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ABSTRACT

Inspired by the human learning and memory system, particularly the interplay
between the hippocampus and cerebral cortex, this study proposes a dual-learner
framework comprising a fast learner and a meta learner to address continual Re-
inforcement Learning (RL) problems. These two learners are coupled to perform
distinct yet complementary roles: the fast learner focuses on knowledge transfer,
while the meta learner ensures knowledge integration. In contrast to traditional
multi-task RL approaches that share knowledge through average return maximiza-
tion, our meta learner incrementally integrates new experiences by explicitly mini-
mizing catastrophic forgetting, thereby supporting efficient cumulative knowledge
transfer for the fast learner. To facilitate rapid adaptation in new environments, we
introduce an adaptive meta warm-up mechanism that selectively harnesses past
knowledge. We conduct experiments in various pixel-based and continuous con-
trol benchmarks, revealing the superior performance of continual learning for our
proposed dual-learner approach relative to baseline methods.

1 INTRODUCTION

Most deep reinforcement learning (RL) algorithms (Sutton & Barto, 2018; Mnih et al., 2015; Schul-
man et al., 2015; Haarnoja et al., 2018; Schulman et al., 2017) are designed for a single task, where
the environmental dynamics and reward function often remain stationary over time. In contrast, hu-
mans continually face diverse and evolving environments, learning to solve new tasks sequentially
throughout their lives. Building artificial general agents with such adaptive capabilities requires
continual learning, i.e., the ability to acquire new knowledge efficiently without forgetting previ-
ously learned skills. In this realm, Continual Reinforcement Learning (Khetarpal et al., 2022; Abel
et al., 2023) emerges as a crucial paradigm, aiming to balance plasticity (rapid adaptation to new
tasks) and stability (retention of past knowledge). An ideal continual learning agent is capable of
transferring useful knowledge forward to accelerate learning in new environments while avoiding
catastrophic forgetting (Dohare et al., 2024) across previously encountered tasks.

Recent work in continual RL spans a wide range of strategies (Barreto et al., 2020; Kessler et al.,
2022; Kaplanis et al., 2019; Caccia et al., 2022; Kaplanis et al., 2018; Gaya et al., 2023; Yang et al.,
2023; Wolczyk et al., 2022; Anand & Precup, 2023; Wan et al., 2022; Chandak et al., 2020; Sun
et al., 2025; Liu et al., 2025; Tang et al., 2025). Despite rapid progress, continual RL remains
fragmented: existing algorithms above are often motivated by heuristics or developed from distinct
perspectives (see Appendix A for a detailed comparison of related work), but there is no principled
way to understand when and why they work. This lack of a theoretical foundation makes it difficult
to assess when knowledge transfer will be beneficial, how to mitigate forgetting, and how to set
explicit optimization objectives, hindering principled algorithm development in continual RL.

To address these challenges, our study contributes to new foundations of continual RL by (1) defin-
ing the MDP difference to formally quantify environment similarity, and (2) introducing a quantita-
tive measure of catastrophic forgetting applicable to both value- and policy-based RL. Building on
these new foundations and principles, we propose a dual-learner paradigm that mirrors hippocam-
pal–cortical interactions in the human learning and memory systems (Kumaran et al., 2016), decom-
posing continual RL into two complementary objectives: knowledge transfer and knowledge inte-
gration. Specifically, we maintain two distinct yet complementary components, i.e., a fast learner
and a meta learner, which are analogous to the functional roles of the hippocampus (the fast learner)
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and the neocortex (the meta learner) in the human brain. Our approach also elucidates its more pro-
found connection to the transfer and multi-task RL problems (Schaul et al., 2015; Rusu et al., 2015;
Parisotto et al., 2016; Rajendran et al., 2017; Teh et al., 2017).

Knowledge Transfer via Fast Learner. We leverage a fast learner to rapidly acquire knowledge
from a new task by adaptively transferring prior knowledge stored in a meta learner. To circumvent
the potential negative transfer issue, an adaptive meta warm-up strategy is developed by either di-
rectly copying parameters as initialization or adding a behavior cloning regularization in the early
training phase to guide the exploration. The function of a fast learner in knowledge transfer resem-
bles the hippocampus. By swiftly encoding the new experiences and discriminating the effectiveness
of existing knowledge, the hippocampus, guided by the neocortex, specifically functions to quickly
assimilate novel scenarios in response to immediate environmental changes or drifts.

Knowledge Integration via Meta Learner. After assimilating the new knowledge by the fast
learner, an incremental knowledge integration incorporates the new experiences into the existing
knowledge pool stored in the meta learner. Under the new foundation, the knowledge integration is
incrementally updated in the principle of catastrophic forgetting minimization under specific diver-
gence metrics. After consolidating old and new experiences, the meta learner enhances the adaptive
meta warm-up, facilitating the knowledge transfer in the next environment. The knowledge integra-
tion process plays a role akin to the cerebral cortex, which gradually integrates, incorporates, and
consolidates new knowledge into the existing cognitive structure in the human brain to build a more
generalizable, robust, and stable decision-making system.

Contributions. The contributions of our study can be succinctly summarized as follows:

• We propose new foundations of continual RL, including the definition of MDP difference and the
measure of catastrophic forgetting, underpinning the algorithmic innovations in the future.

• We devise a dual-learner system that incorporates distinct yet complementary fast and meta learn-
ers to perform knowledge transfer and knowledge integration. The interplay between fast and
meta learners mimics the hippocampal-cortical dialogue in the brain’s memory systems.

• We provide comprehensive empirical studies to validate the efficiency of our dual-learner system
in discrete and continuous action domains, across both value- and policy-based RL algorithms.

2 PROBLEM SETTING AND NEW CONTINUAL RL FOUNDATIONS

Problem Setting. Let [K] denote {1, 2, ...,K}. We consider a sequence of K tasks, where each
task k ∈ [K] is modeled by a Markov Decision Process (MDP) Mk = ⟨Sk,Ak, Pk, Rk, γ⟩. Sk

and Ak denote the state and action spaces, Pk : Sk × Ak → P(Sk) is the transition dynamics,
Rk : Sk × Ak → R is the reward function, and γ is the discounting factor. We define the action-
value function Qπ(s, a) = Eπ

[∑∞
i=0 γ

iRt+i+1 | St = s,At = a
]

given a state s, an action a, and
a policy π. Following common practice in continual RL (Wolczyk et al., 2022; Khetarpal et al.,
2022; Malagon et al., 2024), we adopt three assumptions: (1) the same state and action spaces, (2)
known task boundaries, i.e., semi-continual RL (Anand & Precup, 2023), and (3) a training budget
with a moderate model size and an allowable computation cost. An “optimal” policy can generalize
favorably across all tasks by balancing adaptation to new tasks with prior knowledge retention.

Foundation 1: MDP Distance. Theoretical analysis in continual RL requires a quantitative sim-
ilarity measure between environments to determine when knowledge transfer will be beneficial or
harmful, and to assess how strongly new tasks may interfere with previously learned ones. A desir-
able MDP distance should consider variations from both reward functions and transition dynamics
between MDPs. To this end, we utilize the distance between two MDP-determined optimal Q func-
tions or task-specific optimal policies to quantify the MDP distance in Definition 1.
Definition 1. (MDP Distance) For two finite MDPs: MDP1 = (S,A, R1, P1, γ) and MDP2 =
(S,A, R2, P2, γ), we denote their optimal Q functions as Q∗

1 and Q∗
2 and the optimal policies as

π∗
1 and π∗

2 . The Q-value-based and policy-based MDP distances are defined as dQ(Q
∗
1, Q

∗
2) and

dπ(π
∗
1 , π

∗
2) under certain divergences or distances dQ and dπ , e.g., the ℓ2 loss or the KL divergence.

Foundation 2: Catastrophic Forgetting. Our definition of catastrophic forgetting in continual
RL is inspired by distribution drift and catastrophic forgetting quantified in deep learning litera-
ture (Doan et al., 2021), which we briefly recap in Appendix B. Grounded in the definition of MDP
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difference in Definition 1, we introduce catastrophic forgetting between two MDPs in Definition 2.
Denote µπ

k and µQ
k as the state visitation distributions when a policy π or a greedy policy πQ over

Q, i.e., πQ(·|s) = argmaxa Q(s, a), interacts in the k-th environment in a sequence of K tasks.

Definition 2. (Catastrophic Forgetting across Two Environments) Denote Qk−1, Qk and πk−1, πk

as Q functions and policies after training RL algorithms across the (k−1)-th and k-th environments
sequentially. The catastrophic forgetting, denoted by CF, is defined as

CF(Qk−1, Qk) =
∑
s,a

µ
Qk−1

k−1 (s)πQk−1(a|s)dQ (Qk−1(s, a), Qk(s, a)) , (1)

CF(πk−1, πk) =
∑
s

µ
πk−1

k−1 (s)dπ (πk(·|s), πk−1(·|s)) . (2)

For each s and a, the weights µ
Qk−1

k−1 (s)πQk−1(a|s) and µ
πk−1

k−1 (s) characterize the relative impor-
tance when measuring discrepancies between Q functions and policies. Crucially, we evaluate these
weights using the preceding policy πk−1 (πQk−1 ) rather than the current policy πk (πQk ), as the
past policy better reflects states and actions that mattered most in the old task. In contrast, if we use
πk (πQk ) for the weight evaluation, significant changes in the Q-function or policy on previously
important state–action pairs might be overlooked, since the new policy may no longer visit them.

3 FAME: PRINCIPLED FAST AND META KNOWLEDGE CONTINUAL RL

𝜋1Fast Learner

Meta Learner

𝜋2 𝜋3 𝜋4

𝜋1
𝑀 𝜋2

𝑀 𝜋3
𝑀 𝜋4

𝑀

knowledge transfer knowledge integration

Figure 1: Illustration of FAME. In value-based
continual RL, the fast learner can be denoted by
{Qk}Kk=1 accordingly instead of {πk}Kk=1.

The proposed FAME approach is applicable
to both value-based and policy-based RL. In
value-based RL, we denote Qk as the updated
fast learner after learning task k, followed by
a meta learner QM

k that integrates knowledge
from the preceding meta learner QM

k−1 and Qk.
In policy-based RL, we denote πk as the fast
learner after learning task k, and then a meta
learner πM

k integrates knowledge from the pre-
ceding meta learner πM

k−1 and πk. The coupled
updating of the fast and meta learners in FAME
is illustrated in Figure 1. In principle, the fast
learner rapidly learns the new task guided by
the meta learner via the proposed adaptive meta
warm-up. Meanwhile, the meta learner consolidates the experience from the preceding meta learner
and the current fast learner via knowledge integration to minimize catastrophic forgetting.

3.1 VALUE-BASED CONTINUAL RL WITH DISCRETE ACTION SPACES

3.1.1 KNOWLEDGE INTEGRATION: CATASTROPHIC FORGETTING MINIMIZATION PRINCIPLE

After the fast learner Qk completes training in the k-th environment, the knowledge integration
phase begins. In this phase, the meta learner QM

k is updated to consolidate information by combining
the prior knowledge encoded in the preceding meta learner QM

k−1 and the new knowledge acquired
by the fast learner Qk. Unlike classical multi-task RL, which maximizes the average rewards, our
meta learner is explicitly designed to minimize the catastrophic forgetting defined in Definition 2.

Q-Value-based Catastrophic Forgetting and Limitations. We extend the Q-value-based catas-
trophic forgetting defined in Eq. 1 over a sequence of K tasks. In the k-th environment, the optimal
meta Q value function QM

k is the minimizer by solving the following objective function:

QM
k = argmin

Q̃M
k

k∑
i=1

∑
s,a

µQi

i (s)πQi(a|s)
(
Qi(s, a)− Q̃M

k (s, a)
)2

, (3)

where we recall that µQi

i is the state visitation distribution when the greedy policy πQi (i.e.,
πQi(·|s) = argmaxa Qi(s, a)) interacts with the i-th environment. Intuitively, the direct minimizer
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QM
k by solving Eq. 3 is a weighted average among {Qi}ki=1. However, developing the capability of

continual learning by storing all previous Q functions fails to scale in the number of tasks, which is
one of the crucial requirements in continual RL. Indeed, we can rewrite the above objective function
as an incremental updating rule between the preceding meta learner QM

k−1 and the fast learner Qk,
which we defer to Appendix C.1. Nonetheless, the fundamental limitation of Q-value-based catas-
trophic forgetting lies in the fact that it is mainly applicable to distinct environments with similar
scales of Q values, such as those with varying transition dynamics yet the same reward function. As
the new arriving environment is agnostic, the scale of the Q-values may be hard to learn because it is
not necessarily bounded and can be quite unstable (Rusu et al., 2015). The previously well-learned
tasks with high rewards tend to be more salient in consolidating knowledge than those with small re-
wards (Zhang et al., 2023). Therefore, the policy-based definition of catastrophic forgetting in Eq. 2
is more versatile than the Q-value-based one in Eq. 1, serving as a preferable alternative. In addi-
tion, policies may inherently enjoy lower variance than value functions, contributing to improved
performance and stability (Greensmith et al., 2004).

Policy-based Catastrophic Forgetting. Even in value-based continual RL, it is preferable to em-
ploy the policy-based definition of catastrophic forgetting based on Eq. 2 for an incremental update
of the meta learner. Akin to the Q-value-based catastrophic forgetting in Eq. 3, the optimal meta
policy πM

k in the k-th environment is the minimizer by solving the following objective function:

πM
k = argmin

π̃M
k

k∑
i=1

∑
s

µπi
i (s)dπ

(
πi(·|s), π̃M

k (·|s)
)
. (4)

Incremental Softmax Meta Learner Update for Value-based Continual RL. Define the weight
function wQ

i (s, a) = µQi

i (s)πQi(a|s) for each i ∈ [K]. For any measurable function f(s, a)
and weight function w with

∑
s,a w(s, a) = 1 and w(s, a) ≥ 0 for each s and a, we define

Ew [f ] =
∑

s,a w(s, a)f(s, a). When equipped with the categorical representation, the Q-values
can be converted into a Softmax (Boltzmann) policy, allowing the value-based continual RL to
minimize the policy-based catastrophic forgetting objective defined in Eq. 4. Specifically, given a
temperature τ , we denote πQi(a|s) = exp (Qi(a|s)/τ)

/∑
a′ exp (Qi(a

′|s)/τ). By employing the
KL divergence as dπ , we derive a concise meta learner update rule in Proposition 1.
Proposition 1 (Incremental Softmax Q-Value-based Meta Learner Update). Denote π̃M

k (a|s) =

exp
(
Q̃M

k (a|s)/τ
)/∑

a′ exp
(
Q̃M

k (a′|s)/τ
)

. After a softmax policy transformation, the Q-value-
based meta learner incremental update is written as

QM
k = argmin

Q̃M
k

k−1∑
i=1

EwQ
i

[
log

πM
k−1

π̃M
k

]
+ EwQ

k

[
log

πQk

π̃M
k

]
= argmax

Q̃M
k

k∑
i=1

EwQ
i

[
log π̃M

k

]
. (5)

The proof of Proposition 1 is straightforward and is therefore deferred to Appendix C.2 for com-
pleteness. Crucially, minimizing the policy-based catastrophic forgetting in Eq. 5 is simply equiv-
alent to the Maximum Likelihood Estimator (MLE) by fitting the meta learner QM

k to a mixture
of state-action distributions across encountered environments. We highlight that the final simplified
objective in Eq. 5 is independent of QM

k−1 and Qk; however, knowledge integration in principle takes
the form of an incremental update rule, which we instantiate in Section 3.2.1.

3.1.2 KNOWLEDGE TRANSFER VIA ADAPTIVE META WARM-UP

Challenges. An effective knowledge transfer necessitates rapidly adapting to the new environment
by taking advantage of the previous knowledge if accessible. However, the commonly used finetun-
ing is effective when tasks are similar, but can lead to negative transfer issue that frequently occurs
in continual RL (Ahn et al., 2025; Wolczyk et al., 2022). The negative transfer, a crucial factor of the
loss of plasticity (Dohare et al., 2024), leads to performance degradation owing to the dissimilarity
between the two tasks. Training from scratch (i.e., reset) is easy to implement to circumvent the
negative transfer (Chen et al., 2024; Ahn et al., 2025). However, this naive warm-up lacks flexibility
and fails to make full use of the accumulated knowledge to speed up the adaptation to a new task.

Adaptive Meta Warm-Up via One-vs-all Hypothesis Test. When a new task arrives, it is a com-
mon strategy to initialize the fast learner with parameters from the meta learner. Nonetheless, knowl-
edge and skills previously acquired in past tasks may become misleading when the new environment

4
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differs substantially. For instance, it is particularly evident that humans make incorrect decisions or
take suboptimal actions when the new information contradicts earlier experiences. To harmonize the
potentially conflicting objectives, we propose an adaptive meta warm-up approach that chooses the
most effective warm-up strategy among the preceding meta learner, a random learner (i.e., reset),
and the preceding fast learner (i.e., finetune). Formally, the adaptive meta warm-up is framed as
a one-vs-all hypothesis test based on policy evaluation during the early interaction with a new envi-
ronment. When the k-th task arrives, we have access to three types of warm-up learners, including a
preceding fast learner Qk−1, a meta policy πM

k−1 with the softmax transformation from QM
k−1, and a

random Q function Q0 associated with the policy π0. Evaluating the three warm-up learners yields
their value functions defined by V f

k = Eπk−1
[R], V M

k = EπM
k−1

[R], and V r
k = Eπ0 [R]. For each

task k that arrives, the one-vs-all hypothesis test with a composite null is expressed as

H0 : V M
k ≤ max

{
V f
k , V r

k

}
vs. H1 : V M

k > max
{
V f
k , V r

k

}
. (6)

When the null hypothesis H0 cannot be rejected, we further compare V f
k and V r

k via a common
parametric hypothesis test, e.g., t-test. In most scenarios, picking the best warm-up strategy accord-
ing to the empirical ranking often performs favorably. However, in safety-critical scenarios, e.g.,
autonomous driving, a rigorous statistical test is crucial either by bootstrapping or anytime valid
inference (Ramdas et al., 2023) on the adaptively collected dataset used for the policy evaluation.

Meta Warm-Up via Behavior Cloning Regularization. Once we reject H0, we are ready to per-
form the meta warm-up. However, directly initializing the fast learner Qk via the meta policy πM

k−1
is infeasible as the meta learner is now represented as a policy instead of a Q function under the
update in Proposition 1. An easy and effective way to address this policy-to-value transfer mismatch
is to impose Behavior Cloning (BC) regularization in the early training phase, when the meta policy
πM
k serves as the expert for data collection and early exploration. Concretely, Qk is the minimizer

of the BC regularized loss L(Qk) = L0(Qk) + λEs

[
KL(πM

k−1(·|s)||πQk(·|s))
]
, where L0(Qk) is

the original loss to update Qk, such as the MSE or Huber loss in DQN (Mnih et al., 2015).

3.1.3 ALGORITHM: VALUE-BASED FAME

Meta Buffer M in Knowledge Integration. In the last N steps of updating the fast learner in
each environment, we additionally store the state-action pairs in a meta learner’s buffer M, which
are used to approximate wQ

i for i ∈ [k] in Eq. 5. Note that the stored state-action pairs are only a
small portion of the training dataset for each task (around 1% or 2% in our experiments), yielding
a moderate size of the meta buffer M. The moderate and fixed size of a meta buffer is crucial in
reality, as we are not expected to store too much past data in continual RL.

Algorithm 1 Value-based FAME Update in the k-th Environment

1: Initialize: Fast Buffer F , Meta Buffer M, QM
k−1, Qk−1, Q0,

Warm-Up Step L, Estimation Step N .
2: # Knowledge Transfer: Adaptive Meta Warm-Up
3: Initialize Qk in {Qk−1, Q

M
k , Q0} via Eq. 6 within L steps

4: for t = L to T do
5: Observe St, take action At, receive Rt, observe St+1

6: Store (St, At, Rt, St+1) in F
7: Update Qk

8: if t > T −N then
9: Store (St, At) in M # To Estimate wQ

k
10: end if
11: end for
12: Reset F
13: # Knowledge Integration: Minimize Catastrophic Forgetting
14: Update QM

k via Eq. 5 using state-action pairs in M

Algorithm. Denote the buffer
of the fast learner as F and
Q0 as the randomly initialized
Q function. We denote T as
the timesteps in each environ-
ment. As suggested in Algo-
rithm 1, when the k-th envi-
ronment arrives, we warm start
the fast learner Qk via the
adaptive meta warm-up strat-
egy among the preceding meta
learner QM

k−1, the preceding fast
learner Qk−1 and a random
learner Q0 (i.e., reset) within
the first L steps. The adaptive
meta warm-up makes full use of
previous information to perform
an adaptive knowledge transfer.
Once the k-th task ends, the knowledge integration phase starts, when the meta learner QM

k is up-
dated via Eq. 5 on the data collected in the meta buffer M. The meta learner QM

k incorporates the
acquired knowledge in Qk into QM

k−1 via an incremental update rule in principle.
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3.2 POLICY-BASED CONTINUAL RL WITH CONTINUOUS ACTION SPACES

3.2.1 KNOWLEDGE INTEGRATION: CATASTROPHIC FORGETTING MINIMIZATION PRINCIPLE

As opposed to the value-based continual RL with an incremental softmax meta learner updates in
Proposition 1, in policy-based continual RL, we directly minimize the policy-based catastrophic
forgetting in Eq. 4 regarding the parameterized policy function. The detailed incremental update
rule depends on the choice of dπ and how we represent the policy in a continuous action space.
Next, we will introduce two variants of policy-based continual RL methods when equipped with the
forward KL divergence and Wasserstein distance, respectively.

Method 1 (FAME-KL): Policy Distillation under Forward KL Divergence. We show that the
policy-based knowledge integration reduces to a form of policy distillation. Analogous to Propo-
sition 1 in the value-based continual RL, the policy-based knowledge integration in Eq. 4, when
instantiated with the forward KL divergence under an accessible probabilistic policy, yields an up-
date rule as

πM
k = argmax

π̃M
k

k∑
i=1

Ewi

[
log π̃M

k

]
, (7)

where we recall that wi(s, a) = µπi
i (s)πi(a|s) denotes the policy-based steady state-action distribu-

tion on the i-th environment. Importantly, the policy-based knowledge integration objective above
coincides with the knowledge distillation update used in policy distillation (Rusu et al., 2015) and
with typical multi-task RL formulations (Teh et al., 2017), establishing an intriguing connection.

Method 2 (FAME-WD): Wasserstein Distance (WD)-based Knowledge Integration. Although
the KL divergence is often adopted for its computational simplicity, the Wasserstein distance is
preferable when comparing more complex policy distributions. In contrast to the KL divergence,
which only measures pointwise differences between distributions, the Wasserstein distance by defi-
nition explicitly accounts for the underlying geometry of the data space, such as the probability space
of the policy outputs, and therefore provides a more informative notion of distributional discrep-
ancy (Panaretos & Zemel, 2019; Arjovsky et al., 2017). In Proposition 2, we derive the policy-based
incremental update rule under the Wasserstein distance. Particularly, when the policy function is rep-
resented by a (multivariate) Gaussian distribution, as is common in many policy-based algorithms,
a closed-form incremental update rule becomes available, enabling efficient knowledge integration
for the meta learner. The proof is given in Appendix C.3.
Proposition 2 (Incremental Policy-based Meta Learner Update under Wasserstein Distance). Con-
sider dπ to be the squared 2-Wasserstein distance denoted by W 2

2 in Eq. 2 of Definition 2. The policy
is represented as an independent (multivariate) Gaussian distribution over the action a. Minimizing
policy-based catastrophic forgetting in Eq. 4 is equivalent to:

πM
k = argmin

π̃M
k

{
k−1∑
i=1

∑
s

µπi
i (s)W 2

2

(
π̃M
k (·|s), πM

k−1(·|s)
)
+
∑
s

µπk

k (s)W 2
2

(
π̃M
k (·|s), πk(·|s)

)}
.

(8)

3.2.2 KNOWLEDGE TRANSFER VIA ADAPTIVE META WARM-UP

For the adaptive meta warm-up in policy-based RL, we perform policy evaluation across the first L
steps and conduct the one-vs-all hypothesis test in Eq. 6 when a new task arrives, which is similar to
value-based continual RL. Once we determine the best-performing warm-up policy among the fast
policy πk−1, the meta policy πM

k−1, and a random policy π0, we directly initialize the fast policy.
Using parameter initialization as the meta warm-up strategy is more convenient for deployment than
adding the BC regularization used in the value-based continual RL introduced in Section 3.1.2.

Algorithm. Since the description of the policy-based FAME algorithm closely parallels Algo-
rithm 1, we defer it with a discussion of computational cost and practical guidance to Appendix D.

4 EXPERIMENTS

In this section, we validate our FAME approach across a sequence of tasks from multiple environ-
ments and domains, including the pixel-based tasks with a discrete action space in Section 4.1 and

6
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control problems with a continuous action space in Section 4.2. The central hypothesis is that the
interplay between knowledge transfer and knowledge integration of the fast and meta learners in
FAME benefits both forward transfer (i.e., plasticity) and catastrophic forgetting (i.e., stability).

Evaluation Metrics. We employ the standard metrics (Wolczyk et al., 2021; 2022) in continual RL
to evaluate average performance, forgetting to measure stability, and forward transfer to quantify
plasticity. Let pi(t) be the success rate or average returns in task i by using the policy at time t with
t ∈ [K · T ], where K is the number of environments, and T is the total timesteps in each task. pi(t)
is task-specific with pi(t) ∈ R for our pixel-based tasks and pi(t) ∈ [0, 1] in our control tasks.

• Average Performance. The average performance is evaluated on the policy at time t across all K
tasks by PK(t) = 1

K

∑K
i=1 pi(t). By default, the average performance is calculated on the final

policy when t = K × T . For FAME, this metric is calculated on the meta learner.
• Forward Transfer (FT): The forward transfer is defined as the normalized area between the

training curve of the considered algorithm and the baseline. Namely, FT = 1
K

∑K
i=1 FTri with

FTri =
AUCi −AUCb

i

1−AUCb
i

, AUCi =
1

∆

∫ i·∆

(i−1)·∆
pi(t)dt, AUCb

i =
1

∆

∫ i∆

(i−1)∆

pbi (t)dt. (9)

To evaluate this metric in pixel-based tasks, we first normalize pi(t) in each task to ensure AUCi ∈
[0, 1] and then we calculate a normalized metric of the forward transfer.

• Forgetting (F): Forgetting is the performance difference between the policy at the end of a task
and after the whole sequence of tasks. Namely, F = 1

K

∑K
i=1 Fi with Fi = pi(i ·T )− pi(K ·T ).

Experimental Setup. (1) For the pixel-based tasks, we perform experiments on MinAtar (Young
& Tian, 2019) and Atari games. MinAtar is a commonly used continual RL benchmark (Anand
& Precup, 2023; Tang et al., 2025) with relatively lighter computational requirements, allowing us
to sweep a range of hyperparameters, report statistical results averaged over 30 seeds, and probe
the mechanism and advantages of our proposal. We employ DQN (Mnih et al., 2015) in breakout,
freeway, and spaceinvaders games, and run for 3.5M steps by randomly choosing each of the three
games every 500k steps, i.e., 7 tasks in each sequence. We study two sequences of Atari games
following (Malagon et al., 2024), with the 10 playing modes of the ALE/SpaceInvaders-v5 environ-
ment and 7 playing modes of the ALE/Freeway-v5 environment. We run Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) and each task is run for 1M timesteps. (2) For the robotics arm
manipulation tasks, we employ Meta-World (Yu et al., 2020), a standard and established benchmark
commonly employed in continual RL (Malagon et al., 2024; Chung et al., 2024; Ahn et al., 2025).
Note that the traditional Continual World (Wolczyk et al., 2021) is built on top of Meta-World with
a specific sequence of tasks (e.g., CW10 or CW20). Instead, we evaluate on 3 randomly selected
task sequences following (Chung et al., 2024) in Meta-World (see Appendix F.1), offering a more
flexible and robust evaluation. We deploy the Soft Actor-Critic (SAC) algorithm (Haarnoja et al.,
2018) with 1M timesteps on each task with 10 tasks in each sequence.

4.1 PIXEL-BASED ENVIRONMENTS WITH DISCRETE ACTION SPACES

Comparison Methods. (1) For MinAtar, we follow (Anand & Precup, 2023) and compare
our FAME approach with DQN (Reset), DQN-Finetune (Finetune), DQN with a large
buffer (LargeBuffer), DQN with multi-heads that knows the task identity (MultiHead),
PT-DQN (Anand & Precup, 2023). Both fast and meta learners in our FAME method employ the
same DQN architecture. (2) For Atari games, we add PackNet (Mallya & Lazebnik, 2018) and
ProgressiveNet (Rusu et al., 2016) as baselines. Both fast and meta learners in FAME adopt
the same PPO architecture. Except for Finetune, we reset the parameters of all baseline methods
when each new environment arrives. By contrast, FAME applies the adaptive meta warm-up among
fast, random initialization, and initial learning with behavior cloning regularization in Section 3.1.2.
More details of our experimental setup and hyperparameters are given in Appendix E.1.

Main Results: MinAtar. Table 1 summarizes the metric scores of all methods, demonstrating that
FAME consistently outperforms other baselines in improving knowledge transfer and retaining all
knowledge to mitigate catastrophic forgetting. Notably, for the average performance, FAME is most
stable with minimal variations among all algorithms except for PT-DQN, for which the permanent
value function (i.e., the counterpart of the meta learner) in (Anand & Precup, 2023) has limited
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capability to retain the knowledge and thus keeps almost zero average performance. Regarding the
forward transfer, LargeBuffer performs similarly to FAME as storing more past knowledge also
contributes to adapting to a known environment. A detailed sensitivity analysis about λ, Warm-Up
step L, and Estimation step N is provided in Appendix E.2.

Table 1: Main results on MinAtar on Average Performance (Avg. Perf ),
Forward Transfer (FT), and Forgetting. Results (Mean ± SE) are averaged
over 10 sequences, each with 3 seeds. ↑ denotes a positive metric (more is
better), while ↓ is a negative one (less is better). Reset is the baseline for
evaluating FT. Forgetting is normalized by the standard deviation in each task.

Method Ave. Perf ↑ FT ↑ Forgetting ↓Breakout Spaceinvader Freeway

Reset 6.51 ± 1.67 3.29 ± 3.09 0.74 ± 0.38 0.00 ± 0.00 1.31 ± 0.23
Finetune 10.62 ± 2.75 4.95 ± 2.92 0.89 ± 0.49 0.13 ± 0.03 1.26 ± 0.32
MultiHead 6.85 ± 1.76 3.26 ± 2.99 0.94 ± 0.42 -0.01 ± 0.00 1.25 ± 0.22
LargeBuffer 10.71 ± 2.84 3.24 ± 2.91 1.16 ± 0.59 0.16 ± 0.02 1.65 ± 0.33
PT-DQN 0.39 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.07 ± 0.02 1.64 ± 0.02

FAME 14.54 ± 0.58 18.72 ± 0.52 1.69 ± 0.17 0.16 ± 0.03 0.72 ± 0.13

Performance of Knowl-
edge Integration. Fig-
ure 2 (left) presents the av-
erage performance of all
methods at the end of each
task, reflecting the ten-
dency of catastrophic for-
getting. It turns out that
FAME achieves the highest
average performance in the
whole training process in
most cases, validating the
effectiveness of the meta
learner in retaining information through knowledge integration.
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Figure 2: (Left) Average performance of the policy across each task across 10 sequences on MinAta. Results
are averaged over 3 seeds. The vertical lines at each point represent the standard errors. (Right) The selection
ratio among three warm-up strategies when the arriving environment is previously encountered or novel.
Performance of Adaptive Meta Warm-Up in Knowledge Transfer. Figure 2 (right) exhibits the
warm-up selection ratio when the agent encounters different types of arriving environments, reveal-
ing the adaptive mechanism. Concretely, if the agent has already stored relevant data previously in
M about the arriving environment, the meta warm-up is chosen with a 95.1% probability. When a
new task occurs against the agent’s knowledge, the random initialization is more commonly selected
in the adaptive meta warm-up. The learning curves of all algorithms are given in Appendix E.3.

Table 2: Main results on Atari games on Average Perfor-
mance (Avg. Perf ) and Forward Transfer (FT). Results (Mean ±
SE) are averaged over 3 seeds. The Forgetting metric is omitted
as PackNet and ProgressiveNet store past model param-
eters and have zero forgetting. Reset is the baseline for FT.

Method Freeway SpaceInvader
Avg. Perf ↑ FT ↑ Avg. Perf ↑ FT ↑

Reset 0.16 ± 0.18 0.00 0.10 ± 0.22 0.00
Finetune 0.21 ± 0.17 0.53 0.61 ± 0.41 0.65
ProgressiveNet 0.39 ± 0.25 0.21 0.61 ± 0.03 0.06
PackNet 0.41 ± 0.24 0.18 0.47 ± 0.06 0.17

FAME 0.90 ± 0.12 0.68 0.96 ± 0.02 0.63

Main Results: Atari games. We
further compare FAME with more
baselines on two sequences of Atari
games: ALE/SpaceInvaders-v5 and
ALE/Freeway-v5. Table 2 showcases
that FAME outperforms all baselines in
terms of average performance and for-
ward transfer. While Finetune also
benefits from forward transfer, espe-
cially on SpaceInvader, where its for-
ward transfer is comparable to FAME,
we hypothesize that this advantage
arises from the similar underlying en-
vironmental dynamics and objectives in each sequence of tasks, despite the distinct playing modes.
We also provide the learning curves of all considered algorithms in Appendix E.3.

4.2 ROBOTIC MANIPULATION TASKS WITH CONTINUOUS ACTION SPACES

Comparison Methods. (1) Reset; (2) FineTune; (3) Average: we average the Temporal Dif-
ference (TD) targets among all past tasks in evaluating the critic loss; (4) PackNet; (5) FAME-KL:
we employ knowledge integration under KL in Eq. 7 (Method 1); (6) FAME-WD: we apply knowl-
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edge integration under Wasserstein distance in Eq. 8 (Method 2). All methods share the same net-
work architecture as standard SAC. In adaptive meta warm-up, we perform the policy evaluation for
10 episodes among a random policy and the preceding fast and meta policies, and then initialize the
fast policy with the best-performing one. The collected data in evaluation is also stored in the fast
learner’s replay buffer F without incurring additional interaction costs with the environment. More
experimental details of our FAME methods (5) and (6) are provided in Appendix F.1.

Table 3: Main results on Meta-World on Average Perfor-
mance (Ave. Perf ), Forward Transfer (FT), and Forgetting
averaged over 3 sequences. Results are presented as averages
and standard errors across 10 seeds.

Methods Avg. Perf ↑ FT ↑ Forgetting ↓
Reset 0.093 ± 0.017 0.000 ± 0.000 0.710 ± 0.030
Finetune 0.037 ± 0.011 -0.265 ± 0.028 0.427 ± 0.033
Average 0.013 ± 0.007 -0.530 ± 0.024 0.070 ± 0.022
PackNet 0.491 ± 0.025 -0.194 ± 0.018 0.000 ± 0.000
FAME-KL 0.733 ± 0.026 0.022 ± 0.015 0.073 ± 0.019
FAME-WD 0.767 ± 0.024 -0.003 ± 0.014 0.023 ± 0.015

Main Results. As exhibited in Table 3,
both FAME-KL and FAME-WD outperform
most baselines significantly. PackNet
achieves zero forgetting by storing (masks
of) past model parameters and knowing
the task identifiers and number in advance,
which is less practical in real scenarios.
By contrast, the superior forward transfer
of FAME indicates that the adaptive meta
warm-up fosters the fast learner to adapt
to a new environment by leveraging prior
knowledge from the meta learner. Moreover, the highest average performance and almost minimal
forgetting of our FAME approaches highlight that the meta learner consolidates all past knowledge
by conducting incremental updates in knowledge integration.
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Figure 3: (Left) Performance profile of the fast learner across tasks,
where the y-axis shows the proportion of tasks that achieve a success rate
greater than or equal to the x-axis value. (Right) Average performance
by evaluating the average success rates in past tasks across 10 seeds.

Performance of Knowledge
Transfer. To comprehensively
verify the knowledge transfer
benefit due to the adaptive meta
warm-up in FAME, we present
the performance profile (Agar-
wal et al., 2021) that reflects the
overall performance of the fast
learner over the whole sequence
of tasks. Figure 3 (left) sug-
gests that both FAME methods
outperform all baselines, sub-
stantiating that the meta learner
effectively consolidates knowl-
edge and enhances knowledge
transfer. Learning curves and performance profiles for each sequence are also given in Appendix F.2.

Performance of Knowledge Integration. To reflect the tendency of the catastrophic forgetting of
FAME, we also illustrate the average performance of the meta learner at the end of each task and
then take the average over 3 sequences. As suggested in Figure 3 (right), FAME-KL and FAME-MD
enjoy the highest average performance over time across all encountered tasks.

5 DISCUSSIONS AND CONCLUSION

In this paper, we contribute to the foundation of continual RL and develop a novel dual-learner
algorithm to conduct the knowledge transfer and integration via the coupled update of fast and
meta knowledge learners. Two ideas might be worth reemphasizing here. (1) Adaptively selecting
practical prior knowledge (e.g., via the hypothesis test) is crucial to overcoming the negative transfer
issue. (2) Deriving an incremental update rule based on existing multi-task learning objectives is
necessary to connect continual and multi-task RL.

Limitations and Future Work. In this study, a meta learner is utilized to retain all knowledge.
Alternatively, it is also possible to learn an effective latent representation that can not only distill all
knowledge but also perform efficient reasoning to guide the adaptation to a new environment. Be-
yond the proposed adaptive meta warm-up, more techniques in knowledge transfer can be explored
in the future, such as context embedding. Lastly, extending our algorithm to the full continual RL
context without knowing the task boundary (possibly by developing online one-vs-all hypothesis
test) or assuming the same state and action spaces (Hu et al., 2025) is also valuable for practitioners.
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Ethics Statement. This study focuses on theoretical and algorithmic aspects of continual rein-
forcement learning, without involving human subjects, personal data, or sensitive applications. We
acknowledge that continual learners deployed in real-world systems could, without careful control
and monitoring, exhibit unexpected behaviors due to forgetting or transfer misalignment. However,
our study remains purely theory- and algorithm-oriented, and we therefore do not foresee any direct
ethical concerns arising from this research.

Reproducibility Statement. An anonymous source code is provided in the supplementary ma-
terials. The implementation of our experiments builds upon publicly available codebases, which
are appropriately referenced in the main text. Implementation details and the concrete proof of our
theoretical results are also included in the appendix, enabling reliable reproducibility of this study.

REFERENCES

David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael Littman. Policy and value
transfer in lifelong reinforcement learning. In International conference on machine learning, pp.
20–29. PMLR, 2018.
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A RELATED WORK

Measure of MDP Distance and Catastrophic Forgetting. Although in a different perspective,
Bisimulation metrics (Ferns & Precup, 2014) provides additional evidence to support the optimal
value functions that can be naturally used to measure the state similarity.

Continual RL. Continual RL (Khetarpal et al., 2022; Abel et al., 2023) addresses the challenges
in learning a sequence of decision-making tasks, particularly balancing the stability (i.e., mitigating
catastrophic forgetting) and plasticity (i.e., rapid adaptation to a new environment). Below, we cat-
egorize the existing literature into two groups based on their focus and make a detailed comparison
with our contribution in this study.

• Catastrophic Forgetting. (1) The replay-based approach is commonly applied to mitigate forget-
ting. A replay-based recurrent methodology was initially proposed for task-agnostic agents (Cac-
cia et al., 2022). RECALL (Zhang et al., 2023) leverages adaptive normalization on approxi-
mate targets and policy distillation on old tasks to enhance generality and stability. Generative
replay (Chen et al., 2024) was recently proposed using the diffusion model to memorize the high-
return trajectory distribution of each encountered task. Sun et al. (2025) continually learns a
generative model for experience replay without storing the past data within a model-based RL
framework. Similarly, Liu et al. (2025) learns an online world model and acts by planning via
model prediction control to construct a unified world dynamics to handle the catastrophic forget-
ting issue. (2) The second branch is regularization-based from distinct perspectives. Earlier, the
behavioral cloning was investigated across historical policies in (Wolczyk et al., 2022). Inspired by
complex synapses, (Kaplanis et al., 2018; 2019) developed the policy consolidation strategy by si-
multaneously remembering the agent’s policy at a range of timescales and regularizing the current
policy by its own historical experience. Sparse prompting (Yang et al., 2023) imposes a regular-
ization via dictionary learning to produce sparse masks as prompts, extracting a sub-network for
each task from a meta-policy network. (3) Model expansion also serves as a promising direction
to investigate (Mallya & Lazebnik, 2018; Malagon et al., 2024; Gaya et al., 2023). Gaya et al.
(2023) builds the subspace of policies to consider the scalable continual RL, while pointing out
the trade-off between the agent’s size and the performance of continual learning. Malagon et al.
(2024) uses a growing policy neural network and applies the attention mechanism to integrate the
knowledge from the previous policies and the current state to “self-compose” an internal policy.
Despite the effectiveness of model expansion-based approaches, the primary concerns lie in their
high memory and inference costs due to the leverage of previous policies with specific aggregated
strategies. For instance, the attention module is adopted in (Malagon et al., 2024), where the num-
ber of parameters grows linearly and the theoretical computational cost is quadratic with respect
to the number of tasks. Comparison: Our FAME approach with a dual-learner strategy can be
viewed as lying at the intersection of the three predominant paradigms. In the knowledge integra-
tion, minimizing catastrophic forgetting requires an experience replay from the meta buffer. In the
knowledge transfer, a behavior cloning regularization is possibly adopted to guide the exploration
if the meta learner is chosen as the best in the adaptive meta warm-up framework. Although em-
ploying a dual-learner strategy, FAME retains the fixed model sizes of both fast and meta learners
to avoid the stability issue, which is distinct from other model expansion approaches.

• Knowledge Transfer and Loss of Plasticity. The effectiveness of knowledge forward transfer
determines the loss of plasticity, a reduced capability to rapidly adapt to a new environment (Abel
et al., 2018; Dohare et al., 2024; Wolczyk et al., 2022; Tao et al., 2021). Within the continual
RL literature, a large number of studies mainly focus on the knowledge transfer and plasticity
capability through distinct perspectives. Xie & Finn (2022) improves the forward transfer and
mitigates the loss of plasticity by selectively identifying the most relevant samples for the new
task using learnable importance weights. The value function decomposing approach (Anand &
Precup, 2023) is proposed to perform an interplay between fast and slow learning at various levels
for value-based continual RL with a discrete action space to address the loss of plasticity. Through
the lens of optimization, Parseval network (Chung et al., 2024) imposes orthogonality constraints
to mitigate interference, while Muppidi et al. (2024) employs parameter-free online convex op-
timization to retain plasticity. A recent work by (Tang et al., 2025) establishes the connection
between plasticity and the churn via the Neural Tangent Kernel (NTK) matrix. Negative transfer
issue (Ahn et al., 2025) was revealed in the adaptation to a new task due to the task dissimilarity,
amplifying the loss of plasticity. As such, Reset and Distill (R&D) (Ahn et al., 2025) explicitly
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resets the policy in each new environment to avoid the negative transfer. Comparison: In terms of
the knowledge transfer, it is not necessary that the reset is always the best choice, especially when
the task similarity often exists. By leveraging the one-vs-all hypothesis test, we propose the adap-
tive meta warm-up approach that selectively discriminates the most effective weight initialization
and warm-up strategy to facilitate the knowledge transfer and reduce the loss of plasticity.

Transfer, Multi-task, and Meta RL. The knowledge transfer phase in our approach is closely
linked with transfer RL, where the accrued knowledge can be transferred through representa-
tion (Rusu et al., 2016; Devin et al., 2017), learned models (Finn & Levine, 2017; Eysenbach et al.,
2021), and network weights (Fernández & Veloso, 2006) or experience (Andrychowicz et al., 2017;
Tirinzoni et al., 2018; Xie & Finn, 2022). Although the set of tasks should be learned simultane-
ously, multi-task RL also integrates the component of knowledge transfer, such as (Caruana, 1997;
Sodhani et al., 2021; Teh et al., 2017; Yang et al., 2023; Rusu et al., 2015; Hausman et al., 2018).
As such, transfer RL has been an underpinning building block for both multi-task and continual RL,
e.g., the explicit knowledge transfer in our dual-learner algorithm. As opposed to multi-task RL, the
incremental or sequential learning nature of continual RL makes it more challenging to minimize
catastrophic forgetting. However, our study shows that minimizing catastrophic forgetting can be,
in principle, equivalent to the objectives in multi-task learning. Meta RL (Finn et al., 2017) can be
seen as an extension or generalization of multi-task RL, with explicit mechanisms for fast adaptation
and few-shot learning, and is also closely linked with continual RL. Continual Meta-Policy Search
(CoMPS) (Berseth et al., 2022) probes the setting of meta-training in an incremental fashion, extend-
ing meta-RL to a continual learning scenario. Comparison: The fast and meta learners adopted in
our FAME approach intermingle the key techniques of transfer, multi-task, and meta RL, illuminat-
ing their deep connections within our algorithmic framework. The interplay of knowledge transfer
and knowledge integration via the coupled updates between fast and meta learners simultaneously
tackles the involved challenges, exhibiting promising solutions to address continual RL.

B PRELIMINARIES: DEFINITION OF DISTRIBUTION DRIFT AND
CATASTROPHIC FORGETTING IN DEEP LEARNING

We first introduce the concept of drift in the process of learning a parameterized function f from the
source data distribution τS with the dataset DτS to the target data distribution τT with the dataset
DτT . After learning f on the source dataset DτS , we obtain the estimated function f̂τS . Then we
apply the same model architecture f on the target dataset DτT with any learning algorithms, and
finally we evaluate the drift of the attained f̂τT via δτS→τT defined as (Doan et al., 2021):

δτS→τT (XτS ) =
(
f̂τT (x)− f̂τS (x)

)
(x,y)∈DτS

(10)

Based on the definition of drift, we define the vanilla catastrophic forgetting ∆τS→τT as

∆τS→τT (XτS ) = ∥δτS→τT (XτS )∥22 =
∑

(x,y)∈DτS

(
f̂τT (x)− f̂τS (x)

)2
, (11)

where the catastrophic forgetting can be further simplified as ∆τS→τT =
∥∥ϕ (XτS )

(
ω∗
τT − ω∗

τS

)∥∥2
2

in the Neural Tangent Kernel (NTK) regime (Doan et al., 2021; Jacot et al., 2018), allowing the
proposal of new continual learning approaches. In deep learning, minimizing the catastrophic for-
getting ∆τS→τT is equivalent to minimizing a weighted drift in terms of the prediction function f̂
with the weights determined by the dataset.

C THEORETICAL RESULTS

C.1 INCREMENTAL Q-VALUE-BASED META LEARNER UPDATE IN PROPOSITION 3

In Proposition 3, we provide an efficient incremental update rule of the meta learner to minimize the
principled Q-value-based catastrophic forgetting that we define in Definition 2.
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Proposition 3 (Incremental Q-Value-based Meta Learner Update). Let dQ be ℓ2 loss in Eq. 1 in
Definition 2. Minimizing Q-value-based catastrophic forgetting in Eq. 3 is equivalent to:

QM
k = argmin

Q̃M
k

k−1∑
i=1

EwQ
i

[(
QM

k−1 − Q̃M
k

)2]
+ EwQ

k

[(
Qk − Q̃M

k

)2]
. (12)

Proof. Step 1: Optimality Condition. Recap wQ
i (s, a) = µQi

i (s)πQi(a|s). We aim to minimize
the Q-value-based catastrophic forgetting defined in Eq. 3:

QM
k = argmin

Q̃M
k

k∑
i=1

∑
s,a

wQ
i (s, a)

(
Qi(s, a)− Q̃M

k (s, a)
)2

.

For each s and a, by taking the derivative of the objective in Eq. 3 regarding Q̃M
k , the first-order

optimality condition is
k∑

i=1

wQ
i (s, a)

(
QM

k (s, a)−Qi(s, a)
)
= 0. (13)

By rewriting the two optimality conditions regarding QM
k and QM

k−1, we can attain that

QM
k (s, a) =

∑k
i=1 w

Q
i (s, a)Qi(s, a)∑k

j=1 w
Q
j (s, a)

, QM
k−1(s, a) =

∑k−1
i=1 wQ

i (s, a)Qi(s, a)∑k−1
j=1 w

Q
j (s, a)

.

Step 2: Incremental Update Rule. For brevity, we employ the expectation operation Ew. Based
on the two optimality conditions above, we can derive the following incremental update rule:

QM
k = argmin

Q̃M
k

k∑
i=1

EwQ
i

[(
Qi − Q̃M

k

)2]

= argmin
Q̃M

k

k−1∑
i=1

EwQ
i

[(
Qi −QM

k−1 +QM
k−1 − Q̃M

k

)2]
︸ ︷︷ ︸

1⃝

+EwQ
k

[(
Qk − Q̃M

k

)2]
. (14)

1⃝ =

k−1∑
i=1

EwQ
i

[(
Qi −QM

k−1

)2
+
(
QM

k−1 − Q̃M
k

)2
+ 2

(
Qi −QM

k−1

) (
QM

k−1 − Q̃M
k

)]

=

k−1∑
i=1

EwQ
i

[(
Qi −QM

k−1

)2
+
(
QM

k−1 − Q̃M
k

)2]
+

2
∑
s,a

(
QM

k−1(s, a)− Q̃M
k (s, a)

)(k−1∑
i=1

wQ
i (s, a)

(
Qi(s, a)−QM

k−1(s, a)
))

(a)
=

k−1∑
i=1

EwQ
i

[(
Qi −QM

k−1

)2
+
(
QM

k−1 − Q̃M
k

)2]

= C +

k−1∑
i=1

EwQ
i

[(
QM

k−1 − Q̃M
k

)2]
,

where (a) holds as
∑k−1

i=1 wQ
i (s, a)

(
Qi(s, a)−QM

k−1(s, a)
)
= 0 is the optimality condition for

QM
k−1 in Eq. 13 of Step 1. C =

∑k−1
i=1 EwQ

i

[(
Qi −QM

k−1

)2]
is a constant in terms of Q̃M

k . Putting
all together into Eq. 14, we have

QM
k = argmin

Q̃M
k

k−1∑
i=1

EwQ
i

[(
QM

k−1 − Q̃M
k

)2]
+ EwQ

k

[(
Qk − Q̃M

k

)2]
.
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C.2 PROOF OF PROPOSITION 1

Proposition 1 [Incremental Softmax Q-Value-based Meta Learner Update] Denote πM
k (a|s) =

exp
(
QM

k (a|s)/τ
) /∑

a′ exp
(
QM

k (a′|s)/τ
)
. After a softmax policy transformation, the Q-value-

based meta learner incremental update is rewritten as

QM
k = argmin

Q̃M
k

k−1∑
i=1

EwQ
i

[
log

πM
k−1

π̃M
k

]
+ EwQ

k

[
log

πQk

π̃M
k

]
= argmax

Q̃M
k

k∑
i=1

EwQ
i

[
log π̃M

k

]
,

Proof. We rely on the softmax transformation to transfer a meta Q function to a meta policy. As
such, the policy-based catastrophic forgetting in Eq. 4, when adapted from value-based continual
RL and equipped with KL divergence as dπ , can be expressed as

QM
k = argmin

Q̃M
k

k∑
i=1

∑
s

µQi

i (s)
[
KL
(
πQi(·|s)||π̃M

k (·|s)
)]

. (15)

where π̃M
k (a|s) = exp

(
Q̃M

k (a|s)/τ
)/∑

a′ exp
(
Q̃M

k (a′|s)/τ
)

. By the definition of the KL di-
vergence, we can rewrite the objective function in Eq. 15 as an incremental update rule:

QM
k = argmin

Q̃M
k

k∑
i=1

∑
s,a

µQi

i (s)πQi(a|s)log πQi(a|s)
π̃M
k (a|s)

= argmin
Q̃M

k

k∑
i=1

EwQ
i

[
log

πQi

π̃M
k

]

= argmin
Q̃M

k

k−1∑
i=1

EwQ
i

[
log

(
πQi

π̃M
k

πM
k−1

πM
k−1

)]
+ EwQ

k

[
log

πQk

π̃M
k

]

= argmin
Q̃M

k

{
k−1∑
i=1

EwQ
i

[
log

πM
k−1

π̃M
k

]
+ EwQ

k

[
log

πQk

π̃M
k

]}
+ C

= argmin
Q̃M

k

{
k−1∑
i=1

EwQ
i

[
log

πM
k−1

π̃M
k

]
+ EwQ

k

[
log

πQk

π̃M
k

]}
(16)

= argmin
Q̃M

k

{
k−1∑
i=1

EwQ
i

[
log

1

π̃M
k

]
+ EwQ

k

[
log

1

π̃M
k

]}

= argmax
Q̃M

k

k∑
i=1

EwQ
i

[
log π̃M

k

]
, (17)

where C =
∑k−1

i=1 EwQ
i

[
log πQi

πM
k−1

]
is a constant and is independent of Q̃M

k . Although it may be

trivial to keep the form of Eq. 16, it emphasizes an incremental update rule of QM
k based on QM

k−1

(πM
k−1) and Qk (πQk ). Eventually, this minimization leads to an Maximum Likelihood estimation

regarding the meta learner Q̃M
k in Eq. 17, on a mixture of state-action distribution of all encountered

environments up to k.

C.3 PROOF OF PROPOSITION 2

Proposition 2 [Incremental Policy-based Meta Learner Update under Wasserstein Distance] Con-
sider dπ to be the squared 2-Wasserstein distance in Eq. 2 of Definition 2 and the policy is repre-
sented as an independent (multivariate) Gaussian distribution over the action a. Minimizing policy-
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based catastrophic forgetting in Eq. 4 is equivalent to:

πk
M = argmin

π̃M
k

{
k−1∑
i=1

∑
s

µπi
i (s)W 2

2

(
π̃M
k (·|s), πM

k−1(·|s)
)
+
∑
s

µπk

k (s)W 2
2

(
π̃M
k (·|s), πk(·|s)

)}
.

Proof. Recap the objective of the policy-based catastrophic forgetting based on Eq. 4 under squared
2-Wasserstein distance:

πM
k = argmin

π̃M
k

k∑
i=1

∑
s

µπi
i (s)W 2

2

(
πi(·|s), π̃M

k (·|s)
)
.

where the squared 2-Wasserstain distance between two Gaussian distributions p and q has a closed-
form solution:

W 2
2 (p, q) = ∥νp − νq∥22 + tr

(
Σp +Σq − 2

(
Σ1/2

q ΣpΣ
1/2
q

)1/2)
, (18)

with the two Gaussian distributions denoted by N (νp,Σp) and N (νq,Σq). In particular, when the
policy is represented as an independent (multivariate) Gaussian distribution across the action a, it
implies that Σp and Σq are diagonal (i.e., variables are independent), then the squared 2-Wasserstain
distance in Eq. 18 can be further simplified as

W 2
2 (p, q) = ∥νp − νq∥22 + ∥σp − σq∥22 , (19)

where σp and σq are the diagonal vector of Σp and Σq , respectively. Then, the objective of the
policy-based catastrophic forgetting based on Eq. 4 can be simplified as

πM
k = argmin

ν̃M
k ,σ̃M

k

k∑
i=1

∑
s

µπi
i (s)

(
∥νi(s)− ν̃Mk (s)∥22 + ∥σi(s)− σ̃M

k (s)∥22
)
, (20)

where πi(·|s) is represented as a (multivariate) Gaussian distribution N (νi(s), σ
2
i (s)), where νi(s)

and σ2
i (s) are the mean (vector) and (the diagonal vector of) the variance. Similarly, πk

M is repre-
sented as a (multivariate) Gaussian distribution N (νMk (s), (σM

k (s))2).

Step 1: Optimality Condition. For each s, we take the derivative of Eq. 20 in terms of ν̃Mk and
σ̃M
k , respectively. Consequently, it arrives at the following optimality condition:

k∑
i=1

µπi
i (s)

(
νi(s)− νMk (s)

)
= 0 (21)

k∑
i=1

µπi
i (s)

(
σi(s)− σM

k (s)
)
= 0. (22)

Step 2: Incremental Update. We first rewrite Eq. 20 as

πM
k = argmin

ν̃M
k ,σ̃M

k

k−1∑
i=1

∑
s

µπi
i (s)∥νi(s)− ν̃Mk (s)∥22︸ ︷︷ ︸

1⃝

+
∑
s

µπk

k (s)∥νk(s)− ν̃Mk (s)∥22

+

k−1∑
i=1

∑
s

µπi
i (s)∥σi(s)− σ̃M

k (s)∥22︸ ︷︷ ︸
2⃝

+
∑
s

µπk

k (s)∥σk(s)− σ̃M
k (s)∥22.
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1⃝ =

k−1∑
i=1

∑
s

µπi
i (s)∥νi(s)− νMk−1(s) + νMk−1(s)− ν̃Mk (s)∥22

=

k−1∑
i=1

∑
s

µπi
i (s)

(
∥νi(s)− νMk−1(s)∥22 + ∥νMk−1(s)− ν̃Mk (s)∥22

)
+

2

k−1∑
i=1

∑
s

µπi
i (s)⟨νi(s)− νMk−1(s), ν

M
k−1(s)− ν̃Mk (s)⟩

=

k−1∑
i=1

∑
s

µπi
i (s)

(
∥νi(s)− νMk−1(s)∥22 + ∥νMk−1(s)− ν̃Mk (s)∥22

)
+

2
∑
s

⟨
k−1∑
i=1

µπi
i (s)

(
νi(s)− νMk−1(s)

)
, νMk−1(s)− ν̃Mk (s)⟩

(a)
=

k−1∑
i=1

∑
s

µπi
i (s)

(
∥νi(s)− νMk−1(s)∥22 + ∥νMk−1(s)− ν̃Mk (s)∥22

)
,

where (a) holds due to the optimality condition
∑k−1

i=1 µπi
i (s)

(
νi(s)− νMk−1(s)

)
= 0 we derived in

Eq. 21 of Step 1. Similarly, we can show this simplification regarding the variance:

2⃝ =

k−1∑
i=1

∑
s

σπi
i (s)∥σi(s)− σM

k−1(s) + σM
k−1(s)− σ̃M

k (s)∥22

=

k−1∑
i=1

∑
s

µπi
i (s)

(
∥σi(s)− σM

k−1(s)∥22 + ∥σM
k−1(s)− σ̃M

k (s)∥22
)
+

2

k−1∑
i=1

∑
s

µπi
i (s)⟨σi(s)− σM

k−1(s), σ
M
k−1(s)− σ̃M

k (s)⟩

=

k−1∑
i=1

∑
s

µπi
i (s)

(
∥σi(s)− σM

k−1(s)∥22 + ∥σM
k−1(s)− σ̃M

k (s)∥22
)
+

2
∑
s

⟨
k−1∑
i=1

µπi
i (s)

(
σi(s)− σM

k−1(s)
)
, σM

k−1(s)− σ̃M
k (s)⟩

(b)
=

k−1∑
i=1

∑
s

µπi
i (s)

(
∥σi(s)− σM

k−1(s)∥22 + ∥σM
k−1(s)− σ̃M

k (s)∥22
)
,

where (b) holds due to the optimality condition
∑k−1

i=1 µπi
i (s)

(
σi(s)− σM

k−1(s)
)
= 0 we derived in

Eq. 22 of Step 1. Putting all together, we have

πM
k = argmin

ν̃M
k ,σ̃M

k

k−1∑
i=1

∑
s

µπi
i (s)

(
∥νi(s)− νMk−1(s)∥22 + ∥νMk−1(s)− ν̃Mk (s)∥22

)
+
∑
s

µπk

k (s)∥νk(s)− ν̃Mk (s)∥22

+

k−1∑
i=1

∑
s

µπi
i (s)

(
∥σi(s)− σM

k−1(s)∥22 + ∥σM
k−1(s)− σ̃M

k (s)∥22
)
+
∑
s

µπk

k (s)∥σk(s)− σ̃M
k (s)∥22
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By removing the constant terms independent of ν̃Mk and σ̃M
k , we further have

= argmin
ν̃M
k ,σ̃M

k

k−1∑
i=1

∑
s

µπi
i (s)∥νMk−1(s)− ν̃Mk (s)∥22 +

∑
s

µπk

k (s)∥νk(s)− ν̃Mk (s)∥22

+

k−1∑
i=1

∑
s

µπi
i (s)∥σM

k−1(s)− σ̃M
k (s)∥22 +

∑
s

µπk

k (s)∥σk(s)− σ̃M
k (s)∥22

= argmin
π̃M
k

{
k−1∑
i=1

∑
s

µπi
i (s)W 2

2

(
π̃M
k (·|s), πM

k−1(·|s)
)
+
∑
s

µπk

k (s)W 2
2

(
π̃M
k (·|s), πk(·|s)

)}
.

This leads to the incremental policy-based meta learner update under the squared 2-Wasserstein
distance.

D POLICY-BASED FAME ALGORITHM

Algorithm Description. We first denote the fast buffer as F and π0 as the initialized policy. As
suggested in Algorithm 1, when the k-th environment arrives, we initialize the fast learner πk via
the adaptive meta warm-up among the preceding meta learner πM

k−1, the preceding fast learner πk−1

and a random learner π0 (reset strategy) within L steps. The adaptive meta warm-up makes full use
of previous information to perform an effective knowledge transfer. Once the k-th task ends, the
knowledge integration phase starts, when the meta learner πM

k is updated via Eq. 7 (FAME-KL) or
via Eq. 8 (FAME-MD) on the data collected in the meta buffer M. The meta learner incrementally
incorporates the knowledge from πk into πM

k−1, leading to an updated meta learner πM
k .

Algorithm 2 Policy-based FAME Update in the k-th Environment

1: Initialize: Fast Buffer F , Meta Buffer M, πM
k−1, πk−1, π0, Warm-Up Step L, Estimation Step

N .
2: # Knowledge Transfer: Adaptive Meta Warm-Up
3: Initialize πk in {πk−1, π

M
k , π0} via Eq. 6 within L steps

4: for t = L to T do
5: Observe St, take action At, receive Rt, observe St+1

6: Store (St, At, Rt, St+1) in F
7: Update πk

8: if t > T −N then
9: Method 1 (FAME-KL): Store (St, At) in M # To Estimate wk

10: Method 2 (FAME-WD): Store St in M # To Estimate µπk

k
11: end if
12: end for
13: Reset F
14: # Knowledge Integration: Minimize Catastrophic Forgetting
15: Method 1 (FAME-KL): Update πM

k via Eq. 7 on state-action pairs in M
16: Method 2 (FAME-WD): Update πM

k via Eq. 8 on states in M

Computational Cost, Performance Variability, and Practical Guidance. The increased com-
putational overhead of FAME-WD is negligible compared to FAME-KL when using standard Gaus-
sian policy parameterizations, which is common in RL in a continuous action space. As exhibited
in Eq. 19, the simplification of Wasserstein distance leads to the same output of the policy network,
ensuring a comparable computational cost to the KL divergence. We also remark that although the
Wasserstein distance better captures the data geometry, the Gaussian policy may restrict the Wasser-
stein distance’s capacity. Therefore, FAME-WD does not necessarily outperform FAME-KL. In
complex environments, the task involves high distributional shift and the change of stochasticity,
where capturing distribution geometry becomes critical. We believe that is when FAME-WD be-
comes potentially superior to FAME-KL.
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E EXPERIMENTS: VALUE-BASED CONTINUAL RL WITH DISCRETE ACTION
SPACE

E.1 DETAILS OF EXPERIMENTAL SETUP AND COMPARISON METHODS

Metric Calculation. As average performance is the main metric in continual RL, we report the
results for each environment. For the evaluation of forgetting, we first calculate the metric scores for
each environment and then normalize them by their standard deviation across all methods in each
environment. This standard normalization mitigates the influence of different reward scales of each
game and allows us to average them across games to report a more comprehensive forgetting score.

Hyperparameters: MinAtar. Our implementation adapts from the released code in (Anand &
Precup, 2023). For our FAME approach, after doing the line search of the hyperparameter in Sec-
tion E.2, we choose the estimation step N = 12000, i.e., the number of data to be stored in the
meta buffer M with size 100000 in each task, the policy evaluation step n = 600 for one-vs-all
hypothesis test, and the warm-up step L = 50000 (10% of the training steps in each task). The ratio
of stored data across the whole training steps in each task is 12000/500k = 2.4%. In the knowledge
integration phase, we train the meta learner across 200 epochs from a 1 × 10−3 learning rate with
a decaying strategy. The learning rate for the fast learner is kept as 1× 10−5, the same as the other
variants of DQN baselines. Every time a new environment arrives, we clear the fast buffer F and
reinitialize the parameters of all involved learners, except for DQN-Finetune. For FAME, after the
adaptive meta warm-up, we can automatically choose between a random initialization and an initial-
ization from the preceding fast learner with or without an additional behavior cloning regularization
term for demonstration. We choose τ = 1 in Proposition 1 across all tasks.

Sequences of Tasks: MinAtar. We randomly select 10 sequences of environments and then fix
them for reproductivity. We run 3 seeds for each sequence of tasks.

1. [‘breakout’, ‘spaceinvaders’, ‘breakout’, ‘spaceinvaders’,
‘spaceinvaders’, ‘freeway’, ‘breakout’]

2. [‘spaceinvaders’, ‘breakout’, ‘breakout’, ‘spaceinvaders’,
‘spaceinvaders’, ‘breakout’, ‘breakout’]

3. [‘breakout’, ‘spaceinvaders’, ‘breakout’, ‘freeway’, ‘freeway’,
‘breakout’, ‘freeway’]

4. [‘freeway’, ‘breakout’, ‘spaceinvaders’, ‘breakout’, ‘breakout’,
‘breakout’, ‘spaceinvaders’]

5. [‘freeway’, ‘freeway’, ‘spaceinvaders’, ‘spaceinvaders’,
‘breakout’, ‘breakout’, ‘freeway’]

6. [‘freeway’, ‘spaceinvaders’, ‘freeway’, ‘freeway’, ‘breakout’,
‘spaceinvaders’, ‘breakout’]

7. [‘freeway’, ‘spaceinvaders’, ‘breakout’, ‘freeway’,
‘spaceinvaders’, ‘freeway’, ‘breakout’]

8. [‘breakout’, ‘spaceinvaders’, ‘freeway’, ‘breakout’,
‘spaceinvaders’, ‘freeway’, ‘breakout’]

9. [‘breakout’, ‘spaceinvaders’, ‘spaceinvaders’, ‘spaceinvaders’,
‘freeway’, ‘breakout’, ‘breakout’]

10. [‘freeway’, ‘breakout’, ‘freeway’, ‘spaceinvaders’, ‘freeway’,
‘breakout’, ‘freeway’]

Remark: Choice of Repeated Tasks. The shuffled order of tasks is particularly useful to illumi-
nate the mechanism of our adaptive meta warm-up strategy. In real applications, tasks are not strictly
one-pass; the newly arriving task is agnostic, which can be either totally unknown or re-encountered
with a similar structure—especially in dynamic, cyclical, or seasonal settings. For instance, the
house robot is required to clean the floor again in the following weeks after it finishes this week. Al-
though a shuffled order of sequence is slightly less challenging than totally non-repeating scenarios,
evaluating mixed types of new tasks is also meaningful for general continual RL scenarios.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Hyperparameters: Atari Games. Our implementation adapts from the released code in (Malagon
et al., 2024). For our FAME approach based on PPO, we choose the estimation step N = 20000,
i.e., the number of data to be stored in the meta buffer M with size 200000 in each task, the policy
evaluation step n = 1200 for one-vs-all hypothesis test, and the warm-up step L = 50000 (5% of
the training steps in each task). The ratio of stored data over the whole training data in each task
is 20000/1M = 2%. In the knowledge integration phase, we train the meta learner across 200
epochs with a 2.5× 10−4 learning rate. The learning rate for the fast learner is also 2.5× 10−4. We
adopt λ = 1.0 for the behavior cloning regularization in the meta warm-up. We choose τ = 1 in
Proposition 1 across all tasks.

Sequences of Tasks: Atari Games. We follow the setting and adapt the implementation from
(Malagon et al., 2024). (1) For the ALE/SpaceInvaders-v5 environment, we have 10 tasks and each
task refers to one playing mode of the game. All tasks share the same objective: shoot space invaders
before they reach the Earth. Observations consist of 210 × 160 RGB images of the frames, and
actions are: do nothing, fire, move right, move left, a combination of move right and fire, and a
combination of move left and fire. The detailed descriptions of the 10 modes are as follows:

• Mode 0: It is the default setting. The player has three lives, and destroying space invaders is
rewarded (hitting the invaders in the back rows gives more reward).

• Mode 1: Shields move back and forth on the screen, instead of staying in a fixed position. Using
them as protection becomes unreliable.

• Mode 2: The laser bombs dropped by the invaders zigzag as they come down the screen, making
it more difficult to predict the place they are going to land.

• Mode 3: This task combines modes 1 and 2.
• Mode 4: Same as mode 0 but laser bombs fall considerably faster.
• Mode 5: Same as mode 1 but laser bombs fall considerably faster.
• Mode 6: Same as mode 2 but laser bombs fall considerably faster.
• Mode 7: Same as mode 3 but laser bombs fall considerably faster.
• Mode 8: Same as mode 0 but invaders become invisible for a few frames.
• Mode 9: Same as mode 1 but invaders become invisible for a few frames

(2) For the ALE/Freeway-v5 environment, the objective is to guide a chicken to cross a road with
busy traffic. The detailed descriptions of the 7 modes are as follows:

• Mode 0: It is the default setting.
• Mode 1: Traffic is heavier and the speed of the vehicles increases, the upper lane closest to the

center has trucks. Trucks are longer vehicles, and thus, more difficult to avoid.
• Mode 2: Trucks move faster than the fastest vehicles of the previous modes, and traffic is heavier.
• Mode 3: There are trucks in all lanes, and trucks move as fast as in mode 2 in some of the lanes.
• Mode 4: Similar traffic to previous modes, there are no trucks, but the velocity of the vehicles is

randomly increased or decreased.
• Mode 5: Same as mode 1 with the speed of the vehicles randomly changing and some vehicles

come in groups of two or three very close to each other.
• Mode 6: Same as the previous mode but with heavier traffic.

E.2 ABLATION STUDY IN MINATAR

Regularization Hyperparameter λ in Behavior Cloning. Table 4 suggests that an overly large or
small λ results in inferior performance in FT and Forgetting, although the average performance is
still favorable. For example, the metric scores in FT and Forgetting are worst for FAME (λ = 0.1).
In practice, we could choose λ = 1.0 to achieve the highest score in FT, or λ = 5.0 for the best
forgetting score.

Warm-Up Step L. Table 5 shows the comprehensive metric scores of FAME in terms of the number
of warm-up steps with the BC regularization. It is interesting to highlight that increasing the number
of warm-up steps boosts the FT and average performance on certain games, such as Spaceinvade
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Table 4: Ablation Study of Regularization Hyperparameter λ on MinAtar on Average Performance (Avg.
Perf ), Forward Transfer (FT), and Forgetting. Results are averaged over 10 sequences, each with 3 seeds.

Method Ave. Perf ↑ FT ↑ Forgetting ↓Breakout Spaceinvader Freeway

FAME (λ=0.1) 12.79 ± 0.42 19.52 ± 0.50 1.71 ± 0.17 0.13 ± 0.03 0.77 ± 0.08
FAME (λ=1.0) 14.54 ± 0.58 18.72 ± 0.52 1.69 ± 0.17 0.16 ± 0.03 0.72 ± 0.13
FAME (λ=5.0) 13.90 ± 0.55 19.38 ± 0.62 1.62 ± 0.16 0.14 ± 0.03 0.64 ± 0.07
FAME (λ=10.0) 13.88 ± 0.55 19.52 ± 0.57 1.63 ± 0.16 0.14 ± 0.03 0.67 ± 0.08

and Freeway. However, it worsens the general forgetting. To maintain the forgetting capability, it
is recommended to keep the warm-up until a specific phase of the fast learning, such as 5 × 104 or
20× 104 training steps.

Table 5: Ablation Study of Warm-Up Step L on MinAtar on Average Performance (Avg. Perf ), Forward
Transfer (FT), and Forgetting. Results are averaged over 10 sequences, each with 3 seeds.

Method Ave. Perf ↑ FT ↑ Forgetting ↓Breakout Spaceinvader Freeway

FAME (L = 1× 104) 13.34 ± 0.52 19.17 ± 0.68 1.64 ± 0.16 0.13 ± 0.03 0.74 ± 0.08
FAME (L = 5× 104) 14.54 ± 0.58 18.72 ± 0.52 1.69 ± 0.17 0.16 ± 0.03 0.72 ± 0.13
FAME (L = 20× 104) 13.28 ± 0.50 19.87 ± 0.66 1.65 ± 0.16 0.17 ± 0.03 0.72 ± 0.08
FAME (L = 50× 104) 11.83 ± 0.71 20.00 ± 0.96 1.87 ± 0.20 0.17 ± 0.03 0.78 ± 0.09

Weight Estimation Step N . For a fixed size of the meta learner buffer M, we vary the weight
estimation step N , which determines the collected data in a new environment used for knowledge
integration of the meta learner. Table 6 showcases that decreasing the weight estimation step consis-
tently worsens the performance across all metric scores. It is worthwhile to increase N in the future
to further enhance our performance, but this would require a larger buffer size of M than the one
employed in other baselines. We leave the investigation of the performance of FAME with a larger
buffer size of M as future work.

Table 6: Ablation Study of Weight Estimation Step N on MinAtar on Average Performance (Avg. Perf ),
Forward Transfer (FT), and Forgetting. Results are averaged over 10 sequences, each with 3 seeds.

Method Ave. Perf ↑ FT ↑ Forgetting ↓Breakout Spaceinvader Freeway

FAME (N=4000) 11.95 ± 0.47 14.69 ± 0.55 1.54 ± 0.17 0.14 ± 0.03 0.93± 0.08
FAME (N=8000) 12.49 ± 0.37 17.99 ± 0.58 1.67 ± 0.17 0.15 ± 0.03 0.86 ± 0.08
FAME (N=12000) 14.54 ± 0.58 18.72 ± 0.52 1.69 ± 0.17 0.16 ± 0.03 0.72 ± 0.13

Policy Evaluation Step n for Adaptive Meta Warm-Up. In Table 7, a proper range of the policy
evaluation step does not affect the metric scores significantly. As expected, a small policy evaluation
step may not sufficiently select the best warm-up strategy, thus decreasing FT. We found n = 600 is
sufficient to maintain a favorable FT, while managing the forgetting as well.

Table 7: Ablation Study of Policy Evaluation Step n on MinAtar on Average Performance (Avg. Perf ),
Forward Transfer (FT), and Forgetting. Results are averaged over 10 sequences, each with 3 seeds.

Method Ave. Perf ↑ FT ↑ Forgetting ↓Breakout Spaceinvader Freeway

FAME (n=300) 13.02 ± 0.49 19.19 ±0.65 1.42 ± 0.11 0.12 ± 0.03 0.69 ± 0.07
FAME (n=600) 14.54 ± 0.58 18.72 ± 0.52 1.69 ± 0.17 0.16 ± 0.03 0.72 ± 0.13
FAME (n=1200) 13.46 ± 0.63 19.39 ± 0.42 1.83 ± 0.20 0.16 ± 0.03 0.79 ± 0.08
FAME (n=5000) 13.09 ± 0.41 19.32 ± 0.52 1.84 ± 0.18 0.14 ± 0.03 0.76 ± 0.07
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E.3 MORE EXPERIMENTAL RESULTS

Learning Curves of the Fast Learner: MinAtar. We provide the learning curves of all considered
continual RL algorithms in the MinAtar environment across 10 sequences of tasks in Figure 4,
demonstrating the favorable adaptation capability of the fast learner guided by the adaptive meta
warm-up in each new environment.
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Figure 4: Learning curves of the fast learner in FAME on MinAtar Environments across 10 sequences of tasks.

Learning Curves of the Fast Learner: Atari Games. We provide the learning curves of all con-
sidered continual RL algorithms in the two Atari environments in Figures 5 and 6. They demonstrate
the favorable adaptation capability of the fast learner guided by the adaptive meta warm-up in each
new environment.
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Figure 5: Learning curves of the fast learner in FAME on the SpaceIvader environment averaged over 3 seeds.
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Figure 6: Learning curves of the fast learner in FAME on the Freeway environment averaged over 3 seeds.
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F EXPERIMENTS: POLICY-BASED CONTINUAL RL WITH CONTINUOUS
ACTION SPACE

F.1 DETAILS OF EXPERIMENTAL SETUP AND COMPARISON METHODS

Hyperparameter Details. Our implementation adapts from the released code in (Chung et al.,
2024) and (Malagon et al., 2024). We employ a replay buffer size of 1M for the fast learner and
0.1M for the meta learner. The buffer size for the meta learner should not be overly large as we
expect the algorithm to develop the continual learning capability without replaying too much data
in the past. When the new environment arrives, the fast learner starts the training guided by the
adaptive meta warm-up (i.e., knowledge transfer). At the same time, the replay buffer for the fast
learner is reset, which aims only to contain transitions from the current task. In contrast, the meta
learner maintains a buffer that stores the most recent 1% of transitions (50 episodes) leveraged to
update the fast learner for each task. After finishing a task, the meta learner is trained using 5000×k
mini-batches, where k is the number of tasks so far.

Choice of Task Sequence. We randomly choose 3 sequences of tasks from (Chung et al., 2024):

• [‘button-press-v2’, ‘plate-slide-back-side-v2’,
‘window-close-v2’, ‘plate-slide-side-v2’, ‘peg-unplug-side-v2’,
‘plate-slide-back-v2’, ‘coffee-button-v2’, ‘window-open-v2’,
‘handle-pull-side-v2’, ‘door-close-v2’],

• [‘plate-slide-back-side-v2’, ‘soccer-v2’, ‘sweep-into-v2’,
‘handle-pull-side-v2’, ‘plate-slide-side-v2’,
‘peg-unplug-side-v2’, ‘door-lock-v2’, ‘reach-v2’,
‘plate-slide-back-v2’, ‘coffee-button-v2’],

• [‘coffee-push-v2’, ‘button-press-v2’, ‘reach-v2’,
‘peg-unplug-side-v2’, ‘reach-wall-v2’, ‘door-close-v2’,
‘window-open-v2’, ‘handle-pull-side-v2’, ‘plate-slide-back-side-v2’,
‘soccer-v2’].

Table 8: Results on Meta-World on Average Performance (Ave. Perf ), Forward Transfer (FT), and Forgetting
for each sequence of tasks. Results are presented as averages and standard errors across 10 seeds. Each table,
from top to bottom, represents each sequence of tasks, respectively. The best results are highlighted in bold,
and the second best are underlined. ↑ denotes a positive metric (more is better), while ↓ is a negative one (less
is better). Reset is the baseline for evaluating FT.

Methods Avg. Perf ↑ FT ↑ Forgetting ↓
Reset 0.090 ± 0.029 0.000 ± 0.000 0.800 ± 0.040
Finetune 0.070 ± 0.026 -0.294 ± 0.039 0.480 ± 0.050
Average 0.020 ± 0.014 -0.584 ± 0.035 0.100 ± 0.030
PackNet 0.703 ± 0.041 -0.111 ± 0.028 0.000 ± 0.000
FAME-WD 0.87 ± 0.034 0.004 ± 0.022 0.010 ± 0.017
FAME-KL 0.86 ± 0.035 0.042 ± 0.019 0.050 ± 0.026

Methods Avg. Perf ↑ FT ↑ Forgetting ↓
Reset 0.110 ± 0.031 0.000 ± 0.000 0.680 ± 0.047
Finetune 0.040 ± 0.020 -0.252 ± 0.045 0.440 ± 0.052
Average 0.000 ± 0.000 -0.496 ± 0.039 0.110 ± 0.031
PackNet 0.413 ± 0.041 -0.249 ± 0.031 0.000 ± 0.000
FAME-WD 0.750 ± 0.044 0.008 ± 0.024 0.040 ± 0.032
FAME-KL 0.680 ± 0.047 0.004 ± 0.029 0.120 ± 0.036

Methods Avg. Perf ↑ FT ↑ Forgetting ↓
Reset 0.080 ± 0.027 0.000 ± 0.000 0.650 ± 0.052
Finetune 0.000 ± 0.000 -0.25 ± 0.036 0.360 ± 0.048
Average 0.020 ± 0.014 -0.509 ± 0.036 0.000 ± 0.002
PackNet 0.358 ± 0.043 -0.222 ± 0.032 0.000 ± 0.000
FAME-WD 0.680 ± 0.047 -0.020 ± 0.028 0.020 ± 0.032
FAME-KL 0.660 ± 0.048 0.022 ± 0.028 0.050 ± 0.030
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Table 9: Results on Meta-World averaged over the three sequences on Average Performance (Ave. Perf ),
Forward Transfer (FT), and Forgetting. Results are presented as averages and standard errors across 10 seeds.
The best results are highlighted in bold, and the second best are underlined. ↑ denotes a positive metric (more
is better), while ↓ is a negative one (less is better). Reset is the baseline for evaluating FT.

Methods Avg. Perf ↑ FT ↑ Forgetting ↓
Reset 0.093 ± 0.017 0.000 ± 0.000 0.710 ± 0.030
Finetune 0.037 ± 0.011 -0.265 ± 0.028 0.427 ± 0.033
Average 0.013 ± 0.007 -0.530 ± 0.024 0.070 ± 0.022
PackNet 0.491 ± 0.025 -0.194 ± 0.018 0.000 ± 0.000
FAME-WD 0.767 ± 0.024 -0.003 ± 0.014 0.023 ± 0.015
FAME-KL 0.733 ± 0.026 0.022 ± 0.015 0.073 ± 0.019

F.2 MORE EXPERIMENTAL RESULTS AND DETAILS.

Space and Computational Complexity of FAME. (1) In terms of space complexity, the dual
learner system of FAME requires an additional memory copy as the fast learner (the normal learner
in baselines such as Reset and Finetune), and an additional meta replay buffer with the same
size as the buffer of the fast learner, which is scalable as the total sample memory is fixed and inde-
pendent of the number of future tasks. (2) In terms of the computational cost, we employ the same
number of agent’s interaction steps with the environment for a fair comparison. In other words, the
policy evaluation occurs at the cost of reducing the policy optimization update steps in total. The
main additional computation cost is the updating of the meta-learner, which is efficiently conducted
in a supervised learning way. For instance, we found it only takes around a couple of minutes across
200 epochs to update the meta-learners in MinAtar after one task finishes. This additional computa-
tion overhead is negligible to the overall computation cost in the online training of RL algorithms.

Metric Scores. Table 8 presents detailed results on Average Performance (Ave. Perf ), Forward
Transfer (FT), and Forgetting for each sequence of tasks. Table 9 further shows the average score
over the three sequences. In summary, compared to the baselines, the FAME variants achieve su-
perior performance in Average Performance and Forward Transfer. For the Forgetting metric: as
PackNet retains its previous policies, its Forgetting score is 0. By contrast, Average fails to
learn meaningful knowledge and achieves poor overall performance, leaving it with nothing to “for-
get”. As a result, the best Forgetting score does not always align with the best Average Performance.

Evaluation of Performance Profile and Final Average Performance. The performance pro-
file (Agarwal et al., 2021; Dolan & Moré, 2002) provides a comprehensive view of the fast learner’s
overall performance across the entire task sequence. As shown in Figure 7 (left), both FAME vari-
ants consistently outperform all baselines, demonstrating the meta-learner’s ability to effectively
consolidate knowledge over time and facilitate transfer learning. Moreover, Figure 7 (right) high-
lights the advantage of FAME across all previously seen tasks. While baseline methods typically
degrade as more tasks are introduced, FAME-KL and FAME-MD achieve the highest average perfor-
mance—indicating minimal catastrophic forgetting and robust retention over time. Notably, the last
row in Figure 7 indicates the average performance profile and average performance over the three
sequences of tasks.

Learning Curves of the Fast Learner. Figure 8 showcases that the fast learner in our FAME
methods achieves higher success rates across three sequences of tasks throughout training. The first
three rows indicate the learning curves for the three sequences of tasks, while the last row represents
their average learning curve. Learning curves are averaged over 10 seeds, and the shade region
represents the standard error. This superiority implies that the adaptive meta warm-up enhances the
adaptation of the fast learner in each new environment.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this study, large Language Models (LLMs) are only used for minor language polishing and edit-
ing. They do not contribute to the theory, methodology, or content development.
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Figure 7: (Left) Performance profile of the fast learner across tasks, where the y-axis shows the proportion
of tasks that achieve a success rate greater than or equal to the x-axis value. (Right) Average performance
over time by evaluating the average success rates in the past tasks. Each Row represents the result for one
sequence of tasks. The last row shows the average performance of the three sequences.
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Figure 8: Learning curves of the fast learner on the Meta-World benchmark. The x-axis shows the total number
of environment interactions, and the y-axis indicates the success rate. Each Row represents the result for one
sequence of tasks. The last row shows the average performance of the three sequences.
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