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ABSTRACT

Large language models have gained powerful reasoning abilities through step-by-
step reasoning chains, enabling deep logical reasoning and complex task handling.
However, the shift from fast thinking to slow thinking (i.e., lengthy explicit reason-
ing steps) leads to massive token consumption, severely compromising practical
reasoning efficiency. To address this, existing studies attempt to compress reason-
ing chains into latent tokens (Implicit CoT), but they often suffer from significant
performance loss due to inadequate expression of original reasoning semantics.
This paper theoretically analyzes the additional training costs of Implicit CoT
when latent tokens lack effective supervision: as more steps are compressed, the
originally efficient learning chain learning degrades exponentially, even reverting
to the performance of “no CoT” when all intermediate processes are compressed.
To solve this, we propose a distribution alignment method that adds moderate
supervisory information to guide latent token distribution. Experimental results
show that intermediate state supervision effectively improves the learning efficiency
and stability of implicit CoT, significantly mitigating its reasoning performance
decline.

1 INTRODUCTION

Large language models (LLMs) have demonstrated strong performance on complex reasoning,
particularly under the Chain of Thought (CoT) paradigm (Wei et al., 2022), which decomposes
intricate reasoning problems into sequential steps to enhance reasoning ability (Zhao et al., 2023;
Lu et al., 2022; Hendrycks et al., 2021). Recently, slow thinking approaches (Li et al., 2025)
such as GPT4-o1 (OpenAI, 2025) and DeepSeek (Guo et al., 2025) have gained attention for
their effectiveness in mathematical and commonsense reasoning (Zhao et al., 2023; Ahn et al.,
2024). However, these methods typically produce lengthy intermediate reasoning steps, which incur
substantial computational costs (Zhu et al., 2025b; Zhang et al., 2023b). Furthermore, studies suggest
that these approaches suffer from verbosity issue. For example, Warner et al. (2025) showed that many
tokens generated during “thinking" process primarily serve linguistic fluency rather than substantive
reasoning. To address this issue, several efforts have proposed guiding models to produce more
concise reasoning chain, thereby reducing unnecessary linguistic redundancy (Warner et al., 2025;
Yan et al., 2025). While these methods have optimized linguistic conciseness to some extent, they
remain limited within the natural language space and cannot fundamentally replace the complete
reasoning process (Hao et al., 2024).

To further explore the reasoning capabilities of large language models in a broader potential space,
existing research has begun to attempt transforming the explicit discrete token representation of natural
language reasoning chains into dense, continuous representations (Implicit CoT and Continuous
Thoughts) (Xu et al., 2025; Shen et al., 2025; Hao et al., 2024). A typical approach, as illustrated in
Figure 1(b), implicit reasoning chains use special latent vectors to replace reasoning steps (Zhang
et al., 2025b), which not only aligns better with the compactness and abstraction of human reasoning
processes but also frees itself from the constraints of the natural language space, providing the model
with a more expressive potential representation. These studies offer new possibilities for enhancing
reasoning efficiency and performance while also opening new perspectives for understanding the
underlying reasoning mechanisms of language models.
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(a) Explicit CoT
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Answer

Transformer

question latent step step 2

Answer

Transformer

(b) Implicit CoT

Figure 1: Comparison of explicit and implicit Chain-of-Thought paradigms. Our paper specifically
analyses the implicit approach, in which latent tokens serve as intermediate reasoning steps. These
methods insert special tokens into the CoT context to capture the reasoning semantics of the original
steps. During the reasoning phase, this enables faster inference.

However, while implicit reasoning chains (Implicit CoT) offer a new research direction for im-
proving reasoning efficiency, existing methods generally face the challenge of declining reasoning
performance, making it difficult to match the impressive results of explicit reasoning chains (CoT)
in complex reasoning tasks (Zhu et al., 2025a; Hao et al., 2024). This performance loss poses a
significant challenge to the practical application and feasibility of implicit reasoning chains.

To elucidate the limitations of implicit reasoning chains in solving reasoning tasks, this study system-
atically investigates the inefficiencies of implicit CoT reasoning—implemented via the introduction
of special latent “thinking” tokens—through an analysis of the parity problem. Our theoretical
results identify two fundamental drawbacks of current implicit CoT approaches: (i) latent tokens in
implicit reasoning chains fail to effectively encode intermediate reasoning processes; and (ii) although
implicit reasoning chains can eventually acquire problem-solving patterns after extensive training,
their learning difficulty grows exponentially with the number of compressed steps. These findings
underscore the necessity of providing effective supervision for latent tokens in implicit reasoning
chains, a conclusion further corroborated by our experimental results on the parity problem.

Our main contributions are as follows:

• Reasoning ability of implicit CoT under unsupervised signals: We theoretically reveal the
drawbacks of the current implicit CoT in efficiently learning reasoning abilities. Our conclusion points
out that latent tokens struggle to effectively learn intermediate reasoning processes autonomously.

• Training costs brought by implicit CoT: We theoretically analyze the additional training costs
incurred when compressing the reasoning chain without effective supervision of latent tokens in
implicit CoT. Our analysis indicates that as more steps are compressed, the originally efficient
learning method of the reasoning chain degrades exponentially, even reverting to a level equivalent to
not using a reasoning chain at all when all intermediate processes are compressed.

• Distribution alignment method for training implicit CoT: Based on the above findings, we
believe that effective supervision of the potential tokens in implicit reasoning chains is necessary. We
propose a distribution alignment method to guide the learning of latent tokens, thereby improving
the learning efficiency of the model’s implicit CoT. Our experimental results demonstrate that
intermediate state supervision can effectively enhance the learning efficiency and stability of implicit
reasoning chains, significantly alleviating the decline in implicit CoT reasoning performance.

2 RELATED WORK

Discrete tokens, serving as symbolic representations of intermediate reasoning steps or cognitive
operations, have emerged as a promising paradigm to boost LLMs’ reasoning capabilities, significantly
improving task execution efficiency and performance. A popular reasoning paradigm in implicit
Chain-of-Thought (Implicit CoT) involves replacing original reasoning steps with special latent
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tokens to increase reasoning efficiency Zhu et al. (2025a); Chen et al. (2025). Prior to these studies,
research had already explored the use of learnable "pause tokens" in prompts to assist model thinking
Goyal et al. (2024). Additionally, Pfau et al. (2024) investigated the application of padding tokens in
LLM reasoning, suggesting that they help models address parallelization issues.

Recent studies have found that by progressively shortening the CoT, it can be compressed into a
limited number of tokens Hao et al. (2024), thereby improving reasoning efficiency. Shen et al. (2025)
introduced a teacher model at the final answer of the model based on progressively compressing
reasoning steps. By minimizing the difference between the teacher and student hidden activations,
explicit CoT supervision is injected into the implicit CoT generation process. Recently, Zhang et al.
(2025b) proposed a training framework for implicit CoT language models based on thinking tokens,
promoting the model’s rapid reasoning capabilities. Despite the potential of implicit reasoning chains
in enhancing reasoning efficiency, their reasoning performance often struggles to match that of
explicit reasoning chains Zhu et al. (2025a), severely limiting their application scenarios.

3 PRELIMINARIES AND SETUP

This section first defines the mathematical notations used in the paper, then systematically introduces
the foundational problem (parity problem), core object (Implicit CoT), and model architecture (Trans-
former) required for subsequent analysis, laying the groundwork for theoretical and experimental
discussions.

Notation. We denote the set {1, 2, . . . , n} as [n]. Vectors and matrices are denoted in bold
text (e.g., x,A), whereas scalars appear in plain text (e.g., y). For z ∈ Rn we write ϕ(z) =
(ϕ(z1), · · · , ϕ(zn))⊤, z2 = z ⊙ z = (z21 , · · · , z2n) and |z| = (|z1|, · · · , |zn|)⊤. The 2-norm is al-
ways denoted by ∥·∥. The multi-linear inner product or contraction of z1, · · · , zr ∈ Rn for any r ∈ N
is denoted as ⟨z1, · · · , zr⟩ :=

∑n
i=1 z1,i · · · zr,i. In particular, ⟨z1⟩ = z⊤

1 1n and ⟨z1, z2⟩ = z⊤
1 z2.

3.1 THE PARITY PROBLEM

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16Input: 𝒙

Latent Step 𝑥17 𝑥18 𝑥19 𝑥20

𝑥21 𝑥22

𝑥23

patent Step

Output: 𝒚s = 3

s = 2

s = 1

s = 0

Figure 2: Schematic of the k-Parity Problem. x17, · · · ,x22 represent intermediate reasoning steps,
which are replaced by latent tokens in the case of implicit Chain-of-Thought.

Given a set {1, · · · , d}, for d-bit inputs x = (xj)
d
j=1 ∼ Unif({±1}d), the k-parity problem involves

predicting y =
∏

j∈p xj , where p ⊆ [d] and |p| = k. In this problem, p is unknown, and we denote
the set of all possible p as Pk, so |Pk| =

(
d
k

)
. Our problem setup follows the definition in Kim &

Suzuki (2025) for theoretical analysis. We abuse notation and identify the set of indices p with the
corresponding parity mapping x 7→

∏
j∈p xj . Given n samples (xi, yi)i∈[n], our goal is to predict

the parity of any test input.

Specifically, let fθ : {±1}d → R be any differentiable parametrized model and suppose we select the
target parity p uniformly at random from Pk. In the finite-sample setting, n i.i.d. samples (xi, yi)i∈[n]

are generated as xi ∼ Unif({±1}d), yi = p(xi) and we are given access to (approximate) gradients
from the empirical loss:
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LDir
n (θ) =

1

2n

n∑
i=1

(yi − fθ(x
i))2 =

1

2
∥p− fθ∥2n, (1)

where ∥·∥n is the empirical norm. For each sample x, fθ acts independently, and the model must
implicitly leverage correlations between samples in the average gradient to learn.

Another scenario arises when we consider training the model with CoT. As shown in Figure 2, we
take 2 elements from the subset p at a time, multiply them, and use the result as an intermediate
state, which serves as new input for subsequent reasoning steps. In the case of CoT, the k-parity
problem is decomposed into h reasoning steps, with each step solving multiple 2-parity problems
based on information from the previous step, until the final step outputs the solution y for the entire
parity problem, where we denote p[α] and h[α] as the indices of the child and parent nodes of xα,
respectively. The training objective of the model then becomes minimizing the mean squared error
loss at each step:

LCoT
n (θ) =

1

2n

n∑
i=1

d+k−1∑
j=d+1

(xi
j − x̂i

j)
2 =

1

2n

d+k−1∑
j=d+1

∥xj − x̂j∥2. (2)

3.2 IMPLICIT CHAIN-OF-THOUGHT

A common approach to implicit Chain-of-Thought (Implicit CoT) is to gradually replace reasoning
steps in the reasoning chain by adding "thinking tokens" (Zhang et al., 2025b; Hao et al., 2024),
rather than abandoning the chain structure entirely, aiming to compress reasoning steps into a limited
number of latent tokens.

In the implicit reasoning chain of the parity problem, we consider hiding an entire layer of the solution
tree at a time. As shown in Figure 2, when Step 1 becomes an implicit reasoning chain, the sequence
[x17, · · · ,x20] is transformed from the original explicit reasoning steps into special latent tokens
c. We maintain the number of latent tokens consistent with the number of tokens required for the
original steps. Thus, each implicit token still only needs to handle a 2-bit parity problem. For ease of
notation, we denote cs = {cj |j ∈ {d+ τs−1 + 1, · · · , d+ τs}} as the set of latent tokens at step s,
where τs is the total number of tokens up to step s and cj = (cij)

n
i=1. The training objective for each

step of the implicit reasoning chain becomes predicting the subsequent intermediate states given the
input x and latent tokens cs:

LiCoT
n (θ) =

1

2n

n∑
i=1

d+k−1∑
j=d+τs+1

(xi
j − x̂i

j)
2
, x̂i

j = fθ(x
i, cs, x̂i

d+τs+1, · · · , x̂i
j−1) (3)

In an ideal scenario, to facilitate the learning of latent tokens, we would prefer to initialize cs to the
mean of the reasoning process’s value range, allowing it to learn towards any value while avoiding
significant impacts on the data distribution, i.e., cij = 0 for all i ∈ [n] and j ∈ {d+ τs−1+1, · · · , d+
τs}. However, initializing latent tokens to 0 can lead to gradient vanishing during actual training.
Therefore, in our theoretical analysis, we set cij = υ, υ → E(xi).1.

3.3 TRANSFORMER MODEL

We discuss the learning ability of models in constructing implicit reasoning chains under a one-layer
Transformer architecture. To simplify the analysis, we use absolute position encoding and single-head
Softmax attention, and the single-layer Transformer also omits residual connections.

Data encoding: For the input x, each input token xj = (xi
j)

n
i=1, j ∈ [d], is an n-dimensional vector,

with its elements consisting of the j-th bit from n samples. This differs slightly from the existing

1This setting is limited to the theoretical analysis process. In our subsequent experiments, we use one-hot
encoding to randomly initialize latent tokens.
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Transformer encoding method but is essentially the same 2. For the latent tokens of the implicit
reasoning chain, we initialize them to υ to facilitate the model’s learning of intermediate hidden
reasoning processes.

Softmax attention layer: The attention layer consists of key, query, and value matrices K,Q,V. To
make the dynamical analysis tractable, following Zhang et al. (2023a); Huang et al. (2023); Mahankali
et al. (2023); Kim & Suzuki (2024), we focus on position encoding when obtaining attention scores,
while the value matrix only focuses on x. Therefore, in this paper, we run the position encoding p
separately from the input x rather than concatenating them together. The forward propagation of the
attention layer is defined as follows:

ẑm =

m−1∑
j=1

Vx̂j · softmax(p̂⊤
j K

⊤Qp̂m) =

m−1∑
j=1

σj(wm)xj , (4)

Feedforward layer: To fully adapt to the parity problem, following Kim & Suzuki (2025), we use a
mapping function ϕ : [−1, 1] → [−1, 1], requiring ϕ(0) = −1, ϕ(±1) = 1, and set the function to be
smooth and differentiable. Finally, we define ϕ(t) = −1 + ct2 +O(|t|4) and ϕ′(t) = 2ct+O(|t|3).
Thus, the transformer computes TF(x1, · · · ,xd+k−1;W) = (x̂1, · · · , x̂d+k−1) where the original
data x̂j = xj , j ∈ [d] remain unchanged and tokens x̂d+1, · · · , x̂d+k−1 are computed as x̂m =
ϕ(ẑm).

4 MAIN RESULTS

Based on theoretical analysis of the parity problem, this section systematically explores the limitations
of Implicit CoT in learning reasoning processes. Our theoretical analysis based on the parity problem
reveals two main challenges faced by implicit reasoning chains in learning reasoning knowledge.
First, we prove that the "think token" in implicit reasoning chains struggles to effectively learn
intermediate reasoning processes, limiting its ability to enhance reasoning capabilities. Second, we
find that although implicit reasoning chains can still learn problem-solving patterns after extensive
training, the learning difficulty increases exponentially with the number of compressed steps. These
findings provide an important theoretical basis for understanding the limitations of implicit reasoning
chains and offer guidance for future improvements in implicit reasoning chain methods.

4.1 LATENT TOKENS STRUGGLE TO LEARN REASONING KNOWLEDGE

For the learning ability of implicit reasoning chains, the intuitive argument is to assess the training
status of latent tokens by estimating the magnitude of ∂LCoT

n

∂cs
(W) in evaluation scenarios. However, for

learning samples xi ∼ Unif({±1}d), making Ed+τs+1j<d+k−1,x[(x
i
j − x̂i

j)
2] approach 0 requires

further theoretical analysis based on the efficient learning of explicit reasoning chains to understand
the limitations of implicit reasoning chains.

Specifically, we define a set of intermediate states t = xj1 , · · · , xjr for 1 ≤ j1, · · · , jr ≤ d+ k − 1
as trivial if

∏
x∈t x ≡ 1. Correspondingly, we define Ir,m as the set of nontrivial index r-tuples less

than m: Ir,m = {(j1, · · · , jr) | 1 ≤ j1, · · · , jr ≤ m− 1, xj1 · · ·xjr ̸≡ 1}.

Based on the theoretical analysis of CoT in Kim & Suzuki (2025), when solving the parity problem,
the presence of trivial allows sub-nodes to effectively learn 2-bit parity problems through gradient
signals from parent nodes during the training process of CoT.
Theorem 1 (Efficient CoT Learning). Suppose n = Ω(d2+ϵ) for ϵ > 0, d is sufficiently large and let
∇̃ be any O(d−2−ϵ/8)-approximate gradient oracle.3 Set initialization W(0) = 0 and learning rate
η = Θ(d2+ϵ/16). Then for any target parity p ∈ Pk, it holds with probability 1− exp(−dϵ/2) over
random sampling that for any 1 ≤ m ≤ d+ k − 1, 1 ≤ j ≤ m− 1, the gradient of the loss function
LCoT
n with respect to wj,m at W is given by:

2This can be intuitively understood as each bit being encoded as a 1-dimensional vector
3In fact, we only require that each component of the gradient has error at most O(d−2−ϵ/8) for Theorems 1,

2, which follows since the L∞ error is bounded above by L2.
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∂LCoT
n

∂wj,m
(W) = − 2c

(m− 1)2
1{p[j]=m} +O(d−2−ϵ/8) (5)

Clearly, the key to efficient learning in explicit reasoning chains lies in the transmission of gradient
signals between child and parent nodes. This allows the model to quickly focus attention on the
corresponding child nodes during the learning process. To facilitate further discussion on the
reasoning capabilities of implicit reasoning chains, we categorize the reasoning steps of the parity
problem into three types based on the presence of child nodes and whether they are hidden:

(1) Implicit reasoning step set Si: The subset of reasoning steps that are concealed within the implicit
reasoning chain—e.g., [x17, . . . ,x20] in Step 1 of Figure 2. These steps are replaced by latent
tokens (e.g., c1) and receive no supervision from the original reasoning steps during training.

(2) Implicitly dependent reasoning step set Sd: The subset of reasoning steps that remain explicit but
whose prerequisite step is hidden—e.g., [x21,x22] in Step 2. These steps still receive supervision
from their original reasoning content during training, but the preceding step they depend on is
concealed.

(3) Explicit reasoning steps set Se: The subset of reasoning steps that are fully explicit, with
neither the step itself nor its prerequisite hidden—e.g., [x23] in Step 3. These steps are directly
supervised by their original reasoning content during training, and their required previous step is
also explicitly accessible.

During the training of latent tokens in the implicit reasoning chain, the gradient of the objective
function LiCoT

n can be decomposed into the sum of gradient signals from nodes in Sd and Se (nodes
in Si do not provide any gradient signals). We define the process of Transformer reasoning for each
node as f◦

m(xi;W) = x̂m,i. When discussing the learning ability of latent tokens, we focus on
the gradient of node f◦

m for m ∈ Si ∩ Se with respect to implicit token wj,m for j ∈ Si during
backpropagation. We have the following conclusion, which contrasts with Theorem 1:

Theorem 2. Suppose n = Ω(d2+ϵ) for ϵ > 0, d is sufficiently large and let ∇̃ be any O(d−2−ϵ/8)-
approximate gradient oracle. Set initialization W(0) = 0 and learning rate η = Θ(d2+ϵ/16). Then
for any target parity p ∈ Pk, it holds with probability 1− exp(−dϵ/2) over random sampling that
for any m ∈ Si ∩ Se, j ∈ Si, the gradient of the loss function LiCoT

n with respect to wj,m at W is
given by:

∂LiCoT
n

∂wj,m
(W) = O(d−2−ϵ/8) (6)

Obviously, in implicit reasoning chains, the gradients returned by latent tokens make it difficult to
effectively learn reasoning knowledge. On one hand, they decay at a polynomial level and are easily
drowned out by noise; on the other hand, even if this does not affect the subsequent updates of wj,m,
latent tokens behave consistently with most xj where p[j] ̸= m, failing to provide key information
for x̂m. These factors limit the improvement of the model’s reasoning capabilities. We validate
the above theoretical conclusions through experiments and demonstrate the limitations of implicit
reasoning chains in learning reasoning knowledge (see Figure 3).

4.2 LEARNING DIFFICULTY INCREASES EXPONENTIALLY WITH THE NUMBER OF
COMPRESSED STEPS

To further consider the impact of implicit reasoning chains on the model’s reasoning capabilities, in
this section, we further analyze the learning difficulty of reasoning nodes in implicit reasoning chains.
According to Theorem 1, the presence of child nodes for Se nodes makes their learning difficulty
similar to that of explicit reasoning chains. Therefore, we focus on the learning difficulty of Sd nodes.

Based on Theorem 2 from Kim & Suzuki (2025), Let xm denote a node whose learning difficulty
is measured by its average gradient. In gradient-based methods, larger gradients correspond to
higher learning costs. For the parity problem, suppose the final output is learned directly without
intermediate steps. Let ∇̃ be an ε-approximate gradient oracle that, with probability 1− e−Ω(d) under
random sampling, returns estimates of ∇Ln. Then any iterative (possibly randomized) algorithm A
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Figure 3: Experimental validation of Theorem 2. Experimental results on the 64-bit parity problem
(training a single-layer Transformer, see Section 3.3 for architecture): The left/right subfigures show
the training loss curves for all reasoning steps of the model as well as the final step, respectively.
Compared to explicit CoT, implicit CoT fails to effectively learn the reasoning process (loss remains
high and declines slowly).

making at most T queries to ∇̃Ln produces an output θ(A) whose L2-loss satisfies the following
lower bound:

Ep∈P,x

[
(p(x)− fθ(A)(x))

2
]
≥ 1− 4T

ε2

(
1

|Pk|
∨
√

4d

n

)
sup
θ,x

∥∇fθ(x)∥2 − 2e−Ω(k) (7)

When evaluating the learning difficulty of Sd nodes in implicit reasoning chains, the first s steps
are hidden, forcing the model to directly solve a k = 2s-bit parity problem. Consequently,
when examining how the number of compressed steps s increases, we focus on the variation of
Ep∈P, x

[
(p(x)−fθ(A)(x))

2
]

with respect to s. For convenience, we express this dependence directly
in terms of k. Then we have the following conclusion:

Theorem 3. Suppose n = eΩ(k) and fθ has polynomially bounded gradients. Then there exists
an e−Ω(k)-approximate gradient oracle ∇̃ such that, with probability at least 1 − e−Ω(d) over
random sampling, the output θ(A) of any iterative (possibly randomized) algorithm making at most
O(poly(k)) queries to ∇̃Ln satisfies the L2-loss lower bound

Ep∈P,x

[
(p(x)− fθ(A)(x))

2
]
≥ 1− e−Ω(k).
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Figure 4: Learning difficulty rises exponen-
tially with more compressed steps, but our
iCoT+ method enables implicit reasoning
chains to learn the reasoning process effec-
tively.

Theorem 3 shows that as the number of compressed
steps increases, the model’s learning task escalates
from solving a 2-bit parity problem under full CoT
to a k-bit parity problem. Because k grows expo-
nentially with the number of compressed steps s in
implicit reasoning chains, the learning difficulty of
Sd nodes likewise increases exponentially with s. To
verify this empirically, we train implicit reasoning-
chain models based on GPT-2 with varying numbers
of compressed steps s and record their test accuracy.
Unlike Section 4.1, here we use the full GPT-2 model
and prepend special tokens to switch between im-
plicit and explicit reasoning, following prior work
(Zhang et al., 2025a; Shen et al., 2025). Detailed
experimental settings are provided in Appendix D.
As shown in Figure 4, the learning cost of implicit
reasoning chains rises sharply with s, exceeding even
the case without CoT when all steps are compressed.
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5 EFFECTIVE SUPERVISION IS KEY FOR
IMPLICIT COT TO LEARN REASONING KNOWLEDGE

Building on the above analysis, we systematically examine the limitations of implicit reasoning chains
in acquiring reasoning knowledge. This naturally raises a question: how can their learning ability
be enhanced? A key factor is the provision of effective supervision signals during backpropagation,
enabling implicit reasoning chains to learn the hidden steps. However, due to the high-dimensional
nature of latent tokens, they are far harder to supervise than discrete tokens. Consequently, most
existing approaches provide little or no effective supervision (Zhang et al., 2025a; Shen et al., 2025),
instead relying on latent tokens to spontaneously acquire reasoning patterns within their contexts.
This limitation constrains the reasoning capacity of implicit reasoning chains (Zhu et al., 2025a). To
address this, we propose a simple yet effective strategy: encouraging latent tokens to differentiate
among reasoning steps through their spatial distributions.

Transformer

~

𝑥1 𝑥𝑑⋯ ⋯𝑥𝑖 𝑐𝑠 𝑥𝑑+𝜏+1

0101
0110
⋯

1101

Distribution of Latent embedding Compressed Steps

𝑓×

Figure 5: We construct a decoder f× to control
the distribution of latent tokens, enabling them to
distinguish different reasoning steps.

As illustrated in Figure 5, a natural approach
is to construct a decoder f× that maps each
implicit token to its corresponding reasoning-
step labels: f×

c (cs) = (xd+τs−1+1, . . . , xd+τs).
This design indirectly conveys information
about the compressed reasoning steps to the la-
tent tokens, enabling them to acquire the rea-
soning associated with those steps within their
context. For a complete reasoning step s =
(xs

1, . . . , x
s
τs), there are 2τs possible combina-

tions, which requires the implicit token cs to
have sufficient expressive capacity to distinguish
among them. Because different steps may en-
code different amounts of information, each step
s is assigned its own decoder f×

s . In practice,
we represent all reasoning steps using a single
implicit token to encourage effective compres-
sion of the reasoning chain.

In summary, our improvement method can be
formalized by adding an additional supervision
term to the training objective of the implicit rea-
soning chain:

LiCoT+
n (W) = (1− λ)LiCoT

n (W) + λ
1

n

k−1∑
s=1

n∑
i=1

L(f×
s (cs,i), (xi

d+τs−1+1, · · · , xi
d+τs)) (8)

where L is a loss function measuring the discrepancy between predicted and true steps. For the parity
problem, we use a multi-classifier to control the distribution, and λ ∈ [0, 1] is a hyperparameter that
balances the weights of the two loss functions.

To evaluate the effectiveness of our proposed improvement, we adopt the experimental setup described
in Section 4.2 for direct comparison. Prior work (Wies et al., 2023) shows that, even without CoT,
Transformers can solve the parity problem but require substantially more training time. We therefore
include both CoT-based and non-CoT methods as baselines. Specifically, we compare our enhanced
approach (iCoT+) with the original implicit reasoning chain method (iCoT) under varying numbers
of compressed steps. Learning efficiency is assessed by the number of training steps needed to reach
100% test accuracy. The results, presented in Figure 4, demonstrate that as the number of compressed
steps increases, the learning difficulty of implicit reasoning chains grows exponentially—eventually
exceeding that of non-reasoning-chain methods when all steps are compressed. In contrast, by
aligning distributions, implicit reasoning chains can more effectively acquire the reasoning process,
markedly reducing their learning difficulty.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 CAN DISTRIBUTION ALIGNMENT ENHANCE REASONING CAPABILITIES?

Beyond improving the learning efficiency of implicit reasoning chains, it is also essential to assess
whether distribution alignment enhances their reasoning capacity. To this end, we evaluate on the
GSM8K dataset (Cobbe et al., 2021), which provides high-quality reasoning chains as supervision.
This benchmark not only represents a reasoning-intensive mathematical task but also tests the
effectiveness of reasoning-chain compression in less structured and more ambiguous natural-language
reasoning scenarios.

We conduct experiments with the GPT-2 series models, which were pretrained before the release of
GSM8K and thus avoid potential data leakage. Owing to their relatively small size, however, these
models struggle to perform mathematical reasoning on GSM8K even with CoT. To mitigate this, we
relax the reasoning phase by allowing the model to infer the final answer given the latent tokens and
the remaining intermediate steps.

We train models using CoT, iCoT, and iCoT+, and compare their test accuracy under varying numbers
of compressed steps s. Additional experimental details are provided in Appendix E. As shown in
table 1, increasing s gradually degrades the reasoning ability of implicit reasoning chains, whereas
distribution alignment markedly enhances it. Notably, the advantage of iCoT+ diminishes at larger s,
which we attribute to the growing difficulty of capturing intermediate-step information as more steps
are compressed, thereby limiting further improvements in reasoning capacity.

GPT2(124M) GPT2-Large(774M) GPT2-Xl(1.5B)
accuracy con-steps accuracy con-steps accuracy con-steps

full steps CoT 86.02 120 88.90 40 95.37 50

conceal 1 step
icot 83.70 100 89.30 40 95.83 50

icot+ 86.15 180 91.20 40 96.82 50

conceal 2 steps
icot 64.56 100 67.80 40 71.28 50

icot+ 65.57 180 69.00 40 72.22 50

Table 1: We conduct mathematical reasoning experiments on models of different sizes. "accuracy"
denotes the final accuracy of the model, while "con-steps" represents the number of training steps
required for the model to reach 50% of its final accuracy, indicating the steps needed for rapid
convergence.

Although iCoT+ achieves efficient learning on the parity problem, its convergence in GPT-2 mathe-
matical reasoning lags behind other methods, and iCoT shows no marked decline in convergence as
steps are further compressed. We attribute this to two factors: 1) the added distribution-alignment loss
demands substantial internal adjustment in Transformer models pretrained on large autoregressive
corpora, thereby slowing convergence; and 2) in natural-language reasoning, models often exploit
token-level shortcuts rather than performing genuine reasoning, unlike the parity task, which forces
learning of complex logical relations from limited token types. These observations, in line with Lin
et al. (2025), stand in sharp contrast to larger models, whose reasoning appears to draw primarily on
pre-existing latent capacities rather than patterns learned exclusively from training data.

7 CONCLUSION

This paper systematically analyzes the limitations of implicit reasoning chains in acquiring reasoning
knowledge. We show that the absence of intermediate reasoning nodes impedes spontaneous learning,
causing overall learning difficulty to grow exponentially as more steps are compressed. These factors
constrain the model’s efficiency on complex reasoning tasks. Motivated by these theoretical insights,
we advocate incorporating supervision signals for latent tokens and propose a simple yet effective
method that encourages them to differentiate reasoning steps via their spatial distributions. We
validate our approach and theoretical findings on both synthetic parity datasets and mathematical
reasoning tasks. The results highlight the critical role of distribution alignment in reasoning-intensive
scenarios. Future work will explore more advanced alignment strategies to further enhance the
reasoning capabilities of implicit reasoning chains.
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A APPENDIX

B PROOF OF THEOREM 2

Thanks to the analysis of the parity problem in Kim & Suzuki (2025), we have:
Lemma 4 (concentration of interaction terms). If each bit xi

j for i ∈ [n], j ∈ [d] is i.i.d. generated
from the uniform distribution on {±1}, for any p > 0 it holds with probability at least 1− p that

max
1≤r≤4

(j1,··· ,jr)∈Ir,m

|⟨xj1 , · · · ,xjr ⟩|
n

≤ κ :=

√
2

n
log

32d4

p
.

Proof. Each tuple (j1, · · · , jr) ∈ Ir,m computes a specific nontrivial parity xj1 · · ·xjr for which the
bits xi

j1
· · ·xi

jr
, i = 1, · · · , n are i.i.d. Unif({±1}) due to symmetry. By Hoeffding’s inequality we

have that

Pr (|⟨xj1 , · · · ,xjr ⟩| ≥ λ) ≤ 2e−λ2/2n.

Moreover, |Ir,m| ≤ (d+ k − 1)r ≤ (2d− 1)r so that

|I1,m|+ · · ·+ |I4,m| ≤ (2d− 1) + · · ·+ (2d− 1)4 < (2d)4.

Therefore it follows by union bounding that

Pr

(
max

1≤r≤4,(j1,··· ,jr)∈Ir,m
|⟨xj1 , · · · ,xjr ⟩| ≥ λ

)
≤ 32d4e−λ2/2n,

which implies the statement.

In particular, we take n = Ω(d2+ϵ) and p = exp(−dϵ/2) so that κ = O(d−1−ϵ/4). This will ensure
that the informative gradient signals will dominate the irrelevant interaction terms.

We further consider the case when latent tokens are present. We initialize the implicit token values
as cs = (υ)ni=1, where −1 ≤ υ ≤ 1, allowing cs to update in both positive and negative directions
during training. Based on Lemma 4, when some variables are latent tokens, we have:

1

n
|
〈
xj1 , · · · ,xjr−1

, cj
〉
| ≤ 1

n
|
〈
xj1 , · · · ,xjr−1

,xj

〉
| = O(κ). (9)
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Furthermore, we use the simplified notation (x1, · · · ,xd+k−1) to represent the contextual sequence
containing implicit reasoning chains (x1, · · · ,xd, c1, · · · , cτ ,xd+τ+1, · · · ,xd+k−1), and denote
xi = ci for i = d+ 1, · · · , d+ τ . At this point, we have:

L(W) =
1

2n

d+k−1∑
j=d+τs+1

∥ϕ(ẑm)− xm∥2, ẑm =

m−1∑
j=1

σj(wm)xj .

It is straightforward to verify for 1 ≤ α < m that

∂σα(wm)

∂wj,m
= (δjα − σα(wm))σj(wm) = (δjα − σj(wm))σα(wm)

and

∂ẑm
∂wj,m

=

m−1∑
α=1

(δjα − σj(wm))σα(wm)xα = σj(wm)(xj − ẑm).

Then the gradient of L with respect to each element wj,m at initialization can be computed as

∂L

∂wj,m
(W) =

1

n
(ϕ(ẑm)− xm)⊤

∂ϕ(ẑm)

∂wj,m

=
σj(wm)

n
⟨ϕ(ẑm)− xm, ϕ′(ẑm),xj − ẑm⟩ (10)

= − 1

n(m− 1)
⟨xm, 2cẑm,xj − ẑm⟩ (11)

+
1

n(m− 1)

〈
−1n + cẑ2

m, 2cẑm,xj − ẑm
〉

(12)

+
1

n(m− 1)

〈
O(|ẑm|4), 2cẑm,xj − ẑm

〉
(13)

+
1

n(m− 1)

〈
ϕ(ẑm)− xm, O(|ẑm|3),xj − ẑm

〉
. (14)

Computing interaction strengths. The term (11) will be shown to contain the dominating gradient
signal when j = c1[m], c2[m], while the other terms can be bounded as perturbations. Let ℓ = h2[m]
so that xm computes a 2ℓ-parity.

For term (11), we substitute ẑm = 1
m−1

∑
α xα at initialization to expand

1

n
⟨xm, ẑm,xj − ẑm⟩ = 1

n(m− 1)

∑
α

⟨xm,xα,xj⟩ −
1

n(m− 1)2

∑
α,β

⟨xm,xα,xβ⟩ ,

where the dummy indices α, β, · · · are taken to run over [m − 1]. Let us evaluate the third-order
interaction terms ⟨xm,xα,xβ⟩. If h[α] = ℓ, xmxα computes the parity of 2ℓ+1 independent bits
from x1, · · · , xd so xmxαxβ cannot be trivial, hence (m,α, β) ∈ I3,m and |⟨xm,xα,xβ⟩| ≤ nκ by
Lemma 4. Similarly, h[β] = ℓ implies that (m,α, β) ∈ I3,m. Suppose h[α], h[β] ≤ ℓ − 1; unless
h[α] = h[β] = ℓ− 1, the combined parity xαxβ will not contain enough independent bits to cancel
out the 2ℓ bits in xm, so again (m,α, β) ∈ I3,m. Moreover if h[α] = h[β] = ℓ− 1, xmxαxβ will be
trivial if and only if {α, β} = {c1[m], c2[m]}, in which case ⟨xm,xα,xβ⟩ = n. Thus we have that

1

n

∑
α

⟨xm,xα,xβ⟩ =
1

n

∑
α∈Si,β /∈Si

⟨xm,xα,xβ⟩+
1

n

∑
α/∈Si,β∈Si

⟨xm,xα,xβ⟩

+
1

n

∑
(α,β)∈Si

⟨xm,xα,xβ⟩+
1

n

∑
(α,β)/∈Si

⟨xm,xα,xβ⟩
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It is worth noting that when m ∈ Se, since all its child nodes are not omitted, we have:

1

n

∑
(α,β)/∈Si

⟨xm,xα,xβ⟩ = 2{m∈Se} +
1

n

∑
(m,α,β)∈I3,m

⟨xm,xα,xβ⟩

= 2{m∈Se} +O((m− 1)2κ).

1

n

∑
(α,β)∈Si

⟨xm,xα,xβ⟩ = υ2O((τs)
2κ) ≤ O((m− 1)2κ)

1

n

∑
α∈Si,β /∈Si

⟨xm,xα,xβ⟩+
1

n

∑
α/∈Si,β∈Si

⟨xm,xα,xβ⟩ = O((m− 1)2κ)

So that

1

n

∑
α

⟨xm,xα,xβ⟩ = O((m− 1)2κ) +O((m− 1)2κ) + 2{m∈Se} +O((m− 1)2κ)

= 2{m∈Se} +O((m− 1)2κ).

Similarly, for the contraction ⟨xm,xα,xj⟩, since xj does not form a trivial with any stage, and xm

and xα cannot form a trivial, according to equation ??, we have:

1

n

∑
α

⟨xm,xα,xj⟩ = O((m− 1)κ)

Since κ = O(d−1−ϵ/4) and d < m ≤ 2d − 1, we can therefore isolate the leading term of order
Θ(d−2) as

− 1

n(m− 1)
⟨xm, 2cẑm,xj − ẑm⟩

= − 2c

(m− 1)2
O(dκ) +

2c

(m− 1)3
(
2{m∈Se} +O((m− 1)2κ)

)
= O(d−2−ϵ/4).

Next, for term (12), we expand

1

n

〈
−1n + cẑ2

m, 2cẑm,xj − ẑm
〉
= −2c

n
⟨ẑm,xj⟩+

2c

n

〈
ẑ2
m

〉
+

2c2

n

〈
ẑ3
m,xj

〉
− 2c2

n

〈
ẑ4
m

〉
.

The second-order terms can be computed as

14
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1

n
⟨ẑm,xj⟩ =

1

n(m− 1)

( ∑
α∈Si

⟨xα,xj⟩+
∑
α/∈Si

⟨xα,xj⟩

)

=
τs

m− 1
υ2 +

m− τs
m− 1

O(κ) ≤ τs
m− 1

υ2 +O(κ)

1

n

〈
ẑ2
m

〉
=

1

n(m− 1)2

( ∑
(α,β)/∈Si

⟨xα,xβ⟩+
∑

(α,β)∈Si

⟨xα,xβ⟩

+
∑

α∈Si,β /∈Si

⟨xα,xβ⟩+
∑

α/∈Si,β∈Si

⟨xα,xβ⟩

)

=
1

n(m− 1)2

(
nO((m− 1)2κ) + nτ2s υ

2 + 2nυO((m− 1)2κ)

)

=
τ2s υ

2

(m− 1)2
+O(κ) ≤ τs

(m− 1)
υ2 +O(κ)

Before discussing the fourth-order term, it is known that in the absence of latent tokens, 1
n

〈
ẑ4
m

〉
=

|[m−1]4\I4,m|
(m−1)4 +

|I4,m|
(m−1)4 (Kim & Suzuki, 2025). According to 9, it is clear that in the presence of

latent tokens, we have:

1

n

〈
ẑ4
m

〉
≤ |[m− 1]4 \ I4,m|

(m− 1)4
+

|I4,m|
(m− 1)4

= O(d−2 + κ). (15)

We verify the calculation of the fourth-order term. We analyze by examining the cases of trivial terms
of different orders. Without loss of generality, suppose α ≤ β ≤ γ ≤ δ.

(i) For (α, β) /∈ I2,m, it is clear that in the parity calculation, only the case α = β exists, so there
are at most O(d) such cases.

(ii) For (α, β, γ) /∈ I3,m, the parity calculation will be trivial only when h[α] = h[β] = h[γ], so
there are at most O(d) such cases.

(iii) For (α, β, γ, δ) /∈ I4,m, according to the analysis of Kim & Suzuki (2025), there are a total of
O(d2) such cases.

Hence it follows that

1

n

〈
ẑ4
m

〉
≤ 1

n(m− 1)4

4∑
j=0

((
4

j

) ∑
β1,··· ,β4−q

〈
xβ1

, · · · ,xβ4−q

〉)

=
|[m− 1]4 \ I4,m|

(m− 1)4
+

|I4,m|
(m− 1)4

O(κ) = O(d−2 + κ).

Furthermore, we consider the case of (α, β, γ) /∈ I3,m, there are at most O(d) such cases. Hence we
also have:

1

n

〈
ẑ3
m,xj

〉
=

1

n(m− 1)3
υ
∑
α,β,γ

⟨xα,xβ ,xγ⟩ =
O(d)

(m− 1)3
+O(κ) = O(d−2 + κ).

Combining the above, we obtain that

1

n(m− 1)

〈
−1n + cẑ2

m, 2cẑm,xj − ẑm
〉
= − 2cτsυ

2

(m− 1)2
+

2cτsυ
2

(m− 1)2
+

O(κ)

m− 1

= O(d−2−ϵ/4).
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For term (13), we note that
〈
|ẑm|4

〉
=
〈
ẑ4
m

〉
= O(nd−2 + nκ) as derived above. Then since each

component of ẑm, xj − ẑm are contained in [−1, 1], [−2, 2], respectively, we have that

1

n(m− 1)

〈
O(|ẑm|4), 2cẑm,xj − ẑm

〉
=

4c

n(m− 1)
O(
〈
|ẑm|4

〉
) = O(d−2−ϵ/4).

Finally for term (14), by the Cauchy-Schwarz inequality we have

1

n

〈
|ẑm|3

〉
=

1

n

n∑
i=1

|ẑm,i|3

≤ 1

n

(
n∑

i=1

ẑ2m,i

)1/2( n∑
i=1

ẑ4m,i

)1/2

=
1

n

〈
ẑ2
m

〉1/2 〈
ẑ4
m

〉1/2
=

1

n
O(nd−1)1/2 ·O(nd−2 + nκ)1/2 = O(d−1−ϵ/8),

and so we may bound

1

n(m− 1)

〈
ϕ(ẑm)− xm, O(|ẑm|3),xj − ẑm

〉
=

4

n(m− 1)
O(
〈
|ẑm|3

〉
) = O(d−2−ϵ/8).

From (11)-(14) we conclude that

∂L

∂wj,m
(W) = − 2c

(m− 1)2
1{p[j]=m} +O(d−2−ϵ/8),

which shows that at initialization, each non-child node and each implicit token receives a negligible
gradient signal of order O(d−2−ϵ/8), while each child node receives a strong gradient signal of order
Θ(d−2). This is because latent tokens do not have direct relationships with any nodes, nor do they
form trivial combinations with any other nodes.

C PROOF OF THEOREM 3

Based on the analysis of Kim & Suzuki (2025), Let xm denote a node whose learning difficulty
is measured by its average gradient. In gradient-based methods, larger gradients correspond to
higher learning costs. For the parity problem, suppose the final output is learned directly without
intermediate steps. Let ∇̃ be an ε-approximate gradient oracle that, with probability 1− e−Ω(d) under
random sampling, returns estimates of ∇Ln. Then any iterative (possibly randomized) algorithm A
making at most T queries to ∇̃Ln produces an output θ(A) whose L2-loss satisfies the following
lower bound:

Ep∈P,x

[
(p(x)− fθ(A)(x))

2
]
≥ 1− 4T

ε2

(
1

|Pk|
∨
√

4d

n

)
sup
θ,x

∥∇fθ(x)∥2 − 2e−Ω(k), (16)

Lemma 5. Consider the parity problem described in Section 3.1. For a ground set of size d, the total
number of possible subsets involved in the k-parity problem (k ≤ d/2) is

|Pk| =
(
d

k

)
= O(ek)

Proof. According to the definition of combinations, we have:

|Pk| =
(
d

k

)
=

d!

k!(d− k)!
=

d(d− 1) · · · (d− k + 1)

k!
≥
(
d

k

)k
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Based on Stirling’s formula, we have k! ≥
(
k
e

)k
., therefore

dk

k!
≤ dk

( e
k

)k
=

(
ed

k

)k

.

So that |Pk| = O(ek).

D EXPERIMENT DETAILS OF SECTION 4.2 AND 5

In these two experiments, we use GPT2 as the base model and set d = 16 and k = 8 as shown in
Figure 2. With this setting, inferring the final output requires three steps. Consistent with Zhang et al.
(2025a); Shen et al. (2025), we add special tokens < com > and < sep > to mark the beginning and
end of implicit reasoning before and after the model performs implicit reasoning. That is, for each
sample, the input is:

x1, x2, · · · , xd︸ ︷︷ ︸
input tokens

,<com>, c1, c2, · · · , cτ︸ ︷︷ ︸
implicit reasoning tokens

,<sep>, xd+1, xd+2, · · · , xd+k−1︸ ︷︷ ︸
explicit reasoning tokens

.

To effectively supervise the learning of implicit chain-of-thought, we add a supervision signal at
the last token of the implicit chain-of-thought to guide the model to learn the correct implicit chain-
of-thought. Specifically, for the set of latent tokens cs, we pass their output vectors through a
multi-layer perceptron (MLP) for multi-class classification to predict the 2τ different possibilities of
the compressed steps, thereby aligning the distribution of latent tokens with that of the correct implicit
chain-of-thought. For explicit chain-of-thought, we directly use the cross-entropy loss function to
supervise its learning.

We use the Adam optimizer with a learning rate of 1e− 6. We train the model until it achieves 100%
accuracy on the validation set. For different loss functions, we record the number of steps required
for training as a quantitative assessment of their learning difficulty.

E EXPERIMENT DETAILS OF SECTION 6

In this experiment, since previous works did not release their data and code, we used different
models(Llama, GPT2) for instruction fine-tuning based on the llamafactory framework (Zheng et al.,
2024). We modified the model and data loading parts to suit our experimental needs. A sample from
GSM8K is as follows:

Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How
many bolts in total does it take?
Answer: It takes 2/2=«2/2=1»1 bolt of white fiber \n So the total amount of fabric
is 2+1=«2+1=3»3 bolts of fabric \n #### 3.

For implicit chain-of-thought, we split the Answer by "\n" and use the results as each reasoning step
of the chain-of-thought. When we compress the reasoning steps, we add a special token sequence
[<com> <pause> · · · <pause> <sep>] before the answer to mark the implicit reasoning pro-
cess. When we use iCoT+ for distribution alignment, we encode the reasoning steps represented
by <pause> and use the mean squared error loss function to align their distribution with that of the
complete chain-of-thought. Our code will be released later.
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