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Abstract

Low-rank structure is a common implicit assumption in many modern reinforce-
ment learning (RL) algorithms. For instance, reward-free and goal-conditioned
RL methods often presume that the successor measure admits a low-rank repre-
sentation. In this work, we challenge this assumption by first remarking that the
successor measure itself is not approximately low-rank. Instead, we demonstrate
that a low-rank structure naturally emerges in the shifted successor measure, which
captures the system dynamics after bypassing a few initial transitions. We provide
finite-sample performance guarantees for the entry-wise estimation of a low-rank
approximation of the shifted successor measure from sampled entries. Our analysis
reveals that both the approximation and estimation errors are primarily governed
by a newly introduced quantitity: the spectral recoverability of the corresponding
matrix. To bound this parameter, we derive a new class of functional inequalities
for Markov chains that we call Type II Poincaré inequalities and from which we
can quantify the amount of shift needed for effective low-rank approximation and
estimation. This analysis shows in particular that the required shift depends on
decay of the high-order singular values of the shifted successor measure and is
hence typically small in practice. Additionally, we establish a connection between
the necessary shift and the local mixing properties of the underlying dynamical
system, which provides a natural way of selecting the shift. Finally, we validate our
theoretical findings with experiments, and demonstrate that shifting the successor
measure indeed leads to improved performance in goal-conditioned RL.

1 Introduction

In reinforcement learning (RL), the complexity of environment dynamics requires structural as-
sumptions to achieve statistical efficiency. A widely adopted approach assumes that key quantities
admit low-dimensional feature representations, effectively imposing low-rank structure on matrices
underlying various RL components such as the Q-function (57; 55; 60), transition kernel (2; 33; 59),
graph Laplacian (46; 47; 64), and successor representation (15; 58; 5). Some works even aim to learn
universal low-dimensional representations transferable across tasks, as in Forward-Backward models
(62; 63) and goal-conditioned RL (3; 21). Despite their empirical success and emerging theoretical
analyses, fundamental questions remain:

Why should low-rank structure arise in MDPs, and under what conditions does it yield accurate,
learnable representations?
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Figure 1: The discrete Medium PointMaze
environment (see Section 6). Performance
of goal-conditioned RL based on the rank-r
approximation of the k-shifted successor mea-
sure. Peak performance occurs at a non-zero
shift, suggesting that shifting the successor
measure can improve policy learning under
low-rank constraints.

To address these questions, we examine how the
long-term dynamics of an MDP naturally give rise
to global structure that can be captured effectively
through low-rank approximations. In particular, we
demonstrate that a simple temporal shift of the succes-
sor measure can substantially improve its alignment
with low-rank structure. This shift reweights transi-
tions to emphasize long-term behavior, filtering out
short-term noise and amplifying the structural signal
present in the dynamics. Crucially, its effectiveness
hinges on the mixing properties of the underlying
Markov chain, which determine how rapidly the pro-
cess forgets its initial conditions and reveals coherent
global patterns. Our main contributions are:

(a) We introduce the notion of spectral recoverabil-
ity (Definition 3) to quantify the approximation error
incurred by low-rank representations. We show that
standard successor measures lack spectral recover-
ability (Proposition 1), motivating the use of shifted
successor measures which discard initial transitions and emphasize long-term dynamics. We prove
that sufficiently large shifts guarantee spectral recoverability (Section 5).

(b) We provide finite-sample performance guarantees for the entry-wise estimation of a low-rank
approximation of the shifted successor measure from sampled entries (Thm. 1). Our analysis reveals
that the estimation error is also governed by the spectral recoverability of the shifted successor
measure.

(c) To characterize when spectral recoverability holds, we introduce a novel class of functional in-
equalities for Markov chains, which we call Type II Poincaré inequalities (Thm. 2). These inequalities
allow us to quantify the amount of shift required for effective low-rank approximation and estimation.
Moreover, we relate the required shift to the local mixing properties of the underlying dynamical
system. These properties measure the extent to which the state space admits a decomposition into
subsets within which the local dynamics mix rapidly.

(d) Finally, we validate our theoretical insights through experiments on learning the shifted universal
successor measure in goal-conditioned RL. This representation enables the simultaneous learning of
optimal policies for reaching a variety of goals. A representative result is shown in Figure 1.

2 Related Work

Low-rank approximations in RL. Low-rank models are ubiquitous in reinforcement learning.
These models rely on low-rank approximations of certain matrices: most notably the Laplacian
(46; 47; 42; 64; 35; 25) and the successor representation (15; 58; 36; 43; 41; 62; 63), the latter
often considered a better candidate for low-rank modeling (63). While these models are empirically
effective and supported by intuitive heuristics based on spectral properties (see e.g. (38)), they often
lack rigorous theoretical justification. Our work aims to address this gap by establishing a connection
between low-rank structures and the mixing behavior of the underlying dynamics.

Sample complexity bounds. Numerous studies have established performance guarantees for
estimating low-rank structures in reinforcement learning (RL). Several approaches draw inspiration
from matrix completion techniques and have been applied, for example, to the estimation of the
Q-function (57; 55; 65; 60). Our work is closer to the low-rank/linear Markov Decision Process
(MDP) framework explored in (66; 2; 68; 69; 59), where the transition kernel is modeled as a bilinear
factorization of the form P (s, a, s′) = ψ(s, a)⊺ϕ(s′). A special case arises when the factors are
constrained to be non-negative, yielding models such as (soft) state aggregation and block MDPs
(19; 56; 68; 28). To the best of our knowledge, we are the first to analyze the sample complexity of
estimating successor measures. Importantly, since successor representations are typically full-rank,
imposing a strict low-rank assumption would be inappropriate. Alternative notions of rank have been
proposed in the function approximation setting (30; 61; 18; 32); however these depend not only on
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the dynamics but also on the choice of the function class. In contrast, our analysis does not rely
on function approximation or any structural assumptions, and allows intrinsic structure to emerge
naturally from the mixing properties of the underlying dynamics.

Mixing phenomena. To bridge matrix estimation and dynamical behavior, we introduce spectral
recoverability, a parameter that quantifies both the SVD truncation error and the difficulty of recov-
ering matrix entries from partial observations. Our approach is inspired by (11), who established
minimax bounds for matrix completion under a bounded nuclear norm. In contrast, we focus on
entrywise estimation, which requires consideration of singular vectors. Spectral recoverability thus
blends classical notions of coherence and nuclear norm, enabling entrywise error analysis via the
leave-one-out technique of (1). On the other hand, it connects to classical mixing measures in Markov
chain theory and can thus be bounded by revisiting classical tools such as functional inequalities
(17) and spectral analysis (22). However, unlike traditional approaches that focus on global mixing
times, our focus is on statistical estimation for which local and thereby weaker notions of mixing
may suffice. This geometric intuition shares conceptual similarities with the works of (45; 29) on
decomposable Markov chains and of (39) on spectral partitioning of graphs via eigenvectors of the
adjacency matrix, which thus also connect with the block Markov chains mentioned previously.

3 Preliminaries

3.1 MDPs and shifted successor measures

Consider a Markov Decision Process (MDP) with finite state space S and action space A ∶= ⋃s∈S As,
where As denotes the set of actions available in state s. Define the set of state-action pairs as
X ∶= ⋃s∈S{s} × As, and let n denote its cardinality. We write x = (s, a) to denote a generic
element of X . The dynamics of the MDP are governed by a transition matrix P ∈ RX×S , where
P (s, a, s′) represents the probability of transitioning to state s′ when taking action a in state s.
A policy is defined as a stochastic matrix π ∈ RS×A, where π(s, a) denotes the probability of
selecting action a in state s. The policy π induces a Markov chain over X with transition matrix
Pπ, defined as: Pπ((s, a), (s

′, a′)) = P (s, a, s′)π(s′, a′). The MDP is completed by specifying
a reward function R ∶ X → R. When the state-action pair (s, a) is visited at time step t ≥ 0, a
reward of R(s, a) is received. Given a discount factor γ ∈ (0,1) the performance of a policy π
is characterized by its Q-function: Q(R,π)(s, a) = E [∑t≥0 γ

tR(sπt , a
π
t ) ∣ (s

π
0 , a

π
0 ) = (s, a)], where

(sπt , a
π
t ) is the state-action pair visited under π at time t, or through its value function V (R,π)(s) ∶=

∑a∈As
π(s, a)Q(R,π)(s, a).

The Q-function can be expressed as a matrix-vector product. To make this explicit, define the successor
measure as Mπ ∶= (I − γPπ)

−1 ∈ RX×X . Then Q(R,π)(s, a) = ∑t≥0 γ
tP t

πR(s, a) = MπR(s, a),
where we use matrix product notation: MπR(s, a) ∶= ∑(s′,a′)∈X Mπ((s, a), (s

′, a′))R(s′, a′). This
formulation separates the dynamics from the rewards, showing that evaluating a policy for any reward
function reduces to computing Mπ (15; 63). The problem of estimating the successor measure is
referred to as reward-free policy evaluation. For this problem, we would like to obtain guarantees
w.r.t. the ∥ ⋅ ∥∞,∞ norm defined as ∥A∥∞,∞ ∶= supf∈RX ∶∥f∥∞=1 ∥Af∥∞. Indeed, suppose that we have
an estimate M̂π of Mπ , and hence an estimate Q̂(R,π) = M̂πR of the Q-function. This in turn allows
us to improve the policy by acting greedily with respect to Q̂(R,π). However, for this procedure
to be reliable, we require entry-wise control over the error in Q̂(R,π), which can be guaranteed
by bounding the error in M̂π in the ∥ ⋅ ∥∞,∞ norm: ∥Q̂(R,π) −Q(R,π)∥∞ = ∥M̂πR −MπR∥∞ ≤

∥M̂π −Mπ∥∞,∞ ∥R∥∞. As we show later in the paper, obtaining accurate estimates of Mπ can be
statistically challenging. The objective of this paper is to explain why shifting the successor measure
may address this challenge.

Definition 1 (k-shifted successor measure). Let k ≥ 0. The k-shifted successor measure is defined as
Mπ,k ∶= P

k
π (I − γPπ)

−1.

The k-shifted successor measure Mπ,k captures the dynamics of policy π starting from time step k
onward. It allows us to quantify the cumulative discounted reward collected under π after the first k
steps. For any reward function R, it satisfies: Mπ,kR(s, a) = ∑t≥0 γ

tP t+k
π R(s, a).
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3.2 Measure-induced norms and SVD

To analyze the accuracy of estimators of the (shifted) successor measure w.r.t. to the ∥ ⋅ ∥∞,∞ norm
and make the link with mixing phenomena, we will use measure-induced norms and SVD (refer to
Appendix A.1 for a detailed description). Consider a probability measure ν onX whose support is X 1.
For f, g ∈ RX , define the ν-scalar product as ⟨f, g⟩ν ∶= ∑x∈X ν(x)f(x)g(x), so that (RX , ⟨⋅, ⋅⟩ν) is
a Hilbert space. We define for all f ∈ RX , M ∈ RX×X the ν-induced norms as: for any p, q ∈ [1,∞],

∥f∥ℓp(ν) ∶= {
(∑x∈X ν(x) ∣f(x)∣

p
)
1/p

if p < ∞
maxx∈X ∣f(x)∣ if p = ∞

, ∥M∥ℓp(ν),ℓq(ν) ∶= sup
f∈RX ∶ f≠0

∥Mf∥ℓq(ν)

∥f∥ℓp(ν)
.

For simplicity, we keep the measure implicit and use the notation ∥f∥p = ∥f∥ℓp(ν) and ∥M∥p,q =
∥M∥ℓp(ν),ℓq(ν). Note that ∥ ⋅ ∥∞ does not depend on ν. We will be mostly interested in the spectral
norm ∥M∥2,2 and the two-infinity norm ∥M∥2,∞, as we always have ∥ ⋅ ∥∞,∞ ≤ ∥ ⋅ ∥2,∞. Using
ν, we can define the notions of adjoint of a vector f and of a matrix M : f †(x) = ν(x)f(x) and
M †(x, y) = ν(x)M(y,x)

ν(y) . This allows us to revise the notion of singular value decomposition by
replacing the usual transpose operator with the adjoint.
Definition 2 (ν-SVD). The ν-SVD of the matrix M ∈ Rn×n takes the form M = UΣV † where
Σ = Diag((σi)

n
i=1) is a diagonal matrix made of non-negative values that we always assume to be

in non-increasing order: σ1 ≥ σ2 ≥ . . ., while U,V ∈ Rn×n are unitary in the sense U †U = UU † = I
and V †V = V V † = I . The ν-SVD can be expressed as M = ∑n

i=1 σiψiϕ
†
i , where the left and right

singular vectors (ψi)i, (ϕi)i form orthonormal bases (ψ†
iψi = 1 and ψ†

iψj = 0 for i ≠ j). The entries
of U,V are then U(x, i) =

√
ν(i)ψi(x), V (x, i) =

√
ν(i)ϕi(x).

Given r ≥ 0, we write [M]r = UrΣrV
†
r for the ν-SVD truncated to rank r and [M]>r =M − [M]r.

We finally note that the usual SVD corresponds to the case where ν is uniform, up to a normalizing
factor n. In what follows, to simplify, the ν-SVD is referred to as the SVD.

3.3 Spectral recoverability

Our goal is to estimate the (shifted) successor measure with entry-wise guarantees by approximating
the corresponding matrix via an estimate of its truncated SVD. Truncated SVD is a well-established
technique for matrix approximation when considering the Frobenius or nuclear norm. By the
Eckart–Young–Mirsky theorem, for a matrix M ∈ Rn×n, its rank-r truncated SVD [M]r provides the
optimal rank-r approximation with respect to the Frobenius norm, with error ∥[M]>r∥2F = ∑

n
i=r+1 σ

2
i

entirely determined by the spectral tail. When estimating the matrix from samples of its entries,
the entry-wise error often depends on the coherence of the top r singular vectors. Coherence
measures how concentrated or spread out the singular vectors are with respect to the standard basis.
High coherence implies that a few entries dominate, making estimation from partial observations
harder, while low coherence suggests that all entries are comparably informative. For detailed
discussions, see, e.g., (8; 53; 48). In our setting, we adopt a similar notion of coherence. For the
top r left singular vectors (ψi)

r
i=1 of M , we define the coherence as: c((ψi)

r
i=1) ∶=

1
r
∥Ur∥

2
2,∞ =

maxx∈[n]
1
r ∑

r
i=1 ψi(x)

2.

When we seek guarantees in entry-wise norms such as ∥ ⋅ ∥2,∞ or ∥ ⋅ ∥∞,∞, it is not clear whether
the truncated SVD [M]r still yields a meaningful approximation of M . It is also not obvious what
quantity governs the estimation error when attempting to recover [M]r from sampled entries. To
address these questions, we introduce the concept of spectral (ir)recoverability, which serves as a
suitable quantity for controlling the approximation and estimation errors when the ∥ ⋅ ∥2,∞ or ∥ ⋅ ∥∞,∞
norms are considered.
Definition 3 (Spectral (ir)recoverability). Let M ∈ Rn×n and let M = ∑n

i=1 σiψiϕ
†
i be its SVD. The

spectral irrecoverability of M is ξ(M) ∶= maxx∈[n]∑
n
i=1 σiψi(x)

2. The spectral recoverability is
ξ(M)−1.

The spectral irrecoverability of a matrix M can be interpreted as a nuclear norm weighted by the left
singular vectors of M , and it quantifies both the low-rank structure and coherence of the matrix. As

1We discuss extensions where this is not the case in Appendix C.
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stated in the following lemma, proved in Appendix A, the low-rank approximation error of M in the
∥ ⋅ ∥2,∞ or ∥ ⋅ ∥∞,∞ norm is controlled by ξ(M).

Lemma 1. Let M ∈ Rn×n. We have: for any 1 ≤ r < n, ∥M − [M]r∥2,∞ ≤
√
σr+1ξ(M).

This lemma serves as an analogue, under the ∥ ⋅ ∥2,∞ norm, of the "key lemma" from (11) (specifically,
Lemma 3.5), which underpins a universal thresholding SVD procedure in the Frobenius norm setting.

0 2 4 6 8
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Figure 2: Approximation error as a function of the
shift parameter k and rank r. The theoretical upper
bound serves as a first-order proxy for the entry-
wise error. We use the standard ∥ ⋅ ∥2→∞ norm,
which matches (up to a

√
n factor) the variant from

Section 3.2 under the uniform measure ν. See
Section 6 for experimental details.

In our context, the lemma implies that
∥M − [M]r∥2,∞ ≤ ε for the largest rank r such
that σr ≥ ϵ2/ξ(M). This provides a principled
criterion for selecting the rank r in a truncated
SVD when targeting an accuracy level ϵ in the
∥ ⋅ ∥2,∞ norm. Additionally, for the problem of
estimating the matrix from sample entries with
∥ ⋅ ∥2,∞ guarantees, we derive a sample complex-
ity lower bound scaling as ξ(M), see Appendix
B.

We conclude with a few remarks. ξ(M)
and ∥M∥2,∞ are closely related as ∥M∥22,∞ =
maxx∑i σ

2
i ψi(x)

2 ≤ σ1ξ(M). When M has
rank r, the spectral irrecoverability satisfies:
ξ(M) ≤ σ1 ∥Ur∥

2
2,∞ = rσ1c((ψi)

r
i=1) which

connects ξ(M) to classical notions of coher-
ence. Finally, as shown in Fig. 2, the low-rank approximation error of the shifted successor measure
improves when the shift k increases (see Section 5 for theoretical justifications).

4 Estimation of the Shifted Successor Measure

4.1 Main result

We assume access to a dataset of transitions (s, a, s′) collected offline. Let Zs,a denote the number of
independent transitions observed from the state-action pair (s, a). Our analysis provides estimation
error bounds conditional on these counts, so we may treat the Zs,a as deterministic. Using the
data, we form the empirical estimator P̂ (s, a, s′) = Ys,a,s′/Zs,a, and given a policy π we can then
also form P̂π((s, a), (s

′, a′)) = P̂ (s, a, s′)π(s′, a′) as the empirical estimator of Pπ. We can then
build a simple estimator of the k-shifted successor measure Mπ,k = P

k
π (I − γPπ)

−1 by taking
M̂π,k = P̂

k
π (I − γP̂π)

−1.

Our final estimator of Mπ,k is obtained by computing the truncated ν-SVD [M̂π,k]r of M̂π,k. We
derive guarantees for this estimator under any probability measure ν of the following form. Let µ
be a probability measure on S; we define ν such that ν(s, a) = µ(s)π(s, a) for all (s, a). In the
following theorem, σi denotes the i-th singular value of M̂π,k in the ν-SVD, and νπ,inv denotes the
invariant measure of the Markov chain Pπ . We also define for δ ∈ (0,1):

Γδ ∶=max (k, (1 − γ)−1)
2

¿
Á
ÁÀ max
(s,a),(s′,a′)∈X

ν(s, a)

Zs,aν(s′, a′)
log(rn/δ), (1)

Eestim ∶=

σ1max(∥Mπ,k∥2,∞ , ∥M
†
π,k∥2,∞

)

σr(σr − σr+1)
∥

dν

dνπ,inv
∥
∞
∥
dνπ,inv

dν
∥
∞
Γδ, (2)

Eapprox ∶=
√
σr+1ξ(Mπ,k). (3)

Theorem 1. There is a universal constant C > 0 such that for any k ≥ 0, any probability measure ν
on X , any 1 ≤ r < n, and all δ ∈ (0,1), we have, if Γδ ≤ 1, with probability at least 1 − δ,

∥[M̂π,k]r −Mπ,k∥2,∞ ≤ CEestim + Eapprox. (4)
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In the proof presented in Appendix C, we show that CEestim and Eapprox are upper bounds on
the estimation and approximation errors, respectively: ∥[M̂π,k]r − [Mπ,k]r∥2,∞ ≤ CEestim and
∥[Mπ,k]r −Mπ,k∥2,∞ ≤ Eapprox.

4.2 Discussion

We discuss the terms involved in the estimation error upper bound below.

(a) The term A ∶=
σ1 max(∥Mπ,k∥2,∞,∥M †

π,k
∥2,∞)

σr(σr−σr+1) comes from the so-called leave-one-out analysis, a
step in the proof that aims at going from error bounds in spectral norm to error bounds in ∥ ⋅ ∥2,∞. The
numerator can be controlled via the spectral recoverability of Mπ,k since ∥Mπ,k∥2,∞ ≤ σ1ξ(Mπ,k).
For A to be controlled, we hence need to control the spectral recoverability of Mπ,k, to have r such
that σ1/σr is bounded and the gap σr − σr+1 is significant. In Appendix C, we discuss how to control
σr − σr+1 in case of bounded spectral irrecoverability.

(b) The term B ∶= d(ν, νπ,inv) ∶= ∥
dν

dνπ,inv
∥
∞
∥
dνπ,inv

dν
∥
∞

involves the Radon-Nikodym derivative of
ν w.r.t. νπ,inv and νπ,inv w.r.t. ν. It captures the discrepancy between ν, used to compute the SVD,
and the invariant measure νπ,inv of the Markov chain under policy π. The choice of ν is under the
control of the practitioner. In practice, it may correspond to the empirical distribution of the dataset
or be chosen arbitrarily, for example, as the uniform distribution, in which case the SVD reduces to
the standard SVD. On the other hand, the invariant distribution νπ,inv is more naturally aligned with
the dynamics and yields the tightest possible bound. Setting ν = νπ,inv eliminates the multiplicative
factor B, resulting in the best-case guarantee. However, estimating νπ,inv exactly may not necessarily
be feasible. Theorem 1 accommodates potential mismatch between ν and νπ,inv, showing that it is
sufficient for ν to approximate the invariant measure up to a constant factor.

(c) The term C ∶= max (k, (1 − γ)−1)
2

comes from extending the concentration results in spectral
norm of P̂ to the shifted successor measure M̂π,k. The form of this term critically relies on a
comparison of ν with the invariant measure, allowing us to exploit contraction properties and avoid
exponential dependence in k or (1 − γ)−1.

(d) The term D ∶= max(s,a),(s′,a′)∈X
ν(s,a)

Zs,aν(s′,a′) log(rn/δ) can eventually be traced back to the

concentration in spectral norm of the empirical estimator P̂ , and is the only term that depends on the
number of observations: if we want ξ small this factor shows how large each Zs,a should. Because of
the ratio ν(s,a)

ν(s′,a′) , the result applies primarily to the case where ν exhibits some kind of homogeneity.

Corollary 1. Assume that ξ(Mπ,k), σ1/σr, max(s,a),(s′,a′)
ν(s,a)
ν(s′,a′) and d(ν, νπ,inv) are O(1),

and that σr − σr+1 = Ω(1). Then a sufficient condition for ∥[M̂π,k]r − [Mπ,k]r∥2,∞ = O(ε)

with probability at least 1 − δ is that the number of observations per state-action pair satisfies
min(s,a)Zs,a = Θ(

log(nr/δ)
ε2

).

From the above result, we deduce that under the structural assumptions made on Mπ,k, the sample
complexity to obtain an estimation error scaling as ε in the ∥ ⋅ ∥2,∞ norm scales as n/ε2 up to the
logarithmic term. Without structure, this sample complexity would necessarily scale as n2/ε2. We
provide a more detailed discussion about these assumptions, including the role of the measure ν, the
rank, etc. in Appendix C.

5 When Low-rank Structure Emerges: Local Mixing Phenomena

There is no reason to expect the transition kernel P (or Pπ) to exhibit a low-rank structure, and
in view of the following proposition (proved in Appendix G), the same observation holds for the
successor measure.

Proposition 1. Let Pπ ∈ Rn×n. For all γ ∈ (0,1), k ≥ 0, i ∈ [n], σi(Pk
π )

1+γ ≤ σi(Mπ,k) ≤
σi(Pk

π )
1−γ .

Consequently ∥Mπ∥2,∞ ≥
√
n

1+γ and ∥Mπ,k∥2,∞ ≥
∥Pk

π ∥F
1+γ .
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However, the situation changes when we consider powers of the transition matrix: for some k > 1,
the matrix P k

π may become approximately low-rank. Specifically, if the Markov chain is ergodic,
then P k

π approaches a rank-1 matrix as k nears the mixing time. This observation suggests that the
k-shifted successor measure Mπ,k may also exhibit low-rank structure for high values of k. However,
the mixing time can be prohibitively long, and applying such a large shift would be impractical. This
raises a natural question: can a low-rank structure emerge at smaller values of k, before the chain
has fully mixed? We address this question by developing theoretical tools to determine from which
value of k the ∥ ⋅ ∥2,∞ norm and the spectral irrecoverability of Mπ,k become bounded. We relate this
threshold to a concept we refer to as local mixing of the underlying Markov chain.

For notational convenience, throughout this section, we write P (resp. Mk) in place of Pπ (resp.
Mπ,k). We also define νmin ∶= minx∈X ν(x) > 0. We observe that ∥Mk∥2,∞ ≤ ∥M∥∞,∞∥P

k∥2,∞ =
(1 − γ)−1∥P k∥2,∞, and hence in what follows we restrict our attention to upper bounding ∥P k∥2,∞.
We discuss how to perform a similar analysis for ∥M †

k∥2,∞ and ξ(Mk) in Appendix G.

5.1 Local mixing estimates via Poincaré inequalities

To estimate the smallest value of k for which ∥P k∥2,∞ becomes bounded, we develop and leverage
functional inequalities inspired by those used to analyze the mixing times of Markov chains (see, e.g.,
(49; 54)). Appendix G provides a detailed introduction to these techniques, as well as the proofs of
all the results of this section. We introduce the Dirichlet form EPP †(f, g) = ⟨(I − PP †)f, g⟩

ν
for all

f, g ∈ Rn. The next theorem shows that deriving functional inequalities on the Dirichlet form allows
us to control ∥P k∥2,∞.

Theorem 2. Suppose there exist λ,C ≥ 0 such that P satisfies the type II2 Poincaré inequality

∀f ∈ Rn
∶ λ ∥f∥

2
2 ≤ EPP †(f, f) +Cλ ∥f∥

2
1 . (5)

Then for all k ≥ 0: ∥P k∥
2

2,∞ ≤ (ν
−1
min −C) (1 − λ)

k +C.

When ν is the invariant measure of P , the Courant-Fischer theorem (Theorem 3.1.2 in (27)) yields
(5) with λ = 1 − σ2(P )2 and C = 1, which in turn leads to a bound on the mixing time that depends
on the singular gap of P . However, as we show below, type II inequalities can also be derived
using higher-order singular values of P . This leads to significantly faster exponential decay rates
for ∥P k∥22,∞, albeit at the cost of a larger limiting constant C. Interestingly, our analysis reveals a
connection between this limiting constant and the coherence of the singular vectors.
Theorem 3. Suppose the underlying measure ν is the invariant measure of P . Let P = UΣV † be the
SVD of P , and σ1 ≥ . . . ≥ σn ≥ 0 be the corresponding to singular values.
(a) For all r ∈ [n], for all function f ∈ Rn, we have

1 − σ2
r+1

2
∥f∥

2
2 ≤ EPP †(f, f) + (1 − σ2

r+1) ∥Ur∥
2
2,∞ ∥f∥

2
1 . (6)

(b) For all r ∈ [n], the result of Theorem 2 holds with λ = (1 − σ2
r+1)/2 and C = 2∥Ur∥

2
2,∞.

As a consequence, if the coherence r−1∥Ur∥
2
2,∞ of the r first left singular vectors of P is known to be

bounded by C/2 (independent of n), then we can suggest to apply a shift k ≈ log(Crνmin)/ log((1+
σ2
r+1)/2) to ensure that ∥Pk∥2,∞ = O(1) and thatMk can be estimated efficiently by using a low-rank

approximation. Such a shift k is typically much smaller than the mixing time (when σ2 is close to 1
while σr+1 remains bounded away from it). Note however that the singular values and the coherence
of the singular vectors of P may be unknown in practice. In such cases, we propose an alternative
method to study the decay rate of ∥P k∥2,∞.

5.2 Decomposable Markov chains

Another strategy to analyze the decay rate of ∥P k∥2,∞ is to study local mixing behavior of the Markov
chain via type II Poincaré inequalities, and combine these inequalities to derive a global type II
Poincaré inequality. We formalize this idea as follows.

2This terminology is inspired by (54, Chapter 2), where the author distinguishes two variants of Nash’s
argument, the second giving no direct bounds on mixing times (see Theorem 2.3.4).
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Definition 4 (Induced Markov chain). Given a Markov chain on [n] with transition matrix P and a
subset S ⊆ [n], the induced chain on S is the Markov chain on S with transition matrix PS given by

∀x, y ∈ S ∶ PS(x, y) ∶= {
P (x, y) if y ≠ x,
P (x,x) +∑z∉S P (x, z) if y = x.

The induced measure νS is the measure on S given by νS(x) ∶= ν(x)/ν(S) for all x ∈ S. We also
denote by EνS ,(PP †)S ∶= E(PP †)S the Dirichlet form constructed with the scalar product ⟨⋅, ⋅⟩νS

.

Proposition 2. Let P be Markov chain on [n] with invariant measure ν and S ⊂ [n]. Suppose
the induced chains (PP †)S , (PP

†)Sc both satisfy a type II Poincaré inequality with respect to the
induced measure: for B ∈ {S,Sc},

∀f ∈ RB , λB ∥f∥
2
ℓ2(νB) ≤ EνB ,(PP †)B(f, f) + λBCB ∥f∥

2
ℓ1(νB) ,

Then P satisfies: ∀f ∈ Rn, λ∥f∥2ℓ2(ν) ≤ Eν,PP †(f, f) + λC∥f∥2ℓ1(ν) with λ = min(λS , λSc) and

C =max ( CS

ν(S) ,
CSc

ν(Sc)).

This result shows how to combine local type II Poincaré inequalities. It can be applied inductively to
consider more complex partitions of the state space, i.e., with more than two subsets. When comparing
to Theorem 3, we note maxi ν(Si)

−1 plays here a role analogous to the coherence. Proposition 2 is
very general, and we illustrate its application through the following simple example.

The 4-room environment. Consider a Markov chain whose transition graph G can be par-
titioned into 4 rooms or connected subgraphs (Gi)i∈[4], as shown in Fig. 3. G is obtained

Figure 3: The four-room
environment.

by adding an edge between each pair (Gi,Gi+1). Consider the simple
random walk on G (at each step moves to a neighbor in G uniformly
at random). It is an irreducible reversible Markov chain with transition
matrix P and stationary distribution ν. The chain induced by P 2 on
Gi is also reversible with spectral gap λi. The latter allows us to upper
bound the (local) mixing time of the chain on Gi as λ−1i log(νmin)

−1.
Proposition 2 yields an explicit bound on ∥P k∥2,∞ which in turn, thanks
to reversibility, leads to a lower bound of the spectral recoverability of
P k. In summary, we can state the following result, proved in Appendix
G.
Theorem 4. For all k ≥ 0, we have:
∥P k∥22,∞ ≤ (mini∈[4] ν(Gi))

−1 + (1 −mini∈[4] λi)
kν−1min.

Furthermore, suppose that mini∈[4] ν(Gi) ≥ c for some constant c > 0. Then for all ε ∈ (0,1), for all
k ≥ 2maxi∈[4] λ

−1
i log(ν−1minε

−1√2/c), ∥P k − [P k]4∥2,∞ ≤ ε.

The above theorem illustrates how we can decompose a Markov chain into sub-chains so as to
understand the shift needed to estimate the matrix efficiently using a low-rank matrix. Assume for
example that the graphs Gi are bounded-degree expanders (26). Then we have λ−1i = O(1) and ν is
uniform up to a Θ(1) factor. The required shift, log(n), is much smaller than the mixing time of the
chain on G, scaling as n log(n). We give further details and examples in Appendix G.

6 Numerical Experiments3

We now turn to empirical validation of our theoretical findings. In the previous sections, we analyzed
how shifting affects the estimation of successor measures and the emergence of low-rank structure.
Here, we test the hypothesis that these structural changes translate into tangible differences in learned
behavior. Since accurate successor measures yield uniformly accurate Q-value estimates, we expect
the impact of shifting to be reflected not only in the estimated Q-values, but more importantly, in the
resulting policies. One domain where the practical relevance of successor measures can be directly
examined is goal-conditioned reinforcement learning (GCRL) (3; 9; 21; 63), where the objective is to
learn policies πg(a∣s) that reach arbitrary goal states g ∈ S. This setting provides a natural testbed
for our analysis, as the quality of estimated successor measures directly determines the accuracy of
goal-conditioned value estimates and, consequently, the learned policies.

3Code available at https://github.com/stestoKTH/shift-SM
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Following (63) consider the goal-specific reward function Rg(s, a) = P (s
′ = g∣s, a). Recall that

Mπ,k = P
k
π (I − γPπ)

−1, and thus P (I − γPπ)
−1 = ∑b π(b∣⋅)P (I − γPπ)

−1 = ∑bMπ,k=1(⋅, ⋅, ⋅, b).
As shown in Proposition 1 of (21), the corresponding state-action value function can be written
as the marginalized successor measure: Q(Rg,πg)(s, a) = ∑bMπg,k=1(s, a, g, b). This implies
that the optimal policy is obtained by acting greedily with respect to ∑bMπg,k=1(s, a, g, b). Our
experiments follow the setup of (20; 21), where the critic learns Q(Rg,πD) for a goal-marginalized
policy πD(a∣s) = ∫S πg(a∣s)dρD(g), with ρD(g) denoting the empirical distribution of goals in the
dataset D. This setup reflects a common GCRL scenario, where the agent reuses past experience
collected under different goals to improve sample efficiency.
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Figure 4: (a) Discrete Medium Pointmaze environment. Each state s is colored by
maxa∑b∈AMπD,k=1(s, a, g, b), with γ = 0.95, goal g marked by a star, and actions follow a uniform
policy πD. Arrows indicate the greedy policy π(s∣g) = argmaxa∑bMπD,k=1(s, a, g, b). (b) Singular
values of shifted successor measures. (c–d) Accuracy (probability of reaching a random goal) and
relaxed accuracy (reaching its 2-neighborhood) as a function of rank and shift for true successor
measures. (e–f) Same as (c–d), but for successor measures learned via TD. (g–h) Accuracy vs.
number of trajectories of length H = 100. Results are averaged over 100 random goals and 5 seeds.

We explore how low-rank approximation (via truncated SVD) and temporal shifting of successor
measures affect the performance of goal-conditioned policies. We perform experiments in the Medium
PointMaze environment with 104 discrete states and 4 actions (see Figure 4 (a)). Additional numerical
experiments are provided in Appendix H. In Figure 4 (b), we observe that shifting successor measures
sharpens the spectrum, accelerating singular value decay. To quantify goal-reaching performance, we
report:

(upper row) accuracy, the probability of reaching the exact goal from a random initial state, and
(lower row) relaxed accuracy, the probability of reaching any state within two steps of the goal.

The relaxed accuracy reflects that, in many scenarios, reaching a nearby state is practically sufficient.
For all evaluations, the policy acts greedily with respect to the corresponding successor measure
matrix. Figure 4 (c) shows that even when using an oracle successor measure, introducing a temporal
shift improves performance, especially when combined with low-rank approximation. This benefit is
particularly notable when success is defined more flexibly, as shown in Figure 4 (d). These results
suggest that shifting enhances the expressiveness of successor measures while compensating for rank
constraints.

To estimate successor measures from data, we apply Temporal Difference (TD)-learning with TD-
errors 1[st+k+1 = g, at+k+1 = b] + γM̂πD,k(st+k+1, at+k+1, g, b) − M̂πD,k(st, at, g, b), where (g, b) ∈
S × A and (st, at, st+k+1, at+k+1) are sampled from D. As shown in Figure 4 (e-f), larger shifts
degrade performance when successor measures are learned via TD. This aligns with the intuition
that estimating long-horizon dynamics is harder and introduces more error, particularly in low-data
regimes. Finally, we assess how data efficiency depends on the shift parameter by fixing the rank to
r = 40 and varying the number of samples in Figure 4 (g-h). We find that a moderate shift (k = 3)
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consistently yields the best performance, suggesting a trade-off: while shifting improves expressivity,
its estimation must remain tractable. This is also illustrated in Fig. 1 in §1.

The choice of rank and shift parameters. As shown in our results, the performance of policies
derived from low-rank approximations improves substantially even for small rank values, consistent
with prior findings (67; 57). In practice, we recommend selecting a rank much smaller than the
state-space dimension. Note, however, that the optimal rank often depends on the chosen shift value,
and the two parameters should thus be tuned jointly. Prior work - for instance, HIQL (51) - already
treats the number of steps to a subgoal as an environment-specific hyperparameter.

7 Limitations and Future Work

Our work leaves open many questions, especially on the algorithmic implications of our theoretical
findings. We highlight below the main limitations of this paper.

Downstream optimization of policies. Our main result provides guarantees for estimating shifted
successor measures under a fixed policy, effectively performing reward-free policy evaluation. How-
ever the effective benefit for downstream policy optimization, once a reward is given, remains unclear
and is not addressed in this paper. In line with prior studies (63; 37), our numerical experiments in
Section 6 show that considering policies that are greedy w.r.t. Q-functions estimated under uniform or
exploratory policies can perform well in practice. This motivates our focus on the evaluation problem,
leaving the theoretical and practical understanding of such greedy policies, why and when they work,
as an open direction for future research.

Dependence on a generative model. Theorem 1 makes the strong assumption of access to an i.i.d.
dataset of transitions. This assumption effectively sidesteps the challenges of exploration and the use
of sampled trajectories, which we leave as an important direction for future work.

Extension to continuous settings. Our work is restricted to tabular MDPs for simplicity. However,
most ideas extend naturally to continuous spaces by replacing matrices with linear operators and
measures (6; 63). Extending Theorem 1 under suitable smoothness assumptions, following (57; 59;
65), is a promising direction.

Limitations of the experimental results. Shifting removes local information, and for tasks such as
goal reaching, where rewards are sparse and given only at the end, this has little impact on achieving
optimal performance. However, in more general settings, we expect that combining shifted successor
measures with estimates of local transitions could further improve performance. Our numerical
results illustrate the theoretical findings and consider low-rank approximations using SVD. It remains
unclear whether alternative low-rank approximation methods would exhibit different behavior. In
Appendix H.5, we discuss potential extensions to non-tabular settings. An open question is how
much of this phenomenon carries over to function approximation settings and how it can be leveraged
effectively there.

8 Conclusion

In this work, we considered the problem of estimating shifted successor measures. Our main result
established an upper bound on the sample complexity for a simple estimator based on SVD truncation.
Unlike previous work, we make no structural assumption on the matrix, showing that structure would
generally emerge naturally from local mixing phenomena. This led us to introduce shifted successor
measures, to better distinguish between small-range transitions, which remain inherently high-rank,
and long-range transitions where mixing phenomena take place and give rise to an approximately
low-rank structure. This was empirically confirmed. Our experiments show that shifted successor
measures are better approximated by their low-rank SVDs than the non-shifted counterpart, and
that the use of shifts can bring performance improvements in (goal-conditioned) RL. These two
main contributions open up many possibilities. From a theoretical perspective, we believe that our
approach could be used to assess the sample complexity of estimating universal representations like
the Forward-Backward model of (62). On the more practical side, the idea of shifting surely requires
a more complete empirical analysis to better understand its impact across diverse RL settings.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: The main claims stated in the abstract and introduction are accurately reflected
in the body of the paper. Our theoretical contributions are formalized and proved in Sections
4 and 5 through a series of theorems and propositions. Furthermore, we support our
claims with numerical experiments presented in Section 6, which illustrate and validate the
theoretical findings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper is primarily theoretical, and we discuss the assumptions, scope, and
implications of our results as they are introduced. Limitations of our work are summarized
in Section 7, and those of our numerical experiments are addressed in greater detail in
Appendix H.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Each of our theoretical results is stated with the full set of assumptions, and
complete proofs are provided in the appendix. We have made every effort to ensure that the
arguments are rigorous and correct to the best of our knowledge.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have made every effort to fully disclose all information necessary to
reproduce the main experimental results. Section 6 and Appendix H provide detailed
descriptions of the experimental setup, and all code required to run the experiments is
included as supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all code as supplementary material to ensure reproducibility. Full
descriptions of the experimental setup are included in Section 6 and Appendix H, to the best
of our ability, to allow faithful reproduction of the main results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All relevant training and evaluation details are described in Section 6 and
Appendix H. In addition, we provide the full code as supplementary material, which includes
all configuration files and scripts needed to reproduce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Justification: All plots involving stochastic components include standard deviation shading
to indicate variability. We also clearly state in the text the number of random seeds and the
amount of data over which results were averaged.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information about the computational resources used for
our experiments, including hardware specifications, memory, and runtime, in Appendix H to
ensure reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To the best of our knowledge, the research presented in the paper fully conforms
to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Measure-induced Norms and SVDs, Shifted Successor Measures and
Spectral Recoverability

In this appendix we establish the formalism that is used throughout the paper. We start with general
notation.

Notation Given integers m ≤ n, we write [m,n] =∶ {m, . . . , n} and in particular [n] =∶ {1, . . . , n}.
We write n ∧m ∶=min(n,w). Vectors are seen as column vectors, measures are identified with row
vectors. We write 1 for the all-one vector, 1i the the indicator vector at i. Thus we write 1i1

⊺
j for the

matrix with only one non-zero entry at coordinate (i, j), equal to 1. We use the notation ⪯ for positive
semi-definite inequalities, abbreviated as p.s.d.. We use the usual Landau notations O(⋅),Θ(⋅), etc.
for asymptotic analysis.

A.1 Measure-induced norms and SVDs

Norms with respect to a measure Given a measure µ on [n], let ⟨f, g⟩µ ∶= ∑i∈[n] µ(i)f(i)g(i).
Note that up to a factor n, the usual inner product is recovered by taking the uniform measure for µ.
Given p ∈ [1,∞], we define the ℓp norm

∥f∥ℓp(µ) ∶= {
(∑x∈X µ(x) ∣f(x)∣

p
)
1/p

if p < ∞
maxx∈X ∣f(x)∣ if p = ∞

.

For simplicity we may keep the measure implicit and write only ∥f∥p = ∥f∥ℓp(µ). We employ the
term "norm" although ∥⋅∥p define norms only if µ has full support. Generally speaking, a lot of
notions considered in the sequel may not be properly defined if µ does not have full support. Rather
than always requiring the measure to have full support, we take the convention that the results become
trivial when an object is ill-defined because of the norm. In particular, we define µmin ∶=mini µ(i)
and consider that µ−1min = +∞ if µ does not have full support.

Adjoint operator and SVD When considering rectangular A ∈ Rn×m we need to define two
underlying measures µ, ν on [m] and [n]. If n = m, we always take µ = ν. The adjoint operator
A† ∈ Rm×n is the unique operator that satisfies ⟨Af, g⟩ν = ⟨f,A

†g⟩
µ

for all f ∈ Rm, g ∈ Rn. It is
explicitely given by

A†
(i, j) ∶=

ν(i)A(i, j)

µ(j)
. (7)

If n = m and µ = ν is uniform, A† = A⊺ is nothing but the transpose of A. Thus every notion that
could normally be defined with a transpose will be here considered with the adjoint instead.

This applies in particular to the singular value decomposition (SVD). The left singular vectors
(ψi)

n∧m
i=1 , resp. right singular vectors (ϕi)n∧mi=1 of A ∈ Rn×m are defined as the eigenvectors of

the self-adjoint matrix AA†, resp. A†A, corresponding to singular values σ1 ≥ . . . ≥ σn∧m ≥ 0
which we always assume to be in non-increasing order. In matrix form, the SVD writes A = UΣV †

where Σ = Diag((σi)
n∧m
i=1 ) while U ∈ Rn×n, V ∈ Rm×m are unitary in the sense U †U = UU † = I

and V †V = V V † = I . This implies that U(x, i) ∶=
√
µ(i)ψi(x), V (x, i) ∶=

√
µ(i)ϕi(x) for all

i, x ∈ [n], so the i-th column of U,V does not exactly contain the entries of i-th singular vector.
Given r ∈ [n∧m], we write [A]r = UrΣrV

†
r for the SVD truncated to rank r and [A]>r = A−[A]r =

U>rΣ>rU
†
>r.

Norm of a row vector If f ∈ Rn is seen as a column vector, we define the row vector f † by
f †(i) ∶= f(i)µ(i). This allows to have ⟨f, g⟩µ = f

†g. Conversely for a row vector ρ we define ρ†

as a column vector by ρ†(i) ∶= ρ(i)/µ(i). We then define ℓp(µ) norms of row vectors by the fact
that ∥f †∥

ℓp(µ) = ∥f∥ℓp†(µ) where p† is the Hölder conjugate of p, defined by 1
p
+ 1

p† = 1. In particular
note that for indicator vectors,

∥1i∥ℓ2(µ) =
√
µ(i), ∥1

⊺
i ∥ℓ2(µ) =

1
√
µ(i)

. (8)
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Matrix norms Given a matrix A ∈ Rn×m and p, q ∈ [1,∞], we define the operator norm

∥A∥ℓp(µ),ℓq(ν) ∶= sup
f∈Rn

f≠0

∥Af∥ℓq(ν)

∥f∥ℓp(µ)
.

Since the ℓ∞(µ) norm does not depend on a measure, we will write more simply ℓ∞. As for vectors,
we may also write more simply ∥A∥p,q when the underyling measures are clear. The ∥⋅∥2,2 norm
will also be called spectral norm. Our definition of row vector norms made to ensure the following
property: if ρ is a row vector then we can also upper bound ∥ρA∥p,q ≤ ∥ρ∥q ∥A∥p,q . For later use, we
also recall the standard fact that

∥A∥p,q ∶= ∥A
†∥

q†,p† . (9)

which is a consequence of Hölder’s inequality.

In the sequel we will be specifically interested in the following norms, that can be distinguished in
two categories:

1. unitarily invariant norms, including the spectral, nuclear and Frobenius norm, which are
respectively the ℓ∞, ℓ1, ℓ2 norms of singular values:

∥A∥2,2 = σ1, ∥A∥∗ =
n

∑
i=1
σi, ∥A∥F = tr(A

†A)1/2 = (
n

∑
i=1
σ2
i )

1/2

. (10)

2. "entrywise" norms:

∥A∥∞,∞ =max
i∈[n]

∑
j∈[m]

∣A(i, j)∣ , ∥A∥2,∞ =max
i∈[n]

⎛

⎝
∑

j∈[m]

∣A(i, j)∣
2

µ(j)

⎞

⎠

1/2

. (11)

Unlike unitarily invariant norms, these depend on singular vectors: for the two-to-infinity we can
make the dependence explicit in the left singular vectors: it is easily checked that

∥A∥
2
2,∞ = max

x∈[n]

n

∑
i=1
σ2
kψi(x)

2 (12)

By duality (9), ∥A∥21,2 = ∥A
†∥

2

2,∞ =maxj∈[j]∑
n∧m
k=1 σ2

kϕk(j)
2. Note the inequalities

∥⋅∥? ≤ ∥⋅∥2,∞ ≤ ν
−1/2
min ∥⋅∥? (13)

for all ∥⋅∥? ∈ {∥⋅∥2,2 , ∥⋅∥F , ∥⋅∥∞,∞}, as well as the submultiplicative inequalities

∥AB∥2,∞ ≤ ∥A∥∞,∞ ∥B∥2,∞ , ∥AB∥2,∞ ≤ ∥A∥2,∞ ∥B∥2,2 .

Stochastic matrices and invariant measures We will often use an arbitrary measure, but in the
context of finite Markov chains invariant measures are the most natural choices. On top of giving
a probabilistic meaning and making a link with mixing as argued in Section 5, we will be moslty
interested in invariant measures to obtain contraction properties. Given a stochastic matrix P ∈ Rn×m,
it is readily seen from (11) that ∥P ∥∞,∞ = 1. On the other hand

∥P †∥∞,∞ = ∥P ∥1,1 = max
j∈[m]

∑i∈[n] ν(i)P (i, j)

µ(j)
.

hence ∥P †∥∞,∞ ≤ 1 if and only if νP ≤ µ pointwise. If n = m, this forces µ to be an invariant
measure. The Riesz-Thorin interpolation theorem then implies that ∥P ∥p,p ≤ 1 for all p ∈ [1,∞].
In particular this implies that the spectral norm ∥P ∥2,2 = σ1 = 1 (corresponding to the all-one
eigenvector and singular vector) and all singular values are bounded by 1.

A.2 Spectral recoverability: Proof of Lemma 1

Proof of Lemma 1. From (12) and the definition of the spectral irrecoverability we immediately see
that

∥M − [M]r∥
2
2,∞ = ∑

i≥r+1
σ2
i ψi(x)

2
≤ σr+1ξ(M).
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B Sample Complexity Lower bounds for ∥ ⋅ ∥2,∞ Guarantees

In this appendix, we provide a minimax lower bound on the estimation error of (non-shifted) successor
measures under a generative model, i.e., when observing independent transitions of the Markov chain.
Definition 5. Let P a subset of stochastic matrices of size n ×m. Given P ∈ P and a vector Z ∈ Nn

with non-negative integer entries, consider a family (xt, yt)Tt=1 ∈ ([n] × [m])
T obtained by sampling

Zi transitions under P (i, ⋅) for each i ∈ [n], independently of all other transitions. We write PP for
the law of (xt, yt)Tt=1. Given a map f ∶ P → Rd, a norm ∥⋅∥ on Rd, ε > 0 and δ ∈ [0,1], an estimator
M̂ of f(P ) is said to be (ε, δ)-PAC with for P and the norm ∥⋅∥ if for all stochastic matrix P ∈ P ,
PP [∥M̂ − f(P )∥ > ε] ≤ δ.

The following proposition shows the sample complexity of estimating of the successor measure is
essentially the same as that of estimating the transition matrix itself.
Proposition 3. Let P ∈ Rn×n be a stochastic matrix and γ, ε ∈ [0,1). Suppose M̂ is a (ε, δ)-PAC
estimator of M = (I − γP )−1 for the norm ∥⋅∥∞,∞. Then P̂ ∶= 1

γ
(I − M̂−1) is a (4ε/γ, δ)-PAC

estimator of P for the ∥⋅∥∞,∞ norm.

Proof. Suppose ∥M̂ −M∥∞,∞ ≤ ε. First we show M̂ almost satisfies the Bellman equation: using
that M = I + γPM

∥M̂ − (I + γPM̂)∥∞,∞ = ∥(I − γP )(M̂ −M)∥∞,∞

≤ ∥(I − γP )∥∞,∞ ∥(M̂ −M)∥∞,∞

≤ (1 + γ ∥P ∥∞,∞)ε

≤ 2ε.

Then using γP̂ = I − M̂−1

∥γ(P̂ − P )∥∞,∞ = ∥I − M̂
−1
− γP ∥∞,∞

= ∥(M̂ − I − γPM̂)M̂−1∥∞,∞

≤ ∥M̂ − I − γPM̂∥∞,∞ ∥M̂
−1∥∞,∞

≤ 2ε ∥I − γP̂ ∥∞,∞

≤ 4ε.

By the previous proposition, we are led to derive a lower bound on the sample complexity for
estimating the transition matrix.
Theorem 5. For all integer n large enough, for all κ ∈ [1, n], there exists a family Pκ of Markov
chains on [n] which satisfies:

(i) every P ∈ Pκ is reversible with uniform invariant measure,

(ii) for all P ∈ Pκ, we have ξ(P ) ≤ κ,

(iii) there exists a universal constant C > 0 such that for all ε > 0, if (∑x∈[n]Zx) ≤

Cε−2max(n,κ2), then there exists no (ε, δ)-PAC estimator for Pκ and the ∥⋅∥∞,∞ norm.

In (68, Theorem 2), the authors consider the problem of estimating a rank r transition matrix from a
trajectory and prove a minimax lower bound on the sample-complexity of order rn/ε2. Our lower
bound attempts to mimick this result by replacing the rank r with the spectral irrecoverability, but
only proves a lower bound of order max(n,κ2)ε−2. Our class of examples is based on block Markov
chains which allows to express the spectral irrecoverability as that of a smaller chain (Lemma 3.
Intuitively, the sample-complexity of κ2 is that of learning the smaller chain, while n is the complexity
required to learn the partition into blocks. To get a lower bound of order κnε−2, we believe it is
necessary to consider a soft partitioning of states, a.k.a state aggregation or mixed membership model
as in (68). However we do not know how to extend the result of Lemma 3 to that case.
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B.1 Block Markov chains

Our class of examples consist of Block Markov chains similar to those considered in (56).
Definition 6. Consider a Markov chain on [n] with transition matrix P . It is a block Markov chain
with k blocks if there exists a stochastic matrix Q on [k], a partition of [n] into k subsets V1, . . . , Vk
and a stochastic matrix p ∈ Rk×n such that

∀x, y ∈ [n] ∶ P (x, y) = Q(V (x), V (y))p(V (y), y) (14)

where we write V (x) for the subset of the partition containing x. Furthermore we require that
p(i, x) > 0 implies x ∈ Vi, which implies that (14) writes matricially as P = Qp. We call Q the
inter-block matrix and p the emission matrix.
Lemma 2. Let P be a block Markov chain with inter-block matrix Q and emission matrix p. Then
for all invariant measure µ of Q, µp is invariant for P . Secondly, when these measures are taken as
underlying the notions of adjoint, we have pp† = I and

P = p†Qp.

Proof. Suppose µ is invariant. Then we check that for all y ∈ [n],

∑
x∈[n]

µp(x)P (x, y) = ∑
i∈[k],x∈[n]

µ(i)p(i, x)Q(V (x), V (y))p(V (y), y)

= ∑
i∈[k],x∈[n]

µ(i)p(i, x)Q(i, V (y))p(V (y), y)

= ∑
i∈[k]

µ(i)Q(i, V (y))p(V (y), y)

= µ(V (y))p(V (y), y) = µp(y).

The second and last line have used that p(i, x) > 0 implies x ∈ Vi. This is also crucial for the
statement: computing the adjoint of p we have

p†
(x, i) =

µ(i)p(i, x)

µp(x)
= 1x∈Vi .

Thus pp† = I and P (x, y) = ∑i,j∈[k] 1x∈ViQ(i, j)p(j, y) = p
†Qp(x, y) for all x, y ∈ [n].

Our interest for block Markov chains comes from the following.
Lemma 3. Under the assumptions made in the previous lemma, ξ(P ) = ξ(Q). In particular
ξ(P ) ≤ µ−1min.

Proof. From the lemma, we can thus compute P † = p†Q†p and

PP †
= p†QQ†p, P †P = p†Q†Qp.

In particular this shows that if ϕ, resp. ψ is a right, resp. left singular vector of Q associated with
singular value σ then p†ϕ , resp. p†ψ is a right, resp. left singular vector of P associated with singular
value σ. Note also that P is a rank k matrix so all non-zero singular values are obtained this way.
Thus from Definition 3

ξ(P ) = max
x∈[n]

k

∑
i=1
σi(p

†ψi(x))
2
=max

j∈[k]

k

∑
i=1
σi(ψi(j))

2
= ξ(Q).

B.2 Proof of Theorem 5

Our class of examples for the minimax lower bound are made of block Markov chain as described
in the previous section. We consider in fact two different classes: for the first one we fix the block
partition and the emission probabilities, and make vary the inter-block matrix, while for the second we
fix the block partition and the inter-block matrix, and make vary the possible emission probabilities.
We build these using a similar process as for the lower bound for reward-free RL of (31).
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Lemma 4. Consider an integer n ≥ 0 and An ∶= {b ∈ {−1,0,1}
n ∶ ∑i bi = 0}. If n is sufficiently

large there exists a subset Bn ⊂ An such that

(i) ∣Bn∣ ≥ en/40,

(ii) for all b ≠ b′ ∈ Bn, ∥b − b′∥1 ≥
n−1
2

.

Proof. If n is odd, we simply set the last entry of all b to 0 (hence the n − 1 in (ii)). Therefore we
suppose now n is even and write n = 2m. We construct the set B at random. Let b0 ∈ An such that
b0(i) = 1 if i ∈ [m] and b0(i) = −1 if i ∈ [m + 1,2m]. All the vectors of An can be obtained by
permuting the entries of b0. Consequently consider the set

B = {Sib0, i ∈ [N]}

where (σi)Ni=1 are independent permutations chosen uniformly at random and Si(k, l) = 1l=σi(k) is
the permutation matrix of σi. By union bound and symmetry for all t ≥ 0

P [∃b ≠ b′ ∈ B, ∥b − b′∥1 ≥ t] ≤ N(N − 1)P [∥Sb0 − b0∥1 ≥ t]

where S is the matrix of a uniform permutation. Observe

∥Sb0 − b0∥1 = 2
m

∑
i=1

1σ(i)>m + 2
2m

∑
i=m+1

1σ(i)≤m

= 2
2m

∑
i=1
Ai,σ(i)

whereAi,j = 1i≤m,j>m+1i>m,j≤m. Since this matrix has its entries in [0,1], we can apply Chatterjee’s
concentration inequality for uniform permutations (10, Prop. 1.1) to X = ∑n

i=1Aiσ(i) to obtain

P [∣X − 2m∣ ≥ t] ≤ 2 exp(
−t2

8m + t
) .

We deduce that with probability at least 1 − 2N(N − 1)e−m/9, all pairs b ≠ b′ ∈ B satisfy ∥b − b′∥1 ≥
m = n/2. Thus by taking N ≤ em/40 this remains larger than 1 − e−Θ(m) so for m large enough the
set B satisfies the requirements with positive probability.

We now construct our two classes as follows. Consider integers k,m ≥ 1 large enough, n ∶= km
and the partition [n] = ⋃k

i=1[(i − 1)m + 1, im] =∶ ⋃
k
i=1 Vi. For the first class, let Q be any reversible

Markov chain on [k] with uniform invariant measure. Then given ε ∈ (0,1/3) and a family of
vectors B = (bi)ki=1 ∈ B

k
m taken from the previously constructed set, define for all i ∈ [k], y ∈ [n] the

emission probabilities:

pB(i, y) ∶=
1 + 3εbi(y mod m)

m
. (15)

Having ε < 1/3 and bi ∈ {−1,0,1}k makes the entries of pB non-negative, and the fact that∑j bi(j) =
0 implies that ∑y pB(i, y) = 1, so pB defines a stochastic matrix. Then let PB be the block markov
chain with block partition ⋃k

i=1 Vi, inter-block matrix Q and emission matrix pB . We construct the
first class P(1)k ∶= (PB)B∈Bk

m
as the collection of such matrices for all emission probabilities.

For the second class, let p0 be the uniform emission matrix, defined by p0(i, y) = 1/m1y∈Vi . We
then want to use the set Bk to construct a family of inter-block matrices QB , however we require the
chains to be reversible. A simple way to produce reversible is by considering a random walk on a
network: given a non-directed graph G on n vertices equipped with non-negative weights c = (c(e))e
on its edges, setting P (x, y) ∶= c(x,y)

∑z c(x,z) defines a reversible Markov chain with invariant measure
µ(x) ∝ ∑y c(x, y) proportional to the sum of weights. Thus we will use the set Bk to define weights.
Given a family of vectors B = (bi)ki=1 ∈ B

k
k define

cB(i, j) ∶= 1 + 3εbi(j). (16)

Since ε < 1/3, the weights are non-negative and we can define a stochastic matrix QB with transition
probabilities proportional to the cB . It is automatically reversible, with invariant measure at i being
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proportional to ∑j∈[k] cB(i, j) = k, so the uniform measure is invariant. Let PB be the block markov
chain with block partition ⋃k

i=1 Vi, inter-block matrix QB and emission matrix p0. We construct the
second class P(2)k ∶= (PB)B∈Bk

k
as the collection of such matrices for all inter-block matrices. Finally

let Pk ∶= P
(1)
k ∪ P

(2)
k .

Lemma 5. For some constant C > 0, for k,m large enough we have

• if (∑x∈[n]Zx) ≤ Cε
−2n, there exists no (ε,1/2)-PAC estimator for the class P(1)k and the

∥⋅∥∞,∞ norm.

• if (∑x∈[n]Zx) ≤ Cε
−2k2, there exists no (ε,1/2)-PAC estimator for the class P(2)k and the

∥⋅∥∞,∞ norm.

Proof of Theorem 5. Given κ ≥ 1, let k ∶= ⌊κ⌋ and define the family Pk as described above. Every
chain of P ∈ P is a block Markov chain with inter-block matrix Q which is reversible with uniform
invariant measure, hence Lemma 2 shows that P † = P is also reversible with uniform invariant
measure. Then Lemma 3 shows ξ(P ) = ξ(Q) ≤ k ≤ κ. This proves the class P satisfies the
requirements (i) and (ii). Finally Lemma 5 shows (iii).

The proof of Lemma 5 is based on Fano’s inequality, as stated in (31, Lemma D.10).

Proposition 4 (Fano’s inequality). Let P1, . . . , PM be M probability measures on a space Ω. For
any estimator ĵ on Ω

1

M

l

∑
j=1

Pj [ĵ ≠ j] ≥ 1 −
infP0

1
M ∑

M
j=1KL(Pj , P0) + log 2

logM

where the infimum is on all probability measures on Ω.

Proof of Lemma 5. We start with P(1)k . Consider PB , PB′ ∈ P
(1)
k . If PB ≠ PB′ there exists x ∈ [n]

such that PB(x, ⋅) ≠ PB′(x, ⋅). Then by construction

∥PB − PB′∥∞,∞ ≥ ∑
y∈[n]

∣PB(x, y) − PB′(x, y)∣

=
3ε

n
∑

y∈[m]
∣bV (x)(y) − b

′
V (x)(y)∣

=
3ε

n
∥bV (x) − b

′
V (x)∥1 ≥

3ε

2
(1 − 1/n)

by the second condition of Lemma 4. For n large enough this is strictly larger than ε. Thus an
(ε, δ)-PAC estimator of Pk for the ∥⋅∥∞ norm yields an (ε, δ)-PAC estimator ofB. Given a stochastic
matrix P on [n], let us write PP for the law of the process generated when sampling independent Zi

transitions at every state i. Thus by Fano’s inequality (Proposition 4)

1

∣Bkm∣
∑

B∈Bk
m

PPB
[B̂ ≠ B] ≥ 1 −

1
∣Bk

m∣ ∑B∈Bk
m
KL(PPB

,PP0) + log 2

log ∣Bkm∣

for any stochastic matrix P0. The process generated by P is a product of independent multinomial
Multinom(Zi, P (i, ⋅)), thus we can compute

KL(PP ,PQ) = ∑
x,y∈[n]

ZxP (x, y) log(
P (x, y)

Q(x, y)
) .
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We take for P0 the block Markov chain with partition (Vi)i, inter-block matrix Q and uniform
emission probability p0(i, y) = 1/m1y∈Vi . Then exploiting the block structure we have

KL(PPB
,PP0) = ∑

x,y∈[n]
ZxPB(x, y) log(

PB(x, y)

P0(x, y)
)

= ∑
x,y∈[n]

ZxQB(V (x), V (y))pB((V (y), y)) log(
pB(V (y), y)

p0(V (y), y)
)

= ∑
x∈[n]

∑
i∈[k],y∈Vi

ZxQB(V (x), i)pB(i, y) log(
pB(i, y)

p0(i, y)
) .

Now for every i ∈ [k], by (15)

∑
y∈Vi

pB(i, y) log(
pB(i, y)

p0(i, y)
) = ∑

j∈[m]

1 + 3εbi(j)

m
log (1 + 3εbi)

≤ ∑
j∈[m]

(3εbi(j) +
9ε2bi(j)

2

m
)

≤ 9ε2.

The second line uses the inequality log(1 + u) ≤ u, the last line is the consequence of having
∑j bi(j) = 0 and bi(j)2 ∈ {0,1}. Summing over i we get

KL(PPB
,PP0) ≤ 9ε

2
∑
∈[n]

Zx

so all in all we deduce

1

∣Bkm∣
∑

B∈Bk
m

PPB
[B̂ ≠ B] ≥ 1 −

9ε2(∑x∈[n]Zx) + log 2

log ∣Bk ∣
≥ 1/2

if (∑x∈[n]Zx) ≤
log(∣Bk ∣)−2 log 2

18ε2
. By Lemma 4 log ∣Bkm∣ ≥ km/40 = n/40 therefore if (∑x∈[n]Zx) ≥

n/40−2 log 2
18ε2

there exists no (ε,1/2)-PAC estimator of P(1)k . This proves the first statement.

The second statement is proved similarly: as above an (ε, δ)-PAC estimator of P(2)k necessarily yields
an (ε, δ)-PAC estimator of B ∈ Bkk . Applying Fano’s inequality with P0 the matrix with all entries
equal to 1/n, we are now led to compute

KL(PPB
,PP0
) = ∑

x,y∈[n]
ZxQB(V (x), V (y))

1

m
log(

nQB(V (x), V (y))

m
)

= ∑
i,j∈[k]

∑
x∈Vi

ZxQB(i, j) log (kQB(i, j))

= ∑
i,j∈[k]

∑
x∈Vi

Zx
1 + 3εbi(j)

k
log (1 + 3εbi(j))

after which the proof follows the same arguments.
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C Discussion and proof of Theorem 1

In this appendix we discuss limitations and possible extensions of our main result, Theorem 1, state a
few key intermediate results used in the proof, and proceed to the proof.

C.1 Discussion

Control of the singular gap We suggested that Theorem 1 requires in practice a large gap ∆r ∶=

σr − σr+1. From the obvious upper bound ∆r ≤ σr, the best we can hope for is having ∆r ≥ cσr
with a constant c < 1. The following lemma shows that with bounded spectral irrecoverability we can
always achieve ∆r ≥ cσ

2
r up to a small look-ahead in the singular values.

Lemma 6. Let A ∈ Rn×m. Then for all r there exists r′ ≥ r such that

σr′+1 ≤ (1 −
(1 − 1/e)σr

3ξ(A)
)σr′ and σr′ ≥ e

−2σr.

Proof. First we bound ∑n
i=1 σi ≤ ξ(A). Consider now r ∈ [n] and an arbitrary integer l ≥ 1. If

σr+i+1 ≥ (1 − 1/l)σr+i for all i ∈ [0, l − 1] then
r+l
∑
i=1
σi ≥ (r − 1)σr + σr

l

∑
i=0
(1 − 1/l)i ≥ σr (r − 1 + l [1 − (1 − 1/l)

l+1])

≥ σr(r − 1 + l(1 − e
−1
))

where we used the bound (1 − 1/l)l+1 ≤ e−1−1/l ≤ e−1. We thus get a contradiction if the right hand
side is larger than ξ(A), which occurs if l ≥ 1

1−1/e (
ξ(A)
σr
− r + 1). Thus by taking l = ⌈ 2

1−1/e
ξ(A)
σr
⌉

there must exist i ≤ l − 1 such that σr+i+1 < (1 − 1/l)σr+i. From its expression we can bound
l ≤ 3ξ(A)

(1−1/e)σr
, while by taking the smallest possible i we also have

σr+i ≥ (1 − 1/l)
lσr ≥ e

−2σr,

noting that l ≥ 2 and using the inequality log(1 − u) ≥ −u/2 for u ≤ 1/2.

Extension to non-recurrent Markov chains Our result requires ν to have full support and to have
its density w.r.t. an invariant measure νπ,inv bounded from above and below. This apparently rules
out absorbing chains, and more generally chains with transient states where invariant measures do not
have full support. We argue however that our result could also be applied in that case by decomposing
the chain adequately. We can decompose the state space X = ⋃i=1Ri ∪ ⋃j=1 Tj into irreducible
recurrent classesRi and irreducible transient classes Tj (for all x, y ∈ Tj there exists a path of positive
probability entirely contained in Tj , but the chain eventually leaves Tj) (see (7)). Our result could
then be applied immediately on eachRi by taking the corresponding invariant measure, but it could
also be applied to Tj as well. Indeed, an inspection of the proof reveals the only reason we require
the invariant measure is to have contraction properties for Pπ in ℓp(νπ,inv), which holds if P †

π is
substochastic and ν is excessive, in the sense νPπ ≥ ν pointwise. On a recurrent class an excessive
measure coincides with an invariant measure but on a transient class Tj an excessive measure is a
quasi-stationary measure (14), which describes the asymptotic behaviour of the chain conditioned to
never leave Tj . It can be obtained concretely as follows: restricting Pπ to a transient class Tj gives a
substochastic matrix with non-negative entries, so we can still apply the Perron-Frobenius theorem.
The first left eigenvector is the quasi-stationary measure we are looking for.

Dependence in ν and νπ,inv We have already explained after Theorem 1 why we consider two
measures: ν is known by the practicioner and used to compute the SVD, while the invariant measure
νπ,inv is more adapted to the analysis. Our proof makes use of a very rough comparison of the norms
to relate the two and there is potentially room for improvement.

Dependence in the policy π The very core of our proof relies on a concentration inequality for
P̂ ∈ RX×S (Theorem 8), which is independent of a policy. This is the key argument to obtain an
off-policy result, which could also be used to make the result of Theorem 1 hold simultaneously over
a set of policies (assuming for instance bounded density w.r.t. a reference policy). We are limited
however by the invariance properties required for the measures, so we have preferred to state the
result for a fixed policy only.

33



Dependence in (1 − γ)−1 Supposing that k ≤ (1 − γ)−1, our estimation error (2) has a dependence
in (1 − γ)−2 – which means that the sample complexity of our algorithm for estimating the (shifted)
successor measure with ε-accuracy scales as (1 − γ)−4. This is probably sub-optimal, as learning
an ε-optimal policies (in reward-specific RL) should have a sample complexity in (1 − γ)−3 (4).
Further note that if one attempted to apply our result for the family of policies considered in a
policy improvement scheme, we would typically require an additional factor (1 − γ)−1 in the sample
complexity. From these observations, we conjecture that the sample complexity of estimating the
(shifted) successor measure should scale as (1 − γ)−2.

Dependence on the uniformity of the measure Our result also features a ratio
max(s,a),(s′,a′)∈X

ν(s,a)
Zs,aν(s′,a′) over all pairs (s, a), (s′, a′). This forbids a highly heterogeneous

measure but we believe this could be an artifact of the proof. For the most part of our argument, in
particular for the concentration in spectral norm (Theorem 7), we are led to consider a ratio only over
neighbouring pairs, i.e. such that P (s, a, s′) > 0, which can be much smaller. The consideration of
a ratio over all pairs come from a rough comparison between the 2 −∞ and spectral norms in the
leave-one-out analysis.

Bound for the non-shifted successor measure Finally we note that Theorem 1 can be used to
derive a bound on the estimation error of Mπ in ∥⋅∥∞,∞ norm:

∥[M̂π,k]r −Mπ∥∞,∞ ≤ CEestim + Eapprox + 2kγ. (17)

This is based on (40, Lemma 24.6). Let X denote the chain with transition matrix Pπ and let
T ∼ G(1 − γ) be a geometric variable independent of X taking values in {0,1, . . .}. Note that
Mπ = (1 − γ)E [PT

π ] and Mπ,k = (1 − γ)E [PT+k
π ]. Then writing ∥µ − ν∥TV for the total variation

distance between two measures µ, ν, it is simple to notice that

∥(1 − γ)Mπ,k − (1 − γ)Mπ∥∞,∞ = 2max
x∈X
∥Px [XT = ⋅] − Px [XT+k = ⋅]∥TV

≤ 2 ∥P [T = ⋅] − P [T + k = ⋅]∥TV

≤ 2kγ(1 − γ)

by (40, Lemma 24.6).

C.2 Main steps of the proof of Theorem 1

The strategy to prove Theorem 1 consists in the following steps: we first prove concentration bounds
for the simple estimator M̂π,k in spectral norm and strengthen them to 2−∞ norm. We have summed
up the main steps in the diagram of Figure 5.

Concentration
inequality

Stein's
method

contraction
properties

Control ofControl of
"mean-value"

inequality

Control of
Leave-
one-out
analysis

Control ofDeterministic

Spectral norm
Entrywise norm

Deterministic

Thm.8, App. E Thm.7, App. F.2App. F.1 Thm.6, App. D

Technical concentration

inequalities, App. F3

Figure 5: Main steps of the proof of Theorem 1.

We focus on the latter part of the proof first, i.e., obtaining bounds in entrywise norms from bounds
in spectral norms. We state a general result for the estimation of a matrix, based on the so-called
leave-one-out analyis (1). The proof is given in Appendix D.

Theorem 6 (Leave-one-out analysis). Let ν a probability measure on [n] with full support, M,M̂ ∈

Rn×n be positive semi-definite self-adjoint matrices w.r.t. ν and E ∶= M̂ −M . Write M = UΛU †,

34



M̂ = Û Λ̂V̂ for the eigendecompositions of M and M̂ respectively. Let r ∈ [n], Hr = Û
†
rUr and

∆r ∶= λr(M) − λr+1(M), with the convention that λn+1(M) ∶= 0. Suppose there exist A, ε > 0 such
that ∥EUr∥ℓ2(ν),ℓ2(ν) ≤ Aε, ∥EM∥ℓ2(ν),ℓ∞ ≤ ε ∥M∥ℓ2(ν),ℓ∞ and

∥E(ÛrHr −Ur)∥ℓ2(ν),ℓ∞ ≤ ε(∥ÛrHr −Ur∥ℓ2(ν),ℓ∞ +
Aε ∥Ur∥ℓ2(ν),ℓ∞

∆r
) .

Then there exists a universal constant C > 0 such that if ε ≤∆r/4A

∥ÛrHr −Ur∥ℓ2(ν),ℓ∞ ≤
CA ∥M∥ℓ2(ν),ℓ∞ ε

∣λr ∣∆r
(18)

and

∥[M̂]r − [M]r∥ℓ2(ν),ℓ∞ ≤
CA ∣λ1∣ ∥M∥ℓ2(ν),ℓ∞ ε

∣λr ∣∆r
. (19)

The previous result requires several controls on the error matrix E in spectral norm. The bound
required on ∥E∥ℓ2(ν),ℓ2(ν) will be the consequence of the following, which is an analogue of Theorem
1 for spectral norm. Note that the underlying measure is here required to be invariant (we explain
how go back to an arbitrary measure ν in the proof of Theorem 1).

Theorem 7 (Concentration in spectral norm). Let P ∈ RX×S be the transition matrix of a finite
MDP. Let µ be a probability measure on S, π a policy and ν(s, a) ∶= µ(s)π(s, a), which defines a
probability measure on the set X of state-action pairs. Let k ≥ 0, γ ∈ (0,1) and write

Ck,γ ∶=
8max(k, (1 − γ)−1)

1 − γ
.

For all policy π, for all t ≥ 0 if ν is invariant for Pπ then

P [∥M̂π,k −Mπ,k∥ℓ2(ν),ℓ2(ν) ≥ t] ≤ 4n exp
⎛
⎜
⎝

−t2min(s,a)∼(s′,a′)
Zs,aν(s′,a′)

ν(s,a)+ν(s′,a′)

8Ck,γ(t + 2Ck,γ)

⎞
⎟
⎠
.

Recall that n denotes the cardinality of X . The minimum is here over pairs (s, a), (s′, a′) ∈ X such
that P (s, a, s′) > 0.

The proof of Theorem 7 can be split in three main steps: we will first prove a concentration inequality
for P̂ using Stein’s method of exchangeable pairs (see Theorem 8 in Appendix E). We will then
extend this concentration result to P̂π and M̂π,k using deterministic arguments in Appendix F, where
we will also establish a set of technical concentration inequalities, gathered in the following lemma.

Given l ∈ [n], let

P̂ (l) ∶= P̂ + 1lP (l, ⋅) − 1lP̂ (l, ⋅), (20)

where 1l denotes the column vector with coordinates all equal to 0 except for the l-th, equal to
1, and P (l, ⋅) is the l-th row of P . P̂ (l) is the matrix obtained by replacing the estimation of the
l-th row by the true value of the matrix P , so that P̂ (l) = E [ P̂ ∣ (Ys,a,s′)(s,a)≠l,s′]. We also write

M̂
(l)
π,k ∶= P̂

(l)
π (I − γP̂

(l)
π )

−1.

Lemma 7 (Leave-one-out concentration). Let P ∈ RX×S be the transition matrix of a finite MDP,
A ∈ RS×p, π be a policy and ν, ρ be probability measures on X , [p] respectively. Suppose ν is
invariant for Pπ . For some universal constants C1,C2 the following holds. Let k ≥ 0, γ ∈ [0,1) and

Ck,γ ∶=
C1max(k, (1 − γ)−1)

1 − γ
.
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For all l ∈ [n], and t ≥ 0 we have

P [∥M̂π,k(l, ⋅)A − M̂
(l)
π,k(l, ⋅)A∥ℓ2(ρ)

≥ t ∣ (Ys,a,s′)(s,a)≠l,s′]

≤ (k + 2)(p + 1) exp
⎛

⎝

−t2Zl

C2
k,γ ∥A∥

2
ℓ2(ρ),ℓ∞

⎞

⎠
, (21)

P [∥M̂π,kA −Mπ,kA∥ℓ2(ρ),ℓ∞ ≥ t]

≤ n(k + 2)(p + 1) exp
⎛

⎝

−t2Zmin

C2
k,γ ∥A∥

2
ℓ2(ρ),ℓ∞

⎞

⎠
, (22)

P [∥M̂π,kA − M̂
(l)
π,kA∥ℓ2(ρ),ℓ2(ν)

≥ t]

≤ (k + 2)(p + 1) exp
⎛

⎝

−t2Zl

C2
k,γν(l) ∥A∥

2
ℓ2(ρ),ℓ∞

⎞

⎠
+C2kpn exp

⎛
⎜
⎝

−mini∼j
Ziν(j)

ν(i)+ν(j)

C2
k,γ

⎞
⎟
⎠
, (23)

P [∥M̂ (l)
π,k −Mπ,k∥

ℓ2(ν),ℓ2(ν)
≥ t] ≤ 4n exp

⎛
⎜
⎝

−t2mini∼j
Ziν(j)

ν(i)+ν(j)

8Ck,γ (t + 2Ck,γ ∥P †∥∞,∞)

⎞
⎟
⎠
. (24)

C.3 Proof of Theorem 1

We now apply the results of the previous subsection to the estimator of the shifted successor measure.
Fix a policy π, γ ∈ (0,1), k ≥ 0 and Mπ,k = P

k
π (I − γPπ)

−1. Recall the estimator M̂π,k ∶=

P̂ k
π (I − γP̂π)

−1. Since the arguments require self-adjoint matrices let

M ∶= (
0 Mπ,k

M †
π,k

0 ) , M̂ ∶= (
0 M̂π,k

M̂ †
π,k

0
) (25)

and writeE ∶= M̂−M . Let (σi)ni=1, (σ̂i)ni=1 be the singular values ofMπ,k and M̂π,k arranged in non-
increasing order, and M = UΣU †, M̂ = Û Σ̂Û † be the eigendecompositions of M,M̂ , corresponding
to eigenvalues (λi)2ni=1, (λ̂i)2ni=1 arranged in non-increasing order of absolute values. These are related
as λ2i−1 = σi, λ2i = −σi for all i ∈ [n]. We need thus to truncate the eigendecomposition of M and
M̂ to rank 2r, however for notational simplicity, we write r in subscripts instead of 2r except for
∣λ2r ∣, but this is σr by what precedes.

Proof of Theorem 1. In this proof we write a ≲ b if there exists a universal constant C > 0 such that
a ≤ Cb. Set

ε ∶=
max(k, (1 − γ)−1)

1 − γ

¿
Á
Á
ÁÀ max

(s,a)
(s′,a′)∈X

νπ,inv(s, a)

Zs′,a′νπ,inv(s′, a′)
log(krn/δ) (26)

Our goal is to apply Theorem 6 with M̂ . We thus need to control ∥E∥ℓ2(ν),ℓ2(ν), ∥EM∥ℓ2(ν),ℓ∞ and
∥E(ÛrHr −Ur)∥ℓ2(ν),ℓ∞ , which we will bound using Theorem 7 and Lemma 7. Note however these
only provide bounds in spectral norm with respect to νπ,inv, while we need a control with respect to
ν. We address this issue with a rough comparison of norms: for all f ∈ Rn, we have

∥f∥
2
ℓ2(ν) ≤ ∥

dν

dνπ,inv
∥
∞
∥f∥

2
ℓ2(νπ,inv) , ∥f∥

2
ℓ2(νπ,inv) ≤ ∥

dνπ,inv

dν
∥
∞
∥f∥

2
ℓ2(ν)

which in turn implies the comparisons of matrix norms

∥B∥ℓ2(ν),ℓ2(ν) ≤

¿
Á
ÁÀ∥

dν

dνπ,inv
∥
∞
∥
dνπ,inv

dν
∥
∞
∥B∥ℓ2(νπ,inv),ℓ2(νπ,inv) (27)

36



and

∥B∥ℓ2(ν),ℓ∞ ≤

√

∥
dνπ,inv

dν
∥
∞
∥B∥ℓ2(νπ,inv),ℓ∞ , (28)

∥B∥ℓ2(νπ,inv),ℓ∞ ≤

¿
Á
ÁÀ∥

dν

dνπ,inv
∥
∞
∥B∥ℓ2(ν),ℓ∞ , (29)

for all matrix B. Write A ∶=
√

∥ dν
dνπ,inv

∥
∞
∥
dνπ,inv

dν
∥
∞

. Thus up to a factor A, we can use the

concentration inequalities in spectral norms with respect to νπ,inv. Note the maximum over all pairs
(s, a) in the definition of ε (26) upper bounds the maximum over neighouring pairs in Theorem 7.
Thus if the values Zs,a are suffciently large to make ε ≤ 1 the theorem and (27) show that

∥E∥ℓ2(νπ,inv),ℓ2(νπ,inv) ≲ ε, ∥E∥ℓ2(ν),ℓ2(ν) ≲ Aε (30)

with probability at least 1 − δ.

Similarly Equation 22 of Lemma 7 shows that with probability at least 1 − δ we have

∥EM∥ℓ2(ν),ℓ∞ ≲ ∥M∥ℓ2(ν),ℓ∞ ε.

Finally we claim that with probability at least 1 − δ

∥E(ÛrHr −Ur)∥ℓ2(ν),ℓ∞ ≲ ε(∥ÛrHr −Ur∥ℓ2(ν),ℓ∞ +
Aε

∆r
∥Ur∥ℓ2(ν),ℓ∞) . (31)

From Theorem 6 and a union bound this will be sufficient to get that

∥[M̂π,k]r − [Mπ,k]r∥ℓ2(ν),∞ ≲
Aσ1 ∥M∥ℓ2(ν),ℓ∞ ε

σr(σr − σr+1)
.

with probability 1 − δ. Theorem 1 follows from observing that ∥M∥ℓ2(ν),ℓ∞ =

max(∥Mπ,k∥ℓ2(ν),ℓ∞ , ∥M
†
π,k∥ℓ2(ν),ℓ∞

), that νπ,inv in the definition of ε (26) can be replaced by ν

at the cost of an additional factor A, and using Lemma 1 for the approximation error.

Proof of the claim (31. We now prove the claim. Given l ≥ 1, recall the definition of P̂ (l) in (20) and
let M̂ (l), Û

(l)
r , etc. be the matrices obtained as their general counterparts M̂, Ûr, etc. but using P̂ (l)

instead of P̂ . First we use triangle inequality to bound

∥E(ÛrHr −Ur)∥ℓ2(ν),ℓ∞ =max
l∈[n]
∥E(l, ⋅)(ÛrHr −Ur)∥ℓ2(ν)

≤max
l∈[n]
∥E(l, ⋅)(ÛrHr − Û

(l)
r H(l)r )∥ℓ2(ν)

+max
l∈[n]
∥E(l, ⋅)(Û (l)r H(l)r −Ur)∥ℓ2(ν) .

The first term is bounded as

∥E(l, ⋅)(ÛrHr − Û
(l)
r H(l)r )∥ℓ2(ν) ≤ ∥1

⊺
l E∥ℓ2(νπ,inv)

∥ÛrHr − Û
(l)
r H(l)r ∥ℓ2(ν),ℓ2(νπ,inv)

≤ νπ,inv(l)
−1/2
∥E∥ℓ2(νπ,inv),ℓ2(νπ,inv)

× ∥ÛrHr − Û
(l)
r H(l)r ∥ℓ2(ν),ℓ2(νπ,inv)

≲ νπ,inv(l)
−1/2ε ∥ÛrHr − Û

(l)
r H(l)r ∥ℓ2(ν),ℓ2(νπ,inv)

(32)

with probability at least 1 − δ, where in the second inequality we used (8).

On the other hand since (Û (l)r H
(l)
r −Ur) is independent of Yl,⋅ Equation 21 of Lemma 7 proves that

conditional on (Ys,a,s′)(s,a)≠l,s′ , with probability at least 1 − δ

∥E(l, ⋅)(Û (l)r H(l)r −Ur)∥ℓ2(ν) ≤ ε ∥Û
(l)
r H(l)r −Ur∥ℓ2(ν),ℓ∞ . (33)
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The latter norm is bounded as

∥Û (l)r H(l)r −Ur∥ℓ2(ν),ℓ∞ ≤ ∥Û
(l)
r H(l)r − ÛrHr∥ℓ2(ν),ℓ∞ + ∥ÛrHr −Ur∥ℓ2(ν),ℓ∞

≤ ν
−1/2
π,invmin ∥Û

(l)
r H(l)r − ÛrHr∥ℓ2(ν),ℓ2(νπ,inv)

+ ∥ÛrHr −Ur∥ℓ2(ν),ℓ∞ . (34)

We are thus left with bounding

∥Û (l)r H(l)r − ÛrHr∥ℓ2(ν),ℓ2(νπ,inv)
= ∥Û (l)r Û (l)†r Ur − ÛrÛ

†
rUr∥ℓ2(ν),ℓ2(νπ,inv)

≤ ∥Û (l)r Û (l)†r − ÛrÛ
†
r ∥ℓ2(ν),ℓ2(νπ,inv)

∥Ur∥ℓ2(ν),ℓ2(ν)

= ∥Û (l)r Û (l)†r − ÛrÛ
†
r ∥ℓ2(ν),ℓ2(νπ,inv)

≤ ∥
dνπ,inv

dν
∥

1/2

∞
∥Û (l)r Û (l)†r − ÛrÛ

†
r ∥ℓ2(ν),ℓ2(ν) .

From the Davis-Kahan inequality (Prop. 7)

∥Û (l)r Û (l)†r − ÛrÛ
†
r ∥ℓ2(ν),ℓ2(ν) ≤

2 ∥(M̂ − M̂ (l))Û
(l)
r ∥

ℓ2(ν),ℓ2(ν)

σ̂
(l)
r − σ̂

(l)
r+1

≤

2 ∥ dν
dνπ,inv

∥
1/2

∞
∥(M̂ − M̂ (l))Û

(l)
r ∥

ℓ2(ν),ℓ2(νπ,inv)

σ̂
(l)
r − σ̂

(l)
r+1

.

By Weyl’s inequality (38) for all i ∈ [n] we have ∣σ̂(l)i − σi∣ ≤ ∥M̂
(l) −M∥

ℓ2(ν),ℓ2(ν), which is
below Aε up to a constant factor with probability at least 1 − δ by (24) of Lemma 7. Hence
(σ̂
(l)
r − σ̂

(l)
r+1)

−1 ≤ 2∆−1r if Aε ≤∆r/2, and so we can bound

∥Û (l)r H(l)r − ÛrHr∥ℓ2(ν),ℓ2(νπ,inv)
≲

A ∥(M̂ − M̂ (l))Û
(l)
r ∥

ℓ2(ν),ℓ2(νπ,inv)

∆r
.

Now comes the point where we use that the maximum in the definition of ε involves all pairs x,x′ ∈ X :
it has the consequence that

max
x,x′∈X

(
νπ,inv(x) + νπ,inv(x

′)

Zxνπ,inv(x′)
)
Zlνπ,inv,min

νπ,inv(l)
≥ 1.

Therefore these term compensate each other when taking t = εν1/2π,inv,min in Equation (23) of Lemma
7 which thus implies

∥(M̂ − M̂ (l)
)Û (l)r ∥ℓ2(ν),ℓ2(νπ,inv)

≲ εν
1/2
π,inv,min ∥Û

(l)
r ∥ℓ2(ν),ℓ∞

with probability at least 1 − δ. Then using Lemma 8 we bound

∥Û (l)r ∥ℓ2(ν),ℓ∞ ≤ 2 ∥Û
(l)
r H(l)r ∥ℓ2(ν),ℓ∞

≤ 2 ∥Û (l)r H(l)r −Ur∥ℓ2(ν),ℓ∞ + 2 ∥Ur∥ℓ2(ν),ℓ∞ .

Combining the previous these inequalities we get

ν
−1/2
π,inv,min ∥Û

(l)
r H(l)r − ÛrHr∥ℓ2(ν),ℓ2(νπ,inv)

≲
Aε

∆r
(∥Û (l)r H(l)r −Ur∥ℓ2(ν),ℓ∞ + ∥Ur∥ℓ2(ν),ℓ∞)

(35)
and plugging this in (34) yields

∥Û (l)r H(l)r −Ur∥ℓ2(ν),ℓ∞ ≲
Aε

∆r
(∥Û (l)r H(l)r −Ur∥ℓ2(ν),ℓ∞ + ∥Ur∥ℓ2(ν),ℓ∞) + ∥ÛrHr −Ur∥ℓ2(ν),ℓ∞ .

(36)
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so if Aε/∆r is sufficently small regrouping the two identical terms yields

∥Û (l)r H(l)r −Ur∥ℓ2(ν),ℓ∞ ≲ ∥ÛrHr −Ur∥ℓ2(ν),ℓ∞ +
Aε

∆r
∥Ur∥ℓ2(ν),ℓ∞ . (37)

Plugging this back in (35) we get that

ν
−1/2
π,invmin ∥Û

(l)
r H(l)r − ÛrHr∥ℓ2(ν),ℓ2(νπ,inv)

≲
Aε

∆r

∥ÛrHr −Ur∥ℓ2(ν),ℓ∞ + (
Aε

∆r
+
A2ε2

∆2
r

)∥Ur∥ℓ2(ν),ℓ∞

≲
Aε

∆r
(∥ÛrHr −Ur∥ℓ2(ν),ℓ∞ + ∥Ur∥ℓ2(ν),ℓ∞) .

All in all combining (32) and (33) ∥E(ÛrHr −Ur)∥ℓ2(ν),ℓ∞ is upper bounded by ε times the latter
equation + ε× (37), so we obtain

∥E(ÛrHr −Ur)∥ℓ2(ν),ℓ∞ ≲
Aε2

∆r
(∥ÛrHr −Ur∥ℓ2(ν),ℓ∞ + ∥Ur∥ℓ2(ν),ℓ∞)

+ ε(∥ÛrHr −Ur∥ℓ2(ν),ℓ∞ +
Aε

∆r
∥Ur∥ℓ2(ν),ℓ∞)

≲ ε(∥ÛrHr −Ur∥ℓ2(ν),ℓ∞ +
Aε

∆r
∥Ur∥ℓ2(ν),ℓ∞) .

using that Aε ≤∆r/2, which proves the claim.
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D Entry-wise guarantees: leave-one-out analysis

In this appendix we prove Theorem 6. The argument is based on the leave-one-out analysis introduced
by Abbe & al (1), but our proofs are more aligned with the monograph (13). Overall, Theorem 6 is
obtained after a few modifications in the proof of (13, Theorem 4.4). In all this section, we consider
ν to be a probability measure on [n] which for simplicity will be omitted from notation. The norms
∥⋅∥ with no subscript at all refer to the spectral norm ∥⋅∥2,2.

D.1 Entry-wise guarantees for SVD estimation: proof of Theorem 6

The theorem will be the consequence of the two following propositions. We use the same setup and
notations as for Theorem 6. We recall that Hr = Û

†
rUr.

Proposition 5. Provided ∥EUr∥ ≤∆r/2, we have

∥ÛrHr −Ur∥2,∞ ≤
∥EM∥2,∞

∣λr ∣
2
(1 +

4 ∥EUr∥

∣λr ∣
) +

4 ∥M∥2,∞ ∥EUr∥

∣λr ∣
(

1

∣λr ∣
+

1

∆r
)

+
2 ∥E(ÛrHr −Ur)∥2,∞

∣λr ∣
.

The following proposition shows how the control of the eigenspace via ÛrHr −Ur implies a control
on the matrix [M̂]r itself for the two-to-infinity norm.
Proposition 6. Provided ∥EUr∥ ≤∆r/8,

∥[M̂]r − [M]r∥2,∞ ≤
5

2
∣λ1∣ ∥ÛrHr −Ur∥2,∞ + 4 ∥M∥2,∞ ∥EUr∥ (2∆

−1
r + ∣λr ∣

−1
) .

Proof of Theorem 6. Use Proposition 5 and the assumptions to bound ∥EUr∥ ≤ ∥E∥ ≤ Aε and

∥ÛrHr −Ur∥2,∞ ≤
ε ∥M∥2,∞

∣λr ∣
2
(1 +

4Aε

∣λr ∣
) +

4A ∥M∥2,∞ ε

∣λr ∣
(

1

∣λr ∣
+

1

∆r
)

+
2ε

∣λr ∣
(∥ÛrHr −Ur∥2,∞ +

Aε ∥Ur∥2,∞
∆r

) .

If ε ≤∆r/4 then 2ε ≤ ∣λr ∣ /2 so we can rearrange terms to obtain

∥ÛrHr −Ur∥2,∞ ≤
2ε ∥M∥2,∞

∣λr ∣
2

(1 +
4Aε

∣λr ∣
) +

8A ∥M∥2,∞ ε

∣λr ∣
(

1

∣λr ∣
+

1

∆r
)

+
4Aε2 ∥Ur∥2,∞

∆r ∣λr ∣
.

Then use the crude bound ∥Ur∥2,∞ ≤ λ
−1
r ∥UrΛr∥2,∞ = ∣λr ∣

−1
∥M∥2,∞. Keeping only the dominant

term in the right-hand side and plugging this bound in Proposition 6 yields the results.

D.2 Technical lemmas

We now prove Propositions 5 and 6. We start by gathering three basic results that will be used in the
proofs. The first one is Weyl’s inequality, which states that for all matrices M̂,M ∈ Rn×n, for all
i ∈ [n],

∣λi(M) − λi(M̂)∣ ≤ ∥M − M̂∥ . (38)

Then we recall the classical Davis-Kahan inequalities. We refer to Corollary 2.8 of (13) for a proof.

Proposition 7 (Davis-Kahan inequality). For all r ∈ [n], if ∥M̂ −M∥ ≤∆r/2 then

∥Û †
>rUr∥ = ∥ÛrÛ

†
r −UrU

†
r ∥ ≤

2 ∥(M̂ −M)Ur∥

∆r
.
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Finally we will need one more lemma. Given a matrix A with singular value decomposition
A = UΣV †, define sgn(A) ∶= UV †.

Lemma 8 ((13, Lemma 4.15)). For all r ≥ 1,

∥Hr − sgn(Hr)∥ ≤
2 ∥E∥

2

∆2
r

(39)

Furthermore if ∥E∥ ≤∆r/2, then
∥H−1r ∥ ≤ 2. (40)

We can now move to the proof of Propositions 5 and 6. The following lemma is taken from Lemma
4.16 of (13) and is an intermediate step towards Proposition 5. The only difference is that we do not
assume M to be of rank r, but this has no consequence on the proof.

Lemma 9. (13)[Lemma 4.16] Provided ∥E∥ ≤∆r/2,

∥ÛrHr − M̂UrΛ
−1
r ∥2,∞ ≤

2 ∥M̂(ÛrHr −Ur)∥2,∞
∣λr ∣

+
4 ∥M̂Ur∥2,∞ ∥EUr∥

∣λr ∣
2

and

∥ÛrHr −Ur∥2,∞ ≤
2 ∥M̂(ÛrHr −Ur)∥2,∞

∣λr ∣
+
4 ∥M̂Ur∥2,∞ ∥EUr∥

∣λr ∣
2

+
∥EUr∥2,∞
∣λr ∣

. (41)

D.3 Proof of Propositions 5 and 6

Proof of Proposition 5. The proposition is a simple continuation of Lemma 9. The first term of (41)
is bounded using triangle inequality

∥M̂(ÛrHr −Ur)∥2,∞ ≤ ∥M(ÛrHr −Ur)∥2,∞ + ∥E(ÛrHr −Ur)∥2,∞

≤ ∥M∥2,∞ ∥(ÛrHr −Ur)∥ + ∥E(ÛrHr −Ur)∥2,∞ .

Since U †
rUr = I , one can notice that

∥ÛrHr −Ur∥ = ∥ÛrÛ
†
rUr −Ur∥

= ∥(ÛrÛ
†
r −UrU

†
r )Ur∥

≤ ∥ÛrÛ
†
r −UrU

†
r ∥ .

Using the Davis-Kahan inequality (Prop. 7) we can thus bound

∥M̂(ÛrHr −Ur)∥2,∞ ≤
2 ∥M∥2,∞ ∥EUr∥

∆r
+ ∥E(ÛrHr −Ur)∥2,∞ . (42)

Similarly the second term of (41) is bounded as

∥M̂Ur∥2,∞ ≤ ∥MUr∥2,∞ + ∥EUr∥2,∞

≤ ∥M∥2,∞ + ∥EUr∥2,∞ . (43)

Finally we bound ∥EUr∥2,∞ ≤ ∣λr ∣
−1
∥EUrΛr∥2,∞ ≤ ∣λr ∣

−1
∥EM∥2,∞, so combining (41) with (42)

and (43) yields the result.

Proof of Proposition 6. Using the SVD decompositions of M̂ and M ,

[M̂]r − [M]r = ÛrΛ̂rÛ
†
r −UrΛrU

†
r

= Ûr (Λ̂r −HrΛrH
†
r) Û

†
r + ÛrHrΛrH

†
r Û

†
r −UrΛrU

†
r . (44)
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Bounding Ûr (Λ̂r −HrΛrH
†
r) Û

†
r : Using MUr = UrΛr and Û †

rM̂ = Λ̂rÛ
†
r

HrΛrH
†
r = Û

†
rUrΛrH

†
r = Û

†
rMUrH

†
r = Û

†
r (M̂ +E)UrH

†
r

= Λ̂rHrH
†
r + Û

†
rEUrH

†
r

and thus Ûr (Λ̂r −HrΛrH
†
r) Û

†
r = ÛrΛ̂r(I −HrH

†
r)Û

†
r + ÛrÛ

†
rEUrH

†
r Û

†
r . Then note

∥ÛrΛ̂r∥2,∞ = ∥[M̂]rÛr∥2,∞

≤ ∥[M̂]r − [M]r∥2,∞ + ∥M∥2,∞

and in particular

∥Ûr∥2,∞ = ∥ÛrΛ̂rΛ̂
−1
r ∥2,∞ ≤ λ̂

−1
r (∥[M̂]r − [M]r∥2,∞ + ∥M∥2,∞) .

Thus we can bound

∥Ûr (Λ̂r −HrΛrH
†
r) Û

†
r ∥2,∞ ≤ ∥ÛrΛ̂r∥2,∞ ∥I −HrH

†
r∥ + ∥Ûr∥2,∞ ∥Û

†
rEUrH

†
r Û

†
r ∥

≤ (∥[M̂]r − [M]r∥2,∞ + ∥M∥2,∞) (∥I −HrH
†
r∥ + λ̂

−1
r ∥EUr∥)

By the Davis-Kahan inequality (Prop. 7)

∥I −HrH
†
r∥ = ∥Û

†
rU>r∥

2
≤
4 ∥EUr∥

2

∆2
r

.

Then if ∥E∥ ≤∆r/2, Weyl’s inequality implies λ̂r ≥ λr − ∥E∥ ≥ λr/2 and we can bound

∥Ûr (Λ̂r −HrΛrH
†
r) Û

†
r ∥2,∞ ≤ 2 (∥[M̂]r − [M]r∥2,∞ + ∥M∥2,∞) ∥EUr∥ (∆

−1
r + λ

−1
r ) .

If furthermore ∥EUr∥ ≤ ∆r/8 we can make the factor in front of ∥[M̂]r − [M]r∥2,∞ smaller than
1/2 so by rearranging terms from (44) we get

∥[M̂]r − [M]r∥2,∞ ≤ 4 ∥M∥2,∞ ∥EUr∥ (∆
−1
r + λ̂

−1
r ) + 2 ∥ÛrHrΛrH

†
r Û

†
r −UrΛrU

†
r ∥2,∞ . (45)

Bounding ÛrHrΛrH
†
r Û

†
r −UrΛrU

†
r : One checks easily that

ÛrHrΛrH
†
r Û

†
r−UrΛrU

†
r = (ÛrHr−Ur)ΛrU

†
r+UrΛr(ÛrHr−Ur)

†
+(ÛrHr−Ur)Λr(ÛrHr−Ur)

†.

The first of these terms can be bounded as

∥(ÛrHr −Ur)ΛrU
†
r ∥2,∞ ≤ ∥ÛrHr −Ur∥2,∞ ∥Λr∥ ∥U

†
r ∥ ≤ ∣λ1∣ ∥ÛrHr −Ur∥2,∞ ,

the second as

∥UrΛr(ÛrHr −Ur)
†∥

2,∞ ≤ ∥UrΛr∥2,∞ ∥ÛrHr −Ur∥

≤
2 ∥M∥2,∞ ∥EUr∥

∆r

using the same bound as for (42). Finally the third term combines the two bounds:

∥(ÛrHr −Ur)Λr(ÛrHr −Ur)
†∥

2,∞ ≤ ∥ÛrHr −Ur∥2,∞ ∥Λr∥ ∥ÛrHr −Ur∥

≤
2 ∣λ1∣ ∥EUr∥ ∥ÛrHr −Ur∥2,∞

∆r

≤
1

4
∣λ1∣ ∥ÛrHr −Ur∥2,∞

if ∥EUr∥ ≤∆r/8. All in all, this gives

∥ÛrHrΛrH
†
r Û

†
r −UrΛrU

†
r ∥2,∞ ≤

5

4
∣λ1∣ ∥ÛrHr −Ur∥2,∞ +

2 ∥M∥2,∞ ∥EUr∥

∆r
. (46)

Combining the two bounds (45) and (46) together yields the result.
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E Concentration in spectral norm for stochastic matrices

The goal of this appendix and the next is to prove Theorem 7 and Lemma 7. Instead of using
off-the-shelf inequalities like Bernstein’s inequality, we establish the concentration inequalities that
we need using Stein’s method of exchangeable pairs and more precisely the arguments of Chatterjee
(10). We thus establish a general concentration inequality for the empirical estimator of a stochastic
matrix in Theorem 8, which to the best of our knowledge is new. This appendix also gives a brief
account of the method of exchangeable pairs for concentration and its extension to matrix inequalities
developed in (52; 44).

E.1 Main concentration inequality

Theorem 8. Let P ∈ Rn×m be a stochastic matrix and µ, ν two probability measures on [m], [n]
respectively. Suppose that for each i ∈ [n] we have drawn Zi independent samples from P (i, ⋅)

and for all j ∈ [m], let Yij count the number of samples with value j. Let P̂ (i, j) = Yij/Zi be the
empirical estimator of P . For all t ≥ 0

P [∥P̂ − P ∥
ℓ2(µ),ℓ2(ν) ≥ t] ≤ (n + 3m) exp

⎛
⎜
⎝

−t2mini∼j
Ziµ(j)

ν(i)+µ(j)

8(t + 2 ∥P †∥∞,∞)

⎞
⎟
⎠
.

where the minimum is over all pairs (i, j) ∈ [n] × [m] such that P (i, j) > 0, and the adjoint P † is
w.r.t. µ and ν.

E.2 The method of exchangeable pairs

The method of exchangeable pairs consists eventually in establishing a differential inequality on the
moment generating function (m.g.f.) that can be integrated to be combined with Chernoff’s bound. In
the matrix case, the argument can be extended to Hermitian matrices (and to more general matrices
thanks to a classical dilation trick) using the matrix m.g.f.: letting t̄r ∶= n−1 tr denote the normalized
trace, the matrix m.g.f. of a Hermitian random matrix Z ∈ Cn×n is

MZ(θ) ∶= E t̄r [ eθZ] , θ ∈ R. (47)

We use a lower-case to denote the log of the m.g.f.:

mZ(θ) ∶= logMZ(θ).

We have the following m.g.f. bounds:

Proposition 8. (52)[Prop. B.2] LetZ ∈ Cn×n be a Hermitian random matrix. Let λmax(Z), λmin(Z)
denote repectively the maximal and minimal eigenvalue of Z. For all t ∈ R,

P [λmax(Z) ≥ t] ≤ n inf
θ>0

exp (−θt +mZ(θ)) (48)

P [λmin(Z) ≤ t] ≤ n inf
θ<0

exp (−θt +mZ(θ)) . (49)

Suppose now Z = ϕ(X) where X is a random variable taking values in a Banach space and ϕ is
a map with Hermitian matrix values. We may write simply E [ϕ] for E [ϕ(X)]. An exchangeable

pair is simply a pair of random variables (X, X̃) such that (X, X̃)
(d)
= (X̃,X) in distribution. The

technique requires next to find a map K =K(X, X̃) such that

1. K(X, X̃) = −K(X, X̃),

2. E [K(X, X̃) ∣ X] = ϕ(X) −E [ϕ].

where we write E [ϕ] = E [ϕ(X)] to simplify notation. Combining the two properties we obtain that
for any function h with matrix values

E [h(X)(ϕ(X) −E [ϕ])] =
1

2
E [(h(X) − h(X̃))K(X, X̃)] .
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Applied to h(X) = eθ(ϕ(X)−E[ϕ]) this implies that

E t̄r [eθ(ϕ(X)−E[ϕ])(ϕ(X) −E [ϕ])] = E t̄r [(eθ(ϕ(X)−E[ϕ]) − eθ(ϕ(X̃)−E[ϕ]))K(X, X̃)] .

One can then notice that E t̄r [ϕ(X)eθϕ(X)] =M ′
ϕ(X)(θ). On the other hand, the right hand side can

be further bounded using mean value inequality, which is straightforward in the scalar case while in
the matrix case one arrives at the following.
Lemma 10. (52)[Lemma B.4] For all θ ∈ R we have

∣M ′
ϕ(X)−E[ϕ](θ)∣ ≤

1

2
∣θ∣ inf

s>0
E t̄r [(sVϕ(X) + s

−1VK(X))e
θX] (50)

where
Vϕ(X) ∶=

1

2
E [(ϕ(X) − ϕ(X̃))2 ∣ X] , VK(X) ∶=

1

2
E [K(X, X̃)2 ∣ X] .

The goal is then to obtain positive semi-definite (p.s.d) inequalities on Vϕ, typically of the form
Vϕ(X) ⪯ γI + βϕ(X). Here we write A ⪰ B if A −B is p.s.d.. This would result in a differential
inequality on Mϕ(X)−E[ϕ](θ) that can be integrated to obtain a bound on the log m.g.f.

mZ(θ) ≤
γθ2

2(1 − βθ)

which in turn translates to a Bernstein-like inequality for ϕ(X) by taking θ ∶= t/(γ+βt) in Proposition
8:
Theorem A. (52)[Thm. 3.1] Suppose there exist constants γ, β ≥ 0, s > 0 such that

Vϕ(X) ⪯ s
−1
(γI + βϕ(X)), VK(X) ⪯ s(γI + βϕ(X)) a.s.

Then for all t ≥ 0

P [λmax(ϕ(X)) ≥ t] ≤ exp(
−t2

2(γ + βt)
)

P [λmin(ϕ(X)) ≥ t] ≤ exp(
−t2

2γ
) .

The previous arguments require the random matrix ϕ(X) to be Hermitian. The more general case can
easily be dealt with thanks to a Hermitian dilation trick, namely by considering the random matrix
(

0 ϕ(X)
ϕ(X)† 0

).

E.3 Exchangeable pairs for independent multinomial variables

We now show how the method of exchangeable pairs can be applied to prove concentration for
functionals of multinomial variables, which is the setting that appears in the case of transitions
observed independently. Let P ∈ Rn×m be a stochastic matrix, Z = (Zi)i∈[n] a deterministic
sequence of integers, N ∶= ∑n

i=1Zi and Y = (Yi⋅)i∈[n] a random matrix of independent multinomial
variables with Yi⋅ ∼Multinom(Zi, P (i, ⋅)) for each i. We write P̂ (i, j) = Yij/Zi for the empirical
estimator of the matrix P . All norms ∥⋅∥ considered in this section are spectral norms with respect to
underlying probability measures µ, ν on [m], [n].

The first step is to devise a nice exchangeable pair. A very natural one is as follows: let I ∈ [n], J,K ∈
[m] be three random indices such that J,K are independent conditional on I and with law given by

P [I = i ∣ Y ] =
Zi

N

P [J = j ∣ I = i, Y ] =
Yij

Zi
= P̂ (i, j), P [K = k ∣ I = i, Y ] = P (i, k).

(51)

Then let Ỹ ∶= Y +1IK −1IJ . To see why (Y, Ỹ ) forms an exchangeable pair, interpret Yij as follows:
consider N balls of n different colors are distributed in m urns independently, such that for each i,
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there are Zi balls of color i, which fall in urn j with probability Pij . Then the number of balls of
color i in urn j has the law of Yij , and Ỹij is realized by choosing one ball uniformly at random and
putting it in a new urn. It is thus immediate that (Y, Ỹ ) forms an exchangeable pair.

Given a function ϕ ∶ Rn×m → Rn′×m′ , let ∆ijϕ(Y ) ∶= ϕ(Y +1ij) −ϕ(Y ). Note that if ϕ is an affine
function, ∆ijϕ(Y ) does not in fact depend in Y , so we may write only ∆ijϕ.

Proposition 9. Let ϕ ∶ Rn×m → Rn′×m′ be an affine function with matrix values.

(i) For all t ≥ 0,

P [∥ϕ(Y ) −E [ϕ(Y )]∥ ≥ t] ≤ (n′ +m′) exp
⎛
⎜
⎝

−t2

2N (EI,J ∥∆IJϕ∥
2
+EI,K ∥∆IKϕ∥

2
)

⎞
⎟
⎠
.

the expectations EI,J ,EI,K being with respect to I, J,K as defined in (51).

(ii) Furthermore, if almost surely ϕ(Y ) is self-adjoint and ∆ijϕ(Y ) ⪰ 0 for all i, j, then for all
t ≥ 0

P [∥ϕ(Y ) −E [ϕ(Y )]∥ ≥ t] ≤ n′ exp(
−t2

2maxi,j ∥∆ijϕ∥ (t + 2 ∥E [ϕ(Y )]∥)
) .

Proof. In order to apply Theorem A, we suppose first ϕ to have self-adjoint values and will extend the
first inequality to more general functions by a dilation trick. Note furthermore that we can suppose
without loss of generality that the constant term of the function iz zero. Combined with the affine
assumption, this implies that ϕ is linear and can be expressed as

ϕ(Y ) = ∑
i,j

Y (i, j)∆ijϕ

with ∆ijϕ =∆ijϕ(Y ) being independent of Y . Averaging over Y shows

E [ϕ(Y )] = ∑
i,j

ZiP (i, j)∆ijϕ.

Then from the distributions of I, J,K (51) we deduce

E [∆IJϕ ∣ Y ] =
1

N
ϕ(Y ), E [∆IKϕ ∣ Y ] =

1

N
E [ϕ(Y )] , (52)

From these, we claim that K(Y, Ỹ ) ∶= N(ϕ(Y ) − ϕ(Ỹ )) satisfies E [K(Y, Ỹ ) ∣ Y ] = ϕ(Y ) −
E [ϕ(Y )]. Indeed the definition of Ỹ implies

ϕ(Y ) − ϕ(Ỹ ) =∆IJϕ(Y − 1IJ) −∆IKϕ(Y − 1IJ)

=∆IJϕ −∆IKϕ (53)

so averaging over I, J,K and using (52) yields the claim.

In view of applying Theorem A, we are only left with upper bounding with Vϕ(Y ) =
1
2
E [(ϕ(Y ) − ϕ(Ỹ )2) ∣ Y ] and VK(Y ) = 1

2
E [K(Y, Ỹ )2 ∣ Y ], but by what precedes VK(Y ) =

N2Vϕ(Y ). Using (53) and the p.s.d-convexity of the matrix square (ie.. ((1 − t)A + tB)2 ⪯
(1 − t)A2 + tB2 for all self-adjoint matrices A,B and t ∈ [0,1])

Vϕ(Y ) =
1

2
E [∥∆IJϕ −∆IKϕ∥

2
∣ Y ]

≤ E [∥∆IJϕ∥
2
+ ∥∆IJϕ∥

2
∣ Y ]

= EI,J ∥∆IJϕ∥
2
+EI,K ∥∆IJϕ∥

2

Applying Theorem A with γ = N (EI,J ∥∆IJϕ∥
2
+EI,K ∥∆IJϕ∥

2
), β = 0 and s = N gives thus the

first inequality.
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If we assume furthermore all the ∆ij are psd, the positivity implies we can bound

(∆ijϕ)
2
⪯ ∥∆ijϕ∥∆ijϕ ⪯max

k,l
∥∆klϕ∥∆ijϕ

for all i, j. Consequently,

Vϕ(Y ) ⪯max
k,l
∥∆klϕ∥E [∆IJϕ +∆IKϕ ∣ Y ]

= N−1max
k,l
∥∆klϕ∥ (ϕ(Y ) +E [ϕ])

= N−1max
k,l
∥∆klϕ∥ (ϕ(Y ) −E [ϕ] + 2E [ϕ])

by (52). Thus applying Theorem A again with s = N but this time γ = 2maxk,l ∥∆klϕ∥E [ϕ] and
β =maxk,l ∥∆klϕ∥ yields the second inequality.

Finally the first inequality extends to the non self-adjoint case by considering the self-adjoint
dilation ψ(Y ) ∶= ( 0 ϕ(Y )

ϕ(Y )† 0
), simply noticing that ∥ψ(Y ) −E [ψ(Y )]∥ = ∥ϕ(Y ) −E [ϕ(Y )]∥

and ∥∆ijψ(Y )∥
2
= ∥∆ijϕ(Y )∥

2.

E.4 Concentration of the empirical estimator

We now apply the previous results in order to prove Theorem 8. Note that as a function of Y ,

∆ijP̂ =
1

Zi
1i1

⊺
j (54)

if P (i, j) > 0 and 0 otherwise.

The proof will require controlling the adjoint P̂ †, which leads us to first prove concentration of the
functional νP̂ (j) − νP (j), for each j ∈ [n].
Lemma 11. For all j ∈ [m], t ≥ 0,

P [∣νP̂ (j) − νP (j)∣ ≥ t] ≤ 2 exp
⎛

⎝

−t2mini∶i∼j
Zi

ν(i)

2(t + 2νP (j))

⎞

⎠
(55)

where i ∼ j denotes the fact that P (i, j) > 0.

As a consequence

P [∣∥P̂ †∥∞,∞ − ∥P
†∥∞,∞∣ ≥ t] ≤ 2m exp

⎛
⎜
⎝

−t2mini∶i∼j
Ziµ(j)
ν(i)

2(t + 2 ∥P †∥∞,∞)

⎞
⎟
⎠

(56)

Proof. Fix j ∈ [m] and let ϕ(Y ) ∶= νP̂ (j). This is a scalar function, linear with respect to Y , with

0 ≤∆ikϕ(Y ) =
ν(i)

Zi
1k=j ≤max

l∶l∼j

ν(l)

Zl
.

Thus we can apply the second inequality of Proposition 9 to obtain the first inequality.

The second inequality is a consequence of the first: note that by (11) ∥P̂ †∥∞,∞ = maxj∈[m]
νP̂ (j)
µ(j)

and so by union bound

P [∣∥P̂ †∥∞,∞ − ∥P
†∥∞,∞∣ ≥ t] = P [max

j∈[m]
∣νP̂ (j) − νP (j)∣ ≥ tµ(j)]

≤ 2mmax
j∈[m]

exp
⎛
⎜
⎝

−t2mini∼j
Ziµ(j)2
ν(i)

2(tµ(j) + 2νP (j))

⎞
⎟
⎠

≤ 2m exp
⎛
⎜
⎝

−t2mini∼j
Ziµ(j)
ν(i)

2(t + 2 ∥P †∥∞,∞)

⎞
⎟
⎠
.
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Moving to the concentration of P̂ , the inequality of Point (i) in Proposition 9 does not yield an
optimal result due to the additional factor N . To resort to the second inequality, we need to consider
a p.s.d. matrix. The idea is that for any square self-adjoint stochastic matrix Q, I −Q is p.s.d.. Thus
Q = I − (I −Q) can always be expressed as a difference of two p.s.d matrices, which motivates us to
also express our self-adjoint random matrix as the difference of two psd matrices.
Lemma 12. Let µ be a measure on [n], Q ∈ Rn×n such that Q† = Q with respect to µ, and f ∈ Rn.
If Q1 = 0 and Q(i, j) ≤ 0 for all i ≠ j, then

⟨Qf, f⟩ = −
1

2
∑

i,j∈[n]
µ(i)Q(i, j) (f(i) − f(j))

2
.

In particular Q ⪰ 0.

Proof. Let f ∈ Rn. Then
⟨Qf, f⟩µ = ∑

i,j

µ(i)Q(i, j)f(i)f(j)

= ∑
i,j

µ(i)Q(i, j)f(i) (f(j) − f(i))

=
1

2
∑
i,j

µ(i)Q(i, j)f(i) (f(j) − f(i)) + f(j) (f(i) − f(j))

= −
1

2
∑
i,j

µ(i)Q(i, j) (f(i) − f(j))
2
≥ 0.

The second equality uses Q1 = 0, the third uses Q† = Q and the inequality arises from the hypothesis
that Q(i, j) ≤ 0 whenever i ≠ j.

Proof of Theorem 8. We use the standard dilation trick to reduce to the self-adjoint case, i.e. we
prove concentration of the (n +m) × (n +m) matrix ( 0 P̂

P̂ † 0
). The concentration is in spectral norm

with respect to the probability measure 1
2
(ν∣[n] + µ∣[m]), which gives the same adjoint operators.

Let D1,D2 be the two random diagonal matrices defined by D1(i) = ∑j∈[m] P̂ (i, j) and D2(j) =

∑i∈[n] ν(i)P̂ (i, j)/µ(j) = ∑i∈[n] P̂
†(j, i). Note that D1 evaluates to the identity matrix, however it

is not equal to the identity as a formal function of the random variable Y . One can then express

(
0 P̂

P̂ † 0
) = (

D1 0
0 D2

) − (
D1 −P̂

−P̂ † D2
) .

and thus
∥P̂ − P ∥ ≤ λmax ((

D1 0
0 D2

) − (
E[D1] 0

0 E[D2] )) − λmin ((
D1 −P̂
−P̂ † D2

) − (
E[D1] −P
−P † E[D2] )) . (57)

Notice that the norm of the diagonal matrix D2 is ∥D2∥ = maxj∈[m] νP̂ (j)/µ(j) = ∥P̂
†∥∞,∞, so

from Lemma 11 we have

P [λmax ((
D1 0
0 D2

) − (
E[D1] 0

0 E[D2] )) ≥ t] ≤ 2m exp
⎛
⎜
⎝

−t2mini∼j
Ziµ(j)
ν(i)

2(t + 2 ∥P †∥∞,∞)

⎞
⎟
⎠

≤ 2m exp(
−t2

2κ(t + 2 ∥P †∥∞,∞)
) (58)

where we write κ ∶= maxi∼j
ν(i)+µ(j)
Ziµ(j) . Thus it remains to establish the concentration of the matrix

ϕ ∶= ( D1 −P̂
−P̂ † D2

), for which we will apply Proposition 9. By Lemma 12, for all f = (f1 f2)⊺ ∈ Rn+m,

⟨∆ijϕ(Y )f, f⟩ =
1

2
∑

x∈[n],y∈[m]
ν(x)∆ijP̂ (x, y) (f1(x) − f2(y))

2

=
ν(i)

2Zi
(f1(i) − f2(j))

2

≤
ν(i)

2Zi
(

1

ν(i)
+

1

µ(j)
) (ν(i)f1(i)

2
+ µ(j)f2(j)

2)
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applying Cauchy-Schwarz inequality. Assuming furthermore ∥f∥ = 1 we can bound
1
2
(ν(i)f1(i)

2 + µ(j)f2(j)
2) ≤ 1, so we deduce

∥∆ijϕ(Y )∥ = sup
∥f∥=1

⟨∆ijϕ(Y )f, f⟩

≤
ν(i) + µ(j)

Ziµ(j)

≤ κ.

The above computation also shows that ∆ijϕ(Y ) is p.s.d., so Point (ii) of Proposition 9 applies to
yield that for all t ≥ 0

P [λmin(ϕ(Y ) −E [ϕ]) ≤ −t ∣ Z] ≤ (n +m) exp(
−t2

2κ(t + 2 ∥E [ϕ]∥)
) .

By the Riesz-Thorin interpolation theorem and duality (9), ∥E [ϕ]∥ = ∥P ∥2,2 ≤ ∥P ∥
1/2
1,1 ∥P ∥

1/2
∞,∞ =

∥P †∥
1/2
∞,∞, and using (57) and (58) we get finally

P [∥P̂ − P ∥ ≥ t ∣ Z] ≤ P [∥P̂ †∥∞,∞ − ∥P
†∥∞,∞ ≥ t/2 ∣ Z]

+ P [λmin(ϕ(Y ) −E [ϕ]) ≤ −t/2 ∣ Z]

≤ 2m exp(
−t2

8κ(t + 2 ∥P †∥∞,∞)
) + (n +m) exp

⎛

⎝

−t2

8κ(t + 2 ∥P †∥
1/2
∞,∞)

⎞

⎠
.

which yields the result, observing ∥P †∥∞,∞ ≥ 1.
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F Extension to shifted successor measures and leave-one-out concentration

In this appendix we leverage the concentration for the empirical estimator P̂ ∈ RX×S established in
Theorem 8 to deduce concentration for more complex functionals of P̂ . First we exploit linearity
and contraction properties of the map P ↦ Pπ to obtain concentration in spectral norm for the
policy-evaluated matrix P̂π. Then we use simple identities to deduce concentration for the shifted
successor measures M̂π,k. Finally we establish the technical concentration inequalities of Lemma 7.

F.1 Contraction properties of the map P ↦ Pπ

Given a policy π, consider the following linear operator on vectors:

Kπ ∶ RX → RS
f ↦ ∑a∈A π(s, a)f(s, a).

(59)

Note that K can be identified with a S × X matrix, namely Kπ(s
′, s, a) = π(s, a)1s′=s so we can

see that
Pπ = PKπ. (60)

Given a probability measure µ on S, let us write µ ⋊ π the probability measure on X given by
µ ⋊ π(s, a) ∶= µ(s)π(s, a). Note any probability measure on X has this form, as π(s, ⋅) is thus the
law of the action conditional of the state.
Lemma 13. For all probability measure µ on S, policy π,

(i) ∥Kπ∥∞,∞ = 1,

(ii) ∥Kπ∥ℓ2(µ⋊π),ℓ2(µ) ≤ 1,

(iii) for all (s, a), (s′, a′) ∈ X , P †(s′, s, a) = (Pπ)
†(s′, a′, s, a).

Here P † is the adjoint of P as an operator ℓ2(µ) → ℓ2(µ⋊π), while P †
π is the adjoint of Pπ which is

an operator ℓ2(µ ⋊ π) → ℓ2(µ ⋊ π).

Proof. Let µ be a probability measure on S and π a policy. Point (i) comes from the fact that K is a
stochastic matrix. Then by Jensens’s inequality for all f ∈ RX

∥Kπf∥
2
ℓ2(µ) = ∑

s∈S
µ(s)(∑

a∈A
π(s, a)f(s, a))

2

≤ ∑
(s,a)∈X

µ(s)π(s, a)f(s, a)2 = ∥f∥
2
ℓ2(µ⋊π)

which implies that ∥Kπ∥ℓ2(µ⋊π),ℓ2(µ) ≤ 1. Finally, by definition

P †
(s′, s, a) =

µ(s)π(s, a)P (s, a, s′)

µ(s′)

=
µ(s)π(s, a)P (s, a, s′)π(s′, a′)

µ(s′)π(s′, a′)

=
µ ⋊ π(s, a)Pπ(s, a, s

′, a′)

µ ⋊ π(s′, a′)
= P †

π(s
′, a′, s, a)

and thus ∥P †∥∞,∞ = ∥P
†
π∥∞,∞.

F.2 Extension to shifted successor measure: proof of Theorem 7

The concentration of shifted successor measures will be the consequence of a deterministic mean-
value like bound, itself a consequence submultiplicativity and the following well-known identities:
the telescopic sum formula

k

∏
i=1
ai −

k

∏
i=1
bi =

k

∑
j=1
(

j−1
∏
i=1

ai)(aj − bj)
⎛

⎝

k

∏
i=j+1

bk
⎞

⎠
(61)
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and the resolvent identity:

a−1 − b−1 = a−1(b − a)b−1 = b−1(b − a)a−1. (62)

Lemma 14. Let µ a probability measure on [n] and consider here ∥⋅∥ = ∥⋅∥ℓ2(µ),ℓ2(µ). Let A,B ∈

Rn×n with 1 ≤ ∥B∥ ≤ ∥A∥, k ≥ 0, γ ∈ [0, ∥A∥
−1
) and write ϕk,γ(A) ∶= Ak(I − γA)−1. Suppose

∥A −B∥ ≤min ( ∥B∥
k
, 1−γ∥B∥

2
). Then

∥ϕk,γ(A) − ϕk,γ(B)∥ ≤
8 ∥B∥

k
max(k, (1 − γ ∥B∥)−1)

1 − γ ∥B∥
∥A −B∥ .

Proof. First decomposing,

Ak
(I − γA)−1 −Bk

(I − γB)−1 = (Ak
−Bk

)(I − γB)−1 +Bk [(I − γA)−1 − (I − γB)−1]

+ (Ak
−Bk

) [(I − γA)−1 − (I − γB)−1]

submultiplicativity of the spectral norm allows to bound

∥ϕk,γ(A) − ϕk,γ(B)∥ ≤ ∥A
k
−Bk∥ ∥(I − γB)−1∥ + ∥Bk∥ ∥(I − γA)−1 − (I − γB)−1∥

+ ∥Ak
−Bk∥ ∥(I − γA)−1 − (I − γB)−1∥ (63)

so it suffices essentially to consider the case of powers and successor measure separately. By the
telescopic sum formula (61)

∥Ak
−Bk∥ ≤

k

∑
i=1
∥A∥

i−1
∥A −B∥ ∥B∥

k−i

= ∥A −B∥ ∥B∥
k−1 (

∥A∥
∥B∥)

k
− 1

∥A∥
∥B∥ − 1

.

Next we use that ∥B∥ ≤ ∥A∥ with mean value inequality and the inequality 1 + x ≤ ex to bound

(
∥A∥
∥B∥)

k
− 1

∥A∥
∥B∥ − 1

≤ k (
∥A∥

∥B∥
)

k−1

= k (1 +
∥A −B∥

∥B∥
)

k−1

≤ ke(k−1)
∥A−B∥
∥B∥ .

Supposing now ∥A −B∥ ≤ ∥B∥ /k the exponential term is bounded by 3.

On the other hand the resolvent identity (62) implies

∥(I − γA)−1 − (I − γB)−1∥ ≤ γ ∥(I − γA)−1∥ ∥A −B∥ ∥(I − γB)−1∥

≤
γ ∥A −B∥

(1 − γ ∥B∥) (1 − γ(∥B∥ + ∥A −B∥).)

Using the assumption that ∥A −B∥ ≤ 1−γ∥B∥
2

the right hand side is bounded by 2γ∥A−B∥
(1−γ∥B∥)2 . Plugging

the previous bounds in (63) we deduce

∥ϕk,γ(A) − ϕk,γ(B)∥ ≤
3k ∥B∥

k−1
∥A −B∥

1 − γ ∥B∥
+
2 ∥B∥

k
∥A −B∥

(1 − γ ∥B∥)2
+
6k ∥B∥

k−1
∥A −B∥

2

(1 − γ ∥B∥)2

≤
∥B∥

k
∥A −B∥

1 − γ ∥B∥
(3d +

2

1 − γ ∥B∥
+
6d ∥A −B∥

1 − γ ∥B∥
)

which gives the result after using again ∥A −B∥ ≤ 1−γ∥B∥
2

.
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Proof of Theorem 7. Let ν be a probability measure on X , which can always be written as ν =∶ µ⋊ π
for some probability measure µ on S and a policy π. Apply Theorem 8 to P ∈ RX×S to obtain

P [∥P̂ − P ∥
ℓ2(µ),ℓ2(ν) ≥ t] ≤ 4n exp

⎛
⎜
⎝

−t2min(s,a)∼s′
Zs,aµ(s′)

ν(s,a)+µ(s′)

8(t + 2 ∥P †∥∞,∞)

⎞
⎟
⎠
.

Then Point (iii) of Lemma 13 shows ∥P †∥∞,∞ = ∥P
†
π∥ = 1 if ν is supposed invariant. Then from (60)

and Point (ii) of the lemma

∥P̂π − Pπ∥ℓ2(ν),ℓ2(ν) = ∥(P̂ − P )Kπ∥ℓ2(ν),ℓ2(ν)

≤ ∥P̂ − P ∥
ℓ2(µ),ℓ2(ν) ∥Kπ∥ℓ2(ν),ℓ2(µ)

≤ ∥P̂ − P ∥
ℓ2(µ),ℓ2(ν)

thus the concentration of P̂ immediately transfers to P̂π. Finally we deduce the concentration of
M̂π,k from the deterministic bound of Lemma 14. Supposing ν invariant also implies ∥P ∥ = 1.
Thus for t ≤ 1 if ∥P̂ − P ∥ < t/Ck,γ ≤ 1/Ck,γ the conditions of Lemma 14 are satisfied, which
thus implies ∥M̂π,k −Mπ,k∥ ≤ Ck,γ ∥P̂ − P ∥ < t. Therefore the events {∥P̂ − P ∥ < t/Ck,γ} and
{∥M̂π,k −Mπ,k∥ ≥ t} are disjoint.

F.3 Leave-one-out concentration

We now establish the technical concentration inequalities of Lemma 7. The proof strategy is similar
to that of Theorem 7: we first establish concentration for linear functional of P̂ in the following
proposition, to combine them with the contraction properties of Lemma 13 and the identities (61)
and (62).
Proposition 10. Consider the same setting as in Theorem 8. Let A ∈ Rm×p and let ρ be a probability
measure on [p]. For all l ∈ [n], and t ≥ 0

(i) P [∥P̂ (l, ⋅)A − P̂ (l)(l, ⋅)A∥
ℓ2(ρ) ≥ t ∣ (Yi⋅)i≠l] ≤ (p + 1) exp(

−t2Zl

2∥A∥2
ℓ2(ρ),ℓ∞

),

(ii) P [∥P̂A − PA∥
ℓ2(ρ),ℓ∞ ≥ t] ≤ n(p + 1) exp(

−t2Zmin

2∥A∥2
ℓ2(ρ),ℓ∞

),

Proof. For (i), fix l ∈ [n] and ϕ(Y ) ∶= P̂ (l, ⋅)A ∈ R1×p. Since we reason conditional on (Yi⋅)i≠l, ϕ is
in fact here a function of the multinomial variable (Ylj)j∈[n] only, so Proposition 9 applies with I = l
a.s., and N replaced with Zl here. We can then bound

∥∆lJϕ∥
2
ℓ2(ρ) =

∥A(J, ⋅)∥
2
ℓ2(ρ)

Z2
l

≤
∥A∥

2
ℓ2(ρ),ℓ∞

Z2
l

, ∥∆lKϕ∥
2
ℓ2(ρ) ≤

∥A∥
2
ℓ2(ρ),ℓ∞

Z2
l

,

so applying the point (i) of Proposition 9 gives (i). For (ii), noting that ∥P̂ dA − P dA∥
ℓ2(ρ),ℓ∞ ∶=

maxl∈[n] ∥(P̂ (l, ⋅) − P (l, ⋅)A)∥ℓ2(ρ), it suffices to prove concentration of the latter row matrix for
fixed l, which can be done as above, and use a union bound argument. The only difference lies in that
we do not reason conditional on (Yi⋅)i≠l anymore, so now we bound

EI,J [∥∆IJϕ∥
2
ℓ2(ρ)] =

1

N
∑

i,j∈[n]
ZiP̂ (i, j) ∥∆ijϕ∥

2
ℓ2(ρ)

=
1

N
∑

i,j∈[n]

P̂ (i, j)

Zi
1i=l ∥A(j, ⋅)∥

2
ℓ2(ρ)

≤
∥A∥

2
ℓ2(ρ),ℓ∞

NZl
≤
∥A∥

2
ℓ2(ρ),ℓ∞

NZmin

and similarly for EI,K ∥∆IKϕ∥
2
ℓ2(ρ). Applying point (i) of Proposition 9 gives (ii).
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Proof of Lemma 7. We first by claim that the result of Proposition 10 also applies with Pπ, P̂π in
place of P and P̂ . The latter proved two inequalities of the form P [∥(P̂ − P )A∥ ≥ t] ≤ ft(∥A∥2,∞)
where ft is a non-decreasing function. From (60) we can bound

P [∥(P̂π − Pπ)A∥ ≥ t] = P [∥(P̂ − P )KπA∥ ≥ t]

≤ ft(∥KπA∥2,∞)

≤ ft(∥Kπ∥∞,∞ ∥A∥2,∞)

= ft(∥A∥2,∞)

using the fact that ft is non-decreasing and Point (i) of Lemma 13. This proves the claim. We will
thus apply Proposition 10 as if it applied directly to Pπ . For simplicity we omit the subscript for the
rest of the proof, writing P in place of Pπ .

The proof of 24 is similar to that of Theorem 8. For other points, we also start by decomposing

M̂π,kA − M̂
(l)
π,kA = [P̂

k
− (P̂ (l))k] (I − γP̂ (l))−1A + (P̂ (l))k [(I − γP̂ )−1 − (I − γP̂ (l))−1]A

+ [P̂ k
− (P̂ (l))k] [(I − γP̂ )−1 − (I − γP̂ (l))−1]A. (64)

Let B ∶= (I − γP̂ (l))−1A. By the telescopic sum formula (61) the first term can be bounded as

∥[P̂ k
(l, ⋅) − (P̂ (l))k(l, ⋅)]B∥

ℓ2(ρ) ≤
k

∑
i=1
∥P̂ i−1

(l, ⋅)(P̂ − P̂ (l))(P̂ (l))k−iB∥
ℓ2(ρ)

=
k

∑
i=1
∣P̂ i−1

(l, l)∣ ∥(P̂ − P̂ (l))(l, ⋅)(P̂ (l))k−iB∥
ℓ2(ρ)

as (P̂ − P̂ (l))(j, ⋅) = 0 if j ≠ l. Now observe the matrix (P̂ (l))k−iB is independent of Yl⋅ so by point
(i) of Proposition 10 and union bound the probability conditional on (Yi⋅)i≠l that one norm factor in

the above sum is larger than t is at most k(p + 1)maxi∈[k] exp(
−t2Zl

2∥(P̂ (l))k−iB∥2
ℓ2(ρ),ℓ∞

). However for

all i ∈ [k]

∥(P̂ (l))k−iB∥
2

ℓ2(ρ),ℓ∞ ≤ ∥(P̂
(l)
)
k−i
(I − γP̂ (l))−1∥∞,∞ ∥A∥

2
ℓ2(ρ),ℓ∞ =

∥A∥
2
ℓ2(ρ),ℓ∞

1 − γ

as (1 − γ)(P̂ (l))k−i(I − γP̂ (l))−1 is a stochastic matrix. Bounding also ∣P̂ i−1(l, l)∣ ≤ 1 we get
eventually that

P [∥[P̂ k
(l, ⋅) − (P̂ (l))k(l, ⋅)]B∥

ℓ2(ρ) ≥ t ∣ (Yi⋅)i≠l] ≤ k(p + 1) exp
⎛

⎝

−t2(1 − γ)2Zl

2k2 ∥A∥
2
ℓ2(ρ),ℓ∞

⎞

⎠
.

For the second term of (64), the resolvent identity (62) gives

∥(P̂ (l))k [(I − γP̂ )−1 − (I − γP̂ (l))−1] (l, ⋅)A∥ = γ ∣(P̂ (l))k(I − γP̂ )−1(l, l)∣ ∥(P̂ − P̂ (l)) (l, ⋅)B∥

≤
1

1 − γ
∥(P̂ − P̂ (l)) (l, ⋅)B∥ .

Thus with the same arguments as above point (i) of Proposition 10 shows

P [∥(P̂ (l))k [(I − γP̂ )−1 − (I − γP̂ (l))−1] (l, ⋅)A∥ ≥ t ∣ (Yi⋅)i≠l] ≤ (p + 1) exp
⎛

⎝

−t2(1 − γ)4Zl

2 ∥A∥
2
2,∞

⎞

⎠
.

Finally the third term of (64) can be bounded as

∥[P̂ k
− (P̂ (l))k] (l, ⋅) [(I − γP̂ )−1 − (I − γP̂ (l))−1]A∥

= ∣[(P̂ k
− (P̂ (l))k)(I − γP̂ )−1] (l, l)∣ ∥(P̂ − P̂ (l)) (l, ⋅)B∥

≤
2

1 − γ
∥(P̂ − P̂ (l)) (l, ⋅)B∥
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and is thus controlled as the second term. Combining all three bounds yields 21.

The proof of (22) follows similar arguments, using point( ii) of Proposition 10 instead.

Finally for inequality (23) the proof is almost the same except there is no mul-
tiplication by 1

⊺
l on the left, so the factors ∣P̂ i−1(l, l)∣, ∣(P̂ (l))k(I − γP̂ )−1(l, l)∣

and ∣[(P̂ k − (P̂ (l))k)(I − γP̂ )−1] (l, l)∣ need to be replaced with ∥P̂ i−1(⋅, l)∥
ℓ2(ν),

∥(P̂ (l))k(I − γP̂ )−1(⋅, l)∥
ℓ2(ν) and ∥[(P̂ k − (P̂ (l))k)(I − γP̂ )−1] (⋅, l)∥

ℓ2(ν) respectively. We
bound these terms as

∥P̂ i−1
(⋅, l)∥

ℓ2(ν) = ∥P̂
i−1
1l∥ℓ2(ν) ≤ ∥P̂

i−1∥
ℓ2(ν),ℓ2(ν) ∥1l∥ℓ2(ν) = ∥P̂

i−1∥
ℓ2(ν),ℓ2(ν)

√
ν(l)

∥(P̂ (l))k(I − γP̂ )−1(⋅, l)∥
ℓ2(ν) ≤ ∥(P̂

(l)
)
k
(I − γP̂ )−1∥

ℓ2(ν),ℓ2(ν)

√
ν(l)

and

∥[(P̂ k
− (P̂ (l))k)(I − γP̂ )−1] (⋅, l)∥

ℓ2(ν) ≤ (∥P̂
k
(I − γP̂ )−1∥

ℓ2(ν),ℓ2(ν)

+∥(P̂ (l))k(I − γP̂ )−1∥
ℓ2(ν),ℓ2(ν))

√
ν(l)

Suppose now that the terms of the right-hand side concentrate: then for some constant C > 0,
using that ν is invariant we would get ∥P̂ i∥

ℓ2(ν),ℓ2(ν) ≤ C ∥P
i∥

ℓ2(ν),ℓ2(ν) ≤ C for all i ∈ [k],

∥(P̂ (l))k(I − γP̂ )−1∥
ℓ2(ν),ℓ2(ν) ≤ C ∥Mπ,i∥ℓ2(ν) ≤ C/(1 − γ) and ∥P̂ k(I − γP̂ )−1∥

ℓ2(ν) ≤ C/(1 −

γ). Then on this event reiterating the above argument would eventually give the bounds

∥[P̂ k
− (P̂ (l))k]B∥

ℓ2(ν),ℓ2(ρ) ≤ C
√
ν(l)kt,

∥(P̂ (l))k [(I − γP̂ )−1 − (I − γP̂ (l))−1]A∥
ℓ2(ν),ℓ2(ρ) ≤

C
√
ν(l)t

(1 − γ)2

∥[P̂ k
− (P̂ (l))k] [(I − γP̂ )−1 − (I − γP̂ (l))−1]A∥

ℓ2(ν),ℓ2(ρ) ≤
2C
√
ν(l)t

(1 − γ)2

with probability at least 1− (k + 2)(p+ 1) exp( −t2(1−γ)2Zl

2max(k,(1−γ)−1)2∥A∥2
ℓ2(ρ),ℓ∞

), conditional on (Yi⋅)i≠l
and thus also unconditional. We then deduce

P [∥M̂π,kA − M̂
(l)
π,kA∥ ≥ t]ℓ2(ν),ℓ2(ρ)

≤ (k + 2)(p + 1) exp
⎛

⎝

−t2Zl

2C2
k,γν(l) ∥A∥

2
ℓ2(ρ),ℓ∞

⎞

⎠

+ P [∃i ∈ [k] ∶ ∥P̂ i−1∥
ℓ2(ν),ℓ2(ν) > C]

+ P [∥(P̂ (l))k(I − γP̂ )−1∥
ℓ2(ν),ℓ2(ν) > C/(1 − γ)]

+ P [∥P̂ k
(I − γP̂ )−1∥

ℓ2(ν),ℓ2(ν) > C/(1 − γ)] .

The three remaining terms can be controlled by Theorem 7 and (24), which gives the second term in
(23). We omit the details.
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G Local mixing phenomena

In this appendix we prove the results of Section 5. We start by proving Proposition 1 in §G.1. In
§G.2, we explain how bounding the spectral recoverabilty reduces to bounding the 2 −∞ norm, at
least for normal chains. Then in §G.3, we give a detailed background on functional inequalities for
Markov chains and explain how our results differ from the classical analysis of mixing times. Finally,
in §G.4, we extend these inequalities and prove Theorems 2, 3, 4 and Proposition 2.

G.1 Singular value bound: proof of Proposition 1

Proposition 1 will be a straightforward application of the following, more general result. Here we
consider the norms, singular values, etc. to be defined w.r.t. any probability measure.

Proposition 11. Let A ∈ Rn×m. For all γ ∈ (0, ∥A∥−12,2), k ≥ 0, i ∈ [n],

σi(A
k)

1 + γ ∥A∥2,2
≤ σi (A

k
(I − γA)−1) ≤

σi(A
k)

1 − γ ∥A∥2,2
(65)

Consequently

∥(∑
t≥k

γtAt
)∥

2,∞
≥
∥Ak∥

F

1 + γ ∥A∥2,2
. (66)

Proof. Using the classical inequality for singular values σn(A)σi(B) ≤ σi(AB) ≤ σ1(A)σi(B)
(see e.g. (27)) valid for all matrices A,B and i, we get

σn((I − γA)
−1
)σi(A

k
) ≤ σi (A

k
(I − γA)−1) ≤ σ1((I − γA)

−1
)σi(A

k
).

Now simply notice σ1((I − γA)−1) = ∥(I − γA)−1∥2,2 ≤ (1 − γ ∥A∥2,2)
−1 and σ1(I − γA) =

∥I − γA∥2,2 ≤ 1 + γ ∥A∥2,2, hence

σn ((I − γA)
−1) =

1

σ1(I − γA)
≥

1

1 + γ ∥A∥2,2
.

Summing over i and using (13) yields

∥(∑
t≥k

γtAt
)∥

2,∞
≥ ∥(∑

t≥k
γtAt

)∥

F

≥
∥Ak∥

F

1 + γ ∥A∥
.

Proof of Proposition 1. Apply the previous Proposition with A = Pπ and note that if the underlying
probability measure is invariant then ∥Pπ∥2,2 = 1.

G.2 Spectral recoverability for chains with normal transition matrices

From Definition 3 and (12), for any matrix A with SVD A = UΣV †, we can express ξ(A) =

∥∣A∣
1/2
∥
2

2,∞
where the absolute square root is defined by ∣A∣1/2 ∶= UΣ1/2V †. When A = P 2k is an

even power of P , it is thus tempting to try relating ξ(P 2k) with ∥P k∥
2

2,∞. However we do not know

how to achieve this, as the singular vectors of P k and P 2k may be very different. A case where this
is possible is when we assume the chain to be reversible or more generally normal (12), in the sense
that PP † = P †P . By the spectral theorem, such matrices are diagonalizable in orthonormal basis,
making the singular vectors coincide with eigenvectors.
Lemma 15. Suppose PP † = P †P . Then for all k ≥ 0,

ξ(P 2k
) ≤ ∥P k∥

2

2,∞ .

Similarly ξ(M2k) ≤ (1 − γσ1(P ))
−1 ∥Mk∥

2
2,∞ where we recall Mk ∶= P

k(I − γP )−1
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Proof. Let P ∶= ∑i σiψiϕ
†
i be the SVD of P . By normality and the spectral theorem, the singular

vectors coincide with eigenvectors, so the SVD of P k is P k = ∑i σ
k
i ψiϕ

†
i for all k ≥ 0. Consequently

ξ(P 2k
) =max

x
∑
i

σi(P
2k
)ψi(x)

2
=max

x
∑
i

σi(P
k
)
2ψi(x)

2
= ∥P k∥

2

2,∞ .

For the shifted successor measure, the singular values of Mk are σk
i (1 − γσi)

−1 hence

ξ(M2k) =max
x
∑
i

σi(P
k
)
2
(1 − σi(P ))

−1ψi(x)
2

≤ (1 − γσ1(P ))
−1max

x
∑
i

σi(P
k
)
2ψi(x)

2

= (1 − γσ1(P ))
−1 ∥P k∥

2

2,∞ .

We leave as an open problem the question of how to extend this result to non-normal chains, but
consider it as a heuristic proof that having ξ(P k) bounded should in general be essentially the same
as having ∥P k∥

2

2,∞ bounded, up to multiplying k by 2.

G.3 Functional inequalities for Markov chains

From now on, we consider P ∈ Rn×n to be the transition matrix of an irreducible Markov chain with
invariant measure ν. Using the framework of A.1, the underlying measure will here be ν until further
notice.

Identifying ν with a row vector, the rank one matrix 1ν is the matrix of the chain at stationarity,
and it is readily seen from (11) that ∥P t − 1ν∥

2,∞ = ∥P
t∥

2,∞ − 1. It makes sense to define the

ℓ2-mixing time as t2(ε) ∶= inf{t ≥ 0 ∶ ∥P t − 1ν∥
2,∞ ≤ ε}, which may be infinite. We also write

Eν [f] ∶= ∑x ν(x)f(x) and Varν(f) = Eν [f
2] −Eν [f]

2.

Recall the definition of the Dirichlet form

EPP †(f, g) = ⟨(I − P )f, g⟩ν . (67)

Remark 1. We consider the Dirichlet form of the multiplicative reversibilization PP †, which appears
naturally when working with discrete-time Markov chains (22). The arguments that follow also
extend, and in fact are simpler, for continuous-time Markov chains, for which we can directly work
with P . We refer to (49) for a comprehensive reference. It is also possible to reduce to considerations
on P only with laziness, i.e. if the chain has a uniformly lower bounded probability to stay put. If
P (x,x) ≥ α for all x ∈ [n], (49, Equation (1.12)) shows that EPP † ≥ 2αEP (f, f).

The argument behind the use of functional inequalities is as follows: by duality (9), ∥P t∥
2,∞ =

∥(P t)†∥
1,2
= sup∥f∥1=1 ∥(P

t)†f∥
2
. Therefore it suffices to bound ∥(P t)†f∥

2
for all f ∈ Rn. Now

for fixed f , it is easy to compute

∥(P t
)

†f∥
2

2
− ∥(P t−1

)
†f∥

2

2
= −EPP †((P t−1

)
†f, (P t−1

)
†f). (68)

(This is really a discrete counterpart of differentiating ∥P tf∥
2
). The goal of using functional

inequalities is thus to obtain a lower bound EP †P (g, g) ≥ F (∥g∥
2
2) valid for all g such that ∥g∥1 = 1,

that can be "integrated" to get estimates on ∥P tf∥
2

and eventually on ∥P t∥
2,∞. The most classical

inequalities are Poincaré (22), log-Sobolev (16) and Nash inequalities (17), to which we can also
add the spectral profile technique, which stems from Faber-Krahn inequalities (24). We focus in this
paper on Poincaré, which are the simplest to establish, and Nash inequalities, which served as our
main inspiration and can prove complementary to Poincaré inequalities.
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Poincaré inequality: the classical Poincaré inequality takes the form

∀f ∈ Rn
∶ λVarν(f) ≤ EPP †(f, f), (69)

for some constant λ ≥ 0. Plugged in (68) and applying the above argument, it implies the decay rate
∥P t − 1ν∥

2,∞ ≤ (1 − λ)
tν−1min (see Corollary 1.14 of (49)). This gives in particular a bound on the

mixing time:
t2(ε) ≤ λ

−1 log(ν−1minε
−1
). (70)

For our purpose of applying Theorem 1, we do not require that strong mixing estimates: we could be
content with ∥P t∥

2,∞ = O(1), which could occur on time scales much smaller than the mixing time.
The Nash inequalities of (17) were introduced precisely to get such decay rates, when the Poincaré
inequality alone is not sharp. Nash inequalities are however notoriously difficult to establish.

Nash inequalities: in view of (54), we distinguish two types of Nash inequalities, which we call
type I and type II

• Type I reads
Varν(f)

1+2/d
≤ CEPP †(f, f) ∥f∥

4/d
1 (71)

for some constants C,d > 0. Plugged in (68) and applying Lemma 3.1 of (17) yields the
bound

∥P k
− 1ν∥

2

2,∞ ≤ (
C(1 + ⌈d⌉)

k + 1
)

d/2

which in turn gives the mixing time bound t2(ε) ≤
C(1+⌈d⌉)

ε2/d .
Using Jensen’s inequality, we also see that (71) implies a Poincaré inequality Varν(f) ≤
CEP (f, f). Thus Nash inequality can be combined or used in place of the Poincaré
inequality to get rid of the log(ν−1min) factor in (70). This is generally sharp for "low-
dimensional chains" like random walk on grids, where the constant d that appears in the
Nash inequality coincides with the dimension parameter.

• Type II has the form

∥f∥
2(2+2/d)
2 ≤ C (EPP †(f, f) +

1

T
∥f∥

2
2) ∥f∥

4/d
1 (72)

for some constant C,d, T > 0. Theorem 3.1 and Remark 3.1 of (17) show that this implies
the decay

∀k ∈ [0, T ] ∶ ∥P t∥
2

2,∞ ≤ (
C(1 + 1/T )(1 + ⌈d⌉)

k + 1
)

d/2

.

Unlike the type I inequality, (72) implies no Poincaré inequality and no mixing time estimate.
Note also that by moving the expectation term of Varν(f) to the right hand side, a type I
inequality (71) implies a type II inequality with a slightly worse constant C and T = 1/C.

G.4 Type II Poincaré inequalities and applications

G.4.1 Proofs of Theorems 2 and 3

As seen above, Nash inequalities, when they can be established at all, provide only a polynomial
decay of the 2−∞ norm. To obtain an exponential decay, we consider extending Poincaré inequalities
instead. The clear analogy between (71) and (69) motivated us to develop analogous "type II" versions
of the Poincaré inequality, that incorporate an additive ℓ1 term. This is exactly the result of Theorem
2, which we now prove.

Proof of Theorem 2. We use the argument sketched in the previous section. Let f ∈ Rn be such that
∥f∥1 = 1 and set ut ∶= ∥(P t)†f∥

2

2
. Note that ∥(P t)†f∥

1
≤ ∥(P t)†∥

1,1
∥f∥1, however by duality (9)

∥P †∥
1,1
= ∥P ∥∞,∞ = 1. Thus ∥(P t)†f∥

1
≤ 1 for all t ≥ 0. Consequently, the type II inequality (5)

plugged in (68) yields
ut − ut−1 ≤ −λut−1 + λC
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which in turn gives ut = ∥(P t)†f∥
2
≤ (1 − λ)t(u0 − C) + C by an easy induction. Then remark

that u0 = ∥f∥
2
2 ≤ ν

−1
min ∥f∥

2
1 = ν

−1
min. Since this is valid for all f such that ∥f∥1 = 1 we deduce

∥(P t)†∥
1,2
= ∥P t∥

2,∞ ≤ (1 − λ)
t(ν−1min −C) +C.

Remark 2. The same arguments could be applied by exchanging P and P † to give a similar bound
for ∥(P k)†∥

2,∞, as is required for Theorem 1. There is one difference however in that we need the

invariance of ν to have ∥P †∥∞,∞ = 1.

Proof of Theorem 3. Let f ∈ Rn and write fr ∶= UrU
†
rf for its projection onto the r first singular

vectors. Note that EPP †(f − fr, fr) = 0 and hence

EPP †(f, f) = EPP †(fr, fr) + EPP †(f − fr, f − fr).

If the underlying measure is invariant, PP † is a stochastic matrix so Lemma 12 implies that I−PP † ⪰

0 and thus EPP †(f, f) ≥ EPP †(f − fr, f − fr). Thus the Courant-Fischer theorem (27, Theorem
3.1.2) gives

λr+1 ∥f − fr∥
2
2 ≤ EPP †(f − fr, f − fr) ≤ EPP †(f, f)

where we write λr+1 = 1 − σ2
r+1. On the other hand use Hölder’s inequality to bound

∥f∥
2
2 = ⟨f − fr, f⟩ + ⟨fr, f⟩ ≤ ∥f − fr∥2 ∥f∥2 + ∥fr∥∞ ∥f∥1 .

Observe then that
∥fr∥∞ = ∥UrU

†
rf∥∞ ≤ ∥Ur∥2,∞ ∥f∥2 ,

so after simplifying by ∥f∥2, we deduce

λ
1/2
r+1 ∥f∥2 ≤ EPP †(f, f)1/2 + λ

1/2
r+1 ∥Ur∥2,∞ ∥f∥1 .

Using (a + b)2 ≤ 2(a2 + b2), we finally get

λr+1
2
∥f∥

2
2 ≤ EPP †(f, f) + λr+1 ∥Ur∥

2
2,∞ ∥f∥

2
1 .

G.4.2 Combining inequalities of induced chains

In (17), Diaconis and Saloff-Coste showed how to establish type II Nash inequalities from local
Poincaré inequalities. This suggested that type II inequalities are related to a local notion of mixing,
which we establish formally in Proposition 2. Given the definition of induced chains (Definition 4) it
is immediate that for all f ∈ Rn

Eν,P (f, f) ≥ Eν,PS
(f, f) + Eν,PSc (f, f)

= ν(S)EνS ,PS
(f∣S , f∣S) + ν(S

c
)EνSc ,PSc (f∣Sc , f∣Sc).

(73)

On the other hand it is also straightforward that ∥f∥pℓp(ν) = ν(S) ∥f∣S∥
p

ℓp(νS)
+ ν(Sc) ∥f∣Sc∥

p

ℓp(νSc)
for all p ∈ [1,∞). Our decomposition result is based on these two simple facts.

Proof of Proposition 2. The result is a consequence of the following inequalities:

∥f∥
2
ℓ2(ν) = ν(S) ∥f∣S∥

2

ℓ2(νS)
+ ν(Sc

) ∥f∣Sc∥
2

ℓ2(νSc)

≤ ν(S) [λ−1S EνS ,PS
(f∣S , f∣S) +CS ∥f∣S∥

2

ℓ1(νS)
]

+ ν(Sc
) [λ−1ScEνSc ,PSc (f∣Sc , f∣Sc) +CSc ∥f∣Sc∥

2

ℓ1(νSc)]

≤min(λS , λSc)
−1
Eν,P (f, f) +max(

CS

ν(S)
,
CSc

ν(Sc)
)(∥f∣S∥

2

ℓ1(ν) + ∥f∣Sc∥
2

ℓ1(ν))

≤min(λS , λSc)
−1
Eν,P (f, f) +max(

CS

ν(S)
,
CSc

ν(Sc)
) ∥f∥

2
ℓ1(ν) .
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The equality uses that S,Sc are disjoint, the first inequality comes from applying the Poincaré inequal-
ities, the second uses (73) and ν(S) ∥f∣S∥ℓ1(νS)

= ∥f∣S∥ℓ1(ν), the last inequality is a consequence of

a2 + b2 ≤ (a + b)2 for a, b ≥ 0.

Proposition 2 requires functional inequalities for induced chains, with respect to the induced measures.
It is wrong in general that the induced measures are invariant for the induced chains, but it is true
for reversible chains (34). For completeness, we prove it in the following Lemma, to justify the
consideration of induced chains with induced measures. We recall a chain is reversible if it satisfies
the detailed balance equation, which translates matricially into P † = P .

Lemma 16. Suppose P is a reversible Markov chain on [n] with invariant measure ν. Then for all
subset S ⊂ [n] the restriction ν∣S to S is invariant for the induced chain PS .

Proof. P is reversible if and only if it satisfies the detailed balanced equation ν(x)P (x, y) =
ν(y)P (y, x) for all x, y ∈ [n]. Taking the induced chain on S does not affect the transition probabili-
ties between x ≠ y in S, so the equation still holds for the induced chain and the measure induced by
ν.

G.4.3 The 4-room examples: proof of Theorem 4

We now proceed to prove the bounds for the 4-room environment of Theorem 4.

Proof of Theorem 4. As a random walk on a graph P is reversible with invariant measure being given
by ν(x) = deg(x)/∑y deg(y), where deg(x) denotes the degree of x. Thus we need to consider the
Dirichlet form of PP † = P 2. The latter is also reversible hence by Lemma 16, so are all induced
chains (P 2)∣Gi

with the induced measures as invariant measures. Now for each i ∈ [4], (P 2)∣Gi

satisfies a type II Poincaré inequality: namely for all f ∈ RGi

λi ∥f∥
2
ℓ2(νVi

) ≤ E(P 2)∣Gi
(f, f) + λi ∥f∥

2
ℓ1(νVi

)

with λi = 1 − σ2((P 2)∣Gi
) the spectral gap of the p.s.d. matrix (P 2)∣Gi

. This a consequence of the
Courant-Fischer theorem as for Theorem 3. It is thus a simple application of Proposition 2 that the
whole chain satisfies

(1 − λ) ∥f∥
2
ℓ2(ν) ≤ EP 2(f, f) +

1 − λ

mini ν(Vi)
∥f∥

2
ℓ1(ν) .

with λ ∶=mini λi, which by Theorem 2 implies the decay rate

∥P t∥
2

2,∞ ≤ (1 − λ)
tν−1min +

1

mini ν(Vi)
.

This proves the first part of the theorem.

For the second part, suppose that mini ν(Gi) ≥ c. Then for t ≥ λ−1 log(ν−1minε
−1) we obtain

∥P t∥
2

2,∞ ≤ ε + c
−1. Since the chain is reversible we can use Lemma 15 to bound the spectral

recoverability as well and get ξ(P 2t) ≤ ε + c−1. Then Lemma 1 shows that ∥P 2t − [P 2t]r∥2,∞ ≤ ε

for the smallest r such that σr+1(P 2t) ≤ ε2/(c−1 + ε). We claim that:

σ5(P
2s
) ≤ (1 − λ)s, for all s ≥ 0. (74)

Provided the claim holds, this implies that σ5(P 4t) ≤ e−2λt ≤ ν2minε
2 by the choice if t.

Let us prove the claim (74. Note that by reversibility σ5(P 2t) = σ5(P
2)t so it suffices to prove that

1 − σ5(P
2) ≥ λ. From the Courant-Fischer theorem:

1 − σ5(P
2
) = sup

codimW=4
inf
f∈W
f≠0

EP 2(f, f)

∥f∥
2
2

.
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Let W be the subspace orthogonal to the subspace Span(1Gi , i ∈ [4]) spanned by the indicator of
each subgraph. It has codimension 4 so we can lower bound

1 − σ5(P
2
) ≥ inf

f∈W
f≠0

EP 2(f, f)

∥f∥
2
2

for this particular subspace. Now decompose f = ∑4
i=1 f∣Gi

. As in (73) we can lower bound

EP 2(f, f) =
4

∑
i=1
ν(Gi)EνGi

,(P 2)∣Gi
(f∣Gi

, f∣Gi
).

Now observe that for each i, since ⟨f,1Gi⟩ = ⟨f∣Gi
,1Gi

⟩ = 0 if f ∈W , we can lower bound

EνGi
,(P 2)∣Gi

(f∣Gi
, f∣Gi

) ≥ λi ∥f∣Gi
∥
2

ℓ2(νGi
) .

Therefore

EP (f, f) ≥
4

∑
i=1
λiν(Gi) ∥f∣Gi

∥
2

ℓ2(νGi
)

≥ λ ∥f∥
2
ℓ2(ν)

which proves the claim.

Remark 3. We note that Theorem 4 is quite general and applies to arbitrary decompositions of the
state space. However, our framework is particularly effective in scenarios where there is a significant
gap between the global mixing time of the Markov chain and the local mixing time within each
"room." In favorable cases—such as when each room is an expander graph—this difference can
be substantial. In contrast, if each room is a 2D grid with n2 states and the policy corresponds
to a random walk, the local mixing time scales as O(n2), while the global mixing time scales as
O(n2 logn). This setup closely resembles the so-called "n-dog" graph studied in Example 3.3.5 of
(54), where two n × n grids are connected at a single corner. In this case, the difference between
local and global mixing is relatively mild. Nonetheless, in our numerical experiments, which include
scenarios resembling this more challenging setting. we already observe significant gains from shifting
the successor measure.
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H Further Numerical Experiments

To complement the theoretical insights and main experimental findings, we provide additional
numerical results that investigate the behavior of shifted successor measures across a wider range of
settings. These experiments aim to probe the robustness and generality of our approach in different
environments, under different data collection policies, and with both model-based and model-free
estimators. All experiments were run on a single CPU and are reproducible within a day. As
mentioned in the main text, all code is available at https://github.com/stestoKTH/shift-SM.

H.1 The 4-room environment

We now revisit the 4-room environment theoretically analyzed in Theorem 4, where the state space is
partitioned into four well-connected regions (rooms) linked by narrow passageways. As discussed in
the main text, this structure induces metastable behavior: the chain mixes rapidly within each room,
while transitions between rooms are relatively infrequent. In this section, we additionally make the
Markov chain aperiodic by allowing the agent to remain in its current state with probability 0.1.

Figure 6 illustrates several empirical findings. On the left, we show the 15x15 discretization of
the 4-room domain that we use in this section. In the center panel, we plot the singular values of
the shifted successor measures Mπ,k for various values of the shift k. As theoretically predicted,
increasing k leads to a sharper spectral decay, indicating stronger low-rank structure. Notably, for
higher shifts - when all states within a room are reachable - the effective rank is close to 4, matching
the number of rooms.
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Figure 6: Left: 4-room environment with a 15x15 discrete space; Center: singular values of shifted
successor measures Mπ,k for various shifts k (uniform policy π, discount factor γ = 0.97); Right:
entrywise norm differences between P k and its rank-4 approximation (blue circles), and between
Mπ,k and its rank-4 approximation (red squares). As in Figure 2, we use the standard ∥ ⋅ ∥2,∞ norm,
which coincides with the norm in Section 3.2 up to a

√
n multiplicative factor under the uniform

measure ν.

On the right, we plot two metrics as a function of k: the entry-wise norms ∥P k − [P k]4∥2,∞ and
∥Mπ,k − [Mπ,k]4∥2,∞. Both metrics decay rapidly with k, consistent with the bounds in Theorem 4.
The behavior confirms that moderate values of k (e.g., k = 4 − 10) are sufficient to approximate
P k with a rank−4 matrix. While such a representation may suffice for navigating between rooms,
accurately reaching specific target states within a room may require a higher-rank approximation.
Nevertheless, shifting the successor measure consistently improves the learnability of low-rank
representations.

These results validate our theoretical predictions in a structured setting and demonstrate how temporal
shifting can uncover the environment’s block structure. We next turn to more complex and less
regular domains.

H.2 Additional Navigation Tasks

We now extend the results from Section 6 to additional environments of increasing complexity.
Specifically, we evaluate the impact of shifting and low-rank approximation of successor measures in
two additional mazes: the U-maze and the Large-maze. All three mazes are discretized versions of
the Maze2D environments from (23).
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Here we repeat the setup from Section 6 and provide additional details. Unless stated otherwise (as in
Section H.3), all data is collected using a uniformly random policy. This simplifies the estimation
process: under a uniform data distribution, the invariant measure ν is uniform, and thus the measure-
dependent norms introduced in Section 3.2 reduce to their standard variants. In particular, the ∥ ⋅ ∥2,∞
norm and the singular value decomposition (SVD) used for low-rank approximation become standard.

Once the successor measures Mπ,k are estimated, we evaluate policies that act greedily with respect
to them. More specifically, given a current state s and a goal g, the policy selects actions according to:
argmaxa∈A∑b∈AMπ,k(s, a, g, b), as described in Section 6. In the low-rank setting, the same greedy
procedure is applied to the rank−r approximation [Mπ,k]r. To quantify goal-reaching performance
and evaluate the obtained policy, we report two metrics: accuracy, the probability of reaching the
exact goal (from a random initial state), and relaxed accuracy, the probability of reaching any state
within two steps of the goal.

Figures 7 and 8 mirror the structure of Figure 4 in the main paper. In each case, we compare unshifted
and shifted successor measures across several metrics: spectrum decay (panel b), goal-reaching
accuracy using ground-truth successor measures (panels c–d), performance of TD-learned measures
(panels e–f), and sample efficiency as a function of dataset size (panels g–h).
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Figure 7: Successor measure analysis in the U-maze environment with γ = 0.98 and uniformly
random policy π. TD estimates use 10k trajectories of length H = 100; rank is fixed to 40 in (g–h).
Results are averaged over 5 seeds and 100 random goals and initial positions.
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Figure 8: Same setup as in Figure 7, now for the Large-maze environment. Rank is fixed to 60 in
(g–h). All results are averaged over 5 seeds and 100 random goals and initial positions.

In both environments, we observe a consistent pattern: shifting enhances spectral decay (Figure 7b
and 8b), making the structure more amenable to low-rank approximation. When true successor
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measures are available (panels c–d), moderate shift values yield better planning performance at low
ranks, consistent with our observations in the Medium-maze environment. However, beyond a certain
point, excessive shifting discards too much information, leading to worse performance. This effect
is more pronounced when successor measures are learned (panels e–f), likely due to compounding
estimation error over long horizons.

Finally, we evaluate how accuracy varies with the number of trajectories (panels g–h). As in the main
experiments, moderate shifts (k = 3 or k = 5) often strike the best balance between representational
power and sample efficiency. The trade-off seen in Figure 4 g–h, where small shifts underexploit
structure and large shifts overburden estimation, persists across these environments.

Overall, these experiments reinforce our findings from Section 6 and demonstrate the robustness of
temporal shifting across domains. Even in larger and more complex mazes, appropriately calibrated
shifting enables more compact representations, improves planning accuracy, and enhances sample
efficiency.

H.3 Non-uniform Data Collecting Policy

In contrast to the previous experiments that used a uniformly random data-collection policy, we
now evaluate a mixed policy composed of 80% uniformly random actions and 20% averaged goal-
conditioned behavior. Specifically, the latter operates by sampling a goal uniformly at random
and following the optimal policy to reach it, repeating this process for all goals (corresponding to
πD(a∣s) = ∫S πg(a∣s)dρD(g) from Section 6 with uniform ρD). As shown in the leftmost panel of
Figure 9, this results in a non-uniform invariant measure ν, with states near the geometric center of
the maze being visited more frequently.
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Figure 9: Left: invariant measure ν with respect to Mπ , dashed line represents uniform distribution.
Center/right: accuracy vs. rank for standard SVD and ν-SVD, same setting as in Figure 4c), with
only the data-collection policy modified.
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Figure 10: Relative Frobenius differ-
ence between rank−r approximations of
Mπ,k using standard SVD vs. ν-SVD.

To account for this skewed distribution, we use the ν-
weighted SVD (as described in Section 3.2) when comput-
ing low-rank approximations of Mπ,k. Figure 10 shows
that the reconstructions obtained with ν-SVD differ signif-
icantly from those of the standard SVD, especially at low
ranks. However, despite this discrepancy, goal-reaching
performance remains nearly unchanged, as seen in the
center and right panels of Figure 9.

All experiments were performed in the Medium-maze
using the same setting as in Section 6. Interestingly, the
results suggest that the uniformly random policy actually
yields slightly better performance at low ranks (compare
with Figure 4c), suggesting that more uniform exploration
may facilitate learning better goal-reaching representations.

H.4 Model-Based Estimation of Shifted Successor Measures

We now compare temporal-difference (TD) learning with a simple model-based (MB) approach for
estimating shifted successor measures. In the model-based case, we first estimate the transition matrix
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Pπ from data, and then compute the shifted successor measureMπ,k = ∑
∞
t=0 γ

tP t+k
π using a truncated

power series expansion. Figure 11 (left) reproduces the TD-based results from Figure 4 (g) in the
Medium-maze, while Figure 11 (right) shows the corresponding performance of the model-based
estimator.
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Figure 11: Goal-reaching accuracy in the Medium-maze using TD (left) and model-based (right)
estimation. In both cases, we use trajectories of length 100, collected with a uniformly random policy,
γ = 0.95 and fixed rank r = 40.

We observe that the model-based approach maintains higher goal-reaching accuracy even for larger
shift values k. This is expected: unlike TD, which relies on sparse, temporally aligned supervision
(i.e., observing specific (st, at, st+k+1) transitions), the model-based method can leverage all available
transitions to estimate Pπ, making it less sensitive to the horizon length. In particular, long-range
transitions needed for higher shifts are harder to estimate via TD when data is limited, whereas they
are implicitly captured in Pπ and recovered through matrix powers in the MB estimator.

While model-based estimation proves more robust in this tabular setting, it does not easily scale
to environments with large or continuous state spaces. Storing and computing with full transition
matrices becomes infeasible, making function approximation challenging. In such cases, TD learning
might be more practical and scalable despite its limitations with longer shifts.

H.5 Extension to the Non-Tabular Setting

A natural question is whether the benefits of shifted successor measures observed in discrete maze
environments carry over to more complex settings with stochastic dynamics and continuous state-
action spaces. We believe that learning shifted successor measures may yield similar benefits in
such environments - particularly in cases where learning the standard, non-shifted successor measure
proves challenging.

While we do not provide formal guarantees under function approximation, we believe similar effects
are likely to emerge in practice. This intuition aligns with prior work on hierarchical reinforcement
learning (ex. (50; 51)), where high-level policies capture the coarse structure of the task and steer
the agent toward the vicinity of its goal. It would be interesting to explore whether shifted successor
measures could similarly encode such high-level behaviors.

One particularly promising direction is contrastive learning. For example, (21) samples positive ex-
amples from a geometrically distributed time offset governed by the discount factor γ. To incorporate
a shift k, one could instead sample the offset from Geom(1 − γ) + k, effectively biasing learning
toward more temporally distant predictions.

By contrast, extending these ideas to Forward-Backward (FB) algorithm of (63) is less straightforward.
A key strength of FB is its ability to learn from one-step transitions (st, at, st+1) independently of the
data collection policy. How to integrate a meaningful notion of temporal shift into such a framework
remains an open and intriguing challenge.

We see these directions as promising opportunities to extend the benefits of temporal shifting beyond
tabular settings, and hope that the theoretical insights in this work will help guide future progress in
more realistic domains.
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