled time series
prediction on MuJoCo, PhysioNet, and Human Activity datasets and classification
and density estimation on CIFAR-10, SVHN, and MNIST datasets given a similar
computational budget as the existing NODE methods. The results also provide
empirical evidence that the learned curves improve the system efficiency using a
lower number of parameters and function evaluations compared with those of the
baselines.

1 INTRODUCTION

Deep learning and differential equations share many connections, and techniques in the intersection
have led to insights in both fields. One predominant connection is based on certain neural network
architectures resembling numerical integration schemes, leading to the development of Neural
Ordinary Differential Equations (NODEs) (Chen et al., 2019b). NODEs use a neural network
parameterization of an ODE to learn a mapping from observed variables to a latent variable that is
the solution to the learned ODE. A central benefit of NODEs is the constant memory cost, when
backward passes are computed using the adjoint sensitivity method rather than backpropagating
through individual forward solver steps. Backpropagating through adaptive differential equation
solvers to train NODEs will often result in extensive memory use, as mentioned in Chen et al. (2019b).
Moreover, NODEs provide a flexible probability density representation often referred to as continuous
normalizing flows (CNFs). However, since NODEs can only represent solutions to ODEs, the class of
functions is somewhat limited and may not apply to more general problems that do not have smooth
and one-to-one mappings. To address this limitation, a series of analyses based on methods from
differential equations have been employed to enhance the representation capabilities of NODEs, such
as the theory of controlled differential equations (Kidger et al., 2020), learning higher-order ODEs
(Massaroli et al., 2021), augmenting dynamics (Dupont et al., 2019), and considering dynamics with
delay terms (Zhu et al., 2021). Additionally, certain works consider generalizing the ODE case to
partial differential equations (PDEs), such as in Ruthotto & Haber (2020) and Sun et al. (2019). These
PDE-based methods do not use the adjoint method, removing the primary advantage of constant
memory cost. This leads us to the central question motivating the work: can we combine the benefits
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of the rich function class of PDEs with the efficiency of the adjoint method? To do so, we propose a
method of continuous-depth neural networks that solves a PDE over parametric curves that reduce the
PDE to an ODE. Such curves are known as characteristics, and they define the solution of the PDE
in terms of an ODE (Griffiths et al., 2015). The proposed Characteristic Neural Ordinary Differential
Equations (C-NODE) learn both the characteristics and the ODE along the characteristics to solve the
PDE over the data space. This allows for a richer class of models while still incorporating the same
memory efficiency of the adjoint method. The proposed C-NODE is also an extension of existing
methods, as it improves the empirical accuracy of these methods in classification tasks, time series
prediction tasks, and image quality in generation tasks.

2 RELATED WORK
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Figure 1: Comparison of traditional
NODE (left) and proposed C-NODE
(right). The solution to NODE is the
solution to a single ODE, whereas C-
NODE represents a series of ODEs that
form the solution to a PDE. Each color
in C-NODE represents the solution to an
ODE with a different initial condition.
NODE represents a single ODE, and can
only represent u(x, t) along one dimen-
sion, for example, u(x = 0, t).

NODE is often motivated as a continuous form of a
Residual Network (ResNet) (He et al., 2015), since the
ResNet can be interpreted as a forward Euler integration
scheme on the latent state (Weinan, 2017). Specifically, a
ResNet is composed of multiple blocks with each block
can be represented as: ut+1 = ut + f(ut, θ), where ut

is the evolving hidden state at time t and f(ut, θ) is in-
terpreted as the gradient at time t, namely du/dt(ut).
Generalizing the model to a step size given by ∆t re-
sults in ut+∆t = ut + f(ut, θ)∆t. To adapt this model
to a continuous setting, we let ∆t → 0 and obtain:
lim

∆t→0
(ut+∆t − ut)/∆t = du(t)/dt. The model can then

be evaluated through existing numerical integration tech-
niques, as proposed by Chen et al. (2019b):

u(t1) = u(t0) +

∫ t1

t0

du(t)

dt
dt = u(t0) +

∫ t1

t0

f(u(t), t, θ)dt.

Numerical integration can then be treated as a black box,
using numerical schemes beyond the forward Euler to
achieve higher numerical precision. However, since black
box integrators can take an arbitrary number of interme-
diate steps, backpropagating through individual steps would require too much memory since the
individual steps must be saved. Chen et al. (2019b) addressed this problem by using adjoint back-
propagation, which has a constant memory usage. For a given loss function on the terminal state
t = 1 of the hidden state L(u(t1)), the adjoint a(t) is governed by another ODE:

da(t)

dt
= −a(t)⊺

∂f(u(t), t, θ)

∂u
, a(t1) =

∂L
∂u(t1)

,

that dictates the gradient with respect to the parameters. The loss L(u(t1)) can then be calculated by
solving another ODE (the adjoint) rather than backpropagating through the calculations involved in
the numerical integration.

However, assuming that the hidden state is governed by an ODE imposes a limitation on the
expressiveness of the mapping. For example, Dupont et al. (2019) describes a notable limitation of
NODEs is in the inability to represent dynamical systems with intersecting trajectories. In response
to such limitations, many works have tried to increase the expressiveness of the mapping. Dupont
et al. (2019) proposed to solve the intersection trajectories problem by augmenting the vector space,
lifting the points into additional dimensions; Zhu et al. (2021) included time delay in the equation to
represent dynamical systems of greater complexity; Massaroli et al. (2021) proposed to condition the
vector field on the inputs, allowing the integration limits to be conditioned on the input; Massaroli
et al. (2021) and Norcliffe et al. (2020) additionally proposed and proved a second-order ODE system
can efficiently solve the intersecting trajectories problem. We note however that the interpretation
of NODE as a continuous form of ResNet is also problematic, owing to the fact that the empirical
behavior of the ResNet does not match the theoretical properties (Krishnapriyan et al., 2022; Ott
et al., 2021). As such, alternative interpretations of the process represented by ODE have been
considered. In Zhang et al. (2019), the authors considered an augmentation where the augmented
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state corresponds to the parameters of the network governing the latent state. Queiruga et al. (2021)
describes the latent evolution through a series of basis functions thereby allowing important concepts
such as BatchNorm to be effectively translated in the continuous setting, achieving state-of-the-art
performance on a variety of image classification tasks. Further improvements to performance have
been made by considering different numerical integrators (Matsubara et al., 2021; Zhuang et al.,
2020; 2021).

On a related front, multiple works have attempted to expand NODE to other types of differential
equation beyond ODEs. Sun et al. (2019) employed a dictionary method and expanded NODEs to a
PDE case, achieving high accuracies both in approximating PDEs and in classifying real-world image
datasets. However, Sun et al. (2019) suggested that the method is unstable when training with the
adjoint method and therefore is unable to make use of the benefits that come with training with adjoint.
Zhang et al. (2018) proposed a density transform approach based on the Monge-Ampere PDE, but did
not consider using adjoint-based training. Multiple works have expanded to the stochastic differential
equations setting and developed efficient optimization methods for them including (Güler et al., 2019;
Jia & Benson, 2019; Kidger et al., 2021a;b; Li et al., 2020; Liu et al., 2019; Xu et al., 2022). Kidger
et al. (2020); Morrill et al. (2021a;b) used ideas from rough path theory and controlled differential
equations to propose a NODE architecture as a continuous recurrent neural network framework. Salvi
et al. (2022) considered stochastic PDEs for spatio-temporal dynamics prediction. Additionally, Chen
et al. (2020) models spatio-temporal point-processes using NODEs, and Rubanova et al. (2019);
De Brouwer et al. (2019) makes predictions on time series data using NODEs.

3 METHOD

We describe the proposed C-NODE method in this section by first providing a brief introduction to
the method of characteristics (MoC) for solving PDEs with an illustrative example. We then discuss
the types of PDEs we can describe using this method. We finally discuss how we apply the MoC to
our C-NODE framework.

3.1 METHOD OF CHARACTERISTICS

The MoC provides a procedure for transforming certain PDEs into ODEs along paths known as
characteristics. In the most general sense, the method applies to general hyperbolic differential
equations. We will introduce MoC using a canonical example involving the inviscid Burgers equation,
and defer to Griffiths et al. (2015, Chapter 9) for a more complete introduction to the topic. Let
u(x, t) : R× R+ → R satisfy the following inviscid Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0, (1)

where we drop the dependence on x and t for ease of notation. We are interested in the solution of
u over some bounded domain Ω ⊂ R× R+. Consider parametric forms for the spatial component
x(s) : [0, T ] → R and temporal components t(s) : [0, T ] → R+ over the fictitious variable s ∈ [0, T ].
Intuitively, this allows us to solve an equation on curves x, t that are parameterized by a variable s
which we denote (x(s), t(s)) as the characteristic. Expanding and writing d as the total derivative,
we get

d

ds
u(x(s), t(s)) =

∂u

∂x

dx

ds
+

∂u

∂t

dt

ds
. (2)

Recall the original PDE in equation 1 and substituting the proper terms into equation 2 for dx/ds =
u, dt/ds = 1, du/ds = 0, we then recover equation 1. Note that we now have a system of 3
ODEs which we can solve to obtain the characteristics as x(s) = us + x0 and t(s) = s + t0,
which are functions of initial conditions x0, t0. Finally, by solving over a grid of initial conditions
{x(i)

0 }∞i=1 ∈ ∂Ω, we can obtain the solution of the PDE over Ω. Putting it all together, we have a new
ODE that is written as

d

ds
u(x(s), t(s)) =

∂u

∂t
+ u

∂u

∂x
= 0,
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where we can integrate over s through

u(x(T ), t(T );x0, t0) :=

∫ T

0

d

ds
u(x(s), t(s))ds

:=

∫ T

0

d

ds
u(us+ x0, s)ds,

using the adjoint method with boundary conditions x0, t0. This contrasts the usual direct integration
over the variable t that is done in NODE; we now jointly couple the integration through the character-
istics. An example of solving this equation over multiple initial conditions is given in Figure 1 with
the contrast to standard NODE integration.

Hyperbolic PDEs in Machine Learning To motivate using MoC for machine learning problems
such as classification or density estimation, we again note that MoC most generally applies to
hyperbolic PDEs. These PDEs roughly describe the propagation of physical quantities through time.
Such equations may be appropriate for deep learning tasks due to their ability to transport data into
different regions of the state space. For instance, in a classification task, we consider the problem
of transporting high-dimensional data points that are not linearly separable to spaces where they
are linearly separable. Similarly, in generative modeling, we transport a base distribution to data
distribution.

3.2 NEURAL REPRESENTATION OF CHARACTERISTICS

In the proposed method, we learn the components involved in the MoC, namely the characteristics
and the function coefficients. We now generalize the example given in 3.1, which involved two
variables, to a k-dimensional system. Specifically, consider the following nonhomogeneous boundary
value problem (BVP):{

∂u
∂t +

∑k
i=1 ai(x1, ..., xk,u)

∂u
∂xi

= c(x1, ..., xk,u), on x, t ∈ Rk × [0,∞)

u(x(0), 0) = u0, on x ∈ Rk.
(3)

Here, u : Rk × R → Rn is a multivariate map, ai : Rk+n → R and c : Rk+n → Rn are functions
dependent on values of u and x’s. This problem is well-defined and has a solution as long as∑k

i=1 ai
∂u
∂xi

is continuous (Evans, 2010).

MoC is generally used in a scalar context, but the correspondence to the vector case is relatively
straightforward. A proof of this can be found in Appendix C.1. To begin, we decompose the PDE
in equation 3 into the following system of ODEs

dxi

ds
= ai(x1, ..., xk,u), (4)

dt

ds
= 1, (5)

du

ds
=

k∑
i=1

∂u

∂xi

dxi

ds
= c(x1, ..., xk,u). (6)

We represent this ODE system by parameterizing dxi/ds and ∂u/∂xi with neural networks. Conse-
quently, du/ds is evolving according to equation 6.

Following this expansion, we arrive at

u(x(T ), T ) = u(x(0), 0) +

∫ T

0

du

ds
(x,u) ds (7)

= u(x(0), 0) +

∫ T

0

[Jxu] (x,u; Θ2)
dx

ds
( x,u; Θ2) ds,

where we remove u’s dependency on x(s) and x’s dependency on s for simplicity of notation. In
equation 7, the functions Jxu and dx/ds are represented as neural networks with inputs x, u and
parameters Θ2.
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Conditioning on data Previous works primarily modeled the task of classifying a set of data points
with a fixed differential equation, neglecting possible structural variations lying in the data. Here, we
condition C-NODE on each data point, resulting in solving a PDE with a different initial condition
and the hyperbolic PDE interpretation of the latent variables. Consider the term given by the integrand
in equation 7. The neural network representing the characteristic dx/ds is conditioned on the input
data z ∈ Rw. Define a mapping g(·) : Rw → Rn and we have

dxi

ds
= ai(x1, . . . , xk,u;g(z)). (8)

By introducing g(z) in equation 8, the equation describing the characteristics changes depending on
the current data point. This leads to the classification task being modeled with a family rather than
one single differential equation and allows the C-NODE system to model dynamical systems with
intersecting trajectories. This property becomes helpful in Proposition 4.1 in proving that C-NODE
can represent intersecting dynamics.

3.3 TRAINING C-NODES

Having introduced the main components of C-NODEs, we can now integrate them into a unified
algorithm. To motivate this section, and to be consistent with part of the empirical evaluation, we will
consider classification tasks with data {(zj ,yj)}Nj=1 , zj ∈ Rw, yj ∈ Z+. For instance, zj may be
an image, and yj is its class label. In the approach we pursue here, the image zj is first passed through
a feature extractor function g(·; Θ1) : Rw → Rn with parameters Θ1. The output of g is the feature
u
(j)
0 = g(zj ; Θ1) that provides the boundary condition for the PDE on u(j). We integrate along

different characteristic curves indexed by s ∈ [0, T ] with boundary condition u(j)(x(0), 0) = u
(j)
0 ,

and compute the terminal values as given by equation 7, where we mentioned in Section 3.2,

u(j)(x(T ), T ) = u
(j)
0 +

∫ T

0

Jxu
(i)
(
x,u(j); Θ2

) dx

ds

(
x,u(j);u

(j)
0 ; Θ2

)
ds (9)

Finally, u(j)(x(T ), T ) is passed through another neural network, Φ(u(j)(x(T )); Θ3) with input
u(j)(x(T ), T ) and parameters Θ3 whose output are the probabilities of each class labels for image
zj . The entire learning process is now reduced to finding optimal weights (Θ1,Θ2,Θ3) which can
be achieved by minimizing the loss

L =

N∑
j=1

L(Φ(u(j)(x(T ), T ); Θ3),yj),

where L (·) is the corresponding loss function (e.g. cross entropy in classification). In Algorithm 2,
we illustrate the implementation procedure with the forward Euler method for simplicity for the
framework but note any ODE solver can be used.

Combining MoC with Existing NODE Modifications As mentioned in Section 2, the proposed
C-NODEs method can be used as an extension to existing NODE frameworks. In all NODE
modifications, the underlying expression of

∫ b

a
f(t,u; Θ)dt remains the same. Modifying this

expression to
∫ b

a
Jxu(x,u; Θ)dx/ds(x,u;u0; Θ)ds results in the proposed C-NODE architecture,

with the size of x being a hyperparameter.

4 PROPERTIES OF C-NODES

C-NODE has a number of theoretical properties that contribute to its expressiveness. We provide
some theoretical results on these properties in the proceeding sections. We also define continuous
normalizing flows (CNFs) with C-NODEs, extending the CNFs originally defined with NODEs.

Intersecting trajectories As mentioned in Dupont et al. (2019), one limitation of NODE is that the
mappings cannot represent intersecting dynamics. We prove by construction that conditioning on
initial conditions allows C-NODEs to represent some dynamical systems with intersecting trajectories
in the following proposition:
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Proposition 4.1. The C-NODE can represent a dynamical system on u(s), du/ds = G(s, u) :

R+ × R → R, where when u(0) = 1, then u(1) = u(0) +
∫ 1

0
G(s, u)ds = 0; and when u(0) = 0,

then u(1) = u(0) +
∫ 1

0
G(s, u)ds = 1.

Proof. See Appendix C.2.

Density estimation with C-NODEs C-NODEs can also be used to define a continuous density flow
that models the density of a variable over space subject to the variable satisfying a PDE, extending
the continuous normalizing flows defined with NODEs. For NODEs, if u(t) ∈ Rn follows the ODE
du(t)/dt = f(u(t)), where f(u(t)) ∈ Rn, then its log likelihood from Chen et al. (2019b, Appendix
A) is given by:

∂ log p(u(t))

∂t
= − tr

(
df

du(t)

)
. (10)

Similar to the change of log probability of NODEs, as in equation 10, we provide the following
proposition for C-NODEs:

Proposition 4.2. Let u(s) be a finite continuous random variable with probability density function
p(u(s)) and let u(s) satisfy du(s)

ds =
∑k

i=1
∂u
∂xi

dxi

ds . Assuming ∂u
∂xi

and dxi

ds are uniformly Lipschitz
continuous in u and continuous in s, then the evolution of the log probability of u follows:

∂ log p(u(s))

∂s
= −tr

(
∂

∂u

k∑
i=1

∂u

∂xi

dxi

ds

)

Proof. See Appendix C.3.

CNFs are continuous and invertible one-to-one mappings onto themselves, i.e., homeomorphisms.
Zhang et al. (2020) proved that vanilla NODEs are not universal estimators of homeomorphisms, but
augmented neural ODEs (ANODEs) are universal estimators of homeomorphisms. We demonstrate
that C-NODEs are pointwise estimators of homeomorphisms, which we formalize in the following
proposition:

Proposition 4.3. Given any homeomorphism h : Υ → Υ, Υ ⊂ Rp, initial condition u0, and time
T > 0, there exists a flow u(s, u0) ∈ Rn following du

ds = ∂u
∂x

dx
ds + ∂u

∂t
dt
ds such that u(T, u0) = h(u0).

Proof. See Appendix C.4.

5 EXPERIMENTS

We present experiments on image classification tasks, time series prediction tasks, image generation
tasks on benchmark datasets, and a synthetic PDE regression task.

5.1 CLASSIFICATION EXPERIMENTS WITH IMAGE DATASETS

We first conduct experiments for classification tasks on high-dimensional image datasets, including
MNIST, CIFAR-10, and SVHN. We provide results for C-NODE and also combine the frame-
work with existing methods, including ANODEs (Dupont et al., 2019), Input Layer NODEs (IL-
NODEs) (Massaroli et al., 2021), and 2nd-Order NODEs (Massaroli et al., 2021). For all classification
experiments, we set the encoder of input images for conditioning to be identity, i.e., g(z) = z, making
the input into C-NODE the original image. This way we focus exclusively on the performance of
C-NODE.

The results for the experiments using the adjoint method are reported in Table 1. We investigate
the performances of the models on classification accuracy and the number of function evaluations
(NFE) taken in the adaptive numerical integration. NFE is an indicator of the model’s computational
complexity and can be interpreted as the network depth for the continuous NODE (Chen et al., 2019b).
Using a similar number of parameters, combining C-NODEs with different models consistently results
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in higher accuracy and mostly uses a smaller numbers of NFEs, indicating a better parameter efficiency.
An ablation study on C-NODEs’ and NODEs’ parameters can be found in Appendix E.2. While the
average number of function evaluations tends to be lower for C-NODE, we additionally note that,
compared to ANODE, training C-NODE with the adjoint method can sometimes have decreased
stability. We define instability as having a NFE > 1000. To get a rough idea of the differences in
stability, when training NODE, C-NODE, and ANODE for image classification on the SVHN dataset
for forty instances, NODE appeared unstable six times, C-NODE was unstable three times, and
ANODE was never unstable. We note that this was only apparent in the SVHN experiment and when
considering C-NODE by itself; the average NFE decreases when adding C-NODE to A-NODE and
this was never experienced in the ANODE+C-NODE experiments.

Dataset Method Accuracy ↑ NFE ↓ Param.[K] ↓

SVHN

NODE 75.28± 0.836% 131 115.444
C-NODE 82.19± 0.478% 124 113.851
ANODE 89.8± 0.952% 167 112.234
ANODE+C-NODE 92.23± 0.176% 146 112.276
2nd-Ord 88.22± 1.11% 161 112.801
2nd-Ord+C-NODE 92.37± 0.118% 135 112.843
IL-NODE 89.69± 0.369% 195 113.368
IL-NODE+C-NODE 93.31± 0.088% 95 113.752

CIFAR-10

NODE 56.30± 0.742% 152 115.444
C-NODE 64.28± 0.243% 151 113.851
ANODE 70.99± 0.483% 177 112.234
ANODE+C-NODE 71.36± 0.220% 224 112.276
2nd-Ord 70.84± 0.360% 189 112.801
2nd-Ord+C-NODE 73.68± 0.153% 131 112.843
IL-NODE 72.55± 0.238% 134 113.368
IL-NODE+C-NODE 73.78± 0.154% 85 113.752

MNIST

NODE 96.90± 0.154% 72 85.468
C-NODE 97.56± 0.431% 72 83.041
ANODE 99.12± 0.021% 68 89.408
ANODE+C-NODE 99.20± 0.002% 60 88.321
2nd-Ord 99.35± 0.002% 52 89.552
2nd-Ord+C-NODE 99.38± 0.037% 61 88.465
IL-NODE 99.33± 0.039% 53 89.597
IL-NODE+C-NODE 99.33± 0.001% 60 88.51

Table 1: Mean test results over 5 runs of different NODE models over SVHN, CIFAR-10, and
MNIST. Accuracy and NFE at convergence are reported. Applying C-NODE always increases
models’ accuracy and usually reduces models’ NFE as well as the standard error.

5.2 TIME SERIES PREDICTION WITH C-NODES

We test C-NODEs, NODEs, and augmented versions of C-NODEs and NODEs on the time series
prediction problem using 100 sequences of each of the following datasets: the PhysioNet dataset,
containing measurements from the first 48 hours of patients’ admissions to ICU (Goldberger et al.,
2000 (June 13); the Hopper dataset, containing physical simulation results generated with the Hopper
model from the Deepmind Control Suite (Rubanova et al., 2019; Tassa et al., 2018); the Human
Activity dataset in the UCI dataset, containing time series data on twelve features from five individuals
walking, sitting, and lying (Dua & Graff, 2017); and the synthetic ODE dataset, generated with a
first-order ODE whose initial condition follows a Gaussian distribution, and Gaussian noises are
added to the observations (Rubanova et al., 2019). The PhysioNet and Human Activity datasets both
contain stochastic processes while the Hopper dataset and the ODE dataset are deterministic. Since
NODE, ANODE, and C-NODE model deterministic processes, the Hopper dataset and the ODE
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Dataset Method MSE ↓ Param.[K] ↓

PHYSIONET

NODE (1.17± 0.027)× 10−2 76.663
C-NODE (1.07± 0.026)× 10−2 76.205
ANODE (1.15± 0.036)× 10−2 86.127
C-NODE + ANODE (1.04± 0.027)× 10−2 85.705

HUMAN ACTIVITY

NODE (1.998± 0.62)× 10−1 51.042
C-NODE (1.797± 0.59)× 10−1 50.964
ANODE (1.140± 0.048)× 10−1 69.948
C-NODE + ANODE (9.52± 0.67)× 10−2 69.397

HOPPER

NODE (5.87± 0.23)× 10−2 44.776
C-NODE (5.68± 0.11)× 10−2 44.218
ANODE (5.68± 0.10)× 10−2 51.976
C-NODE + ANODE (4.96± 0.16)× 10−2 51.506

ODE

NODE (4.73± 0.17)× 10−2 43.231
C-NODE (4.17± 1.34)× 10−2 42.935
ANODE (4.60± 0.53)× 10−2 43.767
C-NODE + ANODE (4.01± 1.23)× 10−2 43.556

Table 2: Mean test results over 4 runs of different NODE models over PhysioNet, Human Activity,
Hopper, and ODE. Test mean square errors are reported. Applying C-NODE always reduces the test
error, and mostly reduces‘ the standard error. Training dynamics are shown in Figures 3, 4, 5, 6 in
Appendix A.2.

dataset readily fit the modeling frameworks. On the other hand, the PhysioNet and Human Activity
datasets require augmenting the dynamics of the NODE models with stochasticity to model the arrival
of events.

We follow the experimental setup for interpolation tasks in Rubanova et al. (2019), where we define
an autoregressive model with the encoder being an ODE-RNN model and the decoder being a latent
differential equation2. The main purpose of this experiment is to compare the ODE-RNN when
using C-NODE versus NODE. ODE-RNN is a standard method for including ODE modeling in
time series tasks as described in Chen et al. (2019b) and Rubanova et al. (2019). We consider
interpolation tasks by first encoding the time series {xi, ti}Ni=0 of length N and computing the
approximate posterior q(z0|{xi, ti}Ni=0) = N (µz0 , σz0) as done in Rubanova et al. (2019). Then,
µ(z0), , σ(z0) are computed as ϱ(ODE-RNNϕ({xi, ti}Ni=0)), where ϱ is a function that encodes the
terminal hidden states into mean and variance of the latent variable z0. ODE-RNN(·) is a model
whose states obey an ODE between observations and are updated according to new observations
as described in Rubanova et al. (2019). To predict the state at an observation time ti, we sample
initial states z0 from the posterior which are then decoded using another neural network. We finally
average generated observations at each observation time to compute the test data errors. The results
are presented in Table 2 and suggest that C-NODE based models use slightly fewer parameters while
achieving lower error rates than NODE models. C-NODE models the latent dynamics as a first order
PDE, which is a natural extension of the ODE model that NODE uses.

5.3 CONTINUOUS NORMALIZING FLOW WITH C-NODES

We compare the performance of CNFs defined with NODEs to flows defined with C-NODEs on
MNIST and CIFAR-10. We use the Hutchinson trace estimator to calculate the trace and use multi-
scale convolutional architectures to model the density transformation as done in (Dinh et al., 2017;
Grathwohl et al., 2019) 1. Differential equations are solved using the Runge-Kutta method of order 5
of the Dormand-Prince-Shampine solver and trained with the adjoint method. Although the Euler

2This is based on the code of Rubanova et al. (2019) provided at https://github.com/
YuliaRubanova/latent_ode

1This is based on the code that the authors of (Grathwohl et al., 2019) provided in https://github.
com/rtqichen/ffjord
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Model
MNIST CIFAR-10
B/D ↓ Param. ↓ NFE ↓ B/D ↓ Param. ↓ NFE ↓

Real NVP (Dinh et al., 2017) 1.05 N/A – 3.49 N/A –
Glow (Kingma & Dhariwal, 2018) 1.06 N/A – 3.35 44.0M –
RQ-NSF (Durkan et al., 2019) – – – 3.38 25.2M –
Res. Flow (Chen et al., 2019a) 0.97 16.6M – 3.28 25.2M –
CP-Flow (Huang et al., 2021) 1.02 2.9M – 3.40 1.9M –
NODE 1.00 335.1K 1350 3.49 410.1K 1847

C-NODE 0.95 338.0K 1323 3.44 406.0K 1538

Table 3: Experimental results on generation tasks, with NODE, C-NODE, and other models. B/D
indicates Bits/dim. Using a similar number of parameters, C-NODE outperforms NODE on all three
datasets, and has a significantly lower NFE when training for CIFAR-10.

forward method is faster, experimental results show that its fixed step size often leads to negative
Bits/Dim, indicating the importance of adaptive solvers. As shown in table 3 and figure 7, using a
similar number of parameters, experimental results show that CNFs defined with C-NODEs perform
better than CNFs defined with NODEs in terms of Bits/Dim, as well as having lower variance, and
using a lower NFE on both MNIST and CIFAR-10.

5.4 PDE MODELING WITH C-NODES

We consider a regression example for a hyperbolic PDE with a known analytical solution. Since
NODEs assume that the latent state is only dependent on a scalar (namely time), they cannot
model dependencies that vary over multiple spatial variables required by most PDEs. We modify
the assumptions used in the classification and density estimation experiments where the boundary
conditions were constant as in equation 3. We approximate the following BVP:{

u∂u
∂x + ∂u

∂t = u,

u(x, 0) = 2t, 1 ≤ x ≤ 2
(11)

which has an analytical solution given by u(x, t) = 2x exp(t)
2 exp(t)+1 . We generate a training dataset by

randomly sampling 200 points (x, t), x ∈ [1, 2], t ∈ [0, 1], as well as values u(x, t) at those points.
We test C-NODE and NODE on 200 points randomly sampled as (x, t) ∈ [1, 2] × [0, 1]. For this
experiment, C-NODE uses 809 parameters while NODE uses 1185 parameters. We quantify the
differences in the representation capabilities by examining how well each method can represent the
PDE. C-NODE deviates 8.05% from the test set, while NODE deviates 30.52%. Further experimental
details can be found in Appendix A.4.1.

6 DISCUSSION

We describe an approach for extending NODEs to the case of PDEs by solving a series of ODEs along
the characteristics of a PDE. The approach applies to any black-box ODE solver and can combine
with existing NODE-based frameworks. We empirically showcase its efficacy on classification tasks
while demonstrating its success in improving convergence using Euler forward method without the
adjoint method. C-NODEs also consistently achieve lower testing MSEs over different time series
prediction datasets, while having lower standard errors. Additionally, C-NODEs empirically achieve
better performances on density estimation tasks, while being more efficient with the number of
parameters and using lower NFEs. C-NODE’s efficiency over physical modeling is also highlighted
with additional experiments. Discussion on limitations can be found in Appendix B.
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A EXPERIMENTAL DETAILS

Implementation details of this paper can be found at https://github.com/XingziXu/
NeuralPDE.git.

A.1 EXPERIMENTAL DETAILS OF CLASSIFICATION TASKS

We report the average performance over five independent training processes, and the models are
trained for 100 epochs for all three datasets. We also report the training dynamics of C-NODE and
NODE using the adjoint sensitivity method and the euler backpropagation, as shown in Figure 2.

As shown in Figure 2, using the Euler solver, it appears that C-NODEs converge faster than the
vanilla NODEs (usually in one epoch) while generally having a more stable training process with
smaller variance. Additionally, on experiments with MNIST, C-NODEs converge in only one epoch,
while NODEs converge in roughly 15 epochs. This provides additional empirical evidence on the
benefits of training using the characteristics.

The input for 2nd-Ord, NODE, and C-NODE are the original images. In the IL-NODE, we transform
the input to a latent space before the integration by the integral; that is, we raise the Rc×h×w

dimensional input image into the R(c+p)×h×w dimensional latent feature space3.

For SVHN and CIFAR-10, we assume x ∈ R3, i.e., the Jacobian Jxu =
(∂u/∂x1, ∂u/∂x2, ∂u/∂x3). We model each partial derivative ∂u/∂xi with a separate convo-
lutional network. The network architecture for the network modeling the partial derivatives is as
shown in Table 6. The network architecture for the network modeling dx/ds is as shown in Table 6.
The architecture in Tables 5, 6 are used for both CIFAR-10 and SVHN. Note that the network archi-
tecture for MNIST differs slightly due to the lower dimensionality of MNIST. The hyperparameters
used are as shown in Table 4.

3This is based on the code of Massaroli et al. (2021) provide in https://github.com/DiffEqML/
torchdyn
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(b) Backprop through Euler training;

Figure 2: Red: NODE. Blue: C-NODE. Training dynamics of different datasets with adjoint in
Fig. 2a and with Euler in Fig. 2b averaged over five runs. The first column is the training process of
SVHN, the second column is of CIFAR-10, and the third column is of MNIST. By incorporating the
C-NODE method, we achieve a more stable training process in both CIFAR-10 and SVHN, while
achieving higher accuracy. Full-sized figure in supplementary materials.

We decode the result after performing the continuous transformations along characteristics curves,
back to the Rc×h×w dimensional object space. Combining this with the C-NODE can be seen as
solving a PDE on the latest features of the images rather than on the images directly.

Unlike ODEs, we take derivatives with respect to different variables in PDEs. For a PDE with k
variables, this results in the constraint of the balance equations

∂2u

∂xixj
=

∂2u

∂xjxi
, i, j ∈ {1, 2, ..., k}, i ̸= j.

This can be satisfied by defining the k-th derivative with a neural network, and integrate k − 1 times
to get the first order derivatives. Another way of satisfying the balance equation is to drop the
dependency on the variables, i.e., ∀i ∈ {1, 2, ..., k},

∂u

∂xi
= fi(u; θ).

When we drop the dependency, all higher order derivatives are zero, and the balance equations are
satisfied.

All experiments were performed on NVIDIA RTX 3090 GPUs on a cloud cluster.

Data MNIST SVHN CIFAR10
Model CNN CNN CNN
# of PDE Dimensions 2 3 3
Optimizer AdamW AdamW AdamW
Learning Rate 1.00E-3 1.00E-3 1.00E-3
Weight Decay 5.00E-04 5.00E-04 5.00E-04

Table 4: Training hyperparameters for image classification.

A.2 EXPERIMENTAL RESULTS AND DETAILS OF TIME SERIES PREDICTIONS

A.2.1 EXPERIMENTAL DETAILS OF TIME SERIES PREDICTIONS ON REAL-WORLD DATASETS

We provide a more detailed explanation of the time-series experiments which are based on the
ODE-RNN framework described in Rubanova et al. (2019). Our experiments test the effectiveness of
NODE, C-NODE, ANODE, and their combinations under the ODE-RNN framework by computing
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Operation Layer Kernel Size Stride Padding Dilation Size of Output
Input N/A N/A N/A N/A 3× 32× 32

Convolution Layer 3 1 0 1 60× 32× 32

ReLU N/A N/A N/A N/A 60× 32× 32

Convolution Layer 3 1 0 1 60× 32× 32

ReLU N/A N/A N/A N/A 60× 32× 32

Convolution Layer 3 1 0 1 3× 32× 32

Table 5: Network architecture of the network modeling terms in the Jacobian.

Operation Layer Kernel Size Stride Padding Dilation Size of Output
Input N/A N/A N/A N/A 4× 32× 32

Convolution Layer 1 1 0 1 8× 32× 32

ReLU N/A N/A N/A N/A 8× 32× 32

Convolution Layer 3 1 1 0 8× 32× 32

ReLU N/A N/A N/A N/A 8× 32× 32

Convolution Layer 1 1 0 1 3× 32× 32

Flatten N/A N/A N/A N/A 3072× 1

Linear N/A N/A N/A N/A 3× 1

ReLU N/A N/A N/A N/A 3× 1

Table 6: Network architecture of the network modeling the characteristic curve dx/ds.

evaluation metrics under the different ODE models. The ODE-RNN framework involves combining
the strengths of both a neural ODE and RNN to initially embed the time series history into a latent
distribution parameterized by an RNN and then decode the predicted latent distribution into the
original data space. The main components of the method are illustrated in Algorithm 1. Forecasts
are computed by integrating the latent space in time according to the neural ODE model with initial
condition z0 distributed according to the parameterization by the RNN. We define the approximate
posterior of z0 as q(z0|{xi, ti}Ni=0) = N (µz0 , σz0), where µz0 , σz0 = ϱ(ODE-RNNϕ({xi, ti}Ni=0)).
To bypass the RNN requirement of a fixed observation rate, the ODE-RNN model uses states that
obey an ODE in between observations and are updated at new observations. Given a set of time
series data {xi, ti}Ni=0, we embed the time series using the ODE-RNN. We then pass the output of the
ODE-RNN model through a function ϱ(·) to get the mean µz0 and the variance σz0 of the posterior
of z0. To predict the value at timestamp T , we sample K initial conditions z0 from the posterior
q(z0|{xi, ti}Ni=0), integrate the latent ODE model until timestamp T and use the average of the K
integrations as the result.

For all experiments, we follow the experimental setup as described in https://github.com/
YuliaRubanova/latent_ode. We experiment with the ODE-RNN framework using NODE,
C-NODE, ANODE, and their combinations as the ODE backbone of both the ODE-RNN model and
the latent ODE. Training NODE follows the original setup, with the dimension of the ODE model
in the ODE-RNN being 20, the number of units per layer in each of GRU update networks being
100, the number of units per layer in ODE function being around 100, the number of layers in ODE
function in generative and the recognition ODE both being 1.

We use a C-NODE with a dimensionality of 8. The network architecture details are given in Tables 7,
8. The training hyperparameters are given in Table 9. The number of units per layer in the network
describing dx/ds is 12. For the network describing ∂u/∂xi, the dimension of the ODE model in the
ODE-RNN is 20, the number of units per layer in each of GRU update networks is 100, the number
of units per layer in the ODE function is tuned to match the number of parameters in the NODE
models, the number of layers in ODE function in generative and the recognition ODE is 1.
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Algorithm 1 Algorithm for ODE-RNN model(Rubanova et al., 2019)

Input: Data points and their timestamps {(xi, ti)}i=1,...,N

h0 = 0
for i in 1, 2, ..., N do
h′
i = ODESolve(fθ, hi−1, (ti−1, ti))

hi = RNNCell(h′
i, xi)

end for
oi = OutputNN(hi) for all i = 1, ..., N
Return: {oi}i=1, ..., N ; hN
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Figure 3: Red: NODE. Blue: C-NODE. Training dynamics of CNODE, NODE, and their augmented
versions on Physionet dataset. C-NODE achieves lower testing MSE, and has a more stable training
dynamics

Operation Layer Input Features Output Features
Linear Layer 20 70
Tanh N/A N/A
Linear Layer 70 70
Tanh N/A N/A
Linear Layer 70 160

Table 7: Network Structure of ∂u/∂xi when using ODE dataset
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Figure 4: Red: NODE. Blue: C-NODE. Training dynamics of CNODE, NODE, and their augmented
versions on Human Activity dataset. C-NODE achieves lower testing MSE, and has a more stable
training dynamics
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Figure 5: Red: NODE. Blue: C-NODE. Training dynamics of CNODE, NODE, and their augmented
versions on Hopper dataset. C-NODE achieves lower testing MSE, and has a more stable training
dynamics
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Figure 6: Red: NODE. Blue: C-NODE. Training dynamics of CNODE, NODE, and their augmented
versions on a toy ODE dataset. C-NODE achieves a significantly lower testing MSE

Operation Layer Input Features Output Features
Linear Layer 2 12
Tanh N/A N/A
Linear Layer 12 12
Tanh N/A N/A
Linear Layer 12 8

Table 8: Network Structure of dx/ds when using ODE dataset

Data Physionet Activity Hopper Periodic
# of PDE Dimensions 8 8 8 7
Optimizer Adamax Adamax Adamax Adamax
Learning Rate 1.0E-2 1.0E-2 1.0E-2 1.0E-2
Weight Decay 0.0 0.0 0.0 0.0

Table 9: Training hyperparameters for time series analysis
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A.2.2 EXPERIMENT RESULTS OF TIME SERIES PREDICTIONS ON SYNTHETIC DATASET

We test C-NODEs, ANODEs, and NODEs on a synthetic time series prediction problem. We define
a function by u(x, t) = 2x exp(t)

2 exp(t)+1 , and we sample ũ = u(x, t) + 0.1ϵt, where ϵt ∼ N (0, 1) over
x ∈ [1, 2], t ∈ [0, 1] to generate the training dataset. We test the performance on t ∈ [n, n+ 1] with
n ∈ {0, 1, . . . , 5}.

Time [0,1] [1,2] [2,3] [3,4] [4,5] [5,6]

NODE 0.0322 0.1764 0.4681 0.8093 1.1911 1.6202
ANODE 0.0428 0.0629 0.1248 0.2778 0.5360 0.9252
C-NODE 0.0270 0.0365 0.0582 0.1474 0.3300 0.6054

Table 10: Time series prediction results for NODE, ANODE, and C-NODE at different time intervals.
Errors are testing mean squared errors. Across all time intervals, C-NODE outperforms NODE and
ANODE.
We also test C-NODEs, NODEs, and ANODEs on time series prediction with different levels of
noise. Specifically, using the same function as above, we form training and testing dataset with
ϵt ∼ N (0,m), m ∈ {0, 1, . . . , 5}. We test the performance on the time period t ∈ [0, 1].

Noise Level 0 1 2 3 4 5

NODE 0.0326 0.1784 0.7886 1.9685 3.7530 6.1553
ANODE 0.04 0.1984 0.6035 1.0574 1.4850 2.0593

C-NODE 0.0267 0.1011 0.3294 0.7148 1.2856 2.0834

Table 11: Time series prediction results for NODE, ANODE, and C-NODE at different noise levels.
Errors are testing mean squared errors.

A.2.3 EXPERIMENTAL DETAILS OF TIME SERIES PREDICTIONS ON SYNTHETIC DATASET

We consider the task of predicting u(x, t) = 2·x·et
2·et+1 at different times t, over x ∈ [1, 2]. We specify

the initial condition of u(1, 0).

We use a 8 dimensional C-NODE network. The result is calculated with

u(x, t) = u(1, 0) +

∫ t

0

8∑
i=1

∂u

∂zi

dzi
ds

ds.

NODE is calculated with

u(x, t) = u(1, 0) +

∫ t

0

∂u

∂t
dt.

The experiment results are given in table 11.

In our experiments, C-NODEs use 1221 parameters, ANODEs use 1270 parameters, NODEs use
1290 parameters.

All experiments were performed on NVIDIA RTX 3080 ti GPUs on a local machine.

A.3 EXPERIMENTAL DETAILS OF CONTINUOUS NORMALIZING FLOWS

We report the average performance over four independent training processes. As shown in Figure 8,
compared to NODE, using a C-NODE structure improves the stability of training, as well as having
better performance. Specifically, the standard errors for C-NODEs on MNIST, SVHN, and CIFAR-10
are 0.37%, 0.51%, and 0.24% respectively, and for NODEs the standard errors on MNIST, SVHN,
and CIFAR-10 are 1.07%, 0.32%, and 0.22% respectively. The training dynamics of CNFs on MNIST
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Figure 7: Red: NODE. Blue: C-NODE. Training dynamics of CNFs on MNIST dataset with adjoint
method. We present Bits/dim of the first 50 training epochs.
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Figure 8: The training process averaged over 4 runs of C-NODE and NODE. The first row are the
results on MNIST, the second row are the results on SVHN, the third row are the results on CIFAR-10.

are reported in Figure 7. C-NODE consistently achieves lower Bits/dim across the training process,
while having more stable training dynamics.

The network structures are provided in Tables 12, 13. The training hyperparameters are provided
in Table 14. The experiments are developed using code adapted from the code that the authors of
Grathwohl et al. (2019) provided in https://github.com/rtqichen/ffjord.

All experiments were performed on NVIDIA RTX 3090 GPUs on a cloud cluster.
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Operation Layer Input Channels Output Channels Kernel Size Stride Padding
Convolutional Layer 4 8 (3, 3) (1, 1) (1, 1)

Tanh N/A N/A N/A N/A N/A
Convulutional Layer 9 70 (3, 3) (1, 1) (1, 1)

Tanh N/A N/A N/A N/A N/A
Convolutional Layer 71 70 (3, 3) (1, 1) (1, 1)

Tanh N/A N/A N/A N/A N/A
Convolutional Layer 71 8 (3, 3) (1, 1) (1, 1)

Tanh N/A N/A N/A N/A N/A
Convolutional Layer 9 3 (3, 3) (1, 1) (1, 1)

Table 12: Network structure of ∂u/∂xi when using CIFAR-10 dataset

Oper. Layer Input Chan. Output Chan. Kern. Stride Pad. Input Fea. Output Fea.
Conv. Layer 4 12 (3,3) (1,1) (1,1) N/A N/A
SiLU N/A N/A N/A N/A N/A N/A N/A
Conv. Layer 12 12 (3,3) (1,1) (1,1) N/A N/A
SiLU N/A N/A N/A N/A N/A N/A N/A
Conv. Layer 12 3 (3,3) (1,1) (1,1) N/A N/A
Flatten N/A N/A N/A N/A N/A N/A N/A
Linear Layer 71 8 (3,3) (1,1) (1,1) 3072 2

Table 13: Network structure of dx/ds when using CIFAR-10 dataset

Data MNIST SVHN CIFAR-10
# of PDE Dimensions 2 3 3
Optimizer Adam Adam Adam
Learning Rate 1.00E-3 1.00E-3 1.00E-3
Weight Decay 0.0 0.0 0.0

Table 14: Training hyperparameters for continuous normalizing flow
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A.4 EXPERIMENTAL DETAILS OF PDE MODELING

A.4.1 2-DIMENSIONAL BURGER’S EQUATION

We want to solve the initial value problem{
u∂u

∂x + ∂u
∂t = u,

u(x, 0) = 2x, 1 ≤ x ≤ 2,

where the exact solution is u(x, t) = 2xet

(2et+1) . Our dataset’s input are 200 randomly sampled points
(x, t), x ∈ [1, 2], t ∈ [0, 1], and the dataset’s outputare the exact solutions at those points.

For the C-NODE architecture, we define four networks: NN1(x, t) for ∂u
∂x , NN2(x, t) for ∂u

∂t ,
NN3(t) for the characteristic path (x(s), t(s)), NN4(x) for the initial condition. The result is
calculated in four steps:

1. Integrate ∆u =
∫ t

0
du(x(s),t(s))

ds ds =
∫ t

0
∂u
∂t

dt
ds + ∂u

∂x
dx
ds ds = NN2 ∗ NN3[0] + NN1 ∗

NN3[1]ds as before.
2. Given x, t, solve equation ι + NN3(NN4(ι))[0] ∗ t = x for ι iteratively, with ιn+1 =

x−NN3(NN4(ιn))[0] ∗ t. ι0 is initialized to be x.
3. Calculate initial value u(x(0), t(0)) = NN4(ι).
4. u(x, t) = ∆u+ u(x(0), t(0)).

For the NODE architecture, we define one network: NN1(x, t) for ∂u
∂t . The result is calculated as

u(x, t) =
∫ t

0
∂u
∂t dt =

∫ t

0
NN1dt.

All experiments were performed on NVIDIA RTX 3080-TI GPUs on a local machine.

A.4.2 100-DIMENSIONAL CONVECTION EQUATION

We additionally experiment on solving a 100-dimensional convection equation given by:

∂u
∂t = −div(µ′(t)u(x, t))

u(x, 0) = exp(− 1
2∥x− µ(0)∥2)

µ(t) = sin




0

0.01t
...
t




where x ∈ R100, u : R100 × R+ → R, µ : R+ → R100.

This equation has an analytical solution u(x, t) = exp(− 1
2∥x− µ(t)∥2).

We generate a training dataset with 1000 points, and a testing dataset with 1000 points. We uniformly
sample x, with each xi ∈ [0, 0.5] and t ∈ [0, 10]. We calculate the output using the analytical
solution.

We define three networks for C-NODE. The first network models dx/ds : R101 → R101, the second
network models Jxu : R101 → R101, the third network Γ : R101 → R models the initial condition
u(x, 0). We first integrate (x, t) using the first two networks. The output of these networks is then
input to the third network to obtain the value of the solution. The total number of parameters for the
networks is 11611.

We define two networks for NODE. The first network models du/ds : R101 → R101, the second
network Γ : R101 → R models the initial condition u(x, 0). We first integrate (x, t) using the first
network. The output is R101. We put the output into the second network, and arrive at the output.
The number of parameters used here is 14214.

We test C-NODE and NODE on the dataset with Gaussian noises at different magnitudes. As shown
in Table 15, C-NODE performs 14.2% better than NODE when there is no noise, 44.4% better
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Figure 9: Red: NODE. Blue: C-NODE. Computation time at each epochs using the adjoint method
and Euler forward integration. C-NODE uses slightly more computation time for Euler forward
integration, and the same amount of time when using the adjoint method.

when there’s 10% noise, 39.18% better when there’s 20% noise, and 40.1% better when there’s 30%
noise. The architecture of C-NODE and NODE are as given in Tables 16, 17, 19, 18. The models
are optimized with the AdamW optimizer, with a learning rate of 5× 10−3 and a weight decay of
5× 10−4.

We also report computation time of NODE and C-NODE using the adjoint method and the Euler
forward integration. As shown in Figure 9, C-NODE uses slightly more computation time for Euler
forward integration, and the same amount of time when using the adjoint method. Although each call
of C-NODE uses slightly more time, NODE uses a bigger number of functional evaluations. This
results in roughly a similar computation time for NODE and C-NODE when integrated using the
adjoint method.

A note on the difference between physics-informed neural networks (PINNs) PINNs (Raissi
et al., 2019) is a method that solves a PDE using a regularization approach by minimizing a regular-
ization term enforcing the PDE. Comparing this to C-NODE, there are a few apparent differences.
First, PINNs is a very general framework that can accommodate almost any type of PDE. This
contrasts with C-NODE which only computes solutions to hyperbolic PDEs. On the other hand,
PINNs generally scale poorly with dimension due to the difficulty in computing high dimensional
derivatives. Besides, PINNs require the exact form of the PDEs being solved, whereas C-NODE does
not require this information.

Noise Level 0 10% 20% 30%
NODE 0.0500 0.0644 0.0675 0.0688
C-NODE 0.0438 0.0446 0.0485 0.0491

Table 15: C-NODE performs better than NODE on all noise levels. C-NODE uses 11611 parameters,
NODE uses 14215 parameters.

Operation Layer Input Channels Output Channels
Linear Layer 101 16
Softplus N/A N/A
Linear Layer 16 16
Softplus N/A N/A
Linear Layer 16 101

Table 16: Network structure of Jxu
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Operation Layer Input Channels Output Channels
Linear Layer 102 16
Softplus N/A N/A
Linear Layer 16 16
Softplus N/A N/A
Linear Layer 16 101

Table 17: Network structure of dx/ds

Operation Layer Input Channels Output Channels
Linear Layer 101 32
ReLU N/A N/A
Linear Layer 32 32
ReLU N/A N/A
Linear Layer 32 1

Table 18: Network structure of Regressor

Operation Layer Input Channels Output Channels
Linear Layer 101 40
Softplus N/A N/A
Linear Layer 40 40
Softplus N/A N/A
Linear Layer 40 101

Table 19: Network structure of NODE
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B LIMITATIONS

There are several limitations to the proposed method. The MoC only applies to hyperbolic PDEs, and
we only consider first-order semi-linear PDEs in this paper. This may be a limitation since this is a
specific class of PDEs that does not model all data. We also did not enforce any particular structure to
prevent characteristics from intersecting, which may result in shock waves and rarefactions. However,
we believe that this is unlikely to happen due to the high dimensionality of the ambient space. As
noted in the experiments section, C-NODE can have decreased stability compared to ANODE when
defined by exceeding an extreme threshold of number of function evaluations.

C APPROXIMATION CAPABILITIES OF C-NODE

Proposition C.1 (Method of Characteristics for Vector Valued PDEs). Let u(x1, . . . , xk) : Rk → Rn

be the solution of a first order semilinear PDE on a bounded domain Ω ⊂ Rk of the form
k∑

i=1

ai(x1, . . . , xk,u)
∂u

∂xi
= c(x1, . . . , xk,u) on (x1, . . . , xk) = x ∈ Ω. (12)

Additionally, let a = (a1, . . . , ak)
T : Rk+n → Rk, c : Rk+n → Rn be Lipschitz continuous

functions. Define a system of ODEs as

dx
ds (s) = a(x(s),U(s))
dU
ds (s) = c(x(s),U(s))

x(0) := x0, x0 ∈ ∂Ω

u(x0) := u0

U(0) := u0

where x0 and u0 define the initial condition, ∂Ω is the boundary of the domain Ω. Given initial
conditions x0,u0, the solution of this system of ODEs U(s) : [a, b] → Rd is equal to the solution of
the PDE in Equation equation 12 along the characteristic curve defined by x(s), i.e., u(x(s)) = U(s).
The union of solutions U(s) for all x0 ∈ ∂Ω is equal to the solution of the original PDE in Equation
equation 12 for all x ∈ Ω.
Lemma C.2 (Gronwall’s Lemma (Howard, 1998)). Let U ⊂ Rn be an open set. Let f : U × [0, T ] →
Rn be a continuous function and let h1, h2 : [0, T ] → U satisfy the initial value problems:

dh1(t)

dt
= f(h1(t), t), h1(0) = x1,

dh2(t)

dt
= f(h2(t), t), h2(0) = x2.

If there exists non-negative constant C such that for all t ∈ [0, T ]

∥f(h2(t), t)− f(h1(t), t)∥ ≤ C∥h2(t)− h1(t)∥,
where ∥ · ∥ is the Euclidean norm. Then, for all t ∈ [0, T ],

∥h2(t)− h1(t)∥ ≤ eCt∥x2 − x1∥.

C.1 PROOF OF PROPOSITION C.1

This proof is largely based on the proof for the univarate case provided at4. We extend for the vector
valued case.

Proof. For PDE on u with k input, and an n-dimensional output, we have ai : Rk+n → R, ∂u
∂xi

∈ Rn,
and c : Rk+n → Rn. In proposition C.1, we look at PDEs in the following form

k∑
i=1

ai(x1, . . . , xk,u)
∂u

∂xi
= c(x1, . . . , xk,u). (13)

4https://en.wikipedia.org/wiki/Method_of_characteristics#Proof_for_
quasilinear_Case
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Defining and substituting x = (x1, . . . , xk)
⊺, a = (a1, . . . , ak)

⊺, and Jacobian J(u(x)) =
( ∂u
∂x1

, ..., ∂u
∂xk

) ∈ Rn×k into Equation equation 12 result in

J(u(x))a(x,u) = c(x,u). (14)

From proposition C.1, the characteristic curves are given by

dxi

ds
= ai(x1, . . . , xk,u),

and the ODE system is given by
dx

ds
(s) = a(x(s),U(s)), (15)

dU

ds
(s) = c(x(s),U(s)). (16)

Define the difference between the solution to equation 16 and the PDE in equation 12 as

∆(s) = ∥u(x(s))−U(s)∥2 = (u(x(s))−U(s))
⊺
(u(x(s))−U(s)) ,

Differentiating ∆(s) with respect to s and plugging in equation 15, we get

∆′(s) :=
d∆(s)

ds
= 2(u(x(s))−U(s)) · (J(u)x′(s)−U′(s))

= 2[u(x(s))−U(s)] · [J(u)a(x(s),U(s))− c(x(s),U(s))]. (17)

equation 14 gives us
∑k

i=1 ai(x1, . . . , xk,u)
∂u
∂xi

− c(x1, . . . , xk,u) = 0. Plugging this equality into
equation 17 and rearrange terms, we have

∆′(s) = 2[u(x(s))−U(s)] · {[J(u)a(x(s),U(s))− c(x(s),U(s))]

− [J(u)a(x(s),u(s))− c(x(s),u(s))]}.

Combining terms, we have

∆′ = 2(u−U) · ([J(u)a(U)− c(U)]− [J(u)a(u)− c(u)])

= 2(u−U) · (J(u) [a(U)− a(u)] + [c(U)− c(u)]) .

Applying triangle inequality, we have

∥∆′∥ ≤ 2∥u−U∥(∥J(u)∥∥a(U)− a(u)∥+ ∥c(U)− c(u)∥).

By the assumption in proposition C.1, a and c are Lipschitz continuous. By Lipschitz continuity,
we have ∥a(U)− a(u))∥ ≤ A∥u−U∥ and ∥c(U)− c(u))∥ ≤ B∥u−U∥, for some constants A
and B in R+. Also, for compact set [0, s0], s0 < ∞, since both u and Jacobian J are continuous
mapping, J(u) is also compact. Since a subspace of Rn is compact if and only it is closed and
bounded, J(u) is bounded (Strichartz, 2000). Thus, ∥J(u)∥ ≤ M for some constant M in R+.
Define C = 2(AM +B), we have

∥∆′(s)∥ ≤ 2(AM∥u−U∥+B∥u−U∥)∥u−U∥
= C∥u−U∥2

= C∥∆(s)∥.

From proposition C.1, we have u(x(0)) = U(0). As proved above, we have∥∥∥∥du(x(s))ds
− dU(s)

ds

∥∥∥∥ := ∥∆′(s)∥ ≤ C∥∆(s)∥,

where C < ∞. Thus, by lemma C.2, we have

∥∆(s)∥ ≤ eCt∥∆(0)∥ = eCt∥u(x(0))−U(0)∥ = 0.

This further implies that U(s) = u(x(s)), so long as a and c are Lipschitz continuous.
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Figure 10: Comparison of C-NODEs and NODEs. C-NODEs (solid blue) learn a family of integration
paths conditioned on the input value, avoiding intersecting dynamics. NODEs (dashed red) integrate
along a 1D line that is not conditioned on the input value and can not represent functions requiring
intersecting dynamics.

C.2 PROOF OF PROPOSITION 4.1

Proof. Suppose have C-NODE given by
du

ds
=

∂u

∂x

dx

ds
+

∂u

∂t

dt

ds
.

Write out specific functions for these terms to match the desired properties of the function. Define
initial condition u(0, 0) = u0. By setting

dx

ds
(s, u0, θ) = 1,

dt

ds
(s, u0, θ) = u0,

∂u

∂x
(u(x, t), θ) = 1,

∂u

∂t
(u(x, t), θ) = −2,

have the ODE and solution,
du

ds
= 1− 2u0

=⇒ u(s;u0) = (1− 2u0) s

=⇒ u

(
s;

[
0

1

])
=

(
1− 2

[
0

1

])
s =

[
1

−1

]
s.

To be specific, we can represent this system with the following family of PDEs:

∂u

∂x
+ u0

∂u

∂t
= 1− 2u0.

We can solve this system to obtain a function that has intersecting trajectories. The solution is
visualized in Figure 10, which shows that C-NODE can be used to learn and represent this function G.
It should be noted that this is not the only possible solution to function G, as when ∂t/∂s = 0, we fall
back to a NODE system with the dynamical system conditioned on the input data. In this conditioned
setting, we can then represent G by stopping the dynamics at different times t as in (Massaroli et al.,
2021).

C.3 PROOF OF PROPOSITION 4.2

The proof uses the change of variables formula for a particle that depends on a vector rather than a
scalar and it follows directly from the proof given in (Chen et al., 2019b, Appendix A). We provide
the full proof for completeness.
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Proof. We initially assume that
∑k

i=1
∂u
∂xi

dxi

ds is Lipschitz continuous in u and continuous in t, so
every initial value problem has a unique solution (Evans, 2010). We additionally assume u(s) is
bounded.

We want to show that the probability flow satisfies

∂p(u(s))

∂s
= tr

(
∂

∂u

k∑
i=1

∂u

∂xi

dxi

ds

)
.

Define Tϵ = u(s + ϵ). The discrete change of variables states that u1 = f(u0) ⇒ log p(u1) =

log p(u0)− log |det ∂f
∂u0

| (Rezende & Mohamed, 2015).

Taking the limit of the time difference between u0 and u1, and using the definition of derivatives,

∂ log p(u(s))

∂t
= lim

ϵ→0+

log p(u(s+ ϵ))− log p(u(s))

ϵ

= lim
ϵ→0+

log p(u(s))− log |det ∂
∂uTϵ(u(t))| − log p(u(s))

ϵ

= − lim
ϵ→0+

log |det ∂
∂uTϵ(u(s))|
ϵ

= − lim
ϵ→0+

∂
∂ϵ log |det

∂
∂uTϵ(u(s))|

∂
∂ϵϵ

= − lim
ϵ→0+

∂

∂ϵ
log |det ∂

∂u
Tϵ(u(s))| − lim

ϵ→0+

∂

∂ϵ
log |det ∂

∂u
Tϵ(u(s))|

= − lim
ϵ→0+

1

|det ∂
∂uTϵ(u(s))|

∂

∂ϵ
|det ∂

∂u
Tϵ(u(s))|

= −
limϵ→0+

∂
∂ϵ |det

∂
∂uTϵ(u(s))|

limϵ→0+ |det ∂
∂uTϵ(u(s))|

= − lim
ϵ→0+

∂

∂ϵ
|det ∂

∂u
Tϵ(u(s))|

The Jacobi’s formula states that if A is a differentiable map from the real numbers to n× n matrices,
then d

dt detA(t) = tr
(
adj(A(t))dA(t)

dt

)
, where adj denotes the adjugate matrix. Applying this

relation, we obtain

∂ log p(u(t))

∂t
= − lim

ϵ→0+
tr

[
adj

(
∂

∂u
Tϵ(u(s))

)
∂

∂ϵ

∂

∂u
Tϵ(u(s))

]
= − tr

[(
lim

ϵ→0+
adj

(
∂

∂u
Tϵ(u(t))

))(
lim

ϵ→0+

∂

∂ϵ

∂

∂u
Tϵ(u(s))

)]
= − tr

[
adj

(
∂

∂u
u(t)

)
lim

ϵ→0+

∂

∂ϵ

∂

∂u
Tϵ(u(s))

]
= − tr

[
lim

ϵ→0+

∂

∂ϵ

∂

∂u
Tϵ(u(s))

]
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Substituting Tϵ with its Taylor series expansion and taking the limit, we have the desired result
∂ log p(u(t))

∂t
= − tr

(
lim

ϵ→0+

∂

∂ϵ

∂

∂u

(
u+ ϵ

du

ds
+O(ϵ2) +O(ϵ3) + ...

))
= − tr

(
lim

ϵ→0+

∂

∂ϵ

∂

∂u

(
u+ ϵ

k∑
i=1

∂u

∂xi

dxi

ds
+O(ϵ2) +O(ϵ3) + ...

))

= − tr

(
lim

ϵ→0+

∂

∂ϵ

(
I +

∂

∂u
ϵ

k∑
i=1

∂u

∂xi

dxi

ds
+O(ϵ2) +O(ϵ3) + ...

))

= − tr

(
lim

ϵ→0+

(
∂

∂u

k∑
i=1

∂u

∂xi

dxi

ds
+O(ϵ) +O(ϵ2) + ...

))

= − tr

(
∂

∂u

k∑
i=1

∂u

∂xi

dxi

ds

)

C.4 PROOF OF PROPOSITION 4.3

Proof. To prove proposition 4.3, we need to show that for any homeomorphism h(·), there exists a
u(s, u0) ∈ Rn following a C-NODE system such that u(s = T, u0) = h(u0).

Without loss of generality, we suppose that T = 1.

Defining a C-NODE system as: 

du
ds = ∂u

∂x
dx
ds + ∂u

∂t
dt
ds ,

dx
ds (s, u0) = 1,
∂u
∂x (u(x, t)) = h(u0),
dt
ds (s, u0) = u0,
∂u
∂t (u(x, t)) = −1.

Then, du
ds = h(u0)− u0. At s = 1, have

u(s = 1, u0) = u(s = 0, u0) +

∫ 1

0

du

ds
ds

= u0 +

∫ 1

0

∂u

∂x

dx

ds
+

∂u

∂t

dt

ds
ds

= u0 +

∫ 1

0

h(u0) · 1 + (−1) · u0ds

= u0 + h(u0)− u0

= h(u0).

The inverse map will be defined by integration backwards. Specifically, we have

u(s = 0, u0) = u(s = 1, u0) +

∫ 0

1

du

ds
ds

= h(u0)−
∫ 1

0

∂u

∂x

dx

ds
+

∂u

∂t

dt

ds
ds

= h(u0)−
∫ 1

0

h(u0) · 1 + (−1) · u0ds

= h(u0)− h(u0) + u0

= u0.
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Thus, for any homeomorphism h(·), there exists a C-NODE system, such that forward integration for
time s = 1 is equivalent as applying h(·), and backward integration for time s = 1 is equivalent to
applying h−1(·).

D INCLUDING INITIAL STATE IN NODE’S INPUT

Conditioning on the initial condition allows NODE to model intersecting trajectories. We compare
NODE conditioned on initial values and C-NODE’s performance on image classification tasks on
MNIST, SVHN, and CIFAR-10 datasets, using the forward Euler solver and adjoint solver.

As shown in Figure 11, by conditioning on initial values, NODE’s performances are improved over
all datasets when using adjoint integration, and improved on SVHN dataset when using Euler forward
integration. When using Euler forward integration, C-NODE performs better on all three datasets
than NODE and conditioned-NODE. C-NODE higher accuracy within fewer epochs and has lower
variance throughout the training process. All methods use a comparable numbers of parameters
with C-NODE using the fewest as reported in Table 20. When using adjoint method, C-NODE
performs better on all datasets than NODE, and performs better on SVHN and CIFAR-10 datasets
than conditioned-NODE, while achieving similar performance to conditioned-NODE.

It is worth noting that the characteristic curves of the C-NODE also depend on the initial values,
which allows C-NODE to model a dynamical system with intersecting trajectories. C-NODE and
conditioned NODE are two different methods of including the initial values. Empirically, C-NODE
achieves better results and is more efficient with parameters, as suggested in Figure 11 and Table 20.

Dataset Method Accuracy (Euler) ↑ Accuracy (Adaptive) ↑ Param. [K] ↓

SVHN
NODE 82.42± 0.043 64.510± 1.637 115.444

COND 83.30± 0.131 80.39± 1.088 116.399

C-NODE 86.28± 0.086 82.35± 1.458 113.851

CIFAR-10
NODE 59.492± 0.366 52.13± 1.464 115.444

COND 56.77± 0.137 57.71± 0.226 118.447

C-NODE 61.97± 0.139 63.57± 0.421 113.851

MNIST
NODE 97.09± 0.024 96.79± 0.374 85.468

COND 93.38± 1.798 98.05± 0.112 87.287

C-NODE 96.93± 0.103 97.26± 0.276 83.041

Table 20: Parameter counts and classification accuracy for different models and integration schemes
in Conditional-NODE experiment.

All experiments were performed on NVIDIA RTX 3090 GPUs on a cloud cluster.

E ABLATION STUDY

E.1 ABLATION STUDY ON DIMENSION OF C-NODE

We perform an ablation study on the impact of the number of dimensions of the C-NODE we
implement. This study allows us to evaluate the relationship between the model performance and the
model’s limit of mathematical approximating power. Empirical results show that as we increase the
number of dimensions used in the C-NODE model, the C-NODE’s performance first improves and
then declines, due to overfitting. We have found out that information criteria like AIC and BIC can
be successfully applied for dimension selection in this scenario.

In previous experiments, we represent ∂u/∂xi with separate and independent neural networks
ci(u, θ). Here, we represent all k functions as a vector-valued function [∂u/∂x1, ..., ∂u/∂xk]

T . We
approximate this vector-valued function with a neural network c(u, θ). The model is trained using
the Euler solver to have better training stability when the neural network has a large number of
parameters. Experiment details for the ablation study is as shown in Figures 12, 13, 14.
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(a) Backprop through Euler training;
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(b) Adjoint training;

Figure 11: Red: NODE. Blue: C-NODE. Orange: Conditional NODE Training dynamics of
different datasets with adjoint in Fig. 11a and with Euler in Fig. 11b averaged over four runs. The
first column is the training process of SVHN, the second column is of CIFAR-10, and the third
column is of MNIST. By conditioning on the initial values, NODE’s performances are improved on
all datasets when using adjoint integration, and improved on SVHN dataset when using the Euler
backpropagation.

E.2 ABLATION STUDY ON NUMBER OF PARAMETERS

We show C-NODE’s parameter efficiency over NODE with an ablation study on the image classi-
fication task on the CIFAR-10 dataset. Specifically, under a similar training setup, we experiment
with C-NODE with 95071, 55855, and 17379 parameters and experiment with NODE with 96044,
56828, and 17444 parameters. As shown in Figure 15, although C-NODE has more variance in its
performance, it outperforms NODE along the whole training process in all three cases.
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Figure 12: The training process averaged over 4 runs of C-NODE with 1, 2, 4, 8, 16, 32, 64, 128,
256, 512, and 1024 dimensions on the MNIST dataset. The first row is the accuracy of prediction, the
second row is the testing error, and the third row is the training error.
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Figure 13: The training process averaged over 4 runs of C-NODE with 1, 2, 4, 8, 16, 32, 64, and 128
dimensions on the SVHN dataset. The first row is the accuracy of prediction, the second row is the
testing error, and the third row is the training error.
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Figure 14: The training process averaged over 4 runs of C-NODE with 1, 2, 4, 8, 16, 32, 64, and 128
dimensions on the CIFAR-10 dataset. The first row is the accuracy of prediction, the second row is
the testing error, and the third row is the training error.
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Figure 15: The training process averaged over four runs of C-NODE with 95071, 55855, and 17379
parameters on the CIFAR-10 dataset, and NODE with 96044, 55855, and 17379 parameters. The first
row is the prediction accuracy, the second row is the testing error, and the third row is the training
error. Blue lines are the results for C-NODE, and red lines are the results for NODE.
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Algorithm 2 C-NODE algorithm using the forward Euler method

for each input data zj do
extract image feature u(s = 0) = g(zj ; Θ1) with a feature extractor neural network.
procedure Integration along s = 0 → 1
for each time step sm do

calculate dx
ds (x,u;g(zj ; Θ1); Θ2) and Jxu(x,u; Θ2).

calculate du
ds = Jxu

dx
ds .

calculate u(sm+1) = u(sm) + du
ds (sm+1 − sm).

calculate x(sm+1) = x(sm) + dx
ds (sm+1 − sm)

end for
end procedure
classify u(s = 1) with neural network Φ(u(x(s = 1)),Θ3).

end for

F ALGORITHM FOR IMAGE CLASSIFICAITON WITH C-NODE

We provide algorithm for training C-NODE for the purpose of image classification.

G ALGORITHM FOR CONTINUOUS NORMALIZING FLOWS DEFINED WITH
C-NODE

We additionally provide algorithms for training and sampling CNFs defined with C-NODEs.

Algorithm 3 Algorithm for training CNFs defined with C-NODE

given probability density function of p(u(s = 0)) = p0(·)
for each input data zj do

Given

[
u(1)

log p(zj)− log p(u(1))

]
=

[
zj
0

]

procedure Integrate from 1 → 0 to get

[
u(0)

log p(zj)− log p(u(0))

]
for each time step sm do

calculate dx
ds (x,u;g(zj ; Θ1); Θ2) and Jxu(x,u; Θ2).

calculate du
ds = Jxu

dx
ds .

calculate −tr( ∂
∂uJxu

dx
ds ) with Hutchinson trace estimator (Grathwohl et al., 2019).

calculate

[
u(sm+1)

log p(u(sm+1))

]
=

[
u(sm)

log p(u(sm))

]
+

[
du
dt

∂ log p(u(s))
∂s

]
(sm+1 − sm).

end for
evaluate p0(u(0))
calculate log p(zj) = (log p(zj)− log p(u(0))) + log p0(u(0))
optimize log p(zj) with an optimization algorithm (stochastic gradient descent etc.)

end for
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Algorithm 4 Algorithm for sampling CNFs defined with C-NODE

procedure sample u(s = 0) from base distribution p0(·)
procedure Integrate from 0 → 1 to get u(s = 1)
for each time step sm do

calculate dx
ds (x,u;g(zj ; Θ1); Θ2) and Jxu(x,u; Θ2).

calculate du
ds = Jxu

dx
ds .

calculate u(sm+1) = u(sm) + du
ds (sm+1 − sm).

end for
end procedure
u(s = 1) is our sample from the CNF
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