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Abstract

Despite the high performance achieved by deep neural networks on various tasks,
extensive research has demonstrated that small tweaks in the inputs can lead to
failure in the model’s predictions. This issue affecting deep neural networks has led
to a number of methods to improve model robustness, including adversarial training
and distributionally robust optimization. Although both of these two methods are
geared towards learning robust models, they have essentially different motivations:
adversarial training attempts to train deep neural networks against perturbations,
while distributional robust optimization aims to improve model performance on
the most difficult “uncertain distributions". In this work, we propose an algorithm
that combines adversarial training and group distribution robust optimization to
improve robust representation learning. Experiments on three image benchmark
datasets illustrate that the proposed method achieves superior results on robust
metrics without sacrificing much of the standard measures.

1 Introduction

Deep neural networks (DNNs) have been demonstrated to significantly improve the benchmark
performance of a wide range of application domains, including computer vision [22], speech [7], and
natural language processing [13]. However, extensive studies have shown that deep neural networks,
trained via empirical risk minimization (ERM), are vulnerable: some small and carefully-crafted
perturbations in the input space can cause malfunctions and huge performance drops [18, 26]. The
essential reason behind performance drop is that the models rely on weakly correlated or spurious
correlations [52] — heuristics between labels and inputs that hold for most training examples, but
are not inherent to the task of interest, such as the strong associations between the background and
the label on the Waterbirds dataset [54] (Figure 2 in the Appendix).

Adversarial training (AT) [50, 18, 24, 34] is by far one of the most effective ways to learn models
against small perturbations [41, 35]. The idea behind AT is simple and straight-forward — adding
adversarial noise to the input space during training and therefore achieving better adversarial
robustness than models trained without AT (Appendix B). Previous works have shown various
advantages of AT, including mitigation of the performance drop on noisy input [34, 42] or use as a
regularization technique [36].

Another general line of approach for learning robust models is distributionally robust optimization
(DRO) [2]. Instead of learning to minimize an ERM objective, DRO aims at distributional robustness
via optimizing the performance on the worst-case distributions (Appendix B). Previous works have
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demonstrated that DRO is certified to be effective against small perturbations. For example, in [48],
adversarial robustness is cast as a form of distributional robustness in a Wasserstein ball. In this work
we will study group DRO, which has been shown to reduce reliance on spurious correlations [44, 63].
From a view of representation learning, AT and group DRO attempt to improve model robustness of
difference aspects: adversarial robustness and group-distributional robustness. A critical question is
whether we can develop a model to incorporate both of the two types of robustness at the same time.

In the following sections, we explore the connections between the two types of robustness of AT
and group DRO, and propose the Adversarial group DRO algorithm, which leverages the advantages
of both to further improve model robustness. More specifically, we leverage the pre-selected group
knowledge in group DRO and the projected gradient descent to learn a group mixture distribution
formulated as a minimax problem, robust to group shifts and perturbations. Experimental results on
two datasets with pre-selected spurious features — Waterbirds [54, 44] and CelebA [33] datasets —
demonstrate the effectiveness of the proposed algorithm.

Our contributions can be summarized as follows,

• We propose Adversarial group DRO, an efficient online optimization algorithm that combines
group DRO and AT to improve model robustness.

• Our algorithm shows superior results than simply employing either AT or group DRO,
and can mitigate performance drop for robust models on standard dataset like CIFAR-10,
showing different types of robustness can be complementary.

• We provide intuitions and supporting evidence on the learned robust representations through
various types of analysis.

2 Proposed algorithm

In this section, we set up the basic notations and then describe the proposed algorithm. We denote D
as the dataset, and ⟨x, y⟩ as a data sample (the image and the corresponding label). f(·; θ) denotes
a deep neural network, which takes an ⟨x, y⟩ pair as input. θ is the set of parameters of the neural
network. L(·, ·) denotes a generic loss function (e.g., cross-entropy loss).

The proposed Adversarial group DRO (see the Appendix for full algorithm) algorithm combines
group DRO and AT (cf. Appendix B for background knowledge) to incorporate both adversarial
and distributional robustness. Our plan is to train the model under a dynamically changing group
mixture distribution where the constituent distributions are adversarially perturbed. Thus, our model
is exposed to both distributional shifts (in our case group shifts) and adversarial perturbations.

2.1 Relation between Adversarial Training and DRO

We emulate Eq. (7) to combine DRO and AT and study the connections of the two types of robustness.
We add perturbations into the DRO setup (Eq. (5)), and then find the model that optimizes the risk
over all the maximally perturbed uncertain distributions:

min
θ

{
R(θ) := sup

Q∈Q
E(x,y)∼Q

[
max
δ∈∆
L(f(x+ δ), y; θ)

] }
(1)

In our case, DRO carries the group-mixture distributions, so Eq. (1) can be together considered with
Eq. (6) and find the group adversarial model

θAdvDRO = argmin
θ

{
max
g∈G

E(x,y)∼Pg

[
max
δ∈∆
L(f(x+ δ), y; θ)

] }
. (2)

2.2 Adversarial group DRO algorithm

Training group DRO and AT jointly can be tricky, as previous works fail for group DRO due to the
difficulty in gradient estimation in a stochastic fashion [17, 20, 44] or assume convexity and therefore
are not generalizable [48]. We propose an online algorithm that provides an efficient way to train
Eq. (2). Due to space limit, we describe the algorithm 1 in the Appendix.
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Table 1: Test results (%). Our adversarial group DRO algorithm improves on the robust metrics on
both clean and perturbed test set without sacrificing much of the average accuracy. Note that ERMs
do not know group information during training. The difference between Batch and Group is that in
Batch we do not consider group information for adversarial perturbation, we perturb the whole batch
uniformly, while in Group we take group weights into account to learn adversarial noises.

Metric Perturbation
CIFAR-10 Waterbirds CelebA

ERM GDRO ERM GDRO ERM GDRO
w/o AT AT w/o AT AT w/o AT AT w/o AT AT w/o AT AT w/o AT AT

Average Acc. Batch 92.8 91.2 91.9 91.2 97.3 97.3 96.4 96.1 95.8 96 94.8 95.2
Group (ours) - - 92.3 92 - - 96.2 96 - - 94.8 95.2

Adversarial Acc. Batch 73.4 87 67.3 87.7 0 38.3 0.6 32.4 73 95.1 36.1 95.3
Group (ours) - - 69.9 88.2 - - 0.2 33.6 - - 29.4 93.5

Robust Acc. Batch 87.2 84 86.5 82.8 73.5 75.2 86.2 86.2 70.5 73 86.6 86.6
Group (ours) - - 85 86.2 - - 85.8 89.1 - - 90.8 86.6

Robust Adv. Acc. Batch 53.7 77 53.6 78.6 2.2 55.5 17.8 60.8 1.6 37.7 5.5 83.3
Group (ours) - - 56 79.2 - - 17.9 64.5 - - 10.2 83.8

Building on top of existing algorithms for group DRO [44] and AT [31, 30], Algorithm 1 leverages
prior knowledge of group information and learns which groups to amass stronger perturbations.
Typical AT adds perturbations to the input space uniformly, while our algorithm performs the AT
phase and optimizes the DRO part in turns, which allows us to update the q distribution over groups
and weigh perturbations. Essentially, we are learning an adversarial distribution that generates the
strongest perturbations to add to each group.

Note that we can also rewrite Eq. (2) as

θ̂AdvDRO = argmin
θ

{
max
q∈Q

m∑
g=1

qgE(x,y)∼P̂g

[
max
δ∈∆
L(f(x+ δ), y; θ)

] }
, (3)

where Q = {
∑m

g=1 qgPg :
∑m

g=1 qg = 1, qg ≥ 0 ∀g ∈ G}, so in practice, we can use mini-batches
which contain a mixture of different groups. And in an end-to-end manner, the algorithm dynamically
learns to perform under an “uncertain distribution" perturbed and mixed with groups and encodes the
group-distributional robustness and adversarial robustness.

A representation learning view. Although AT and group DRO achieve different kinds of robustness,
they both aim to learn robust models. From a representation learning perspective, the model adopting
these approaches together should learn correlations that rely less on the spurious ones — either
explicit (as in Figure 2) or implicit (innate within the dataset or added by adversarial noise).

3 Experiments

3.1 Experimental Setup

Datasets. To demonstrate the effectiveness of the Adversarial Group DRO (Algorithm 1), we
conduct extensive experiments on three image benchmark datasets Waterbirds, CelebA & CIFAR-10,
and study the connections between adversarial robustness and group-distributional robustness. In
Appendix A, we detail the datasets.

Methods. We train models with objectives described in Section 2 & B, which are (1) ERM, (2)
adversarial ERM (advERM, i.e., AT), (3) group DRO (GDRO), and (4) our algorithm Adversarial
group DRO (advGDRO). We expect the models to gain adversarial robustness from ERM to advERM
(so is GDRO to advGDRO) and gain an additional distributional robustness from advERM to
advGDRO, and thus continuously rely on fewer spurious correlations moving from ERM to advGDRO.
For convenience, we will simply call group DRO as DRO in the following sections. For full
implementation details, see Appendix C.

Robust metrics. We evaluate on average accuracy and average adversarial accuracy to compare
adversarial robustness. For distributional robustness, we use robust accuracy, which can be quantified
by measuring the worst-case performance among all groups. Finally, we measure robust adversarial
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accuracy for a combined adversarial and distributional robustness. These metrics are of interest
for ERM, AT, GDRO and advGDRO. If we can improve on robust adversarial accuracy, then we
essentially will improve both types of robustness.

3.2 Comparisons and Analysis

We first compare advGDRO with the three baseline methods, i.e. ERM, AT and GDRO, on the three
benchmark datasets to illustrate the benefits of adversarial group DRO. The experimental results
are summarized in Table 1 & 2 (in the Appendix). Recall that subgroup information is available to
models only during training.

DROs achieves better group-distributional robustness over ERMs and advGDRO further
achieves adversarial robustness. Across the datasets, advGDRO gains at most 13.9% over ad-
vERM on robust accuracy; and GDRO improves over ERM by up to 15.7% and advDRO gains at
most 46.1% over advERM on robust adversarial accuracy. The improvements show that advGDRO
achieves superior robustness on both clean and perturbed data, and verifies that DROs guarantee
better robust performances. The fact that advGDRO consistently outperform other methods on the
robust adversarial accuracy demonstrates the effectiveness of our algorithm in improving both types
of robustness.

Adversarial group DRO mitigates performance gap. Another interest of our work is to mitigate
the performance drop that comes with AT [34] on a standard dataset like CIFAR-10. We observe that
with mild perturbation our algorithm mitigates the gap on average accuracy from 1.6% to 0.8%. In
addition, our algorithm surprisingly improves the adversarial accuracy over advERM by 1.2%, where
advERM is designed to optimize against adversarial perturbations.

Incorporating group weights increases adversarial robustness. A key benefit of Algorithm 1
is to leverage group information to learn the adversarial distribution for Eq. (3); however, our
algorithm also has the flexibility of perturbing without group weights. To illustrate the effect of group
information, we compare the models that are trained with and without group updates. Table 1 & 2 (in
the Appendix) show improvements on GDRO and the efficacy of using group updates for perturbation
is most obvious when combined with advGDRO. When group information is incorporated, the
performance on both worst-group robust measures is consistently improved. The robust accuracy
group updates reach a performance gain up to 3.4% and 3.7% on robust adversarial accuracy.

4 Visualization Analyses

We discuss the effect of our Adversarial group DRO algorithm through the lens of representations in
this section. Furthermore, we show test examples corrected by more robust models to analyze what is
driving the improvements, and plot CNN kernels to see what representations the models learn and
draw connection with [55] in Appendix F & G respectively.

Representation changes show learning to disentangle. We use t-SNE [53] to visualize the
representations of the last ResNet [22] layer output (before fc layer) in Figure 1. On a clean test
set (Figure 1(a)), we can observe the change of data point distributions from ERM to advGDRO
— over ERMs, the dataset representations have only one cluster; however, going into DROs, each
group forms into more disentangled clusters and the disentanglement is most obvious on advGDRO.
As indicated in [46], disentanglement aligns with the goal of robustness, i.e., our advGDRO moves
toward learning meaningful representations that is robust. On perturbed test set (Figure 1(b)), though
not as obvious as Figure 1(a), a similar trend can be observed – the data points become more sparsely
scattered as models become more robust. We hypothesize it is because perturbations by nature add
noises to images, resulting in more spurious correlations, and thus harder to disentangle; in other
words, Figure 1(b) explains the performance drop and the limit of robust learning.

5 Conclusion

In this paper, we propose an algorithm for robust representation learning and explore the connec-
tions between group-distributional robustness and adversarial robustness. By achieving improved
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(a) clean test set (b) perturbed test set

Figure 1: t-SNE visualizations on Waterbirds. Output of the last CNN layer (before fc ). For
(a) & (b), each row represents a different group; the columns from left to right are (1) ERM, (2)
advERM, (3) GDRO, and (4) advGDRO. The majority color stands for the correction predictions, and
the minority, wrong predictions. In (a), the data points tend to spread into distinctive clusters as the
training method becomes more robust, and we believe that our algorithm may help the representations
become more disentangled, bringing about better performance. While in (b), the trend is not as
obvious, but still the data points become more spread out on the plane; we think such phenomenon is
because perturbed data add more spurious correlations, and the robust training has its limit.

performances via our algorithm over benchmark datasets, we have made a step toward that goal,
showing they can be complementary. Our results show that by utilizing group weighting end-to-end
to learn the “uncertain distribution" we can further enhance the two types of robustness. On the
representation side, when models are trained robustly, we observed that the representations learned
show disentanglement on the 2D t-SNE embedding space, and therefore more robust and meaningful.

In sum, our work provides a connection for future studies in the robustness of distribution shifts and
adversarial training, and on a broader level, the pursuit of learning robust representations.
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Algorithm 1: Adversarial group DRO
Input: Step sizes: ηq, ηθ, ηδ; T : total number of iterations, ϵ: perturbation bound, Π: projection

function, σ2: variance of the noise initialization; K: the number of perturbation
estimation steps, Pg for each g ∈ G

1 for t = 1, ..., T do
2 g ∼ Uniform(1,...,m) ; // choose a group
3 x, y ∼ Pg; // sample batch
4 δ ∼ N (0, σ2I); // sample noise
5 for k = 1, ...,K do
6 gadv ← q

(t−1)
g sign(∇δL(f(x+ δ), y; θ(t−1))); // Get gradient direction

7 δ ← Π∥δ∥≤ϵ(δ + ηδgadv) ; // Ascent step and projection back to Lp ball
8 end
9 q′ ← q(t−1); q′g ← q′gexp(ηqL(f(x+ δ), y; θ(t−1))); // update group weights

10 q(t) ← q′/
∑

g′ q′g′ ; // re-normalize

11 θ(t) ← θ(t−1) − ηθq
(t)
g ∇θL(f(x+ δ), y; θ(t−1)); // update model

12 end
Output: model θ

Table 2: Test results on CIFAR-10. (ϵ = 8/255)

Metric Perturbation
CIFAR-10

ERM GDRO
w/o AT AT w/o AT AT

Average Acc. Batch 92.1 89.7 89.7 89.6
Group (ours) - - 89.6 89.6

Adversarial Acc. Batch 22.3 79.2 31.5 77.2
Group (ours) - - 31.6 77.7

Robust Acc. Batch 66.1 73.8 78.5 79.3
Group (ours) - - 78.9 81.5

Robust Adv. Acc. Batch 2.5 51.4 19.4 59.8
Group (ours) - - 14.8 61.3

A Datasets

Waterbirds & CelebA. Following [44], Waterbirds and CelebA both contain four groups (two classes
× two spurious correlations), which are Y ∈ {landbird, waterbird} and attr ∈ {land, water} for
Waterbirds, and Y ∈ {female, male} and attr ∈ {non-blonde, blond} for CelebA, with each group
having an unbalanced number of examples. Table 3 in the Appendix presents detailed statistics and
usages.

Table 3: We study datasets where a spuriously-correlated attribute is present and evaluate the
effectiveness of our adversarial group DRO algorithm on average and on robust metrics.

Dataset Split Subgroup Size (Y, attr)

Waterbirds

landbird, land landbird, water waterbird, land waterbird, water
train 3498 184 56 1057
val 467 466 133 133
test 2255 2255 642 642

CelebA

non-blonde, female non-blonde, male blonde, female blonde, male
train 71629 66874 22880 1387
val 8535 8276 2874 182
test 9767 7535 2480 180
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(a) Training example 1 (y :
waterbird; attr : water back-
ground).

(b) Training example 2 (y :
landbird; attr : land back-
ground).

(c) Test example (y : wa-
terbird; attr : land back-
ground).

Figure 2: Example of spurious attributes. Note that the correlations water or land between bird
type y and background attr (short for attribute) does not hold at test time.

CIFAR-10. Without manual spurious correlations to form groups, we treat each class of CIFAR-10
as a group in our experiments. Notice that the groups are different from class labels especially for
Waterbirds and CelebA, and by nature the groups are different from CIFAR-10 classes since they
contain manually crafted spurious features. We hold out 10% of the training set as validation data.

B Background

In this section, we set up basic notations again and then present the frameworks adopted in this work
with brief discussions on their respective issues and connections.

We denote D as the dataset, and ⟨x, y⟩ as a data sample (the image and the corresponding label).
f(·; θ) denotes a deep neural network, which takes an ⟨x, y⟩ pair as input. θ is the set of parameters
of the neural network. L(·, ·) denotes a generic loss function (e.g., cross-entropy loss).

B.1 Empirical Risk Minimization

Typical machine learning algorithms adopt Empirical Risk Minimization (ERM) framework during
training, where we learn a model parameterized by θ minimizing the empirical risk of L(·, ·) under
an empirical distribution P̂ derived from training data Dtrain:

min
θ

E(x,y)∼P̂ L(f(x), y; θ) (4)

The underlying assumption is that the training and test set are sampled from the same distribution,
i.e. i.i.d., and thus we expect the model to generalize on the test set if it has been optimized during
training. An issue with ERM is when the model encounters a data distribution that is different from
P̂ at test time, the performance drops rapidly [59]. The problem setup where the empirical training
distribution P̂ is different from test data sampled from some different distribution P̂T is commonly
called distribution shift.

B.2 Distributionally Robust Optimization (DRO)

To mitigate the issue arising from ERM, a natural solution is to use DRO [2], which instead minimizes
the worst expected risk over a family of distributions Q:

min
θ∈Θ

{
R(θ) = sup

Q∈Q
E(x,y)∼Q [L(f(x), y; θ)]

}
(5)

where Q is the uncertain set and R(θ) is the worst-distribution risk. Since Q encodes all possible
distributions at test time, the model is expected to be robust to distributional shifts. A common
choice for Q is a divergence ball around the training distribution which includes a wide range of
distributional shifts.

However, [27] showed that having such a divergence ball could result in overly pessimistic models,
and a more realistic setting called group DRO [23, 40, 44] is adopted in our work. Formally, we define
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the Q in group DRO a coarse-grained mixture models where P is a mixture of m groups containing
Pg where g ∈ G = {1, ...,m}, and optimize Eq. (5) with Q = {

∑m
g=1 qgPg :

∑m
g=1 qg = 1, qg ≥

0 ∀g ∈ G}. This formulation allows us to learn models that are robust to group shifts. Equivalently,
since the unique optimal solution of a linear program happens at a vertex [4], we can rewrite the inner
optimization of Eq. (5) as

R(θ) = max
g∈G

E(x,y)∼Pg
[L(x, y; θ)] (6)

In practice, we leverage prior knowledge on specific tasks or data to define the groups and the
corresponding uncertain distributions. For instance, based upon the bird categories and spurious
background attribute, we have four groups for Waterbirds — {landbird, land; waterbird, land; landbird,
water; waterbird, water}.

A nice application of group DRO is to avoid the reliance on spurious correlation [44, 63], and we
hypothesize this can be improved by another robust training method, the adversarial training.

B.3 Adversarial Training

Different from group-distributional robustness in group DRO, AT aims at adversarial robustness
against adversarial examples by finding the model that minimizes the loss of the maximally perturbed
input so that f(x+ δ) ̸= f(x):

θ̂AT = argmin
θ

E(x,y)∼D

[
max
δ∈∆
L(f(x+ δ), y; θ)

]
, (7)

where δ is the perturbation and ∆ is the perturbation distribution. ∆ is designed to be limited in a
small boundary to be imperceptible to human eyes [18, 30]. For example, given a small budget ϵ,
∆ := {δ : ∥δ∥p ≤ ϵ} where ∥ · ∥p is the Lp norm. In our work we conduct a number of projected
gradient steps to solve for the inner maximization [34, 31]

gadv ← sign(∇δ(t)L(f(x+ δ(t)), y; θ))

δ(t+1) ← Π∥δ(t)∥≤ϵ(δ
(t) + ηδgadv)

(8)

where Π(·) is the projection function, ηδ is the adversarial step size, and initial perturbation δ(0) is
sampled from a normal distribution, N (0, σ2I). We refer readers to [1] for a recent survey on AT.

C Implementation Details

For a single experiment, we use two NVIDIA Tesla P100 GPUs. All our CNN models use SGD as
optimizers. Due to resource limits, on CIFAR-10, we train ResNet-110 from scratch with a batch
size of 128 and learning rate ηθ = 0.1. On CelebA and Waterbirds, we use pre-trained ResNet-50
with a batch size of 110 and ηθ = 0.001. To train robust models, we perturb input images with max
perturbation boundary ϵ = 2/255 on a L∞ ball, initial Gaussian noise δ(0) with σ = ϵ2, and a step
size ηδ = 0.01 for 5 steps. Additionally on CIFAR-10, we test Algorithm 1 with ϵ = 8/255. On
DROs we set group update rates ηq = 0.01. We did not fine-tune hyperparameters extensively and
only set them to standard values used in previous work, and we believe that fine-tuning can further
improve the results.

Model selection. All models are evaluated at the best early stopping epoch as measured by robust
metrics on validation set. This way we make sure our results are not overfitting towards the robust
metrics.

D Related work

Representations of neural networks. The success of a deep learning model generally depends its
ability of learning more complex and high quality representations than traditional models [3]. [14]
showed that intermediate layers of CNN tend to learn simple patterns and high level shapes like lines
and corners [28]. These features are essential to the performance of CNNs [21]. Our work attempts
to learn robust representations under an adversarial and uncertain setting.
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Attacking DNNs. An active area of studying DNN behaviors is attacking the DNNs. Researchers
have found that DNNs are susceptible to various types of threat models, which deceive the models
and cause undesired behaviors of DNNs. One type is the backdoor attack — implanting malicious
data into the training data [19, 32], the model learns incorrect behaviors and then consistently makes
the wrong decisions at test time. Another situation is the adversarial attack — ever since [18],
adversarial examples have been broadly studied and a wide range of attacks such as FGSMs and
PGD [18, 30, 29, 34] have been proposed, and they give rise to a broader discussions of vulnerabilities
of neural networks in computer vision [43, 49, 10, 57, 9], speech processing [51] and NLP tasks [26].
Meanwhile, understanding adversarial examples [25, 62] has been studied as well.

Toward robustness. In order for the models to defend against the deceptions or threats, researchers
have set to work on closing the gap between adversarial accuracy and standard accuracy [34, 5],
and a wide range of defense methods for different types of attack [8, 45, 56]. Adversarial training,
discussed in Section B.3, is the most popular method against adversarial attacks. Previous works
demonstrated its capability of working with other frameworks [42, 58, 36, 15], such as self-supervised
learning, etc. Discussions about the trade-off between the robustness and generalization have been
attempted [55, 61]. However, a universal method to fully prevent all the aforementioned attacks from
occuring has not yet been developed [6].

Robust optimization. The community has also started to study robustness from an optimization
point of view by proving certifiable bounds of the attacks [60, 11]. DRO has drawn attention, due to
its nature to upper-bound the expected risk under an unknown test distribution [16, 2], and how the
distributions are formed — either a coarse-grained group [23, 40, 44] as we adopted in this work,
or other types [2, 48, 12]. Solving DRO problems under different setups [47, 37, 38] has also been
proposed and studied.

E Computational efficiency

AT is previously known to require a longer training time till completion given a total number of
epochs; we empirically find that in our setup the run time of our algorithm is only less than 1% slower
than ERM and differs with AT by less than or around 5%, showing the efficiency of our approach.

F Corrections from models to models show less reliance on manual spurious
correlation.

The worst-performing group that the models end up having a posteriori also give us some signals
for the effect of a spurious attribute; for example, on Waterbirds, the most common worst groups
are {waterbird, land; landbird, water}, which means the spurious attribute “background" is a factor
that affects the model. Should our method mitigate this effect, we can correct mistakes made by a
less robust model (e.g. ERM). Therefore, we plot out samples that are mistakenly predicted by a less
robust model and yet corrected by a robust model. Figure 3 shows such samples on the Waterbirds.
For example, in row 2, the group was {landbird, water} and advERM predicted them as Waterbirds
but advGDRO can successfully make the right prediction; in row 1 & 3, advGDRO can make correct
predictions on group {waterbird, land}. In other words, advGDRO is the most robust against spurious
attributes and can prevent learning them.

G Robustness and filter smoothness

We plot the kernels of the first convolutional layer of CNN on CIFAR-10 and draw connection
with [55] to further help to see what representations the model learns. [55] proposes that the filters
should be smoother when the model is adversarially trained; and when kernels are regularized to be
smoother, the model are stronger against FSGM and PGD. In Figure 4, we see that the kernels from
advGDRO (Figure 4(d)) are smoother than others, meaning DRO indeed helps adversarial robustness.
Notably, the fact that the kernels become smoother from Figure 4(b) to (d) is also congruent with our
observations that DRO help getting the model more robust against adversarial attacks.
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Figure 3: advGDRO can correct mis-predictions from all other models. Row 1 shows the image
predictions corrected from ERM to advGDRO; row 2 shows the images corrected from advERM to
advGDRO; row 3 shows the images corrected from GDRO to advGDRO. Title of each image is the
prediction of robust model (✓)/prediction of comparing model (✗).

H Convergence of Algorithm 1

We study error ϵT of the average iterate θ̄(1:T ) and then analyze the convergence rate:

ϵT = max
q∈Q

L(θ̄(1:T ), q)−min
θ∈Θ

max
q∈Q

L(θ, q), (9)

where L(θ, q) :=
∑m

g=1 qg E(x,y)∼Pg
[maxδ∈∆ L(f(x+ δ), y; θ)] is the expected worst-case adver-

sarial loss. Applying Danskin’s theorem and results from [39, 44], we show in Proposition 1 that
Algorithm 1 has a standard convergence rate of O(1/

√
T ) in a convex setting.

Proposition 1. Suppose that the loss L(·; (x, y)) is non-negative, convex, B∇-Lipschitz continuous,
and bounded by BL for all (x, y) in X × Y , and ∥θ∥2 ≤ BΘ for all θ ∈ Θ with convex Θ ⊆ Rd.
Then, the average iterate of Algorithm 1 achieves an expected error at the rate

E[ϵT ] ≤ 2m

√
10[B2

ΘB
2
∇ +B2

L logm]

T
. (10)

Proof. We prove Proposition 1 in two parts. First we prove that the inner-most maximization of (3)
is convex and differentiable, and then by Proposition 2 of [44], we get the convergence guarantee.

Let F (θ) := maxδ∈∆ L(f(x + δ), y, θ). Since ∆ is a compact convex set, by Danskin’s theorem,
if Z0(θ) := {δ ∈ argmaxδ∈∆ L(f(x+ δ), y, θ)} is singleton for some θ, then F (θ) is convex and
directionally differentiable. By Corollary C.2 of [34], F (θ) has an ascent direction, and in practice,
we observe most of the elements of δ reach the boundary after the projected gradient steps.

Now (3) can be written as a saddle-point problem,

min
θ∈Θ

max
q∈Q

m∑
g=1

qgE(x,y)∼P̂g
[F (θ)]. (11)

By Proposition 2 of [44], we can use the result of [39] Eq.(3.23) to obtain a similar bound,

E[ϵT ] ≤ 2m

√
10[B2

ΘB
2
∇ +B2

L logm]

T
. (12)
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(a) standard ERM

(b) adversarial ERM

(c) standard DRO

(d) adversarial DRO

Figure 4: Visualization of CNN kernels (16 kernels each channel × 3 channels at the first layer).
According to [55], adversarially robust model should have smoother kernels, and our method (advG-
DRO) produces similar outcome.
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