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ABSTRACT

While complex simulations of physical systems have been widely studied in engi-
neering and scientific computing, lowering their often prohibitive computational
requirements has only recently been tackled by deep learning approaches. In
this paper, we present GRAPHSPLINENETS, a novel deep learning approach to
speed up simulation of physical systems with spatio-temporal continuous outputs
by exploiting the synergy between graph neural networks (GNN) and orthogo-
nal spline collocation (OSC). Two differentiable OSC (time-oriented OSC and
spatial-oriented OSC) are applied to bridge the gap between discrete GNN out-
puts and generate continuous solutions at any location in space and time without
explicit prior knowledge of underlying differential equations. Moreover, we in-
troduce an adaptive collocation strategy in space to enable the model to sample
from the most important regions. Our model improves on widely used graph neu-
ral networks for physics simulation on both efficiency and solution accuracy. We
demonstrate GRAPHSPLINENETS in predicting complex dynamical systems such
as the heat equation, damped wave propagation and the Navier-Stokes equations
for incompressible flows, where they improve accuracy of more than 25% while
providing at least 60% speedup.

1 INTRODUCTION

For a growing variety of fields, simulations of partial differential equations (PDEs) representing
physical processes are an essential tool. PDE–based simulators have been widely employed in a
range of practical issues, spanning from astrophysics (Mücke et al., 2000) to biology (Quarteroni &
Veneziani, 2003), engineering (Wu & Porté-Agel, 2011), finance, (Marriott et al., 2015) or weather
forecasting (Bauer et al., 2015). Traditional solvers for phsysics-based simulation oftentimes need
a significant amount of computational resources (Houska et al., 2012), such as solvers based on
first principles and the modified Gauss-Newton methods. To broaden the scope of applications of
dynamics simulation, the scientific machine learning community has put considerable effort into
developing computationally simple yet accurate simulation approaches.

Deep learning has been shown to be a powerful alternative to efficiently compute solutions (Raissi
et al., 2019) or model dynamical systems directly from data (Mrowca et al., 2018). Among deep
learning methods, graph neural networks (GNNs) come with desirable properties such as spatial
equivariance and translational invariance which allow learning representations of dynamical inter-
actions in a generalizable manner (Pfaff et al., 2021; Bronstein et al., 2021) and on unstructured
grids. Despite the benefits of these paradigms, graph-based models have the fundamental drawback
of being discrete in nature, which makes it challenging to implement continuous simulations in time
and space. While graph models that operate in continuous space or continuous time have been intro-
duced in the past (Poli et al., 2019), such approaches mainly deal with only one aspect of continuity
at once, either in space or time, and are hindered by accuracy issues while interpolating in space
(Alet et al., 2019) or require a considerable number of iterative evaluations of a vector field in time
limiting their performance (Xhonneux et al., 2020).

To bridge the gap between the inherently discrete graphs and the intrinsic continuous nature of the
real world, in this work we propose GRAPHSPLINENETS, a novel method that exploits the syn-
ergy between graph neural networks and the orthogonal spline collocation (OSC) method (Bialecki
& Fairweather, 2001; Fairweather & Meade, 2020). By leveraging the OSC, our approach can
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produce predictions at any location in space and time without explicit prior knowledge of the under-
lying differential equation. GRAPHSPLINENETS achieve significant speedups compared to GNN
baselines by making use of efficient sparse linear solvers (de Boor & Weiss, 1980) for the OSC
problem and training the model end-to-end with larger temporal resolutions. Moreover, thanks to
the super-convergent approximations at nodes of the OSC partition (Qiao et al., 2021) and an adap-
tive sampling strategy of collocation points, GRAPHSPLINENETS improve the solution accuracy of
predictions in continuous space and time.

We summarize our contributions as follows:

• We introduce GRAPHSPLINENETS, a learning framework for complex dynamical system in
continuous time and space leveraging the OSC method.

• We introduce an adaptive collocation sampling strategy to improve accuracy and a differentiable
algorithm for fast inference of the OSC that allows for end-to-end training.

• We demonstrate that GRAPHSPLINENETS outperform or are competitive against baselines in
predicting continuous complex dynamics in terms of both accuracy and speed.

2 RELATED WORKS

Graph Neural Networks for Dynamics Predictions Deep neural networks have recently been
successfully employed in a variety of different tasks, ranging from simulated (Long et al., 2018; Li
et al., 2020) and real datasets (Pathak et al., 2022; Li et al., 2022a; Poli et al., 2022) demonstrating
their capabilities in predicting complex dynamics often orders of magnitude faster than traditional
numerical solvers. We aim at finding efficient and accurate surrogate models: unlike data-driven
approaches for solving PDEs such as PINNs (Raissi et al., 2019), that aim at finding solutions to a
set of equations, our methods does not need to know the exact equations of a dynamical system and
can directly learn mappings from data. One major line of work for dynamics prediction involves the
use of graph neural networks (GNNs): these models provide several benefits compared to other deep
learning methods based on regular grids such as convolutional networks. In particular, they make it
possible to learn on irregular grids and varying connectivity and inherit physical properties derived
from geometric deep learning, such as permutation and spatial equivariance (Bronstein et al., 2021).
Alet et al. (2019) represent adaptively sampled points in a graph architecture to simulate continuous
underlying physical processes without any a priori graph structure. Sanchez-Gonzalez et al. (2020)
introduce particle-based graph simulators with dynamically changing connectivity simulating inter-
actions through message passing; Pfaff et al. (2021) extend particle-based simulations to mesh-based
ones. GNN-based approaches have also been shown to represent some parts of classical numerical
solvers, such as finite differences and volumes (Brandstetter et al., 2022; Lienen & Günnemann,
2022). Graph neural networks have also recently been applied to large-scale weather predictions
(Keisler, 2022). Another deep learning direction on irregular grids that avoids graphs altogether is
to convert the input domain into a regular grid via learnable deformations to make usage of neural
operators possible (Li et al., 2022b). Compared to other deep learning methods for physics predic-
tions on unstructured grids, we do not need to learn transforms and predict directly in the target
domains; moreover, we place emphasis on bridging the gap between discrete graph nodes in space
and time by allowing for fast and accurate continuous predictions.

Collocation Methods and Graphs Collocation and interpolation methods1 are used to estimate
unknown data values from known ones (Bourke, 1999). GNNs for predicting dynamics inherently
lack an important aspect characterizing physical systems: continuity. The concept of continuity
can be separated into two categories: continuity in time and continuity in space. The former has
been investigated by using continuous ODE models (Poli et al., 2019; Xhonneux et al., 2020; Fang
et al., 2021) that can, in theory, represent a system evolving in time continuously. However, such
methods employ numerical solvers that introduce a considerable number of function evaluations and
do not consider the fact that deep learning models can be capable of overcoming time discretization

1Collocation and interpolation are terms that are oftentimes used interchangeably. While interpolation is
defined as obtaining unknown values from known ones, collocation is usually defined as a finite solution space
satisfying equations dictated by known (collocation) points. Thus, collocation can be considered as a flexible
subset of interpolation methods that satisfies certain conditions, such as C1 class continuity.
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errors by learning residual values (Poli et al., 2020; Berto et al., 2022). In our approach, we aim
at learning state updates directly rather than vector fields to allow for fast predictions. In the case
of space continuity, the graph structure itself is inherently discrete. Alet et al. (2019) employ linear
interpolation in graph learning; however, this interpolation method is known to be inaccurate and
does not respect C1 continuity. Unlike earlier methods, we employ the orthogonal spline collocation
(OSC) (Bialecki & Fairweather, 2001) method to quickly find C1 continuous solutions to differential
equations given a small number of partition points, producing a space-time continuous simulation.
Unlike methods requiring full matrix inversion, OSC has a complexity of only O(n2 log n) thanks
to its sparse structure, allowing for fast inference. Another strain of work involves directly learning
collocation weights (Guo et al., 2019; Brink et al., 2021); in our case, however, we use graphs to
predict spatio-temporal locations of nodes and employ the OSC approach in an end-to-end manner.
A further benefit of the OSC choice are its theoretical guarantees on convergence (Bialecki, 1998).

3 SPLINEGRAPHNETS
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ŷt2
1

<latexit sha1_base64="z1YyCDeNtpcGA/DyF01UysbZfXA=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkpSinosePFYwX5AG8Nmu2mXbjZhdyLE0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmBYngGhzn2yptbG5t75R3K3v7B4dV++i4q+NUUdahsYhVPyCaCS5ZBzgI1k8UI1EgWC+Y3sz93iNTmsfyHrKEeREZSx5ySsBIvl0dTgjk2cx3HnLwGzPfrjl1ZwG8TtyC1FCBtm9/DUcxTSMmgQqi9cB1EvByooBTwWaVYapZQuiUjNnAUEkipr18cfgMnxtlhMNYmZKAF+rviZxEWmdRYDojAhO96s3F/7xBCuG1l3OZpMAkXS4KU4EhxvMU8IgrRkFkhhCquLkV0wlRhILJqmJCcFdfXifdRt29rDfvmrWWXcRRRqfoDF0gF12hFrpFbdRBFKXoGb2iN+vJerHerY9la8kqZk7QH1ifP9Irkww=</latexit>
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Figure 1: The overall scheme of GRAPHSPLINENETS.

3.1 PROBLEM SETUP

We first introduce necessary notation that we will use throughout the paper. Let superscripts de-
note time and subscripts denote space indexes as well as others with an abuse of notation. We
denote the state of a PDEs process at physical space location X = {xi, i = 1, · · · , N} at time t as
Yt = {yti , i = 1, · · · , N} where N represents the number of sample points and Ω is the physical
domain. More specifically, we have xi ∈ Ω ⊂ RD, yti ∈ R can be described by a solution of the
PDEs, i.e. yti = u(xi, t). The final objective of a physics process simulator is to estimate future
states YT+1 given the history states {Ŷi, i = 1, · · · , T}. Long-term predictions can be obtained via
autoregressive rollouts of the model. In our method, we also aim to infer a spatio-temporal continu-
ous prediction ŶT+∆t = ûT+∆t(x),x ∈ Ω,∆t ∈ R+, where the ûT+∆t is the simulated functions
of the domain at time T +∆t.

3.2 METHOD OVERVIEW

Fig. 1 depicts the entire architecture of our model that can be divided into three main components:
message passing neural networks (MPNN), space–oriented collocation and time–oriented colloca-
tion. The MPNN takes history state observations as input and infers a sequence of discrete future
predictions via autoregressive rollouts. On these discrete predictions, we then use the time–oriented
and space–oriented collocation methods to obtain simulation functions that can provide both time
and space continuous simulations.
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3.3 MESSAGE PASSING NEURAL NETWORKS

We employ a graph Gt = {Vt,Et, } ∈ G to represent the nodes in the physics domain, where
Vt = {vt

i}Ni=0 and Et = {etij}Ni,j=0. vt
i and etij denote the attribute of sample node i and the

attribute of the directed edge between node i and j, respectively. Each node has the attribute encoded
from its state information. The MPNN employs an encoder–processor–decoder structure to predict
the states of sample points at the next timestep:

Ŷt+1 = D︸︷︷︸
decoder

Pm(· · · (P1︸ ︷︷ ︸
processor

(E(X,Yt)︸ ︷︷ ︸
encoder

)))

 (1)

where E(·) is the encoder, Pi(·) is the i–th message passing layer, and D(·) is the decoder.

3.4 ORTHOGONAL SPLINE COLLOCATION METHOD

The orthogonal spline collocation (OSC) method consists of four steps in total: (1) partitioning and
selection of collocation points (2) generating the equation of simulator polynomial parameters (3)
solving equations and (4) simulating in the physical domain. In the following part of this section, we
introduce the OSC method for the 1–D and 2–D cases, as both are relevant to the proposed model.
GRAPHSPLINENETS continuously predicts in time domain using the 1–D OSC and in space domain
using its 2–D counterpart.

Time–oriented OSC For a process of a specific sample point xi in the physics domain with its
state changing over time, we can consider it as an ordinary differential equation (ODE) process
f(ui(t)) = 0, t ∈ [0, T ], where ui(·) is the solution with boundary conditions ui(0) = y0i , u(T ) =
yTi . The target of time–oriented OSC is to find a series of polynomials under order r and satisfy C1

continuity to simulate the solution.

To find these polynomials, we select Np partitions in the time domain π : 0 = tp,0 < tp,1 < · · · <
tp,Np

= T . Note that these partitions can be not isometric. Then, we initialize one polynomial of
order r in each partition. These polynomials have Np(r − 1) degrees of freedom in total, which is
the number of variables to be specified to uniquely determine these polynomials. To decide these
variables, we need to select r − 1 collocation points in each partition; in total Nc = Np(r − 1).
In our model, we consider each message passing layers prediction time step as a collocation point
{tc,k}Nc

k=0, which means each r−1 rollout prediction belongs to one partition, i.e. tp,n < tc,n(r−1) <
· · · < tc,(n+1)(r−1) < tp,n+1, n = 0, · · · , Np − 1.

By substituting the state of these collocation points {ytki }Nc

k=0 to polynomials, we can transfer this
simulation problem to an algebraic equation. We emphasize that the coefficient matrix of this alge-
braic equation is almost block diagonal (ABD) (De Boor & De Boor, 1978). This kind of system
allows for efficient computational routines (Amodio et al., 2000), that we will introduce in § 3.5.
By solving the equation, we obtain the simulation polynomial ûi(·) that can be used to simulate the
value for this sample point at any time ŷ∆t

i ,∆t ∈ [0, T ]. All these steps can be calculated by matrix
operations, so that the model is fully end-to-end differentiable.

Space–oriented OSC For a specific time frame tk, the states of sample points in the physical domain
{ytki }Ni=0 can be described by PDEs f(utk(xi)) = 0, xi ∈ Ω, where utk(·) is the solution for the
state at this time frame. The target of the space–oriented OSC is to find one polynomial of order
r on each partition for every dimension and make these N ×D polynomials C1 continuous in the
domain.

Similar with the time–oriented OSC, we select Np,d partitions in the dth dimension πd : Binf,d =
pd,0 < pd,1 < · · · < pd,Np,d

= Bsup,d, d = 1, · · · , D, where Binf,d, Bsup,d are the lower and upper
boundary of dimension d. Note that these partitions can be not isometric. Then we initialize one
polynomial under order r in each partition for each dimension. These polynomials have the degree
of freedom ND

p (r−1)D in total. To determine these polynomials, we need to select r−1 collocation
points in each partition, in total Nc = ND

p (r− 1)D. In our model, we consider the prediction states
of sample points as collocation points {xi,k}Nc

k=0.
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By substituting the state of these collocation points {ytki }Nc

k=0 to polynomials, we can transfer this
simulation problem to an algebraic problem with an ABD coefficient matrix. By solving this prob-
lem we can obtain the simulation polynomial ûtk , that can be used for simulating the result in the
whole domain ŷtk = ûtk(x),∀x ∈ Ω. More details about deriving the degree of freedom, vi-
sualization of the ABD coefficient matrix, and further techniques of applying OSC are shown in
Appendix A.

3.5 ALGORITHM FOR EFFICIENTLY SOLVING THE ABD MATRIX
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Solver
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Figure 2: The COLROW algorithm allows for
fast solutions to the OSC problem. GPU imple-
mentation further improves on inference times.

Most interpolation methods need to solve linear equa-
tions. Gaussian elimination is one of the most widely
used methods to solve a (dense) linear equation, which
however has a O(n3) complexity (Strassen et al.,
1969). Even with the best algorithms known to date,
the lower bound of time complexity to solve such
equations is O(n2log(n)) (Golub & Van Loan, 2013).
In the OSC method, the coefficient matrix for the lin-
ear equation follows the ABD structure, which we can
efficiently solve with a time complexity O(n2) by the
COLROW algorithm (Diaz et al., 1983) as shown in
Fig. 2. The core idea for this method is that by using
the pivotal strategy and elimination multipliers, we can
decompose the coefficient matrix into a set of permu-
tation matrix and upper or lower triangular matrix that can be solved in O(n2) time each. The
most recent package providing this algorithm is in the FORTRAN programming language: our re-
implementation in PyTorch (Paszke et al., 2019) allows for optimized calculation, GPU support and
enabling the use of automatic differentiation.

3.6 ADAPTIVE COLLOCATION SAMPLING

To allow for prioritized sampling of important locations regions, we optimize the positions of
collocation points via gradient descent on the data of states history, projecting them back to
the partition if the gradient step moves them outside to make sure there is a sufficient num-
ber of collocation point in each partition cell. We can calculate the gradient of each col-
location point along each dimension from the continuity predictions and then use this gra-
dient vector to optimize the position of the point by weighted sum as illustrated in Fig. 3.

Static Adaptive

Figure 3: Adaptive collocation strategy: mesh
points converge towards areas with higher infor-
mation density.

We use the states at optimized positions adapted from
history rollouts as the next rollouts input. By adapt-
ing the collocation points position our model is able to
place greater emphasis in harder parts of the space to
get a more accurate prediction.

3.7 TRAINING STRATEGY AND LOSS FUNCTION

To train the model, the collocation points at the initial-
ized state are input to the MPNN to propagate roll-
outs on these points as shown in Fig. 4. Then two
OSC methods allow for spatio–temporal continuous
outputs, so that we can use any states in the predic-

tion range as a target to train our model end-to-end. More specifically, given an input {X,Y0}, the
model outputs the simulated polynomial û(x, t),x ∈ Ω, t ∈ [0, T ] for a T seconds prediction. By
making use of higher resolution sample points along time and space in the train set as the target
(xi, y

tk
i )i=Ns,k=Nt

i=0,k=0 , where Ns is the number of target sample point and Nt is the number of target
sample time frames, we can calculate the reconstruction loss of sample points Ls. Moreover, we
also calculate the reconstruction loss of predicted collocation points Lc. The complete loss is
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L =

Nc∑
i=0

Nk∑
k=0

∥ytki − ŷtki ∥2︸ ︷︷ ︸
Lc ≡ collocation points reconstruction

+

Ns∑
i=0

Nt∑
k=0

∥ytki − û(xi, tk)∥2︸ ︷︷ ︸
Ls ≡ sample points reconstruction

(2)

where the Nk is the number of MPNN rollout steps. The whole model is then trained end-to-end
with automatic differentiation through the OSC.

4 EXPERIMENTS

4.1 DATASETS AND TRAINING
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Figure 4: Data points used for model training.

We test our GRAPHSPLINENETS on three settings of
increasing challenge:

• Heat Equation: this PDE describes the behavior
of heat through a domain and is characterized by
diffusivity leading to stable solutions over time.

• Damped Wave: this system describes the propaga-
tion of waves through a medium characterized by
their velocity; an additional damping term smooths
their amplitude over time.

• Navier-Stokes: these equations describe the be-
havior of 2D incompressible fluid flows; turbu-
lence leading to chaoticity makes them a notoriously hard problem to solve.

All the models we test employ the same structure of encoder-processor-decoder for fair comparisons
as well as the same amount of training data in each testing domain. While inputs of baseline models
are directly all of the available data points, inputs of our OSC-based models are only an initialized
12× 12 collocation point unitary mesh at the initial state and fewer in-time sample points.

4.2 EVALUATION METRICS AND BASELINES

We evaluated our model by calculating the average mean square error (MSE) of 1(s), 2(s), · · · , 5(s)
rollout predictions steps with respectively ground truth. We employ baselines relevant works in the
field of discrete-step graph models for dynamical system predictions. Graph convolution networks
(GCNs) (Kipf & Welling, 2016) and GCN with a hybrid multilayer perceptron (MLP) model are
employed as baselines in the ablation study. We also compare our approach with one widely used
baseline that employs linear interpolation for physics simulations allowing for continuous predic-
tions in space, i.e., GEN (Alet et al., 2019). A similar setup considering the inherent graph structure
and employing message passing neural networks in mesh space is employed by (Pfaff et al., 2021)
(MPNN in our table). We employ the latter as the first building block for our GRAPHSPLINENETS.

4.3 QUANTITATIVE ANALYSIS

Empirical quantitative results on the three dataset are shown in Table 1. In the heat equation dataset,
our approach reduces long range prediction errors by 64% error while only using 20% of the running
time compared with the best baseline model. In the damped wave dataset, our approach reduces
errors by 42% with a 48%. In the Navier-Stokes dataset, our approach reduces 31% long-range
prediction errors while requiring 37% less time to infer solutions compared to the strongest baseline.

4.4 ABLATION STUDY

We consider an ablation study on three datasets to demonstrate the effectiveness of our model com-
ponents in our approach in multiple aspects. Quantitative results of ablation study models are shown
in Table 1 [right]. The ablated models are:

• MPNN: base graph model with 3 message passing layers.
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Table 1: Mean square error (MSE) propagation at different time stamps in seconds. Runtimes
consider model inference for the full rollouts. Smaller is better (↓). Best in bold; second underlined.

Dataset Metric Baselines GRAPHSPLINENETS

GCN GCN+MLP GEN MPNN MPNN+OSC(Post) MPNN+OSC MPNN+OSC+Adaptive

Heat Equation
MSE (×10−3)

1(s) 0.52± 0.09 0.48± 0.05 0.23± 0.02 0.37± 0.05 0.38± 0.04 0.38± 0.03 0.28± 0.03
2(s) 1.03± 0.12 0.87± 0.08 0.53± 0.06 0.60± 0.06 0.69± 0.07 0.56± 0.05 0.46± 0.04
3(s) 2.58± 0.22 2.05± 0.10 1.53± 0.09 1.85± 0.13 1.28± 0.09 0.94± 0.08 0.87± 0.09
4(s) 4.12± 0.42 3.87± 0.23 2.08± 0.16 2.68± 0.21 1.49± 0.11 1.02± 0.10 0.96± 0.18
5(s) 6.87± 1.00 5.02± 0.89 2.92± 0.23 3.01± 0.38 1.68± 0.18 1.14± 0.11 1.07± 0.28

Rollout steps # 50 50 50 50 12 12 12
Runtime [s] 3.26± 0.12 3.02± 0.10 6.87± 0.10 6.99± 0.12 1.52± 0.09 1.38± 0.10 1.41± 0.12

Damped Wave
MSE (×10−1)

1(s) 1.61± 0.11 1.41± 0.19 0.71± 0.08 0.79± 0.10 0.81± 0.09 0.78± 0.08 0.74± 0.09
2(s) 3.25± 0.29 2.85± 0.27 1.40± 0.12 1.60± 0.15 1.69± 0.16 1.59± 0.15 1.41± 0.14
3(s) 5.12± 0.48 4.88± 0.40 2.98± 0.28 3.27± 0.23 2.57± 0.18 2.48± 0.20 2.28± 0.24
4(s) 7.77± 0.93 6.01± 0.82 4.34± 0.41 5.27± 0.41 3.88± 0.25 3.41± 0.22 3.36± 0.25
5(s) 10.5± 1.65 9.90± 1.52 6.49± 0.62 7.82± 0.88 4.98± 0.29 4.60± 0.27 4.51± 0.31

Rollout steps # 10 10 10 10 5 5 5
Runtime [s] 0.95± 0.08 0.82± 0.07 1.13± 0.09 1.38± 0.10 0.45± 0.05 0.39± 0.04 0.42± 0.09

Navier Stokes
MSE (×10−1)

1(s) 1.47± 0.10 1.22± 0.11 0.42± 0.07 0.66± 0.10 0.72± 0.09 0.70± 0.08 0.54± 0.09
2(s) 2.01± 0.21 1.76± 0.20 0.98± 0.10 1.13± 0.11 1.20± 0.11 1.02± 0.11 0.80± 0.14
3(s) 2.81± 0.39 2.45± 0.36 1.63± 0.12 1.64± 0.24 1.66± 0.18 1.44± 0.20 1.23± 0.20
4(s) 3.51± 0.64 2.94± 0.62 2.38± 0.16 2.57± 0.28 1.98± 0.24 1.72± 0.27 1.50± 0.29
5(s) 4.24± 0.95 3.91± 0.99 3.45± 0.24 3.66± 0.33 2.58± 0.28 2.21± 0.27 2.02± 0.30

Rollout steps # 10 10 10 10 5 5 5
Runtime [s] 0.91± 0.08 0.88± 0.07 1.01± 0.09 1.21± 0.10 0.51± 0.05 0.47± 0.04 0.49± 0.09

• MPNN+OSC(Post): model with 3 message passing layers and only post-processing with
the OSC method, i.e., we firstly train a MPNN model, then we use the OSC method to
collocate the prediction as a final result without end-to-end training.

• MPNN+OSC: MPNN with OSC-in-the-loop that allows for end-to-end training.

• MPNN+OSC+Adaptive: MPNN+OSC model that additionally employs our adaptive col-
location point sampling strategy.
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Figure 5: Pareto front of different interpolation
and collocation points in terms of accuracy and
speed with MPNNs clearly exhibits the advan-
tages of the OSC method.

Interpolation and collocation methods We demon-
strate the efficiency of the OSC method by compar-
ing the combination of MPNN with different interpo-
lation and collocation methods, including linear inter-
polation, cubic interpolation, and B-spline collocation
methods. These models are implemented in the end-
to-end training loop and we use these methods in both
the time and space dimensions. Experiment results are
shown in Fig. 5 where we measured the mean square
error and the running time of 3 second rollouts pre-
dictions. We also test each method with a different
number of collocation points, i.e. from (2 × 2) to
(16 × 16) in Fig. 6. The model MPNN+OSC shows
the best performance in obtaining the highest accuracy
prediction among these approaches with shorter run-
ning time. Even though the linear interpolation can be
faster than the OSC, it shows a considerable error n the

prediction and does not satisfy basic assumptions such as Lipschitz continuity in space.

Number of collocation points We study the effect of the number of collocation points on the 3 sec-
ond rollout prediction error by testing the MPNN, MPNN+OSC and MPNN+OSC+Adaptive mod-
els. The MPNN will always be directly trained with the whole domain data. We use different number
of collocation points (from (2× 2) to (28× 28)) into the MPNN process in the rest two models and
then compare the output of the OSC with the whole domain to train. With the increase in num-
ber of collocation points, Fig. 6 shows that the MPNN+OSC and MPNN+OSC+Adaptive achieve
significant improvements in prediction accuracy over the MPNN. The MPNN+OSC+Adaptive has
a stable better performance compare with the MPNN+OSC and the improvement is larger when
there are fewer collocation points. The reason is the with fewer collocation points, the MPNN+OSC
has insufficient ability to learn the whole domain. With the help of the adaptive collocation point,
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the MPNN+OSC+Adaptive can focus on hard-to-learning regions during training to obtain overall
better predictions.

(8× 8) (16× 16) (24× 24)
Number of Collocation Points

10−2

10−1

M
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E

MPNN

MPNN + OSC

MPNN + OSC + Adaptive

Figure 6: Number of collocation points and
mean squared error.

COLROW solver and GPU acceleration We show
the effectiveness of the COLROW algorithm in accel-
erating the OSC speed by comparing the OSC method
with one of the most commonly used algorithms for
efficiently solving linear systems2 and the OSC with
the COLROW solver. Fig. 2 shows the experimental
results 1000 solutions of ABD linear equations with
the size of 256×256. Our package speeds up the OSC
method by 32%. By making use of the GPU to speed
up the OSC simulation, we can further lower the run-
ning time by 60%.

Number of rollout steps We show the ef-
fectiveness of the OSC method in improving
long-range prediction accuracy by comparing
the MPNN and MPNN+OSC model. Fig. 7
shows the MPNN+OSC can keep stable in long-range rollouts compare with the MPNN.
The reason is that with the OSC, we can use fewer neural network rollout steps to obtain a longer-
range predictions, which avoids the error accumulation during the multi-step rollouts and implicitly
learns for compensating integration residual errors. End-to-end learning lets the neural networks
in MPNN+OSC learn the states between rollout steps, which will make the prediction stable and
accurate.
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Figure 7: MPNN+OSC contains long rollout
errors better than standard MPNN.

Post processing vs end-to-end learning We show the
effectiveness of end-to-end learning architecture by
comparing the MPNN+OSC(Post) and MPNN+OSC
models. Table 1 show that MPNN+OSC has a more
accurate prediction than MPNN+OSC(Post) by more
than 8% percent across datasets. This can be ex-
plained by the fact that, since the OSC is applied end-
to-end, the error between MPNN prediction steps is
backpropagated to the message passing layers, while
in the post processing steps the model has no way of
considering such error.

Adaptive collocation point We further show
the effectiveness of the adaptive collocation
strategy by comparing the MPNN+OSC and
MPNN+OSC+Adaptive. Fig. 6 shows that the

MPNN+OSC+Adaptive has a better performance than the MPNN+OSC in all collocation point
setups. And Table 1 shows that MPNN+OSC+Adaptive has a more accurate prediction than
MPNN+OSC, i.e. around 10% improvement on long rollouts in the Navier-Stokes dataset. Adaptive
collocation points encourage those points to move to the most dynamic regions in the domain,
which is not only able to place greater emphasis on hard-to-learn parts in space, but can let the OSC
method develop a better implicit representation of the domain.

4.5 QUALITATIVE ANALYSIS

We visualize the damped wave equation propagation and the Navier-Stokes evolution results of
the GCN, GEN and MPNN+OSC(Our) in Fig. 8, Fig. 9 and Fig. 10. Our model has a smoother
error distribution and more stable long-range prediction. Thanks to GRAPHSPLINENETS continuous
predictions, we can simulate high resolutions without needing additional expensive model inference
routines, while the other two models can only achieve lower resolution predictions. For long-range

2We used for our experiments torch.linalg.solve, which uses LU decomposition with partial piv-
oting and row interchanges. This is faster and numerically stable than matrix inversion; however, it has still a
O(n3) time complexity.
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Ground Truth GCN GEN Our Collocation Points GCN Error GEN Error Our Model Error
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Figure 8: The visualization of results and the error on the wave dataset. Black dots in the collocation points
figure are the position of sample points for our models training.
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Figure 9: Wave dataset prediction results. GRAPHSPLINENETS manages to obtain more stable and smoother
predictions compared to baselines.

predictions, while baselines visibly accumulate error, our model can lower the error with smoother
and more accurate predictions in space and time.

5 CONCLUSION

We introduce GRAPHSPLINENETS, a novel method that aims at briding the gap between inherent
discrete graph predictions in space and time and the continuous essence of natural processes. Our
approach integrates the theory of Orthogonal Spline Collocation (OSC) methods to achieve space
and time continuous simulations without the need for computationally expensive numerical routines.
We introduce an effective adaptive collocation strategy to prioritize sampling of points in the space
domain and implement the OSC end-to-end for achieving continuous predictions. We demonstrate
how GRAPHSPLINENETS are robust in predicting processes which are characterized by several
different PDEs arising directly from the differential equations. We believe this work represents an
important step forward in a new direction in the research area at the intersection of deep learning
and dynamical systems that aims at finding fast and accurate learned surrogate models.

Ground Truth GCN GEN Our Collocation Points GCN Error GEN Error Our Model Error

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 10: Qualitative results and errors on the Navier-Stokes dataset. Black dots in the collocation points
figure are the positions of sample points for our models training.
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Marten Lienen and Stephan Günnemann. Learning the dynamics of physical systems from sparse
observations with finite element networks. International Conference on Learning Representation,
2022.

Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equations by
the finite element method: The FEniCS book, volume 84. Springer Science & Business Media,
2012.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International Conference on Machine Learning, pp. 3208–3216. PMLR, 2018.

Pru Marriott, Siew Min Tan, and Neil Marriott. Experiential learning–a case study of the use of
computerised stock market trading simulation in finance education. Accounting Education, 24
(6):480–497, 2015.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li F Fei-Fei, Josh Tenenbaum, and
Daniel L Yamins. Flexible neural representation for physics prediction. Advances in neural
information processing systems, 31, 2018.
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A ADDITIONAL OSC MATERIAL

We further illustrate the OSC method by providing numerical examples in this section.

A.1 1-D OSC EXAMPLE

For simplicity and without loss of generality, we consider the function domain as unit domain [0, 1]
and we set N = 3, r = 2, which means we will use a three-order three-piece function to simulate
the 1-D ODE problem as shown in Equation. 2. We firstly choose the partition points as xi, i =
0, · · · , 3, x0 = 0, x3 = 1. The number of partition points is N + 1 = 4. Distance between
partition points can be fixed or not fixed. Then we based on Gauss-Legendre quadrature rule choose
collocation points. The number of collocation point within one partition is r− 1 = 1, so we have in
total N × (r − 1) = 3 collocation points ξi, i = 0, · · · , 3.

After getting partition points and collocation points, we will construct the simulator. Here we have
three partitions, in each partition, we assign a 2 order polynomial

a0,0 + a0,1x+ a0,2x
2, x ∈ [x0, x1] (3a)

a1,0 + a1,1x+ a1,2x
2, x ∈ [x1, x2] (3b)

a2,0 + a2,1x+ a2,2x
2, x ∈ [x2, x3] (3c)

Notice that these three polynomials should be C1 continuous at the connecting points, i.e. parti-
tion points within the domain. For example, Equation Eq. (3a) and Equation Eq. (3b) should be
continuous at x1, then we can get two equations{

a0,0 + a0,1x1 + a0,2x
2
1 = a1,0 + a1,1x1 + a1,2x

2
1

0 + a0,1 + 2a0,2x1 = 0 + a1,1 + 2a1,2x1
(4)

For boundary condition

û(x) =

{
b1, x = x0

b2, x = x3
(5)

we can also get two equations {
a0,0 + 0 + 0 = b1
a1,0 + a1,1 + a1,2 = b2

(6)

Sum up equations we get so far. Firstly our undefined polynomials have N×(r+1) = 9 parameters.
The C1 continuous condition will create (N − 1) × 2 = 4 equations and the boundary condition
will create 2 equations. Then we have N × (r − 1) collocation points. For each collocation point,
we substitute it to polynomials to get an equation. For example, if the ODE is

û(x) + û′(x) = f(x), x ∈ [0, 1] (7)

By substituting collocation point ξ0 into the equation, we can get

û(ξ0) + û′(ξ0) = f(ξ0)

=⇒ a0,0 + a0,1ξ0 + a0,2ξ
2
0 + a0,1 + 2a0,2ξ0 = f(ξ0)

=⇒ a0,0 + a0,1(ξ0 + 1) + a0,2(ξ
2
0 + 2ξ0) = f(ξ0)

(8)

Now we can know that the number of equations can meet with the degree of freedom of polynomials

Parameters︷ ︸︸ ︷
(r + 1)×N =

Boundary︷︸︸︷
2 +

C1Continuous︷ ︸︸ ︷
(N − 1)× 2+

Collocation︷ ︸︸ ︷
N × (r − 1)

(9)

At this example, generated equations will be constructed to an algebra problem Aa = f where the
weight matrix is an ABD matrix.
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(A) (B)

0

Not 0

Figure 11: Visualization of an ABD matrix.

A =


1 0 0 0 0 0
1 ξ0 + 1 ξ20 + 2ξ0 0 0 0
1 x1 x2

1 −1 −x1 −x2
1

0 1 2x1 0 −1 −2x1

0 0 0 1 ξ1 + 1 ξ21 + 2ξ1
0 0 0 1 1 1

 , (10a)

a =


a0,0
a0,1
a0,2
a1,0
a1,1
a1,2

 , f =


b1

f(ξ0)
0
0

f(ξ1)
b2

 . (10b)

To solve this problem, we can get the simulation results.

A.2 2–D OSC EXAMPLE

For simplicity and without loss of generality, we consider the function domain as unit domain [0, 1]×
[0, 1] and we set Nx = Ny = 2, r = 3. Partition points and collocation points selection are similar
with 1-D OSC method, we have N2 × (r − 1)2 = 16 collocation points in total. For simplicity,
we note the partition points at two dimensions to be the same, i.e. xi, i = 0, 1, 2. Unlike the 1–D
OSC method, we choose Hermit bases to describe as the simulator, which keeps C1 continuous. As
a case, the base function at point x1 would be

H1(x) = f1(x) + g1(x)

f1(x) =

{
(x−x0)(x1−x)2

(x1−x0)2
, x ∈ (x0, x1]

(x−x2)(x−x1)
2

(x2−x1)2
, x ∈ (x1, x2]

g1(x) =

{
+ [(x1−x0)+2(x1−x0)](x−x0)

2

(x1−x0)3
, x ∈ (x0, x1]

+ [(x2−x1)+2(x−x1)](x2−x)2

(x2−x1)3
, x ∈ (x1, x2]

(11)

We separately assign parameters to basis functions, i.e. H1(x) = a1,if1(x)+b1,ig1(x) for x variable
in [x0, x1]× [yi−1, yi] partition. Then the polynomial in a partition is the multiple combinations of
bases functions of two dimensions. For example, the polynomial in the partition [x0, x1] × [y0, y1]
is

[ax0,1f0(x) + bx0,1g0(x) + ax1,1f1(x) + bx1,1g1(x)]

×[ay0,1f0(y) + by0,1g0(y) + ay1,1f1(y) + by1,1g1(y)]
(12)

Now we consider the freedom degree of these polynomials. From definition, we have 2n(r−1)(n+
1) = 24 parameter. Consider boundary conditions, we have 24 − 4 × N = 16 parameters. The
number is equal with collocation points N2× (r−1)2, which means we can get an algebra equation
by substituting collocation points. Solving this equation we can get the simulator parameters.

We can similarly multiple basis functions and set parameters to the simulation result for the higher
dimension OSC method. And then select partition points and collocation points by the same strategy
with 2–D OSC method. The rest algebra equation generating and solving equations parts will not be
different.
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A.3 SIMPLE NUMERICAL EXAMPLE

We set N = 3, r = 3 to simulate the problem


u+ u′ = sin(2πx) + 2πcos(2πx)

u(0) = 0

u(1) = 0

(13)

we can get a simulation solution as following, with is visualized in Fig. 12.

û(x) =


6.2x− 0.4x2 − 31.4x3, x ∈ [0, 1/3)

1.5 + 1.6x− 13.8x2 + 9x3, x ∈ [1/3, 2/3)

28.5− 100x+ 108.5x2 − 37x3, x ∈ [2/3, 1]

(14)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

Simulation Ground Truth Partition Points Collocation Points

Figure 12: Visualization of an OSC solution.

A.4 NUMERICAL ANALYSIS FOR INTERPOLATION AND COLLOCATION METHODS

We compared the OSC with linear, bilinear, 0–D cubic, and 2–D cubic interpolation methods on four
types of problem: 1–D linear, 1–D non-linear, 2–D linear, and 2–D non-linear problems. At these
experiments, we tested different simulator orders of the OSC method. For example, we set the order
of the simulator to 4 for 1–D linear problem and 2 for 2–D linear problem. When the order of the
simulator matches the polynomial order of the real solution, OSC can directly find the real solution.
For non-linear problems, increasing the order of the simulator would be an ideal way to get lower
loss. For example, we set the order of the simulator to 4 for 1–D non-linear problem and 5 for 2–D
non-linear problem. Thanks to the efficient calculation of OSC, even though we use higher–order
polynomials to simulate, we use less running time to get results.

Table 2: Error of OSC and four interpolation methods on different PDEs problems: u(x) = x4 −
2x3 + 1.16x2 − 0.16x (1-D linear), u(x) = sin(3πx) (1-D non-linear), u(x, y) = x2y2 − x2y −
xy2 + xy (2-D linear), u(x, y) = sin(3πx)sin(3πy) (2-D non-linear).

MODEL 1-D LINEAR 1-D NON-LINEAR 2-D LINEAR 2-D NON-LINEAR

NEAREST INTERPOLATION 2.3670×10−6 1.7558×10−2 1.9882×10−3 3.8695×10−2

LINEAR INTERPOLATION 1.8928×10−7 8.7731×10−4 3.4317×10−4 1.1934×10−2

CUBIC INTERPOLATION 3.5232×10−12 2.2654×10−7 2.9117×10−4 4.5441×10−3

OSC 3.4153×10−31 4.1948×10−8 1.7239×10−32 3.4462×10−5

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 HEAT EQUATION

The heat equation describes the diffusive process of heat conveyance and can be defined by
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∂u

∂t
= ∆u (15)

where u denotes the solution to the equation and ∆ is the Laplacian operator over the domain. In a
n-dimensional space, it can be written as:

∆u =

n∑
i=1

∂2u

∂x2
i

(16)

Dataset generation We employ FEniCS (Logg et al., 2012) to generate a mesh from the domain
and solve the heat equation on these points. The mesh is then used by the graph neural network for
training.

B.2 WAVE EQUATION

The damped wave equation can be defined by

∂2w

∂t2
+ k

∂w

∂t
− c2∆w = 0

where c is the wave speed and k is the damping coefficient. The state is X = (w, ∂w
∂t ).

Data generation We consider a spatial domain Ω represented as a 64× 64 grid and discretize the
Laplacian operator. ∆ is implemented using a 5 × 5 discrete Laplace operator in simulation; null
Neumann boundary condition are imposed for generation. We set c = 330 and k = 50 similarly to
the original implementation in Yin et al. (2021).

B.3 NAVIER-STOKES

The Navier-Stokes equations describe the dynamics of incompressible flows with a 2-dimensional
PDE. They can be described in vorticity form as:

∂w

∂t
= −v∇w + ν∆w + f

∇v = 0

w = ∇× v

(17)

where v is the velocity field and w is the vorticity, ν is the viscosity and f is a forcing term. The
domain is subject to periodic boundary conditions.

Data generation We generate trajectories with a temporal resolution of ∆t = 1 and a time horizon
of t = 10. We use similar settings as in Yin et al. (2021) and Kirchmeyer et al. (2022): the space is
discretized on a 64 × 64 grid and we set f(x, y) = 0.1(sin(2π(x + y)) + cos(2π(x + y))), where
x, y are coordinates on the discretized domain. We use a viscosity value ν = 10−3.

B.4 MODELS AND IMPLEMENTION DETAILS

For all experiments, a batch size of 32 was used and the models were trained for up to 5000 epoches
with early stopping. We used the Adam optimizer (Kingma & Ba, 2014) with an initial learning rate
of 0.001 and a step scheduler with a 0.85 decay rate every 500 epochs. For all datasets, we used the
split of 5 : 1 : 1 for training, validating and testing for fair comparison.

Specific details of model components are introduced below:

• MPNN encoder: a three-layer MLP with hidden size= 64.

• MPNN processor: in total 3 processors, each with three-layer MLP with hidden size= 64.

• MPNN decoder: a three-layer MLP with hidden size= 64.
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All MLPs have ReLU : x → max(0, x) nonlinearities between layers.

Specific details of applying the OSC method are introduced as follows:

• Time–oriented OSC: polynomial order= 3, number of collocation points in one partition=
2.

• Space–oriented OSC: x dimension polynomial order= 3, polynomial order in the y
dimension= 3, number of collocation point in one partition on x dimension= 2; and num-
ber of collocation point in one partition on y dimension= 2.

B.5 HARDWARE AND SOFTWARE

Experiments were carried out on a machine equipped with an INTEL CORE I9 7900X CPU with
20 threads and a NVIDIA RTX A5000 graphic card with 24 GB of VRAM. Software–wise, we
used FEniCS (Logg et al., 2012) for Finite Element simulations for the heat equation experiments
and PyTorch (Paszke et al., 2019) for simulating the damped wave and Navier-Stokes equations. We
employed the Deep Graph Library (DGL) (Wang et al., 2020) for graph neural networks and the
PyTorch Lightning library (Falcon et al., 2019) for training.

Ground Truth GCN GCN+MLP GEN MPNN GNN+OSC(Post) GNN+OSC GNN+OSC(Adaptive)

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0
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Figure 13: Visualization of the wave dataset.

Ground Truth GCN GCN+MLP GEN MPNN GNN+OSC(Post) GNN+OSC GNN+OSC(Adaptive)
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Figure 14: Visualization of the Navier Stokes dataset.
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