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Abstract

Neural algorithmic reasoning excels in many graph algorithms, but assessment
mainly focuses on the Erdős-Rényi (ER) graph family. This study delves into
graph algorithmic models’ generalization across diverse distributions. Testing a
leading model exposes overreliance on ER graphs for generalization assessment.
We further investigate two scenarios: generalisation to every target distribution and
single target distributions. Our results suggest that achieving the former is not as
trivial and achieving the latter can be aided by selecting source distribution via
novel Tree Mover’s Distance interpretation.

1 Introduction

When implementing algorithms for real-world problems, a crucial decision is how to appropriately
represent target problem elements and input data, often complicated due to diverse types like
sequences or images. Classical algorithms can lead to a bottleneck (Velickovic and Blundell, 2021) by
compressing data into a single scalar, while Neural Algorithmic Reasoning (NAR) aims to overcome
this by using neural models to simulate algorithm execution in a high-dimensional latent space, finding
applications in various fields (Velickovic and Blundell, 2021; Deac et al., 2020; Beurer-Kellner et al.,
2022; Numeroso et al., 2023). However, NAR lacks correctness guarantees and, though progress
shows promise in generalization and accuracy, it has been tested on mainly on the Erdős-Rényi (Erdős
et al., 1960) graph type.

In our paper, we set out to investigate if it is worth including other families of random graphs in the
analysis of NAR performance on graph algorithms and also training of NAR models. Concretely, our
contributions are as follows:

• We illustrate the usefulness of other graph families for generating diverse test cases, as 5 out
of 12 algorithms we examined performed significantly worse on additional graph families.

• Moreover, we find that data augmentation by adding graphs from all tested families to the
training data does not notably enhance performance across all domains. In some cases, such
augmentation adds noise and hampers training success.

• When targeting a specific graph distribution, training on a close distribution gives best results.
We define closeness by adapting the Tree Mover’s Distance (Chuang and Jegelka, 2022) and
correlate it with the generalisation accuracy. To the best of our knowledge we are the first to
analyse generalisation of algorithmic reasoners using any graph theoretical metrics.
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Figure 1: Edge-featured computational Tree Distance, the foundation of our TMD variant. The gray
node signifies a blank node (cf. Chuang and Jegelka, 2022), while edge features impact optimal
transport distance. c denotes the cost for edge features coming from computing the optimal transport
(OT). Subtrees of a node are denoted with a hatch pattern. Recursion is highlighted in blue.

2 Background

Neural algorithmic reasoning (NAR) To advance NAR, the CLRS-30 benchmark was introduced
(Veličković et al., 2022), encompassing 30 algorithms. While not all are graph-based, the input to
every task is a graph that may have a set of node, edge or graph input features. Appendix A provides a
brief CLRS-30 overview. As non-graph algorithms like sorting have fixed input graph structures (only
size and features vary), we focus on graph algorithms within the benchmark. Notably, in CLRS-30,
the best performing open-source model, Triplet-MPNN, an MPNN-based neural network, operates
on complete graphs with added binary edge features indicating edge presence, similar to the original
MPNNs (Gilmer et al., 2017).

To simulate an algorithm A we structure our model by the encode-process-decode architecture
(Hamrick et al., 2018). The encoder network f consists of a linear transformation for each input and
hint. A GNN is used for the processor p that serves to mimick A’s steps. The decoder g, similar to f
is also a linear transformation. (More details on encode-process-decode can be found in Appendix B.)
In NAR, robust out-of-distribution (OOD) generalization is vital. While training on “small” graphs
up to 16 nodes, testing occurs on 4× larger graphs. This tests whether the model grasps algorithm
behavior and can extrapolate effectively. Evaluating on OOD data gauges generalization, ensuring
reliability across diverse input sizes. This strategy is inspired by classical algorithms’ size-invariance
property, maintaining solution correctness regardless of input scale.

Optimal transport and Tree Mover’s Distance The Tree Mover’s distance (TMD) (Chuang and
Jegelka, 2022) is a psuedometric on attributed graphs. It takes into account both the computational
tree structure of the graph and the attributes of the nodes. Formally, for two graphs GA, GB of size
N the computation trees A1 . . . AN and B1 . . . BN for both graphs are generated up to a fixed depth
L. Subsequently, a distance value dij , defined via hierarchical optimal transport, is computed for all
pairs of computational trees Ai and Bj . The Tree Mover’s distance between A and B is then defined
as the result of solving the assignment problem on this tableau of distances.

The metric helps capture the extent to which the local structures of the graphs being compared differs,
with higher Tree Mover’s distances corresponding to more dissimilar graphs. The original paper
uncovered a strong relation between the the performance of a model on a test dataset and the Tree
Mover’s distance between the graphs of the test dataset and the training set.

3 How and why do our algorithmic reasoners generalise?

In this section we will try to answer how algorithmic reasoners generalise when deployed on any
data distribution, similar to their deterministic counterparts, and when deployed on a target data
distribution. To aid our analysis, we will first introduce our adaptation of TMD.

3.1 Normalised Tree Mover’s Divergence with Edge Features

Figure 1 depicts our Tree Distance (TD, the building block of TMD) with edge features. The core
insight is to factor in edge features from root to next level node vectors when calculating optimal
transport between computational subtree sets and exclude them at next steps of the recursion. Due to
space limits, more rigorous formulation is given in Appendix C.
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Figure 2: Generalisation of algorithmic reasoning model to different graph families. The set of
algorithms is split in two figures to improve readability.

The next change to the original TMD is based on the hypothesis that families with high pairwise
distance between randomly chosen graphs likely exhibit diverse structures, potentially improving
generalization when trained on them. Taking this and the existing hypothesis (Chuang and Jegelka,
2022) into account – that models trained on one graph family tend to generalize better to families with
low Tree Mover’s distance to the training family – we define the normalized Tree Mover’s divergence
between a training graph distribution A and a testing graph distribution B:

NTMD(A,B) =
EG1∼A,G2∼B [TMD(G1, G2)]

EG1∼A,G2∼A[TMD(G1, G2)]

We would also like to note that our proposed metric can also be viewed as an improvement on
TMD by 1) factoring in edge features and 2) making it an asymmetric measure (hence the use of
“divergence”). One might expect that in many circumstances training on distribution A and testing
on distribution B will yield very different performances compared to training on distribution B and
testing on distribution A, but this is not accounted for by the original TMD.

3.2 Experimental setup

Our experiments are implemented on top of CLRS-30 (3 different random seeds/experiment).

Data generation For our initial experiments our training data distribution remains the same as in
CLRS-30: Erdős-Rényi family with edge probablity p varied between 0.1 and 0.9. When testing we
always keep the size distribution shift (increasing the number of nodes by 4×), but we also consider
varying the types of graphs during test time. Concretely, we take inspiration from Velickovic et al.
(2020) and consider 32 test graphs (as in CLRS-30) from the following set of families: Erdős-Rényi
(ER), Trees, Barabási-Albert, 4-Caveman graphs, 4-Community graphs, Ladder graph, Default.
The last “family” is the pre-generated test set that CLRS-30 provides (never used for training). For
futher details, refer to Appendix D.

To handle algorithms operating on weighted graphs, we utilized the same weight distribution as
in CLRS-30. This decision was primarily motivated by the fact that neural networks often face
challenges in generalizing values, even struggling with simple tasks like arithmetic addition (Klindt,
2023).

Training For our base experiment we train using the default settings provided on the CLRS-30 open
source code. They correspond to the best configuration in Ibarz et al. (2022). In our ablations, we
extend the training procedure by incorporating samples from non-Erdős-Rényi (non-ER) distributions
while keeping other aspects constant. When constructing a training batch, if more than one family is
available, we uniformly select a single family from which to sample.

3



Figure 3: Adding richer data often does not produce significantly better performance.

Figure 4: Plot of NTMD against T for Prim’s algorithm. Correlation coefficient r = −0.636
(ρ = 5.9× 10−6). Each symbol represents a source dataset, each color – target dataset. Plus is used
if source matches target, star – if source is ER, green/orange outside – if picking the smallest TMD
gives/does not give highest performance on target dataset.

3.3 Results

One family is not enough We present our first observation in figure Figure 2. When compared
to ER test set, for 5/12 algorithms there was at least one family of graphs where the performance
deteriorated significantly. Results also extend to the default test set provided, and there were again 5
algorithms which exhibited significantly worse performance on a different test set.1 Based on the
above observations, we highly encourage future works in algorithmic reasoning to consider evaluating
their models on graph distributions beyond ER.

Challenges Encountered When Diversifying Data We further explored the effect of diversifying
our data. All models were trained using data from other classes, and we computed the strictly
standardised mean difference (SSMD) (Zhang, 2007) before (µ1) and after the data augmentation
(µ2). Positive SSMDs imply that data augmentation improves performance (and vice versa). Small
absolute values imply no statistical difference:

SSMD = (µ2 − µ1)/

√
σ2
1 + σ2

2

2
(1)

SSMDs are presented in Figure 3. For all algorithms there was no strong improvement (SSMD>2)
across all datasets, except for DFS on Caveman graph family. Appendix Appendix H shows that
these results extend to three other architectues.

1For the exact lists of algorithms and what do we mean by “significantly worse performance”, see Appendix E.
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Picking lowest NTMD often gives good performance Results for Prim’s algorithm are visualised
in Figure 4 (remaining are in Appendix G; NTMD calculation details are in Appendix F). In all cases
there was significant (ρ < 0.05) negative correlation between NTMD and T. Furthermore, in 16 out
of 24 cases (4 algorithms, 6 target datasets), picking the lowest NTMD gives best performance. In
the remaining 6 cases, performance was not far from the optimal one. If TMD is used instead no
significant correlation could be found (Figure 7, Appendix G).

A final interesting observation is that often the ER distribution was quite close to the target distribution.
It was, in fact, even the closest target distribution in 10/16 cases, further supporting our results that
training on ER alone gives overall good performance.
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Veličković, P., Badia, A. P., Budden, D., Pascanu, R., Banino, A., Dashevskiy, M., Hadsell, R., and
Blundell, C. (2022). The clrs algorithmic reasoning benchmark. In International Conference on
Machine Learning, pages 22084–22102. PMLR.

Velickovic, P. and Blundell, C. (2021). Neural algorithmic reasoning. Patterns, 2(7):100273.

Velickovic, P., Ying, R., Padovano, M., Hadsell, R., and Blundell, C. (2020). Neural execution of
graph algorithms. In ICLR. OpenReview.net.

Wang, X., Wang, L., Wu, Y., et al. (2009). An optimal algorithm for prufer codes. J. Softw. Eng.
Appl., 2(2):111–115.

5



Watts, D. J. (1999). Networks, dynamics, and the small-world phenomenon. American Journal of
sociology, 105(2):493–527.

Zhang, X. D. (2007). A new method with flexible and balanced control of false negatives and false
positives for hit selection in rna interference high-throughput screening assays. SLAS Discovery,
12(5):645–655.

6



A CLRS-30

The CLRS-30 benchmark (Veličković et al., 2022), or CLRS-30, comprises 30 iconic algorithms
from the Introduction to Algorithms textbook (Cormen et al., 2009). The benchmark covers diverse
algorithm types, including string algorithms, searching, dynamic programming, and graph algorithms.
All data instances in the CLRS-30 benchmark are represented as graphs and are annotated with input,
output and hint features and an associated position. Denote the dimensionality of a feature as F and
|V | as N . Input/output node features have the shape N × F , edge features – N × N × F , graph
features – only F . Hints encapsulate time series data of algorithm states. Like inputs/outputs, they
include a temporal dimension which also indicates the duration of execution. All features fall into 5
types: scalar, categorical, mask (0/1 value), mask_one (only a single position can be 1), and
pointer. Each feature type has an associated loss to be used when training the neural network (cf.
Veličković et al., 2022).

B Neurally executing algorithms

The task-based encoder (and decoder) consists of a set of linear layers. At each timestep t, for a
graph of n nodes and hidden dimensionality of h the task-based encoder f encodes each input and
hint at every position into h-dimensional vector. f uses a separate linear layer for different inputs
and hints, but sharing the weights across timesteps. Embeddings of inputs and hints located in the
nodes/edges/graph all have the same dimension and are added together. At step t this gives node,
edge and graph embeddings x(t)

i , e
(t)
ij , g

(t) of shape n× h, n× h× h, h.

The embeddings are fed through a MPNN processor P with latent state (similar to RNNs).

z
(t)
i = x

(t)
i ∥h(t−1)

i m
(t)
i = max

1≤j≤n
fmsg(z

(t)
i , z

(t)
j , e

(t)
ij , g

(t)) h
(t)
i = fr(z

(t)
i ,m

(t)
i ) (2)

where ∥ denotes concatenation, fmsg is the GNN message function, fr the GNN readout function
and h(0) = 0.

The decoder g predicts hints for next step as well as final outputs at the final step. Again, it is
parametrised as linear layers for each hint and output. Perhaps the only more specific type to decode
is the pointer type where a similarity sij is computed for each node pair which is then normalised
via softmaxjsij to obtain pointer probabilities. (argmax is used if when obtaining actual pointer for,
e.g., accuracy calculation)

C TMD with edge features

We use the notation from Chuang and Jegelka (2022). Let T = (V,E, r) denote a rooted tree. We
also let Tv be the multiset of computation trees of the node v which consists of trees that root at the
descendants of v. Additionally, we define a blank tree T0 as a tree that contains a single node and no
edges, and where the node feature is the zero vector 0p ∈ Rp. Tn

0 is used to denote a multiset of n
blank trees. We denote T L

v := {TL−1
u }u∈N (v) as the multiset of computation trees at node v which

root at the descendants of v.
Definition C.1 (Edge Augmented Computation Trees). Given a vertex v we define its multiset of
edge augmented computation trees T ′L

v := {
(
TL−1
u , evu

)
}u∈N (v). It consists of all elements of T L

v ,
but with the edge from v attached to them as in Figure 1.2

Definition C.2 (Blank Tree Augmentation). Given two multisets of trees T ′L
u , T ′L

v , ρ is defined as:

ρ : (T ′
v , T ′

u) 7→
(
T ′
v

⋃(
T

max(|Tu|−|Tv|,0)
0 , e0

)
, T ′

u

⋃(
T

max(|Tv|−|Tu|,0)
0 , e0

))
(3)

Recalling that OTd(X,Y ) denotes the unnormalized version of the earth mover’s distance, where d
is the distance function between pairs in X and Y , we suggest the following tree distance function:

TDAw(Ta, Tb) :=

{
∥xra − xrb∥+ w(L) · OTTD′

w

(
ρ
(
T ′
ra , T

′
rb

))
ifL > 1,

∥xra − xrb∥ otherwise
(4)

2Since the edge does not connect to a node, we represent this construction as a tuple (tree, edge).
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The changed parts of the equation have been highlighted in red. The TD′
w distance function is defined

as:

TD′
w((Ta, eaa′), (Tb, ebb′)) := ∥eaa′ − ebb′∥+ TDAw(Ta, Tb) (5)

The graph TMD distance remains unchanged from Chuang and Jegelka (2022), but we use TDAw

instead of TDw as a tree distance metric.

D Data generation

Test families were generated as follows:

• Erdős-Rényi (ER) (Erdős et al., 1960) – these are same graphs as our training data, but with
increased size.

• Trees – The trees are generated randomly from the Prüfer sequence (Wang et al., 2009).
• Barabási-Albert (Barabási and Albert, 1999) – In the Barabási-Albert preferential attach-

ment model we attach 2 or 3 nodes to every incoming node when the connectivity is halved
and 4 or 5 otherwise.

• 4-Caveman graphs (Watts, 1999) – Each clique is interconnected with probability p chosen
uniformly from the set P = {0.37, 0.44, 0.51, 0.58, 0.65, 0.72, 0.79, 0.86, 0.93}. p was
subsequently halved if connectivity was halved in the original train dataset of CLRS-30.

• 4-Community graphs – Each of the 4 communities is a ER subgraph with probability p
drawn uniformly from P = {0.55, 0.6, 0.7, 0.75, 0.65, 0.8, 0.85, 0.9, 0.95}. p was halved if
the original connectivity was halved. Nodes between communities are then interconnected
with p = 0.01.

• Ladder graph – To generate a ladder graph, we first generate a grid of size N ′ = 2×⌈N/2⌉.
To make N ′ = N we discard one node at random if N is odd. As this may often generate
very similar graphs and training instances, we randomly remove an edge with dropout
probability 0.01.

• Default – Although not a family on its own, for better comparison we the also test on the
pre-generated test set provided by Veličković et al. (2022). According to the paper authors,
the graphs are “[...] Erdős-Rényi graphs with a certain edge probability” (p.8, (Veličković
et al., 2022)).

Some of our algorithms are defined on a directed graph. Our generators therefore return directed
graphs, which we symmetrise only if the algorithm runs on undirected graphs. In the case of Ladder
graphs, where this is trivial to achieve, we consider each undirected edge as two bi-directional edges
and apply the edge dropout discussed above separately to each edge.

E Is test set result drop significant?

To easily obtain which are the algorithms with significant drop in performance on some dataset, we
consider the Drop SSMD:

Drop SSMD =
max(µ1 − µ2, 0)√

σ2
1+σ2

2

2

(6)

This metric ignores improvements in the score and allows us only to focus on datasets where accuracy
worsened. We consider a drop significant, if it is ≥ 2. We then calculated for each algorithm the
Drop SSMD w.r.t. the Erdős-Rényi dataset (µ1 = µER, measures how reliable using Erdős-Rényi
is) and w.r.t. the Default test (µ1 = µdefault, measures how reliable using Default is) set. Note that
this metric requires a single training and only measures if using the additional test datasets capture
significantly worse performances w.r.t. to the source dataset.

Results are visualised in Figure 5, all models are trained on Erdős-Rényi graphs. Testing on Erdős-
Rényi alone, is not able to capture significant performance drops of: articulation points, Bellman-Ford,
Breadth-First Search, Bridges and Dijkstra. Testing on the Default dataset alone: articulation points,
Bellman-Ford, BFS, Bridges, MST-Prim.
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(a) W.r.t. Erdős-Rényi

(b) W.r.t. Default

Figure 5: Drop SSMD. Bars with a hatch pattern, represent values larger than 4.

F NTMD calculation details

We compute NTMD(A,B), we use direct Monte Carlo sampling, averaging across 200 distinct
graph pairs. TMD calculation employs L = 4 due to the computation expense of OT. Let the
accuracy of testing on dataset B after training on A be T(A,B). We analyse the relationship between
NTMD(A,B) and T(A,B) by training our model on 4 algorithms. We limited ourselves to such a
low number, as obtaining results for a single one, requires 18 runs (3 seeds per 6 training families, 72
runs total for all 4 algorithms). The set of algorithms is: Bellman-Ford, Dijkstra, Floyd-Warshall,
MST-Prim.
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G Correlation plots of TMD and NTMD

(a) Bellman-Ford r = −0.470 (ρ = 0.002). (b) Dijkstra r = −0.466 (ρ = 0.002).

(c) Floyd-Warshall r = −0.310 (ρ = 0.046). (d) Prim’s r = −0.636 (ρ = 5.9× 10−6).

Figure 6: NTMD against T plots

(a) Bellman-Ford r = −0.013 (ρ = 0.927). (b) Dijkstra r = −0.012 (ρ = 0.940).

(c) Floyd-Warshall r = −0.022 (ρ = 0.891). (d) Prim’s r = −0.052 (ρ = 0.743).

Figure 7: TMD against T plots
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H SSMD for other architectures

(a) Gated MPNN

(b) Gated PGN

(c) Default (Gated triplet-MPNN) with neural priority queue

Figure 8: Adding richer data often does not produce significantly better performance.
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