Published in Transactions on Machine Learning Research (10/2025)

LO-BCQ: Locally Optimal Block Clustered Quantization for
4-bit (W4A4) LLM Inference

Reena Elangovan relangovan@nuidia.com
NVIDIA Corporation

Charbel Sakr csakr@nuidia.com
NVIDIA Corporation

Anand Raghunathan araghunathan@purdue. edu
Department of ECE
Purdue University

Brucek Khailany bkhailany@nuvidia.com
NVIDIA Corporation

Reviewed on OpenReview: |https: //openreview. net/ forum? id=LoWISTqGWW

Abstract

Post-training quantization (PTQ) is a promising approach to reducing the storage and
computational requirements of large language models (LLMs) without additional training
cost. Recent PTQ studies have primarily focused on quantizing only weights to sub-8-bits
while maintaining activations at 8-bits or higher. Accurate sub-8-bit quantization for both
weights and activations without relying on quantization-aware training remains a significant
challenge. We propose a novel quantization method called block clustered quantization (BCQ)
wherein each operand tensor is decomposed into blocks (a block is a group of contiguous
scalars), blocks are clustered based on their statistics, and a dedicated optimal quantization
codebook is designed for each cluster. As a specific embodiment of this approach, we propose
a PTQ algorithm called Locally-Optimal BCQ (LO-BCQ) that iterates between the steps of
block clustering and codebook design to greedily minimize the quantization mean squared
error. When weight and activation scalars are encoded to W4A4 format (with 0.5-bits
of overhead for storing scaling factors and codebook selectors), we advance the current
state-of-the-art by demonstrating < 1% loss in inference accuracy across several LLMs and
downstream tasks.

1 Introduction

Quantization is a highly effective and widely adopted technique for reducing the computational and storage
demands of Large Language Model (LLM) inference. While recent efforts (Wang et al., 2023; |Tseng et al., [2024;
Egiazarian et al. 2024; Frantar et al., [2023; [Lin et al., |2023) have largely focused on weight-only quantization
targeting single-batch inference, activation quantization becomes critical for improving throughput during
multi-batch inference scenarios such as cloud-scale deployments serving multiple users. Previous works
(Yao et al.l [2023} [Dai et al, |2021) on sub-8-bit quantization of both weights and activations have relied
on quantization-aware training (QAT) to recover accuracy loss during inference. However, the prohibitive
cost of training and unavailability of training data in recent LLMs has made QAT increasingly difficult and
motivated recent post-training quantization (PTQ) efforts (Xiao et al. |2023; [Rouhani et al., [2023a; [Wu et al.l
2023)).

In this paper, we develop a post-training quantization (PTQ) algorithm aimed at minimizing the mean
squared error (MSE) of any operand tensor. Traditional MSE-optimal scalar quantization algorithms such

https://openreview.net/forum?id=loWISTqGwW

Published in Transactions on Machine Learning Research (10/2025)

as Lloyd-Max (Lloyd| [1982)) struggle to achieve aggressive bitwidth reduction without significant accuracy
loss. To address this limitation, vector (or block) quantization methods have been explored in (Tseng et al.,
2024; |Egiazarian et al., [2024)), which identify MSE-optimal vector codebooks. Despite their promising results
for < 4-bit weight-only quantization, these existing approaches face two key challenges. First, they require
complex codebook schemes involving weight updates to minimize quantization error, making them challenging
to deploy for dynamic compression of activations. Second, they require large codebook sizes (on the order of
216 codebooks with 8 entries each) per-model or per-layer to achieve aggressive model compression.

To overcome these limitations, we propose a novel clustering and quantization framework called block clustered
quantization (BCQ). BCQ consists of two key steps:(1) a clustering step applied to operand blocks, and (2)
a scalar quantization step individually applied to operand scalars based on their cluster membership. To
minimize MSE in this process, we introduce LO-BCQ (locally optimal block clustered quantization), an
iterative algorithm that jointly optimizes block clustering and per-cluster codebooks. We prove that LO-BCQ
greedily minimizes quantization MSE across iterations by performing locally optimal steps at each iteration.
We apply LO-BCQ on calibration data to identify optimal codebooks. We demonstrate that these codebooks
can be frozen during inference across models and across linear layers within models. Using < 16 optimal
codebooks with 16 entries each derived through LO-BCQ, we achieve state-of-the-art trade-offs between
bitwidth and accuracy without requiring any weight updates during 4-bit quantization of both weights and
activations across diverse models and downstream tasks.

1.1 Related work

Recent sub-4-bit quantization proposals such as (Wang
et al.l [2023} |Tseng et al.l |2024} [Egiazarian et al., 2024)
explore extreme weight quantization while maintaining Liama2-70B

activations at 8-bit or higher precision. In particular, % OPTQ A
BitNet (Wang et al., |2023) proposed W1AS8 quantization

resulting in an aggregate (weights + activations) bitwidth
comparable to LO-BCQ. However, BitNet demands train-
ing from scratch and despite this large training cost suffers
significant loss in accuracy in downstream tasks. QuiP#
(Tseng et al.l |2024) and AQLM (Egiazarian et al., [2024))
propose W2AS8 quantization through codebooks. These
methods explore vector and additive codebook quantiza-

[any
N
s

-
o
!

o
©
A

o
o
|

©
iN

Perplexity loss (lower is better)

tion, respectively, and rely on large codebook sizes (1MB 0.2 * *LO-BCQ (ours) BF16
of memory footprint) and are not directly applicable to ac- 0.0 . L PN
tivation quantization. These methods also require weight 026 028 030 0.32 034 036 7
updates to minimize accuracy loss. In contrast, optimal Compression Factor

(weights and activations)

codebooks (< 0.19KB of memory footprint) identified by
LO-BCQ are applicable to both weight and activation
quantization and achieves < 1% accuracy loss in down- Figure 1: Wikitext perplexity loss relative to un-
stream tasks without any weight updates. Supporting duantized baseline vs compression factor of LO-BCQ
such small codebook sizes makes LO-BCQ more amenable ~compared to previous LLM quantization proposals.
to potential hardware acceleration of decompression. Min- Here, compression factor is the cumulative number of
o o . bits in the weight and activation tensor<T that need
imizing quantization MSE using the 1D (Lloyd-Max) and) X .

. . to processed in each layer relative to an unquantized
2D Kmeans clustering has been explored in (Han et al. BF16 baseline.
2016; |Cho et al. [2021} |2023) and (van Baalen et al., [2024)),
respectively. In contrast, LO-BCQ iteratively optimizes
block clustering alongside Lloyd-Max based optimal scalar quantization of block clusters. W4A8 quantization
has been proposed in (Frantar et al., [2023} Bai et al., |2021} [Yao et al., |2022) involving weight updates to
preserve accuracy and in (Lin et al., |2023; van Baalen et all [2024)) without any weight updates (PTQ).
Further, (Guo et al., 2023; Wei et al., 2023; [Kim et al.l |2023al) perform sub-8-bit weight quantization by
suppressing outliers.

Published in Transactions on Machine Learning Research (10/2025)

Block (group) quantization is explored for aggressive quantization of both weights and activations in VSQ
(Dai et al.l 2021), FineQuant (Kim et al.l |2023b), ZeroQuant-V2 (Yao et al., |2023)), Atom (Zhao et al., 2024])
through integer number formats, and in (Zhang et al., |2023)), ZeroQuant-FP (Wu et al., [2023), MX (Rouhani
et al. 2023a), MXFP (Rouhani et al.; [2023b) and BSFP (Lo et al., |2023) through floating-point formats.
Figure [I] compares the perplexity loss vs compression factor of LO-BCQ to other quantization proposals.
Here, the perplexity loss is relative to an unquantized baseline on the Wikitext-103 dataset for LO-BCQ, MX
and MXFP4, and on the Wikitext2 for others. The compression factor refers to the total number of bits in
the weight and activatior]] tensors (computed as [A|B4 + |W|Byw following [Sakr et al| (2017))? that need to
be processed in each layer relative to an unquantized BF16 baseline. Depending on the target application,
weight or activation quantization may be more important. For the sake of generality, we consider them to be
equally important in our metric. As shown in Figure[[, LO-BCQ advances the current state-of-the-art by
achieving the best trade-off between perplexity and compression.

1.2 Contributions

The main contributions of this work are as follows:

o We propose BCQ, a block clustered quantization framework that performs per-block quantization by
first clustering operand blocks and then quantizing each block cluster using a dedicated codebook.

e We derive a locally optimal version of BCQ called LO-BCQ that iteratively optimizes block clustering
and per-cluster quantization to provably minimize quantization MSE for any value distribution. We
demonstrate that LO-BCQ is applicable to quantization of both weights and activations of LLMs.

e We propose block formats for LO-BCQ where each operand block is associated with an index that
maps it to one of a set of static codebooks, and a group of blocks (called a block array) share a
quantization scale-factor. We vary the length of blocks, block arrays and the number of codebooks to
study different configurations of LO-BCQ.

o When each of the weight and activation scalars are quantized to 4-bits (effective bitwidth including
per-block scale-factors etc. is 4.5 to 4.625 bits), we achieve < 0.1 loss in perplexity across GPT3
(1.3B, 8B and 22B) and Llama2 (7B and 70B) models and < 0.2 loss in Nemotron4 (15B and 340B)
models, respectively, on the Wikitext-103 dataset. Further, we achieve < 1% loss in average accuracy
across downstream tasks such as MMLU and LM evaluation harness.

To the best of our knowledge, we are the first to achieve < 1% loss in downstream task accuracy when both
LLM activations and weights are quantized to 4-bits during PTQ (no fine-tuning or weight updates).

2 Block Clustered Quantiaztion (BCQ)

In this section, we introduce the concept of block clustered quantization (BCQ) and present the locally
optimal block clustered quantization (LO-BCQ) algorithm that minimizes quantization MSE for any operand.
We also introduce block formats to support various LO-BCQ configurations.

2.1 Mathematical Definition

Given a tensor X composed of Ly scalar elements, we denote its blockwise decomposition as {b;}.*,, where
b;’s are blocks of L; consecutive elements in X, and the number of blocks is given by N, = Lx /L. Block
clustered quantization (see Figure |2)) uses a family of N, codebooks C = {Ci}fvzcl, where N, << Ny, and
clusters the blocks into N, clusters such that each is associated with one of the N. codebooks. This procedure
is equivalent to creating a mapping function f from a block b to a cluster index in {1,..., N.}. Quantization
(or encoding) proceeds in a two-step process: (i) mapping to assign a cluster index to a given block, and (ii)

1. The size of activations is measured for the prefill phase with a context length of 4096 and batch size of 1.
2the notation | X| refers to the total number of scalars in tensor X, and Bx is the bitwidth of X.

Published in Transactions on Machine Learning Research (10/2025)

Unquantized Block Clusters

Block Clustering (Map each (Cluster 1 Cluster 2 Cluster NC\
block to one of N, clusters) ; | -
Operand Blocks: | i ““Unquantized scalar
Bit-width = 32 bits
L J [o[b | ¢ o
i -~ I) 1 2 N¢
Ly, scalars in each block % |
Quantized \(Gumme
Block Clusters " bitwidth = B bits

Figure 2: Block clustered quantization: Each operand block is first mapped to a cluster based on a mapping function
and then each scalar of that block is encoded as a B-bit index to the closest entry in the 2Z-entry codebook associated
with that cluster.

quantization of its scalars using the codebook corresponding to that index. Formally, denoting b as the result
of block clustered quantization of a given block b in X, this procedure is described as:

b= Cy)(b) (1)

where C is a 2P-entry codebook that maps each scalar in b to a B-bit index to the closest representation.
Each quantized scalar of block b is obtained as:

A~

bll] = arg min_[b[l] — Cy(p)[F][* (2)

k=1...2B
where the notation z[y] is used to describe the y'" element in an arbitrary block @. That is, each scalar in b
is an index to the closest entry by value in Cfp).

Once mapped by invoking f, we store the log2(N,)-bit codebook selector for each block. Therefore, the
effective bit-width of each quantized scalar is given by:

Bitwidthgog = B + log2(N,)/ Ly (3)

In practice, groups of blocks called a block-array share 8-bit scale factors each and the codebook entries are
6-bit integers. We discuss this further in section

2.2 Locally optimal block clustered quantization

Our goal is to construct a family of codebooks C resulting in minimal quantization MSE during block clustered
quantization. Figure [3| presents an algorithm called Locally Optimal BCQ (LO-BCQ) to achieve this goal.
LO-BCQ consists of two main steps: (i) updating block clusters with fixed per-cluster codebooks, and
(ii) updating per-cluster codebooks with fixed block clusters. This algorithm begins at iteration 0 (initial

condition) with a set of N, initial codebooks {Cfo), cee C](\(,?} and unquantized operand blocks as inputs.
During step 1 of iteration n, with the per-cluster codebooks from the previous iteration {C§n71), . 05\271)},

we perform block clustering by mapping each block to the codebook that achieves minimum quantization
MSE. That is, we use the following mapping function:

F(b) = arg_min_ |[b—C{""(b)]3 (4)

Since each codebook Cj is associated with a cluster i, mapping to C; is equivalent to mapping to cluster 7.
Specifically, at iteration n, we construct N, block clusters B™ = {BE”)}fV;l, where each cluster is defined as:

B = {1 b) =i tor e 1.0 °

Published in Transactions on Machine Learning Research (10/2025)

LO-BCQ (iteration n of M)

Initial Condition Updating Block Clusters Updating Per-Cluster Codebooks
: - i Updated block
3 /Unquant|zed Operand Blocks:) Suppose MSE, clusters Block Block Block
H 4 is minimum,
3 ‘ b, ‘ ‘ b, ‘ ‘ by, ML..., by map by to Cluster 1 Cluster 2 Cluster N,
§ : d b, cluster 1 ™ l M l M l
Initial Per-Cluster Codebooks: ‘ : Updated ™ cm cm
3 @, c® c©® | by, per-cluster ! 2 Ne
PLp G e By H Map each block to quantizer LM: Lloyd-Max algorithm
E g (cluster) with minimum MSE codebooks

Figure 3: Overview of LO-BCQ algorithm: The algorithm starts with a set of initial per-cluster codebooks, and then
iteratively performs two steps (i) fix per-cluster codebooks and update block clusters and (ii) fix block clusters and
update per-cluster codebooks.

NMSE vs lterations during LO-BCQ

0.016

L_p_o_MXFP4 ___________ « LO-BCQ: improved init
0.0141 LO-BCQ naive init
00129 | vysqq
w 0.0104
)
= MX4
2 bl M]
0.008
0.006 ‘
0.004 W

0 20 40 60 80 100
Iterations

Figure 4: NMSE of LO-BCQ with naive initialization compared to the proposed initialization. Here LOBCQ is
configured with a block array size of 64 and 16 codebooks.

In step 2, given the updated block clusters from step 1 and quantization bitwidth B, we apply the Lloyd-Max
algorithm on each block cluster to derive optimal 25-entry per-cluster codebooks {C’fn), e CJ(\Z)}:

™ « LloydMax(B\", B) (6)

where the Lloyd-Max algorithm (see Lloyd-Max is equivalent to K-means clustering on 1-dimensional

data) is invoked on the data of the corresponding cluster Bl(n).

We iterate steps 1 and 2 until convergence or a pre-determined number of iterations M. Empirically, we
find that LO-BCQ converges at M <= 100. Since each of these steps are locally optimal, we find that the
quantization MSE is non-increasing for each iteration. As a result, for any given value distribution, our
LO-BCQ algorithm greedily minimizes quantization MSE. A theoretical proof of this claim is provided in

section [A.2]

2.3 Convergence and Initialization

Prior to clustering, we find that normalizing the operand blocks improves convergence. However, a block-wise
normalization factor (or scaling factor) induces computational and memory overheads. Therefore, we perform
a second-level quantization of this scaling factor to Bs-bits and share it across an array of blocks of length
L 4. Furthermore, better convergence is observed for larger number of codebooks (IV,) and for a smaller block
length (Lp). Such trends increase the bitwidth of BCQ in equation [3] meaning that LO-BCQ has an inherent
trade-off between accuracy and complexity.

Published in Transactions on Machine Learning Research (10/2025)

4-bit index to closest Codebooks
Block Array (length = 16 to 128) representation (code) (static) v,
\ - e
1) 2 RS
[b]| G
s s s | on. |
scale 1 Block 2 n s
(8-bits) log N.-bit per-block selector <=16 codebooks

selects codebook 16 entries per codebook
(each entry is INT6)

Figure 5: Block format for LO-BCQ. Each operand block is associated with a log2(N.)-bit selector that selects the
best codebook and each scalar is a 4-bit index that represents the closest value in the selected codebook. Each block
array is associated with a 8-bit scale factor.

We initialize the per-cluster codebooks {C’fo), ce C’](\?C)} based on K-means++ initialization algorithm which
maximizes pairwise euclidean distances. In our experiments, we found such initialization to lead to significantly
better convergence than a random one. Further, in step 2 of each iteration, when Lloyd-Max algorithm is
invoked in equation [6 we set the initial centroids corresponding to the codebooks identified in the previous
iteration. Figure [4] compares the MSE achieved by LO-BCQ with naive initialization to random codebooks to
the proposed improved initialization. As shown, LO-BCQ with the proposed initialization converges to a
lower MSE than the naive initialization and other block quantization baselines.

2.4 Block formats for LO-BCQ

Figure [f] illustrates the LO-BCQ block format where each operand block of length L is associated with a
log2(N.)-bit index (result of the mapping function f in equation |4)) that selects the best codebook for that
block. Each codebook is composed of 27 entries and each scalar in the operand block is a B-bit index that
represents the closest value in the selected codebook. Each entry in the codebook is a B.-bit integer. Finally,
each block array A is associated with a scale-factor s4. This scale-factor and its quantization §4 to Bg-bits
are computed as:

sa = (2P~ — 1) /max(abs(A)) (7)
54 =Qr{sa/sx,Bs} (8)
where sx is a per-tensor scale-factor that is shared by the entire operand tensor X and Qr denotes a

quantizer that quantizes a given operand to format F' (see section for more details on number formats
and quantization method).

The bitwidth of LO-BCQ is computed as:

BitWidthLo,BcQ =B+ lOQZ(NC)/Lb + BS/LA
+N. 28« B,/Lx (9)

where the term N, x 28 % B./Lx is usually negligible since the memory footprint of codebooks (numerator)
is negligible compared to the size of the operand tensor (denominator). Indeed, we emphasize that LO-BCQ
shares a set of N, <= 16 codebooks of size <= 0.19K B among the scalars of the entire tensor, resulting in
negligible memory overhead for storing the codebooks.

In this paper, we assume B, = 8 and the data format F' is floating point E4M3. Further, each codebook entry
is a 6-bit integer (i.e, B. = 6) and we vary N, between 2 and 16, L;, between 2 and 8, and L 4 between 16 and
128 to obtain various LO-BCQ configurations. We list the configurations and their corresponding bitwidths
in Table[I] We perform a detailed ablation of these configurations and present our insights in section [4-3]

3 Applying LO-BCQ for LLM Inference

In this section, we discuss specifics of applying LO-BCQ for LLM inference. Specifically, we first describe the
codebook design process, followed by method for activation quantization on-the-fly.

Published in Transactions on Machine Learning Research (10/2025)

Table 1: Various LO-BCQ configurations and their bitwidths. Each block array of size L4 share an 8-bit
scale factor. Each operand block of size L; is associated with a log2(N..)-bit index that maps it to one out of
N, codebooks that best represents it.

Ly =38 Ly=14 Ly=2
c

) 2 4 8 16 2 4 2

128 || 4.1875 | 4.3125 | 4.4375 | 4.5625 || 4.3125 | 4.5625 || 4.5625

64 4.25 | 4.375 4.5 4.625 || 4.375 | 4.625 4.625

32 4.375 4.5 4.625 | 4.75 4.5 4.75 4.75

16 4.625 4.75 4.875) 4.75 5)

Codebooks vs Number Formats Layerwise NMSE during LO-BCQ
E1M2 (MX4)

A A A AJA A A A[A A A AAAAAL
E2M1 (MXFP4)
A A A A A A A A LO-BCQ: CO
o Lo-scg: a et TN
A A A A A A AAAALNAA AL A MX4 (E1M2)
LO-BCQ: €2 MXEP4 (E2M1)
LO-BCQ: €3 Mixed Format (E1M2, E2M1, E3MO)
LO-BCQ: C4 LO-BCQ: 2 codebooks
LO-BCQ: C5 LO-BCQ: 4 codebooks

A LO-BCQ: C6 LO-BCQ: 8 codebooks

A A AA AAAAAAAA A A A A LO-BCQ: C7 \/_\ .

>

> > > >

A AAMAMMAAAA A A A

A A A A A AAAA AA AL A A

>
NMSE

A A A A A AAA AAA A A A A A

A A A AAAAAAA AA AA A 2

o

-1.0 -05 0.0 05 1.0 4 8 12 16 20
Codeword Values GEMM Layer Number

Figure 6: LO-BCQ codebooks compared to 4-bit floating point formats and layerwise normalized MSE (NMSE). We
compute NMSE for the weights of first 20 GEMM layers (QKV, projection and fully-connected) of Llama2-7B model.
Note that we use the NMSE for better visualization across varying layer data.

We pre-calibrate the LO-BCQ codebooks for both weights and activations offline (prior to inference). Since
weights are known, their own data can be used as calibration set. On the other hand, activations are dynamic
and vary for every input; thus, as per common quantization strategies (Wu et al., [2020a; [Sakr et al., [2022),
we employ a randomly sampled calibration set from training data in order to build activation codebooks.
Once codebooks are calibrated, we also quantize the codewords to 6-bit integers. The choice of 6-bit was
based on empirical observations of accuracy being maintained with L, <= 128.

Figure@ (left) compares the codebooks identified by the LO-BCQ algorithm in a GEMM layer of a GPT3-126M
model to 4-bit floating point formats such as E1M2, E2M1 and E3M0. The LO-BCQ codebooks outperform
other block formats as shown in Figure |§| (right) by capturing the arbitrary and non-uniform patterns in the
value distributions of LLM operands and allowing each block to map to the codebook that best represents it.
The mapping of operand blocks to the best of available codebooks can be conceptually compared to prior
works that have explored mixed-format quantization such as (Tambe et al., 2020} [Zadeh et al., [2022).

LO-BCQ provides the quantization operation the flexibility to assign data to any of the sign posts (codewords)
in Figure @(left). The union of these sign posts covers the real line with a resolution that is clearly superior
to that of a 4-bit quantizer. Therefore, we hypothesized that these codebooks need not be calibrated on a
per-tensor (layerwise) basis, but rather, it is likely that they would be universally appropriate to quantize
any tensor (weights and activations), at any layer, for any model. To verify this hypothesis, we calibrated a
set of codebooks on data sampled from GPT3 models on Wikitext-103 dataset and froze it. We find that
these codebooks achieve comparable quantization MSE compared to those calibrated individually on each
operand as shown in Figure [7] which verifies our hypothesis. In our subsequent results, we always employ
universally calibrated codebooks.

Finally, the small size of LO-BCQ codebooks enables efficient activation quantization on the fly. Indeed,
LO-BCQ involves computing the following values — per-block array scale-factor s4, per-block codebook

Published in Transactions on Machine Learning Research (10/2025)

Universally vs layerwise calibrated codebooks

I
. . —e— LO-BCQ: 2 universal codebooks
oy Y e LO-BCQ: 8 universal codebooks
0.004 1 m -#-LO-BCQ: 2 layerwise codebooks
') * -+- LO-BCQ: 8 layerwise codebooks

0 5 10 15 20 25 30
GEMM Layer Number

Figure 7: Quantization NMSE acheived by universally calibrated codebooks compared to that calibrated layerwise in
Llama2-7B inputs of first 30 GEMM (QKV, projection and fully-connected) layers.

selector s, which is the result of the mapping function f (Eq. , and the index to closest representation b in
the selected codebook (Eq. . Note that the computation of s4, similar to other block quantization methods
(Rouhani et al., 2023b; Dai et al., 2021, simply corresponds to a max-reduction (followed by quantization)
over the block array whose size is small (<= 128). Further, with LO-BCQ, the codebooks are constant
(frozen) with small size (<= 0.19KB). This is an important distinction with other works on codebook

quantization (]Tseng et al.I, |2024|; |Egiazarian et al.L |2024I). As such, s, and b can be concurrently computed
across operand blocks.

4 Experimental Evaluation of LO-BCQ

In this section, we present our accuracy studies on downstream tasks comparing LO-BCQ to various other
block quantization proposals. Next, we present ablation studies on varying LO-BCQ configurations and our
calibration methodology, namely universal vs local.

4.1 Experimental Setup

We perform accuracy studies on GPT3 (Shoeybi et al. 2020) (1.3B, 8B and 22B), Llama2 (Touvron et al.
2023) (7B and 70B) and Nemotron4 (15B and 340B) (Parmar et al.,[2024) models. We evaluate PTQ inference

accuracy on several downstream tasks including Wikitext-103 (Merity et all 2016), MMLU
and Eleuther AI's LM evaluation harness (Gao et al) [2024). In LM evaluation harness, we infer
on Race (RA), Boolq (BQ), Hellaswag (HS), Piga (PQ) and Winogrande (WG) tasks and in the MMLU
dataset we evaluate all tasks. In all these models, we quantize GEMM layers including Query, Key and Value
computations, Projection layer after self attention and the fully-connected layers.

We apply the LO-BCQ algorithm to the operands before inference and pre-calibrate the optimal codebooks.
In our experiments, we perform this calibration on one batch of activations from the training data of the
GPT3-126M model and the Wikitext-103 dataset. We freeze these optimal codebooks across operands and
models during all of our accuracy evaluations. Further, we represent each entry of the codebooks as a 6-bit
integer. That is, once decoded, the inner product computations with a block array during inference can be
performed at 6-bit precisiorﬂ Furthermore, we perform ablation studies on the LO-BCQ configurations with
quantization bitwidth ranging from 4.25-bits to 5-bits.

We compare LO-BCQ against previous block quantization works that have explored PTQ of both weights
and activations such as VSQ (Dai et al., 2021), MX (Rouhani et al., [2023a), MXFP (Rouhani et al., 2023b),

3In our experiments in this paper, we emulate ("fake") quantization by representing the quantized values in BF16 format.
Therefore, the computations are performed in BF16 precision.

Published in Transactions on Machine Learning Research (10/2025)

Table 2: PTQ Perplexity (lower is better) on Wikitext-103 dataset with GPT3, Llama2 and Nemotron4 models.

Method Bitwidth™ Wikitext-103 PPL (A)
(W4A4) GPT3 Llama?2 Nemotron4

8B 22B 7B 70B 15B 340B

BF16 (Pretrained) 16 7.38 6.54 5.06 3.14 5.87 3.48
MX4 (gl6) 4.5 8.15 (0.77) 7.69 (1.15) 5.73 (0.67) 3.58 (0.44) 8.88 (3.01) 4.01 (0.53)
VSQ (gl6) 4.5 8.17 (0.79) 7.12 (0.58) 835 (829) 4.96 (1.82) 7.58 (1.71) 4.19 (0.71)
MXFP4 (g32) 4.25 9.12 (1.74) 10.18 (3.64) 5.76 (0.70) 3.69 (0.55) 8.24 (2.37) 4.10 (0.62)
LO-BCQ (g64, N. = 2) 4.25 7.61 (0.23) 6.74 (0.20) 5.31 (0.25) 3.35 (0.21) 6.30 (0.43) 3.67 (0.19)
LO-BCQ (g64, N. = 8) 4.5 7.48 (0.10) 6.62 (0.08) 5.19 (0.13) 3.23 (0.09) 6.13 (0.26) 3.60 (0.12)
LO-BCQ (g32, N. = 16) 4.75 7.45 (0.07) 6.59 (0.05) 5.15 (0.09) 3.20 (0.06) 6.03 (0.16) 3.56 (0.08)

* Bitwidth of weights and activations including the overheads from per-block array (group) scale and codebook selectors

QuaRot (Ashkboos et al., 2024), Atom (Zhao et al.l [2024), OmniQuant (Shao et al.l [2024)) and SmoothQuant
(Xiao et al}2023)). VSQ and MX perform per-block quantization of 16-element blocks with an 8-bit scale-factor
per-block resulting in an effective bit-width of 4.5 bits. VSQ quantizes each scalar to INT4 format and
per-block scale-factor to INT8 format. MX performs micro-scaling at per-block level with a 1-bit exponent
shared by 2-element blocks. Each scalar is quantized to INT3. In this paper, we overestimate accuracy of
MX by allowing each scalar to have its own exponent, resulting in INT4 precision. The per-block array scale
factors of MX are quantized to ESMO format. Therefore, our evaluation results in a bitwidth of 4.5 bits.
Further, MXFP explores 32-element blocks with 8-bit scale-factor per block resulting in an effective bitwidth
of 4.25 bits. The number format of scalars and per-block scale factors are E2M1 and ESMO, respectively.
The quantization methodology with these block formats is detailed in [A-4.3]

Additionally, we compare weight-only (W4A8) LO-BCQ to other weight-only quantization proposals of
equivalent bitwidth such as GPTQ (Frantar et al., [2023), AWQ (Lin et al., |2023)), QuiP# (Tseng et al 2024)
and AQLM (Egiazarian et al. [2024). For this comparison, we choose a block-array length of 128 for LO-BCQ,
matching the group-size of other works.

4.2 Accuracy studies on downstream tasks

We present our comprehensive accuracy evaluations across the Nemotron4, Llama2 and GPT3 models, on
the Wikitext-103, LM evaluation harness and MMLU datasets. For convenience, we present select LO-BCQ
configurations with L, = 8 in this section. See 77 for accuracy studies on other configurations.

4.2.1 Perplexity on Wikitext-103

As shown in Table [2] across large models such as Llama2-70B, Nemotron4-340B and GPT3-22B, 4.5-bit
LO-BCQ achieves < 0.12 loss in perplexity compared to the unquantized baseline on the Wikitext-103 dataset.
MX, MXFP and VSQ perform per-block quantization by associating a scale-factor to each block (or a block
array) and with a single number format (quantizer) across blocks. On the other hand, in addition to per-block
array scaling, LO-BCQ allows a block to flexibly map to a codebook that best represents it from a set of
codebooks. This flexibility allows LO-BCQ to achieve better perplexity. Furthermore, we find that with a
larger quantization bitwidth, LO-BCQ achieves better perplexity across models as expected. We achieve
these improvements during PTQ, i.e., without any additional training or finetuning.

The number format of per-group (or block array) scale-factor has a significant impact on accuracy. VSQ is
unable to sufficiently capture the range of activations with its INT8 scale-factors as observed in Llama2-7B,
while it outperforms the ESMO scale-factors of MX in GPT3-22B due to better resolution when representing
large values. Across various models, we find that the E4M3 format of LO-BCQ provides sufficient range and
resolution to represent the scale-factors.

Table [3] compares LO-BCQ to other PTQ methods that quantize both weights and activations. Here, all
methods use a group (block array) size of 128. As shown, LO-BCQ significantly outperforms the prior-art.
While the prior-art proposes various techniques for suppressing outliers in both weights and activations,
LO-BCQ calibrates a set of codebooks that captures various non-uniform value distributions.

Published in Transactions on Machine Learning Research (10/2025)

Table 3: Comparing perplexity loss (lower is better) of LO-BCQ to other 4-bit (W4A4) quantization works such as
QuaRot, Atom, OmniQuant and SmoothQuant. Here, the perplexity loss is on Wikitext-103 dataset for LO-BCQ and
Wiki2 for others.

Method Bitwidth A Wiki PPL
(g128) (W4A4) Llama2-7B Llama2-70B
SmoothQuant 4.13 77.65 -
OmniQuant 4.13 9.14 -
QuaRot 4.13 0.46 0.29
Atom 4.13 0.56 0.36
LO-BCQ (N, = 2) 4.19 0.14 0.09
LO-BCQ (N. =4) 4.31 0.12 0.07
LO-BCQ (N, = 8) 4.44 0.09 0.06
LO-BCQ (N. = 16) 4.56 0.08 0.05

Table 4: Comparing perplexity loss of weight-only (W4A16) LO-BCQ to other weight-only quantization methods.

Method Bitwidth | #codebooks Llama2-7B Llama2-70B
(W4A16) AWikiPPL | PQ | WG | HS || AWikiPPL | PQ | WG | HS

GPTQ (5128) 1 - 0.37 76.61 | 68.10 | 55.44 0.23 8123 [75.61 | 63.47

AWQ (g128) 4.13 - 0.13 77.00 | 69.53 | 56.25 0.09 - - -
QuiP# 4.02 2 % 216 0.17 77.91 | 66.85 | 55.78 0.10 81.45 | 76.8 | 63.51
AQLM 4.14 2 % 216 0.09 78.24 | 67.32 | 55.99 0.07 81.5 | 76.48 | 63.69
4.19 2 0.14 78.29 | 68.11 | 56.55 0.09 81.18 | 79.24 | 64.57
4.31 4 0.12 78.18 | 68.59 | 56.75 0.07 81.77 | 78.30 | 64.99
LOEn (i 4.44 8 0.09 77.69 | 68.75 | 56.75 0.06 81.50 | 79.79 | 65.11
4.56 16 0.08 77.97 | 68.90 | 56.76 0.05 81.45 | 80.43 | 65.04

Table 5: Comparing perplexity loss of sub-4-bit weight-only LO-BCQ to other weight-only quantization methods.

Method Bitwidth | #codebooks Wiki2 PPL
Llama2-7B Llama2-13B Llama2-70B
BF16 (Pretrained) 16 - 5.47 4.88 3.32
QuIP# (LDLQ, no FT) 3 216 4 98 5.91 5.23 3.61
W3A16 AQLM (FT) 3 2 %212 5.46 4.82 3.36
3.375 4 5.79 5.12 3.53
LO-BCQ (LDLQ, no FT) 3.5 8 5.72 5.09 3.49
QulIP# (LDLQ, no FT) 2 216 8.05 6.59 4.44
W2A16 AQLM (FT) 2 216 6.59 5.60 3.94
2.375 4 8.02 7.12 4.52
LOHEOT) (LD, o FT) 2.5 8 6.87 6.16 4.20

4.2.2 Accuracy on LM evaluation harness tasks

Across 0-shot LM evaluation harness tasks in Table [6, LO-BCQ shows significant improvement in average
accuracy compared to MX, MXFP and VSQ at equivalent bitwidth. Further, across models during 4.5-bit
quantization, LO-BCQ achieves < 1% loss in average accuracy compared to the respective unquantized
baselines. When the bitwidth of LO-BCQ is increased by varying its configuration, we find that the average
accuracy generally increases albeit with a few exceptions. Although these variations are small (< 0.5%), we
believe that they arise due to the universal calibration of codebooks. Our codebooks are calibrated on a
batch of training data from the Wikitext-103 dataset and the GPT3-126M model and remain frozen across
all datasets and models.

Although the focus of this work is weight+activation quantization, we also compare to prior art weight-only
quantization proposals for completeness. Table [4| compares weight-only (W4A8) LO-BCQ with a block array
size of 128 to other weight-only quantization proposals such as GPTQ and AWQ of comparable block array
size and effective bit-width. As shown, LO-BCQ with 2, 4, 8 and 16 codebooks with effective bitwidth of
4.19, 4.31, 4.44 and 4.56, respectively, achieves significantly lower perplexity loss. It is worth noting that we
evaluate this loss on Wikitext-103 dataset, which is a much larger dataset compared to Wikitext2 used by
other works. Further, we compare LO-BCQ against other codebook-based quantization methods such as
Quip# and AQLM. As shown, LO-BCQ achieves comparable accuracy using only a small codebook size (8
codebooks with 16 entries each) compared to significantly larger codebook sizes (2'¢ codebooks with 8 entries
each) required by QuiP# and AQLM.

10

Published in Transactions on Machine Learning Research (10/2025)

Table 6: LM evaluation Harness 0-shot accuracy (higher is better) on Llama2 and GPT3 models.

Method Bitwidth Llama2-7B
(W4A4) RA BQ WG PQ HS Avg (A %)
BF16 16 44.4 79.29 69.38 78.07 57.10 65.65
QuaRot (gl128) 4.13 - - 63.77 76.77 - -
MX4 (g16) 4.5 41.43 73.98 66.22 77.04 55.19 62.77 (2.88)
VSQ (gl6) 4.5 31.39 65.75 55.49 67.30 43.51 52.69 (12.96)
MXFP4 (g32) 4.25 41.34 74.00 67.48 77.53 54.22 62.91 (2.74)
LO-BCQ (g64, N. = 2) 4.25 42.49 77.58 | 68.90 | 77.09 | 55.93 64.40 (1.25)
LO-BCQ (g64, N. = 8) 4.5 42.58 77.43 | 69.77 | 77.09 | 56.51 64.68 (0.97)
LO-BCQ (g32, N. = 16) 4.75 43.73 | 77.86 | 68.90 | 77.86 | 56.52 64.97 (0.68)
Llama2-70B [
BF16 16 48.8 85.23 79.95 81.56 65.27 72.16
QuaRot (g128) 4.13 - - 76.24 82.43 - -
MX4 (g16) 4.5 48.04 | 82.41 76.40 | 80.58 | 63.24 70.13 (2.03)
VSQ (gl6) 4.5 47.85 82.29 77.27 79.82 61.40 69.73 (2.43)
MXFP4 (g32) 4.25 47.75 83.06 76.32 | 80.58 | 63.24 70.19 (1.97)
LO-BCQ (g64, N. = 2) 4.25 49.0 82.82 78.77 81.45 64.21 71.25 (0.91)
LO-BCQ (g64, N. = 8) 4.5 49.28 | 84.03 78.37 | 81.45 | 64.76 71.58 (0.58)
LO-BCQ (g32, N. = 16) 4.75 49.28 | 84.93 | 80.66 | 81.34 | 65.18 | 72.28 (40.12)
GPT3-8B
BF16 16 41.34 68.32 67.88 78.78 54.16 62.10
MX4 (g16) 4.5 38.28 66.27 | 65.11 75.63 50.77 59.21 (2.89)
VSQ (gl6) 4.5 40.86 | 63.91 66.93 76.28 51.38 59.87 (2.23)
MXFP4 (g32) 4.25 39.71 | 65.35 | 67.01 | 76.12 | 50.22 59.68 (2.42)
LO-BCQ (g64, N. = 2) 4.25 40.48 | 69.20 | 66.85 77.31 53.06 61.38 (0.72)
LO-BCQ (g64, N. = 8) 4.5 39.43 | 69.45 | 67.72 | 77.75 | 53.71 61.61 (0.49)
LO-BCQ (g32, N. = 16) 4.75 39.62 | 69.30 | 67.00 | 77.37 | 53.51 | 61.36 (0.74)
GPT3-22B
BF16 16 40.67 76.54 70.64 79.16 57.11 64.82
MX4 (g16) 4.5 39.04 72.26 67.96 77.86 54.77 62.38 (2.44)
VSQ (gl6) 4.5 40.57 65.81 69.61 77.20 54.82 61.60 (3.22)
MXFP4 (g32) 4.25 39.14 69.61 64.17 75.68 47.60 59.24 (5.58)
LO-BCQ (g64, N. = 2) 4.25 40.48 | 75.41 69.14 | 78.24 | 56.06 63.87 (0.95)
LO-BCQ (g64, N. = 8) 4.5 39.43 | 77.09 | 70.17 | 78.62 | 56.60 64.38 (0.44)
LO-BCQ (g32, N. = 16) 4.75 39.62 | 75.35 | 69.30 | 78.89 | 56.64 | 63.96 (0.86)

Table 7: MMLU accuracy (higher is better) with Nemotron4-15B, Llama2-7B, 70B and GPT3-22B models.

Method Bitwidth Nemo4 Llama?2 GPT3

(W4A4) 15B 7B [70B 22B

BF16 16 64.3 45.8 69.12 38.75

MX4 (g16) 4.5 58.15 41.38 65.73 37.07

VSQ (gl6) 4.5 57.38 26.48 62.46 37.79
MXFP4 (g32) 4.25 58.28 37.64 66.16 32.26
LO-BCQ (g64, N. = 2) 4.25 63.17 43.90 68.07 36.71
LO-BCQ (g64, N. = 8) 4.5 63.72 43.90 68.17 38.13
LO-BCQ (g32, N. = 16) 4.75 64.33 44.50 68.27 38.34

Table 8: Perplexity on Wikitext-103 dataset across various LO-BCQ configurations

Ly — 8 4 2
Ne 2 4 8 16 2 4 2
La
Llama2-70B (FP32 PPL = 3.14)
64 3.35 | 3.25 | 3.23 | 3.21 3.31 | 3.22 3.27
32 3.27 | 3.24 | 3.22 | 3.20 3.25 | 3.22 3.22
16 3.25 | 3.22 | 3.20 | 3.19 3.23 | 3.20 3.20
GPT3-22B (FP32 PPL = 6.54)
64 6.74 | 6.64 | 6.62 | 6.63 6.71 | 6.64 6.64
32 6.67 | 6.64 | 6.61 | 6.59 6.65 | 6.64 6.60
16 6.67 | 6.63 | 6.59 | 6.61 6.66 | 6.63 6.62

Table 9: Perplexity on Wikitext-103 dataset with universally calibrated vs locally calibrated codebooks

Llama2-7B (FP32 PPL = 5.06), L, = 8

Ne 2 4 8 16 2 4 8 16
La
Universally Calibrated Codebooks Layerwise Calibrated Codebooks
64 5.31 | 5.26 | 5.19 5.18 5.29 | 5.22 | 5.19 5.17
32 5.23 | 5.25 | 5.18 5.15 5.23 | 5.19 | 5.17 5.15
16 5.23 | 5.19 | 5.16 5.14 5.20 | 5.17 | 5.15 5.14

11

Published in Transactions on Machine Learning Research (10/2025)

Table 10: Quantizing LO-BCQ codebook entries to INT4 vs INT6 vs INT8 on Wikitext-103. Perplexity is measured
on the Llama2-7B model (BF16 PPL = 5.06).

Method Bitwidth of codewords
INT4 | INT6 INTS8
LO-BCQ (g128, N. = 2) 6.24 5.38 5.35
LO-BCQ (g128, N, = 4) 6.21 527 | 5.25
LO-BCQ (g128, N, = 8) 6.20 | 5.21 5.21
LO-BCQ (g128, N. = 16) 6.18 5.21 5.19

Table [5| shows the Wiki2 perplexity results on weight-only quantization of Llama2 models with LO-BCQ
and compares against state-of-the-art 2-bit and 3-bit quantization proposals such as QuIP# and AQLM.
We find that despite the significantly smaller number of codebooks (<= 8 with 16 entries each) utilized by
LO-BCQ compared to about 2'2? to 2'6 codebooks with 8 entries each in the other methods, LO-BCQ achieves
competitive results. During 3-bit quantization, LO-BCQ with effective bitwidth of 3.375 bits achieves lower
perplexity than QuIP# where LDLQ [Tseng et al.| (2024) is applied to both methods and no finetuning is
performed. Similarly, when compared against 2-bit QulP+#, we find that LO-BCQ with effective bitwidth of
2.375 bits achieves better Wiki2 perplexity. Further, 3.5-bit and 2.5-bit LO-BCQ without finetuning suffers
only a small loss compared to finetuned AQLM during 3-bit and 2-bit quantization of weights, respectively.

4.2.3 Accuracy on MMLU tasks

Similarly, in 5-shot MMLU tasks LO-BCQ achieves < 1% loss in average accuracy with 4.5-bits per scalar
compared to respective unquantized baselines across GPT3-22B and Llama2-70B models. Further, LO-BCQ
achieves a significantly better accuracy compared to all of our block quantization baselines such as VSQ, MX
and MXFP4 at equivalent bitwidth. Across Llama2 models, LO-BCQ with a smaller bitwidth (4.25-bits)
outperforms VSQ and MX4 with a comparatively larger bitwidth (4.5-bits). While the 0.5-bit overhead in
VSQ and MX4 are used on per-block array scale-factors, the 0.25-bit overhead of LO-BCQ is shared between
scale-factors and codebook selectors. Therefore, the superior accuracy of LO-BCQ can be attributed to the
better representation by selecting the best codebook for each block.

4.3 Ablation Studies

Table [8 shows the perplexity of LO-BCQ on Wikitext-103 dataset and across Llama2-70B and GPT3-22B
models when its configuration is varied. For a given L; (block length), larger number of codebooks results in
better perplexity. This is intuitive since larger number of codebooks leads to better representation of the
values in each block since LO-BCQ allows it to map to the codebook with best representation. Further, when
the block array size is reduced, we achieve better perplexity. The block array corresponds to the granularity
of normalization. As discussed in section [2:3] normalization improves convergence of LO-BCQ and results
in better perplexity. When comparing configurations with same bitwidth, we find that the configuration
with larger number of codebooks is better than smaller block array. This shows that the per-block metadata
is better utilized for codebook selectors than scale factors. Furthermore, we find that reducing the block
length (L) below 8 results in diminishing returns. This is because, the overhead of storing codebook selectors
is larger for a smaller block. For a given bitwidth, configuration with smaller L; has fewer codebooks.
Therefore, these configurations result in larger loss in perplexity. Table [I0] compares perplexity achieved by
LO-BCQ codebooks with INT4, INT6 and INTS entries on Llama2-7B model and Wikitext-103 datatset. As
shown, LO-BCQ with INT6 achieves negligible perplexity degradation compared to INT8, while INT4 suffers
significantly larger degradation. As a result, we quantize LO-BCQ codebooks to INT6.

Table [9] compares the perplexity with universally calibrated codebooks to codebooks calibrated layerwise
(per-tensor) in Llama2-7B model. The layerwise calibrated codebooks achieve slightly better perplexity when
the number of codebooks are small (e.g. N, = 2). However, they do not provide significant benefits when
N, > 4 despite the comparatively larger calibration effort. Therefore, in our experiments in this paper, we
have largely explored universally calibrated codebooks.

12

Published in Transactions on Machine Learning Research (10/2025)

5 Conclusion and Future Work

We propose a new iterative block clustering and quantization algorithm called LO-BCQ, that greedily
minimizes quantization MSE for any operand (weights and activations) through locally optimal steps at each
step of the iteration. We demonstrate that LO-BCQ achieves state-of-the-art perplexity across a suite of
GPT3, LLama2 and Nemotron4 models on various downstream tasks. Given its strong inference accuracy with
W4A4 quantization, we believe LO-BCQ opens new research avenues for even more aggressive quantization
of both weights and activations. Furthermore, our approach requires significantly fewer codebooks than prior
codebook-based methods and allows these codebooks to be static (frozen) across models and layers within
models. This creates new opportunities to improve inference efficiency, which we plan to explore in future
work.

References

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron, Martin Jaggi,
Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms,
2024. URL https://arxiv.org/abs/2404.00456.

Haoli Bai, Lu Hou, Lifeng Shang, Xin Jiang, Irwin King, and Michael R. Lyu. Towards efficient post-training
quantization of pre-trained language models, 2021.

Minsik Cho, Keivan Alizadeh-Vahid, Saurabh N. Adya, and Mohammad Rastegari. Dkm: Differentiable
k-means clustering layer for neural network compression. ArXiv, abs/2108.12659, 2021. URL https:
//api.semanticscholar.org/CorpusID:237353080.

Minsik Cho, Keivan A. Vahid, Qichen Fu, Saurabh Adya, Carlo C Del Mundo, Mohammad Rastegari, Devang
Naik, and Peter Zatloukal. edkm: An efficient and accurate train-time weight clustering for large language
models, 2023.

Steve Dai, Rangha Venkatesan, Mark Ren, Brian Zimmer, William Dally, and Brucek Khailany.
Vs-quant: Per-vector scaled quantization for accurate low-precision neural network inference. In
A. Smola, A. Dimakis, and I. Stoica (eds.), Proceedings of Machine Learning and Systems, vol-
ume 3, pp. 873-884, 2021. URL https://proceedings.mlsys.org/paper_files/paper/2021/file/
48a6431£04545e€11919887748ecbcbb2-Paper . pdf.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Alistarh.
Extreme compression of large language models via additive quantization, 2024. URL https://arxiv.org/
abs/2401.06118.

FElias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization for
generative pre-trained transformers. In The FEleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=tcbBPnfwxS.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish
Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 07
2024. URL https://zenodo.org/records/12608602.

Cong Guo, Jiaming Tang, Weiming Hu, Jingwen Leng, Chen Zhang, Fan Yang, Yunxin Liu, Minyi Guo, and
Yuhao Zhu. Olive: Accelerating large language models via hardware-friendly outlier-victim pair quantization.
ISCA 23, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400700958. doi:
10.1145/3579371.3589038. URL https://doi.org/10.1145/3579371.3589038.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network with
pruning, trained quantization and huffman coding. In Yoshua Bengio and Yann LeCun (eds.), 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1510.00149.

13

https://arxiv.org/abs/2404.00456
https://api.semanticscholar.org/CorpusID:237353080
https://api.semanticscholar.org/CorpusID:237353080
https://proceedings.mlsys.org/paper_files/paper/2021/file/48a6431f04545e11919887748ec5cb52-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/48a6431f04545e11919887748ec5cb52-Paper.pdf
https://arxiv.org/abs/2401.06118
https://arxiv.org/abs/2401.06118
https://openreview.net/forum?id=tcbBPnfwxS
https://zenodo.org/records/12608602
https://doi.org/10.1145/3579371.3589038
http://arxiv.org/abs/1510.00149

Published in Transactions on Machine Learning Research (10/2025)

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding, 2021. URL https://arxiv.org/abs/2009.03300.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W. Mahoney, and
Kurt Keutzer. Squeezellm: Dense-and-sparse quantization, 2023a.

Young Jin Kim, Rawn Henry, Raffy Fahim, and Hany Hassan Awadalla. Finequant: Unlocking efficiency
with fine-grained weight-only quantization for llms, 2023b.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-aware
weight quantization for 1lm compression and acceleration, 2023.

S. Lloyd. Least squares quantization in pem. IEEE Transactions on Information Theory, 28(2):129-137,
1982. doi: 10.1109/TTT.1982.1056489.

Yun-Chen Lo, Tse-Kuang Lee, and Ren-Shuo Liu. Block and subword-scaling floating-point (BSFP) : An
efficient non-uniform quantization for low precision inference. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=Vwm40413V9e.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models,
2016.

Jupinder Parmar, Shrimai Prabhumoye, Joseph Jennings, Mostofa Patwary, Sandeep Subramanian, Dan Su,
Chen Zhu, Deepak Narayanan, Aastha Jhunjhunwala, Ayush Dattagupta, et al. Nemotron-4 15b technical
report. arXiv preprint arXiv:2402.16819, 2024.

Bita Rouhani, Ritchie Zhao, Venmugil Elango, Rasoul Shafipour, Mathew Hall, Maral Mesmakhosroshahi,
Ankit More, Levi Melnick, Maximilian Golub, Girish Varatkar, Lai Shao, Gaurav Kolhe, Dimitry Melts,
Jasmine Klar, Renee L’Heureux, Matt Perry, Doug Burger, Eric Chung, Zhaoxia (Summer) Deng, Sam
Naghshineh, Jongsoo Park, and Maxim Naumov. With shared microexponents, a little shifting goes a
long way. In Proceedings of the 50th Annual International Symposium on Computer Architecture, ISCA
23, New York, NY, USA, 2023a. Association for Computing Machinery. ISBN 9798400700958. doi:
10.1145/3579371.3589351. URL https://doi.org/10.1145/3579371.3589351,

Bita Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer Deng, Dhruv
Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, Stosic Dusan, Venmugil Elango, Maximilian
Golub, Alexander Heinecke, Phil James-Roxby, Dharmesh Jani, Gaurav Kolhe, Martin Langhammer, Ada
Li, Levi Melnick, Maral Mesmakhosroshahi, Andres Rodriguez, Michael Schulte, Rasoul Shafipour, Lei
Shao, Michael Siu, Pradeep Dubey, Paulius Micikevicius, Maxim Naumov, Colin Verrilli, Ralph Wittig,
Doug Burger, and Eric Chung. Microscaling data formats for deep learning, 2023b.

Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. Analytical guarantees on numerical precision of deep
neural networks. In Proceedings of the 34th International Conference on Machine Learning - Volume 70,

ICML’17, pp. 3007-3016. JMLR.org, 2017.

Charbel Sakr, Steve Dai, Rangharajan Venkatesan, Brian Zimmer, William J. Dally, and Brucek Khailany.
Optimal clipping and magnitude-aware differentiation for improved quantization-aware training, 2022.

Wengi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhigian Li, Kaipeng Zhang, Peng Gao,
Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large language models,
2024. URL https://arxiv.org/abs/2308.13137.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language models using model parallelism, 2020.

Thierry Tambe, En-Yu Yang, Zishen Wan, Yuntian Deng, Vijay Janapa Reddi, Alexander Rush, David
Brooks, and Gu-Yeon Wei. Algorithm-hardware co-design of adaptive floating-point encodings for resilient
deep learning inference. In 2020 57th ACM/IEEFE Design Automation Conference (DAC), pp. 1-6, 2020.
doi: 10.1109/DAC18072.2020.9218516.

14

https://arxiv.org/abs/2009.03300
https://openreview.net/forum?id=VWm4o4l3V9e
https://doi.org/10.1145/3579371.3589351
https://arxiv.org/abs/2308.13137

Published in Transactions on Machine Learning Research (10/2025)

Hugo Touvron et al. Llama 2: Open foundation and fine-tuned chat models, 2023. URL https://arxiv,
org/abs/2307.09288.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#: Even better
llm quantization with hadamard incoherence and lattice codebooks, 2024. URL https://arxiv.org/abs/
2402.04396!

Mart van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Cedric Bastoul, Eric Mahurin, Tijmen
Blankevoort, and Paul Whatmough. Gptvq: The blessing of dimensionality for llm quantization, 2024.
URL https://arxiv.org/abs/2402.15319.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang, Ruiping
Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models, 2023. URL
https://arxiv.org/abs/2310.11453.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei Yu,
and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language models, 2023.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quantization
for deep learning inference: Principles and empirical evaluation. CoRR, abs/2004.09602, 2020a. URL
https://arxiv.org/abs/2004.09602.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quantization for deep
learning inference: Principles and empirical evaluation, 2020b.

Xiaoxia Wu, Zhewei Yao, and Yuxiong He. Zeroquant-fp: A leap forward in llms post-training w4a8
quantization using floating-point formats, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He. Zeroquant:
Efficient and affordable post-training quantization for large-scale transformers. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=f-fVCE1Z-G1.

Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. Zeroquant-v2: Exploring post-training
quantization in llms from comprehensive study to low rank compensation, 2023.

Ali Hadi Zadeh, Mostafa Mahmoud, Ameer Abdelhadi, and Andreas Moshovos. Mokey: Enabling narrow
fixed-point inference for out-of-the-box floating-point transformer models. In Proceedings of the 49th
Annual International Symposium on Computer Architecture, ISCA 22, pp. 888-901, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450386104. doi: 10.1145/3470496.3527438. URL
https://doi.org/10.1145/3470496.3527438.

Yijia Zhang, Lingran Zhao, Shijie Cao, Wenqgiang Wang, Ting Cao, Fan Yang, Mao Yang, Shanghang Zhang,
and Ningyi Xu. Integer or floating point? new outlooks for low-bit quantization on large language models,
2023.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,

Tiangi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and accurate llm serving, 2024.
URL https://arxiv.org/abs/2310.19102.

15

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2402.15319
https://arxiv.org/abs/2310.11453
https://arxiv.org/abs/2004.09602
https://openreview.net/forum?id=f-fVCElZ-G1
https://doi.org/10.1145/3470496.3527438
https://arxiv.org/abs/2310.19102

Published in Transactions on Machine Learning Research (10/2025)

A Appendix

A.1 Lloyd-Max Algorithm

For a given quantization bitwidth B and an operand X, the Lloyd-Max algorithm finds 22 quantization levels
{iz}fjl such that quantizing X by rounding each scalar in X to the nearest quantization level minimizes the
quantization MSE.

The algorithm starts with an initial guess of quantization levels and then iteratively computes quantization
B
thresholds {7; ?:1_ ! and updates quantization levels {#; 12]:31 Specifically, at iteration n, thresholds are set to
the midpoints of the previous iteration’s levels:
~(n—1) ~(n—1)
(n) _ %5 + T
T =
2
Subsequently, the quantization levels are re-computed as conditional means of the data regions defined by the
new thresholds:

fori=1...28 -1

1—17 "%

#W =k [X]X e 7 T(”ﬂ fori=1...25

where to satisfy boundary conditions we have 79 = —oo and 795 = co. The algorithm iterates the above steps
until convergence.

Figure compares the quantization levels of a 7-bit floating point (E3M3) quantizer (left) to a 7-bit Lloyd-Max
quantizer (right) when quantizing a layer of weights from the GPT3-126M model at a per-tensor granularity.
As shown, the Lloyd-Max quantizer achieves substantially lower quantization MSE. Further, Table [11] shows
the superior perplexity achieved by Lloyd-Max quantizers for bitwidths of 7, 6 and 5. The difference between
the quantizers is clear at 5 bits, where per-tensor FP quantization incurs a drastic and unacceptable increase
in perplexity, while Lloyd-Max quantization incurs a much smaller increase. Nevertheless, we note that even
the optimal Lloyd-Max quantizer incurs a notable (~ 1.5) increase in perplexity due to the coarse granularity
of quantization.

Unquantized Operand Quantized Operand
105 FP7 (E3M3) 105 Lloyd-Max (7-bits)
10 MSE = 0.0028 100 MSE = 0.0016
10 10%
10? 10%
10! 10*
10° | 10° il | I I T
1.00 -075 -05 -0.25 0.00 025 050 0.75 1.00 -0.75 -05 -025 0.00 025 0.50 0.75

Figure 8: Quantization levels and the corresponding quantization MSE of Floating Point (left) vs Lloyd-Max (right)
Quantizers for a layer of weights in the GPT3-126M model.

Table 11: Comparing perplexity (lower is better) achieved by floating point quantizers and Lloyd-Max quantizers on
a GPT3-126M model for the Wikitext-103 dataset.

Bitwidth Floating-Point Quantizer Lloyd-Max Quantizer
Best Format Wikitext-103 Perplexity Wikitext-103 Perplexity

7 E3M3 18.32 18.27

6 E3M2 19.07 18.51

5 E4MO 43.89 19.71

A.2 Proof of Local Optimality of LO-BCQ

For a given block b;, the quantization MSE during LO-BCQ can be empirically evaluated as L%Hbj — b3
where 133- is computed from equation as Cf(bj)(bj). Further, for a given block cluster B;, we compute

16

Published in Transactions on Machine Learning Research (10/2025)

the quantization MSE as |B—1_| > bes, L%Hb - Cl(n)(b)H% Therefore, at the end of iteration n, we evaluate the

overall quantization MSE J(for a given operand X composed of N, block clusters as:

Ne
Sy L 1

1 () (py |12
=—) —— —|lb— B (b
mﬁﬂw|zzﬂ SO

veBgn)

At the end of iteration n, the codebooks are updated from C(*~1) to C("). However, the mapping of a given
vector b; to quantizers C™ remains as f (”)(bj). At the next iteration, during the vector clustering step,
f@+Y(b;) finds new mapping of b; to updated codebooks C™ such that the quantization MSE over the
candidate codebooks is minimized. Therefore, we obtain the following result for b;:

1

1 n n
715 = Ol I3 < £-lbj = 5, ()13

That is, quantizing b; at the end of the block clustering step of iteration n 4 1 results in lower quantization
MSE compared to quantizing at the end of iteration n. Since this is true for all b € X, we assert the following:

N,
- 1 < 1 1
(+1)_727 Z b — o™ (p)12 (n)
i=1 7 b€B§”+1)

where J("t1) is the the quantization MSE after the vector clustering step at iteration n + 1.

Next, during the codebook update step @ at iteration n + 1, the per-cluster codebooks C(™ are updated to
"1 by invoking the Lloyd-Max algorithm (Lloyd, 1982)). We know that for any given value distribution,
the Lloyd-Max algorithm minimizes the quantization MSE. Therefore, for a given vector cluster ; we obtain
the following result:

1 1 (n+1) 9 1 1 (n) 9
B > fb||b_ci (b)HQSW > fb||b_ci (b)ll2 (11)

bep(n bep(th

The above equation states that quantizing the given block cluster B; after updating the associated codebook
from Ci(") to Ci(nH) results in lower quantization MSE. Since this is true for all the block clusters, we derive
the following result:

N, 1

(n+1) _

1 1 n+1 7(n

— > -)3 < Ty (12)
N, “ Ly

i=1 bGBs'Hrl)

Following (10)) and (12]), we find that the quantization MSE is non-increasing for each iteration, that is,
JO > g2 > g6 > > JM) where M is the maximum number of iterations. [|

Figure [9] shows the empirical convergence of LO-BCQ across several block lengths and number of codebooks.
Also, the MSE achieved by LO-BCQ is compared to baselines such as MXFP and VSQ. As shown, LO-BCQ
converges to a lower MSE than the baselines. Further, we achieve better convergence for larger number of
codebooks (N,) and for a smaller block length (L;), both of which increase the bitwidth of BCQ (see Eq[3).

A.3 Additional Accuracy Results
A.4 Number Formats and Quantization Method

A.4.1 Integer Format

An n-bit signed integer (INT) is typically represented with a 2s-complement format (Yao et al., |2022; Xiao
et al.l [2023; Dai et al.l [2021]), where the most significant bit denotes the sign.

17

Published in Transactions on Machine Learning Research (10/2025)

NMSE vs Iterations during LO-BCQ

0.0200 4 + LO-BCQ: Block length=64, Num codebooks=4
LO-BCQ: Block length=64, Num codebooks=16
0.0175 1 LO-BCQ: Block length=16, Num codebooks=4
« LO-BCQ: Block length=16, Num codebooks=16
e MXEP4_________ |
0.01251
I I VoQ4]
=
< 0.0100 A
_________________________________ MX4 e
0.0075 4
0.0050 A
0.0025 A
0 20 40 60 80 100

Iterations

Figure 9: NMSE vs iterations during LO-BCQ compared to other block quantization proposals

Iy — 8 1 2
Ne 2 4 8 16 2 4 2
LA

GPT3-1.3B (FP32 PPL = 9.98)

64 10.40 | 10.23 | 10.17 | 10.15 || 10.28 | 10.18 || 10.19
32 10.25 | 10.20 | 10.15 | 10.12 || 10.23 | 10.17 || 10.17
16 10.22 | 10.16 | 10.10 | 10.09 || 10.21 | 10.14 || 10.16

GPT3-8B (FP32 PPL = 7.38)

64 7.61 7.52 748 | 7.47 7.55 | 7.49 7.50
32 7.52 750 | 7.46 | 7.45 7.52 | 7.48 7.48
16 7.51 748 | 744 | 7.44 7.51 7.49 7.47

Table 12: Wikitext-103 perplexity across GPT3-1.3B and 8B models.

Ly — 8
N

Ly

’ Llama2-7B (FP32 PPL = 5.06) ‘

64 5.31 | 5.26 | 5.19 5.18
32 523 | 525 | 5.18 5.15
16 5.23 | 5.19 | 5.16 5.14
Nemotron4-15B (FP32 PPL = 5.87)

64 6.3 | 6.20 | 6.13 | 6.08
32 6.24 | 6.12 | 6.07 6.03
16 6.12 | 6.14 | 6.04 6.02
Nemotron4-340B (FP32 PPL = 3.48)
64 3.67 | 3.62 | 3.60 | 3.59
32 3.63 | 3.61 | 3.59 3.56
16 3.61 | 3.58 | 3.57 | 3.55

2 4 8 16

Table 13: Wikitext-103 perplexity compared to FP32 baseline in Llama2-7B and Nemotron4-15B, 340B
models

18

Published in Transactions on Machine Learning Research (10/2025)

Ly — 8 8 \
LJIC 2 4 8 16 2 4 8 16
Llama2-7B (FP32 Accuracy = 45.8%) | Llama2-70B (FP32 Accuracy = 69.12%) |
64 439 | 434 | 439 44.9 68.07 | 68.27 | 68.17 68.75
32 44.5 43.8 44.9 44.5 68.37 | 68.51 | 68.35 68.27
16 439 | 427 | 449 45 68.12 | 68.77 | 68.31 68.59
| GPT3-22B (FP32 Accuracy = 38.75%) | Nemotrond-15B (FP32 Accuracy = 64.3%) |
64 36.71 | 38.85 | 38.13 | 38.92 || 63.17 | 62.36 | 63.72 64.09
32 37.95 | 38.69 | 39.45 | 38.34 || 64.05 | 62.30 | 63.8 64.33
16 38.88 | 38.80 | 38.31 | 38.92 || 63.22 | 63.51 | 63.93 64.43

Table 14: Accuracy on MMLU dataset across GPT3-22B, Llama2-7B, 70B and Nemotron4-15B models.

L(, — 8 8 ‘
Ne 2 4 8 16 2 4 8 16
Ly
’ Race (FP32 Accuracy = 37.51%) | Boolq (FP32 Accuracy = 64.62%) |

64 36.94 | 37.13 | 36.27 | 37.13 63.73 | 62.26 | 63.49 63.36
32 37.03 | 36.36 | 36.08 | 37.03 62.54 | 63.51 | 63.49 63.55
16 37.03 | 37.03 | 36.46 | 37.03 61.1 | 63.79 | 63.58 63.33

Winogrande (FP32 Accuracy = 58.01%) | Piga (FP32 Accuracy = 74.21%) |

64 58.17 | 57.22 | 57.85 | 58.33 73.01 | 73.07 | 73.07 72.80
32 59.12 | 58.09 | 57.85 | 58.41 73.01 | 73.94 | 72.74 73.18
16 57.93 | 58.88 | 57.93 | 58.56 73.94 | 72.80 | 73.01 73.94

Table 15: Accuracy on LM evaluation harness tasks on GPT3-1.3B model.

Ly, — 8 8 ‘
Ne 2 4 8 16 2 4 8 16
LA
’ Race (FP32 Accuracy = 41.34%) | Boolq (FP32 Accuracy = 68.32%) |

64 40.48 | 40.10 | 39.43 | 39.90 69.20 | 68.41 | 69.45 68.56
32 39.52 | 39.52 | 40.77 | 39.62 68.32 | 67.43 | 68.17 69.30
16 39.81 | 39.71 | 39.90 | 40.38 68.10 | 66.33 | 69.51 69.42

Winogrande (FP32 Accuracy = 67.88%) | Piga (FP32 Accuracy = 78.78%) |

64 66.85 | 66.61 | 67.72 | 67.88 7731 | 77.42 | T7.75 77.64
32 67.25 | 67.72 | 67.72 | 67.00 77.31 | 77.04 | 77.80 77.37
16 68.11 | 68.90 | 67.88 | 67.48 77.37 | 78.13 | 78.13 77.69

Table 16: Accuracy on LM evaluation harness tasks on GPT3-8B model.

19

Published in Transactions on Machine Learning Research (10/2025)

L, — 8 8 \
Ne 2 4 8 16 2 4 8 16
Ly
’ Race (FP32 Accuracy = 40.67%) I Boolq (FP32 Accuracy = 76.54%) ‘

64 40.48 | 40.10 | 39.43 | 39.90 75.41 | 75.11 | 77.09 75.66
32 39.52 | 39.562 | 40.77 | 39.62 76.02 | 76.02 | 75.96 75.35
16 39.81 | 39.71 | 39.90 | 40.38 75.05 | 73.82 | 75.72 76.09

Winogrande (FP32 Accuracy = 70.64%) | Piga (FP32 Accuracy = 79.16%) |

64 69.14 | 70.17 | 70.17 | 70.56 78.24 | 79.00 | 78.62 78.73
32 70.96 | 69.69 | 71.27 | 69.30 78.56 | 79.49 | 79.16 78.89
16 71.03 | 69.53 | 69.69 | 70.40 78.13 | 79.16 | 79.00 79.00

Table 17: Accuracy on LM evaluation harness tasks on GPT3-22B model.

L(, — 8 8 ‘
Ne 2 4 8 16 2 4 8 16
Ly
’ Race (FP32 Accuracy = 44.4%) I Boolq (FP32 Accuracy = 79.29%) ‘

64 42.49 | 42.51 | 42.58 | 43.45 T77.58 | 77.37 | T7.43 78.1
32 43.35 | 4249 | 43.64 | 43.73 77.86 | 75.32 | 77.28 77.86
16 44.21 | 44.21 | 43.64 | 42.97 78.65 7 76.94 77.98

Winogrande (FP32 Accuracy = 69.38%) I Piqa (FP32 Accuracy = 78.07%) ‘

64 68.9 | 68.43 | 69.77 | 68.19 77.09 | 76.82 | 77.09 77.86
32 69.38 | 68.51 | 68.82 | 68.90 78.07 | 76.71 | 78.07 77.86
16 69.53 | 67.09 | 69.38 | 68.90 7737 | 77.8 | 77.91 77.69

Table 18: Accuracy on LM evaluation harness tasks on Llama2-7B model.

Ly, — 8 8 ‘
Ne 2 4 8 16 2 4 8 16
LA
’ Race (FP32 Accuracy = 48.8%) | Boolq (FP32 Accuracy = 85.23%) |

64 49.00 | 49.00 | 49.28 | 48.71 82.82 | 84.28 | 84.03 84.25
32 49.57 | 48.52 | 48.33 | 49.28 83.85 | 84.46 | 84.31 84.93
16 49.85 | 49.09 | 49.28 | 48.99 85.11 | 84.46 | 84.61 83.94

Winogrande (FP32 Accuracy = 79.95%) | Piga (FP32 Accuracy = 81.56%) |

64 78.77 | 7845 | 7837 | 79.16 81.45 | 80.69 | 81.45 81.5
32 78.45 | 79.01 | 78.69 | 80.66 81.56 | 80.58 | 81.18 81.34
16 79.95 | 79.56 | 79.79 | 79.72 81.28 | 81.66 | 81.28 80.96

Table 19: Accuracy on LM evaluation harness tasks on Llama2-70B model.

20

Published in Transactions on Machine Learning Research (10/2025)

A.4.2 Floating Point Format

An n-bit signed floating point (FP) number = comprises of a 1-bit sign (Zsign), Bm-bit mantissa (Zmant)
and B.-bit exponent (Zexp) such that B, + B, = n — 1. The associated constant exponent bias (Ehias) is
computed as (28~ — 1). We denote this format as Eg, Mp

m*

A.4.3 Quantization Scheme

A quantization scheme dictates how a given unquantized tensor is converted to its quantized representation.
We consider FP formats for the purpose of illustration. Given an unquantized tensor X and an FP format
Ep,Mp,,, we first, we compute the quantization scale factor sx that maps the maximum absolute value of
X to the maximum quantization level of the Ep Mp, format as follows:

_ max(|X])
X = (B M) "

In the above equation, | - | denotes the absolute value function.

Next, we scale X by sx and quantize it to X by rounding it to the nearest quantization level of Ep, Mp,, as:

N X
X = round-to-nearest (, Ep, MBm) (14)
SX

We perform dynamic max-scaled quantization (Wu et al., [2020b)), where the scale factor s for activations is
dynamically computed during runtime.

A.5 Vector Scaled Quantization

During VSQ (Dai et al., [2021)), the operand tensors are decomposed

into 1D vectors in a hardware friendly manner as shown in Figure Input Tensor A Input Tensor B
Since the decomposed tensors are used as operands in matrix

multiplications during inference, it is beneficial to perform this de- 4

composition along the reduction dimension of the multiplication. The \'TEE F,ecto,
vectorwise quantization is performed similar to tensorwise quanti- - size i size
zation described in Equations [[3] and [I4] where a scale factor s, is Biencil e iarordavecion

required for each vector v that maps the maximum absolute value of

that vector to the maximum quantization level. While smaller vector

lengths can lead to larger accuracy gains, the associated memory and Figure 10: Vectorwise decomposition for
computational overheads due to the per-vector scale factors increases. per-vector scaled quantization (VSQ (Dai
To alleviate these overheads, VSQ (Dai et all [2021)) proposed a (et al} |[2021)).

second level quantization of the per-vector scale factors to unsigned

integers, while MX (Rouhani et al., 2023b) quantizes them to integer powers of 2 (denoted as 2/N7).

A.5.1 MX Format

The MX format proposed in (Rouhani et all 2023a) introduces the concept of sub-block shifting. For every
two scalar elements of b-bits each, there is a shared exponent bit. The value of this exponent bit is determined
through an empirical analysis that targets minimizing quantization MSE. We note that the FP format Fy M,
is strictly better than MX from an accuracy perspective since it allocates a dedicated exponent bit to each
scalar as opposed to sharing it across two scalars. Therefore, we conservatively bound the accuracy of a
b + 2-bit signed MX format with that of a F1 M, format in our comparisons. For instance, we use E1M2
format as a proxy for MX4.

Figure [11| compares our 4-bit LO-BCQ block format to MX (Rouhani et al.; 2023a)). As shown, both LO-BCQ
and MX decompose a given operand tensor into block arrays and each block array into blocks. Similar to MX,

21

Published in Transactions on Machine Learning Research (10/2025)

Per-tensor LO-BCQ'4 MX-4
scale factor
(FP32) Operand Tensor X - Block Arrays Operand Tensor X - Block Arrays
! 4 Block Array - Blocks & Block Array - Blocks
N BTSRRI 7 AR PR e A
1 1 r A\ 1] A\
Sx ! Vo Sy by 1 ! - by 1

| A] i]

Codebooks i Lo s by i i i Sb, b, '

(2 4,8,16} | b : ! ! ! B !
i

; - b, B : : by, B

| AT A s e | A S
1 2) 1 lto 4-bit Block of length ! H 1 1-bit Block of length |
! Na 1 \J_codebook Ty~ 3 4.8) |} ! | micro-scale L=]
! . wselector (NT)__ ° ______ ’] . . |
| 8-bi t Sca‘e Block Array of length i P P— | 8-bitscale Block Array of length ‘ P Po—

16 entries 1 (FP8: E4M3) 9 1 Effective Bitwidth INT4 index to 1 (FP8: 0) 1 Effective Bitwidth INT3 scalars
{ Ly={16,32,64} ~_ i closest entry in ! Ly=16] — 4bi

= 4.25 to 5-bits Y 9 / = 4-bits
INT6entry *o___ - selected codebook | Moo oo -

Figure 11: Comparing LO-BCQ to MX format.

we find that per-block quantization (L, < L4) leads to better accuracy due to increased flexibility. While MX
achieves this through per-block 1-bit micro-scales, we associate a dedicated codebook to each block through a
per-block codebook selector. Further, MX quantizes the per-block array scale-factor to ESMO0 format without
per-tensor scaling. In contrast during LO-BCQ, we find that per-tensor scaling combined with quantization
of per-block array scale-factor to E4M3 format results in superior inference accuracy across models.

22

	Introduction
	Related work
	Contributions

	Block Clustered Quantiaztion (BCQ)
	Mathematical Definition
	Locally optimal block clustered quantization
	Convergence and Initialization
	Block formats for LO-BCQ

	Applying LO-BCQ for LLM Inference
	Experimental Evaluation of LO-BCQ
	Experimental Setup
	Accuracy studies on downstream tasks
	Perplexity on Wikitext-103
	Accuracy on LM evaluation harness tasks
	Accuracy on MMLU tasks

	Ablation Studies

	Conclusion and Future Work
	Appendix
	Lloyd-Max Algorithm
	Proof of Local Optimality of LO-BCQ
	Additional Accuracy Results
	Number Formats and Quantization Method
	Integer Format
	Floating Point Format
	Quantization Scheme

	Vector Scaled Quantization
	MX Format

