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ABSTRACT

When agents fail in the world, it is important to understand why they failed. These
errors could be due to underlying distribution shifts in the goals desired by the
end user or to the environment layouts that impact the policy’s actions. In the case
of multi-task policies conditioned on goals, this problem manifests in difficulty
in disambiguating between goal and policy failures: is the agent failing because
it can’t correctly infer what the desired goal is or because it doesn’t know how
to take actions toward achieving the goal? We hypothesize that successfully dis-
entangling these two failures modes holds important implications for selecting a
finetuning strategy. In this paper, we explore the feasibility of leveraging human
feedback to diagnose what vs. how failures for efficient adaptation. We develop
an end-to-end policy training framework that uses attention to produce a human-
interpretable representation, a visual masked state, to communicate the agent’s in-
termediate task representation. In experiments with human users in both discrete
and continuous control domains, we show that our visual attention mask policy
can aid participants in successfully inferring the agent’s failure mode significantly
better than actions alone. Leveraging this feedback, we show subsequent empiri-
cal performance gains during finetuning and discuss implications of using humans
to diagnose parameter-level failures of distribution shift.

1 INTRODUCTION

Humans are remarkably adept at asking for information relevant to learning a task (Ho & Griffiths,
2022). This is in large part due to their ability to communicate feature-level failures of their internal
state via communicative acts to a teacher (e.g. expressing confusion, attention, understanding, etc.)
(Argyle et al., 1973). Such failures can range from not understanding what the task is, e.g. being
asked to go to Walgreens when they don’t know what Walgreens is, to not knowing how to accom-
plish the task, e.g. being asked to go to Walgreens and not knowing which direction to walk in.
In both cases, a human learner would clarify why they are unable to complete the task so that they
can solicit feedback that is most useful for their downstream learning. This synergistic and tightly
coupled interaction loop enables a teacher to better estimate the learner’s knowledge base to give
feedback that is best tailored to filling their knowledge gap (Rafferty et al., 2016).

Our sequential decision-making agents face the same challenge when trying to adapt to new scenar-
ios. When agents fall in the world due to distribution shifts between their training and test environ-
ments (Levine et al., 2020), it would be helpful to understand why they fail so that we can provide
the right data to adapt the policy. The difficulty today when dealing with systems trained end-to-end
is that they are inherently incapable of expressing the cause of failure and exhibit behaviours that
may be arbitrarily bad, rendering a human user left in the dark with respect to what type of feedback
would be most useful for finetuning. Ergo, active learning strategies focus on generating state or
action queries that would be maximally informative for the human to label (Akrour et al., 2012;
Bobu et al., 2022; Reddy et al., 2020; Bıyık et al., 2019), but such methods require an unscalable
amount of human supervision to cover a large task distribution (MacGlashan et al., 2017).

To address the challenge above, we propose a human-in-the-loop framework for training an agent
end-to-end capable of explicitly communicating information useful for a human to infer the underly-
ing cause of failure and provide targeted feedback for finetuning. In the training phase, we leverage
attention to train a policy capable of producing an intermediate task representation, a masked state
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Figure 1: A human user trying to diagnose the agent’s failure mode. (A) When the human only
sees agent behaviour, it is ambiguous why it’s failing. (B) If the human also has access to the agent’s
intermediate task representation for what it perceives to be relevant to the task, they can infer the type
of error and thus parameters of the distribution shift. For example, if the agent is not attending to the
target object, it is likely unfamiliar with the user’s stated goal—i.e. a what error. (C) Alternatively,
if the agent is attending to the target object but generates the wrong behaviour, this can indicate that
it is unfamiliar with how to navigate to the object’s location—i.e. a how error.

that only includes visual information relevant to solving the task. Our key insight is that while vi-
sual attention has been studied in the context of visualizing features of a deep learning model’s black
box predictions, an incorrect visual mask can also help a human infer the underlying parameters of
distribution shift in the event of a policy’s failure. This is done in the feedback phase, when we use
the masked state to help a human infer whether the agent is attending to the right features but acting
incorrectly (a how error) versus attending to the wrong features (a what error). To close the loop,
we leverage the identified failure mode in the adaptation phase to perform more efficient finetuning
via targeted data augmentation of the shifted parameter.

We formalize the problem setting and describe the underlying assumptions. Next, we present our in-
teractive learning framework for diagnosing and fixing parameter-level shifts using human feedback.
Through human experiments, we verify our hypothesis that visual attention is a more informative
way for humans to understand agent failures compared to behaviour alone. Finally, we show that this
feedback can be empirically leveraged to improve policy adaptation via targeted data augmentation.
We call the full interactive training protocol the visual attention mask policy (VAMP).

2 RELATED WORK

Goal-Conditioned Imitation Learning. The learning technique used in our paper is goal-
conditioned imitation learning (IM), which seeks to learn a multi-task policy end-to-end by super-
vised learning or “cloning” from expert trajectories (Abbeel & Ng, 2004; Ng et al., 2000; Ding et al.,
2019). The learning from demonstrations framework means that we can optimize a policy without
the need for a reward function (Pomerleau, 1988), albeit we cannot generate new behaviours without
feedback. Moreover, unlike standard IM or IRL methods, goal-conditioned policies are capable of
learning a single policy to perform many tasks. Unfortunately, generating enough expert demonstra-
tions to cover a large test distribution is difficult.(Ziebart et al., 2008; Finn et al., 2016).

Human-in-the-loop RL. Interactively querying humans for data to aid in downstream task learning
belongs to a class of problems referred to as human-in-the-loop RL (Abel et al., 2017; Zhang et al.,
2019). Existing frameworks like TAMER (Knox & Stone, 2008) and COACH (MacGlashan et al.,
2017) use human feedback to train policies, but are restricted to binary or scalar labeled rewards. A
different line of work seeks to learn tasks using human preferences, oftentimes asking them to com-
pare or rank trajectory snippets (Christiano et al., 2017; Brown et al., 2020). Yet another direction
focuses on how to perform active learning from human teachers, where the emphasis is on gener-
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Figure 2: The framework overview. In the training phase, a policy learns to generate both actions as
well as an intermediate task representation to help the human infer the failure mode in the feedback
phase. We then leverage this information to perform targeted augmentation in the adaptation phase.

ating actions or queries that are maximally informative for the human to label (Bobu et al., 2022;
Chao et al., 2010). The challenge with these approaches is that the feedback asked of the human is
often overfit to specific failures or desired data points, and rarely scale well relative to human effort.

Human-Interpretable RL Ensuring that deep learning agents are intelligible to various concerns
encompassing ethical, legal, safety, or usability viewpoints is a key focus of real-world deployments
(Garcıa & Fernández, 2015). Methods range from training a policy to generate post-hoc expla-
nations (Glanois et al., 2021), text-based descriptions of state predicates (Hayes & Shah, 2017),
and Jacobian saliency maps (Greydanus et al., 2018). However, leveraging interpretable sequential
decision-making systems to extract useful human feedback for adaptation has been under-explored.

3 PROBLEM FORMULATION

Our goal is to develop a framework to help a human provide feedback about behaviour-invariant
vs. dependent parameters of a distribution shift. We formulate the problem as an imitation learn-
ing framework. In a goal-conditioned setting, goals are represented as G. We consider envi-
ronments represented by a Markov Decision Process (MDP) (Puterman, 2014) defined by tuple
M = ⟨S,A,P,R⟩, where S is the state space, A the action space, P : S ×A×S → [0, 1] the tran-
sition probability distribution, and R : S×G×A → R the reward function. A parameterized policy
is denoted as πθ : S×G → A. In imitation learning (IM), rather than seeking to learn πθ through in-
teracting with the environment as in RL, we instead assume access to a set of expert demonstrations
τ : {(si0, ai0, si1, ai1, ...sit, ait)}ni=0 from which we “clone” πθ from (Pomerleau, 1988). This yields a
dataset of n state-action-goal tuples (sit, a

i
t, g

i) for learning. While g ∈ S in typical settings, it need
not be as long as we have a way of mapping the goal into a form that πθ can process. Motivated
with the idea that natural language is a flexible, intuitive interface for humans to communicate, we
specify g via a natural language instruction, resulting in the following standard GCBC loss:

LGCBC(θ) = E(sit,a
i
t,g

i) ∼Dtrain
[ℓ(πθ(s

i
t, g

i), ait)] (1)

where ℓ is mean squared error (MSE) for continuous actions and cross-entropy for discrete actions.

3.1 OUT-OF-DISTRIBUTION FAILURES

Like all supervised learning methods, GCBC suffers from distribution shift (Ross et al., 2011): i.e.
πθ could behave arbitrarily if faced with input at test that it did not see at training. Consider the
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simplest case where the training set consists of states concatenated with goals, resulting in Dtrain:
[s, g] ∈ S × G. We can similarly define Dtest: [s′, g′] ∈ S ′ × G′. Because we cannot guarantee
that either the environment layout or the desired goal will remain unchanged at deployment, i.e.
[s′, g′] /∈ S × G, we face two possible sources of distribution shift: 1) the policy can fail to infer
goals that are OOD (what failure) or 2) the policy can fail to produce correct actions for a goal
location that is OOD (how failure). Our hypothesis is that in both cases, the erroneous actions
generated by the policy are uninformative for a human to classify the source of failure.

3.2 ADAPTATION FOR BEHAVIOUR-INVARIANT VS. DEPENDENT TASKS

The adaptation challenge we face is how to most efficiently generate data for finetuning a policy to
perform well on task distribution Dtest given knowledge of shifted parameters from Dtrain. In the
most naive scenario, methods that assume knowledge of Dtest uniformly sample tasks for querying
human demonstrations for. In the case of goal-conditioned policies for visual navigation, this would
include new goals that are both behaviour-invariant, e.g. object colors or types, as well as those
that are behaviour-dependent, e.g. locations. However, such a finetuning strategy is practically
inscalable when attempting to cover a large Dtest, where all tasks irrespective of which parameter
has shifted require novel demonstrations (states and actions) from a human. Our insight is that
rather than assuming demonstrations, i.e. new behaviours, are always required, we can disentangle
behaviour-dependent from behaviour-invariant tasks and only query for new data when needed.

Assumptions. First, while Dtrain ̸= Dtest, we assume they are parameterized via a generative
model capable of modifying visual parameters, i.e. the state space. These may include features such
as object location and color and can be reasonably modified with access to a simulator or scene
generator. Although we assume knowledge of the full parameter space, we do not know which
parameters are shifting from Dtrain to Dtest and therefore, which tasks require new actions. Thus, we
assume the ability to query for this along with novel demonstrations from a human. Lastly, in order
to “surgically” leverage existing data, we assume access to the original training demonstrations.

Given knowledge of the shifted parameter, we can perform targeted data augmentation. Consider the
two failure types in Figure 2. If feedback is given that the shifted parameter is behaviour-invariant,
e.g. a new goal object (A), we can augment our existing demonstrations with the desired goal via
our generative model (if we know how to navigate to a blue key in the room we can also navigate
to a red key in the same room). If instead feedback is given that the shifted parameter is behaviour-
dependent, e.g. a new goal location (B), we can query for new actions from our human but then
augment existing behaviour-invariant goals (if we are shown how to navigate to a blue key in a new
room, we now also know how to navigate to a red key in that room). To deploy such “surgical” data
augmentation techniques, we must develop a framework capable of extracting the shifted parameter
from a human in a reliable and non-cumbersome manner. We next detail a framework for doing so.

4 THE VISUAL ATTENTION MASK POLICY LEARNING FRAMEWORK

We propose an interactive learning framework that leverages human feedback to disentangle
behaviour-invariant from behaviour-dependent tasks. To do so, we assume conditionally indepen-
dent parameters of our training distribution Dtrain (tasks that are learned by our policy at training
time) and test distribution Dtest (tasks that are desired at test time). Parameters range from goal
object and color as well as location. Our framework is comprised of three phases: training, feed-
back, and adaptation. In the training phase, we train an end-to-end policy capable of generating an
intermediate task representation, a masked state, as an additional human-interpretable output. In the
feedback phase, we then use the visual mask to help a human diagnose the shifted parameter. Lastly,
we leverage that feedback in the adaptation phase to perform targeted data augmentation.

4.1 TRAINING PHASE

As described in Section 3, the model for training policies capable of producing goal-conditioned
attention masks are conditioned on language instruction g and the current state s. Because our
policy combines the standard GCBC loss in conjunction with an intermediate mask loss acting as a
regularizer, we refer to our model as visual attention mask policy (VAMP). As a policy network, the
following two modules are trained end-to-end: 1) attention module: processes the output of a pre-
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Figure 3: The architecture of our VAMP model. The attention module processes the goal specifi-
cation and image state s. The resulting output is processed by the policy module along with the
original state to create masked state ŝ, which is used for action prediction.

trained language model that turns natural language instruction g into an embedding, concatenated
with the output of a 2D ConvNet which takes state s and produces a 1D vector; 2) policy module:
a 2D ConvNet that takes the output of the attention module and combines it with state s to produce
masked state ŝ, which is used for action prediction. Note, the use of visual attention to focus on
task-relevant features is well studied in the machine learning (Xu et al., 2015; Hayes & Shah, 2017)
and cognitive science (Lindsay, 2020; Ho & Griffiths, 2022) literatures.

Attention module: Our attention module is comprised of three components: 1) a pre-trained gen-
eral purpose language model called SentenceTransformer all-MiniLM-L6-v2 (Reimers & Gurevych
(2019)), which we use to process a goal specification g into an embedding, a vector of size 384; 2)
a 4-layer 2D ConvNet with flattened last layer that we process image state s; and 3) a 2-layer MLP
that we process the concatenated output into a mask.

Policy module: Our policy module processes the mask generated by the attention module with
the original state s to create a masked state ŝ via a 4-layer 2D ConvNet to produce action a. The
objective is:

LVAMP(θ) = E(sit,a
i
t,g

i) ∼Dtrain
[ℓ(πθ(s

i
t, g

i), ait) + β∥ŝi∥1] (2)

As shown by the second term, our attention mask serves as a regularizer to reduce the information
flow from the full state s to the minimal state ŝ that is required for action prediction, i.e. we wish
to find the minimal representation of s that is capable of correct action prediction. We additionally
introduce weight β to control the regularizer’s contribution to the total loss so that we can scale the
intensity of the masking. Full architecture and training details can be found in the appendix.

4.2 FEEDBACK PHASE

In the feedback phase, we now provide both the policy’s output (actions) as well as its intermediate
task representation to a human user for help in diagnosing specific policy failures. We generate
distribution shifts of two types: 1) testing on goals outside of the training distribution (what or
behaviour-invariant failures) and 2) testing on environment layouts with object locations, i.e. ac-
tions, outside of the training distribution (how or behaviour-dependent failures). For each error type,
we create trajectories by sampling tasks from the test distribution and generating their correspond-
ing intermediate task respresentation to show our human participants. We then query for feedback
regarding which failure type is exhibited.
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4.3 ADAPTATION PHASE

As shown in Figure 2, we now leverage the identified failure mode to perform targeted data augmen-
tation of training demonstrations for our shifted parameter. For what or behaviour-invariant failures,
we require only access to the generative model for modifying state space parameters, e.g. goal ob-
jects or colors. For how or behaviour-dependent failures, we require both the generative model as
well as the ability to query for novel demonstrations, e.g. navigating to a new goal location.

Finetuning a what failure. We augment Dtrain by replacing the original goal specification g as
well as the shifted parameters in the state (for example, if we wish to navigate to new keys, we
augment demonstrations by replacing all existing goal objects with keys). We then finetune our
policy using this dataset. This strategy requires no novel demonstrations since we are re-using
behaviour-invariant demonstrations (i.e. modified states with existing actions).

Finetuning a how failure. Because we require new action sequences to navigate to a new goal
location, we are required to collect novel demonstrations, i.e. states and behaviours. While these
demonstrations would typically come from the human user, we sample from a simulated expert for
ease of exposition. We first sample g ∼ Dtest and collect expert demonstrations Dnovel for reaching
g. We then leverage knowledge of the behaviour-invariant parameters (e.g. goal object or color)
∼ Dtrain to create an augmented dataset of these demonstrations for finetuning.

5 EXPERIMENTS

In this section, we detail a set of empirical results to answer the following questions: 1) Do in-
termediate task representations help humans diagnose the underlying parameter shift in the event
of a policy failure? 2) Does correctly leveraging this information for data augmentation improve
downstream policy performance? 3) Do these gains hold when evaluated on real human subjects?

To answer these questions, we evaluate our proposed framework on two domains: a single-goal
navigation task and a multi-room compositional task. For each domain, we first detail the task gen-
eration process for the training and test distributions. We then conduct experiments with a simulated
human oracle to explore the maximum performance gain that can be achieved by an optimal fine-
tuning strategy with a fixed data labeling budget. Lastly, we verify these results with real human
feedback collected from user studies on diagnosing distribution shifts.

5.1 MULTI-OBJECT NAVIGATION

Figure 5: An example multi-
object navigation task for “go
to the green object”.

We create an image-based environment where an agent is tasked
with navigating to a goal object of one color while ignoring a dis-
tractor object of a different color. States are fully-observable RGB
images of dimension 36×36×3 and the action space is continuous
and represents the (x, y) distance that the agent can move in 2D
space. The environment was created to test a simple object naviga-
tion domain while preserving a continuous action space of higher
complexity relative to discrete gridworld tasks.

The environment contains 4 colors (red, green, blue, yellow) and 4
starting locations (grid corners). A task distribution D specifies the
generative parameters for sampling the goal location/color and can
contain any subset of the environment parameters above. To gener-
ate tasks, we first place a goal object of color and location uniformly
sampled from p({colors})) and p({locations})). We then place a
distractor object and the agent at two randomly sampled remaining
locations. Lastly, we assign the distractor object a randomly sam-
pled unique color (the agent is always white). The task specification
is defined via a language instruction “go to the <goal color>
object”.
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(a) “Go to the green object” (b) “Go to the red object” (c) “Go to the green object”

(d) Masked state for (a) (e) Masked state for (b) (f) Masked state for (c)

Figure 4: Examples of the multi-object navigation task. An agent (white) trained to navigate to green
objects in all locations, when asked to navigate to a green object, will produce successful actions
(a) as well as a task representation attending to the correct goal (d). If the agent is asked to instead
navigate to a red object (b), it will exhibit a what failure, with the mask attending to the wrong object
(e). This is in contrast to a how failure, where an agent trained to navigate to objects on the top will
fail to navigate to objects on the bottom (c), even though the mask attended to the correct goal (f).

For each Dtrain, we generate 100 tasks. For each task, we generate an expert demonstration of length
20 by taking continuous actions from the agent’s starting location to the goal object, yielding 100
demonstrations for our initial policy training. We train and test on 2 possible distribution shifts.

5.2 MULTI-ROOM COMPOSITIONAL TASK

Figure 6: An example multi-
room compositional task for
“go to the yellow key, green
door, blue goal”.

We also design a task with a multi-room multi-task compositional
structure to explore how our method scales with task composition-
ality and long-horizon goals. We adapt the DoorKey environment
from Minigrid (Chevalier-Boisvert et al. (2018)) and create an envi-
ronment composed of three sub-tasks (pick up a key, use the key to
unlock a door, then navigate through the door to a goal). The state
space is fully-observable and consists of RGB images of dimension
36×36×3. The action space is size 6 and allows for cardinal move-
ments, picking up/dropping a key, and using a key to open a door.

There are 4 possible colors (red, green, blue, yellow), and 10 key,
door, and goal locations each. D contains parameters for sampling
each sub-task color and location. We generate tasks by first uni-
formly sampling a key color/location, door color/location, and goal
color/location from D. We next place three lava objects as immov-
able obstacles at a randomly sampled location for each sub-task.
The agent always begins at the top left corner. The task specification
is defined via a language instruction “go to the <key color>
key, <door color> door, <goal color> goal”.

To explore how task compositionality impacts finetuning efficiency,
we create distributions for each sub-task by varying the parameters for one object while holding the
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others constant (for example, a distribution with randomly sampled red keys in all locations would
hold the door and goal colors/locations constant). For what shifts, we train on red colors for each
object and test on green, blue, and yellow colors in all locations. For how shifts, we train on objects
in the top half of the room and test on the bottom half. We generate 6 unique shifts while maintaining
the compositional structure of the task. We sample 100 tasks from each Dtrain and for each generate
an expert demonstration of the agent successfully completing all 3 sub-tasks.

5.3 HUMAN EXPERIMENTS

For the finetuning strategies which require human feedback, we conduct user studies at [Anonymous
Institution]. We recruit 12 subjects for each domain (71% male, age 18-31). 88% of participants
attested to having a technical background, although only 17% have worked with machine learning.

The user study is comprised of two phases: a familiarization and feedback phase. In the famil-
iarization phase, we introduce the user to the task context, environment, and an example of each
failure type. In the feedback phase, we first show the user the agent’s behaviour on the test set (5
trajectories for each shift in the multi-object navigation task and 2 trajectories for each shift in the
multi-room compositional task, randomized). We then ask for feedback on whether they believed
the failure was due to a what, how, or unclear failure. Lastly, we then show the users the same
trajectories with their corresponding attention mask as additional information, and request a second
round of feedback. Altogether, we received 120 data points for each control and experimental group
per domain. For each participant, a finetuning strategy was selected based on the average predicted
accuracy of each failure type (e.g., a participant that predicted 4 out of 5 how failures incorrectly as
a what failure would deploy the wrong strategy). Unclear responses were treated as incorrect.

Distribution Shift Correct Feedback (%)
Domain Dtrain Dtest Failure Naive H Ours

Multi-Obj RG goals, all loc BY goals, all loc what 6.7 78.3
all goals, bottom loc all goals, top loc how 18.3 95.0

Multi-Room R keys, all loc GBY keys, all loc what 4.2 83.3
all keys, top loc all keys, bottom loc how 8.3 75.0
R door, all loc GBY door, all loc what 16.7 70.8
all doors, top loc all doors, bottom loc how 4.2 54.2
R goals, all loc GBY goal, all loc what 50.0 70.8
all goals, top loc all goals, bottom loc how 0.0 62.5

Table 1: Rate of correct human responses for each distribution shift. We see that our method enables
human users to more accurately diagnose the underlying distribution failure type.

5.4 EVALUATION

For each domain, we assess performance of the final policy on 20 sampled tasks from Dtest after
finetuning with the selected strategy. The metric of evaluation that we seek to minimize is user effort,
which we measure by the number of novel demonstrations that are required for any particular strat-
egy. While we generate these demonstrations here, this is motivated by the idea that in a deployment
scenario, this cost is largely incurred by the human teacher who must provide novel demonstrations,
and not from data augmentation or finetuning performed in the factory. We make 5 comparisons: 1)
no finetuning, 2) finetuning with no human feedback, 3) finetuning with naive human feedback, 4)
finetuning with informed human feedback (our method), and 5) oracle finetuning.

No finetuning (None): No finetuning of the policy is permitted.
Finetuning with no human feedback (No Human): Our second baseline describes the scenario
where we receive no human feedback and therefore receive no information about the desired test
distribution. In this case, we allow the generation of 20 novel tasks by randomly sampling from all
possible environment parameters, creating their corresponding demonstrations, and finetuning.
Finetuning with naive human feedback (Naive Human): Our third comparison is the case where
we receive human feedback without the intermediate task representations from our method. This
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(a) what failures (b) how failures

Figure 7: Final policy performance as a function of user effort (measured by number of novel
demonstrations generated) on the multi-object navigation task. We see that our method requires
less user effort to achieve higher policy performance relative to naive human feedback.

represents our control group, where human participants are shown agent trajectories only. For every
human participant, we finetune a policy according to their selected (potentially erroneous) strategy
and average policy performance across participants. If a how error was selected, we allow the
generation of 20 novel demonstrations prior to augmentation (0 are required for a what strategy).
Finetuning with informed human feedback (Ours): Our fourth comparison is our method, where
human feedback is informed by both agent trajectories as well as intermediate task representations.
We finetune similarly to Naive Human above, but leverage a more accurate augmentation strategy.
Finetuning with perfect feedback (Oracle): For completion, we also include a comparison to the
maximum adaptation gain possible if we selected the strategy that perfectly predicted the correct
failure mode. The same fixed budget for maximum 20 novel demonstrations are applied here.

Distribution Shift Distance from Goal (std)
Domain Dtrain Dtest Failure None No H Naive H Ours Oracle

Multi-Obj RG goals, all loc BY goals, all loc what 13.7 (4.6) 11.5 (4.0) 8.1 (5.4) 0.7 (0.2) 0.2 (0.1)
all goals, bottom loc all goals, top loc how 21.7 (9.1) 16.1 (6.2) 9.3 (6.1) 2.2 (3.2) 0.4 (0.1)

Multi-Room R keys, all loc GBY keys, all loc what 10.2 (2.4) 6.2 (0.7) 11.7 (2.1) 0.3 (0.6) 0.4 (0.8)
all keys, top loc all keys, bottom loc how 12.3 (0.1) 7.1 (1.3) 9.5 (5.4) 3.6 (2.2) 1.7 (1.4)
R doors, all loc GBY doors, all loc what 8.0 (1.9) 5.2 (1.6) 5.5 (0.8) 2.8 (1.9) 1.0 (0.3)
all doors, top loc all doors, bottom loc how 9.1 (2.1) 4.6 (1.1) 6.1 (2.2) 4.0 (0.7) 0.7 (0.9)
R goals, all loc GBY goals, all loc what 6.2 (1.9) 4.7 (1.9) 8.9 (1.8) 0.7 (0.4) 0.2 (0.4)
all goals, top loc all goals, bottom loc how 8.1 (0.9) 3.7 (0.7) 6.1 (2.3) 0.3 (0.7) 0.3 (0.6)

Table 2: Final policy performance for all tested distribution shifts in both domains. Our method
outperforms all baselines, and rivals perfect feedback from an oracle in some cases.

Table 1 shows that human feedback using our framework results in more accurate distribution shift
diagnosis vis-a-vis those without. Table 2 shows the results of downstream policy performance
on each distribution shift after finetuning with a maximum budget of 20 novel demonstrations per
strategy. This empirically demonstrates how more accurate feedback results in improved policy
performance given a fixed quota of user effort. Note, a naive human is sometimes outperformed by
no human at all, highlighting that an incorrect data augmentation strategy can sometimes be worse
than random sampling demonstrations from the test distribution.

6 DISCUSSION AND CONCLUSION

Summary. We leveraged existing techniques to create a human-in-the-loop framework for diagnos-
ing and fixing distribution shift in end-to-end sequential systems. We showed that our framework
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effectively utilizes insights from cognitive science to produce intermediate task representations ca-
pable of aiding humans in diagnosing underlying distribution shifts. We also demonstrated the
empirical performance benefit of our method in reducing human effort for downstream adaptation.

Limitations. There are parameters that are difficult to practically disentangle through visual atten-
tion alone such as object occlusion, shape and texture, and partially observed scenes. Moreover,
we assume access to a generative model capable of manipulating those parameters, a challenging
task without high-quality scene representation. We remain optimistic that advances in representation
learning for feature disentanglement can be easily incorporated into our framework.

Future Impact. As human-in-the-loop systems are increasingly deployed, we must find more effi-
cient ways of leveraging feedback for improving learning systems if we wish to practically adapt to
user preferences. Moreover, if we have systems operating around and with humans, we must create
more transparent, reliable methods of communicating the underlying parameters of why they fail.

7 ETHICS STATEMENT

Since our paper relies heavily on human experiments and data for evaluation, we attest to the fol-
lowing details related to human subject evaluation and data privacy. An institutional IRB was filed
prior to subject recruitment. All human subjects were asked to voluntarily participate in the exper-
iment of their own free will. While we gathered basic demographic information (age, gender, and
technical background), participant information was anonymized for analysis and referred to only by
ID number. We collected no further information.
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A APPENDIX

A.1 TRAINING AND ARCHITECTURE DETAILS

Architecture.

The language model processes a goal sentence in natural language into an embedding of size 384,
which we additionally process through a linear MLP of output size 100.

Our Conv2D blocks process both the image state s as well as masked state ŝ and consist of 3 stacked
Conv2D layers of output channel sizes 32, 64, 32, kernel sizes 8, 4, 3 and strides 4, 2, and 1. Each
output layer is processed by BatchNorm2D as well as a ReLU activation. After the last Conv2D
layer, we flatten the output process through BatchNorm1D, then through a linear layer. The Conv2D
block for processing the initial state s generates an output of size 100 while the Conv2D block for
processing masked state ŝ directly generates an output of the action size.

Our MLP block consists of two-layer stacked MLP of input size 200, hidden size 100, and output
size 1296, which we then reshape into a 1 channel image of dimension 36×36.

Training. We use Adam for optimization with a learning rate of 0.001. All training was performed
in PyTorch with SGD. For policy training of tasks from Dtrain, we train for 1200 epochs using a
batch size of 50. For finetuning, we train the policy for an existing 1200 epochs. We performed a
parameter sweep over the regularizer term β and used 0.005 for our experiments.

A.2 MULTI-OBJECT NAVIGATION

As the multi-object navigation task is one that is created specifically for our project, we detail the
full generation details below.

Formally, the environment is characterized by a tuple ⟨Λ,Ω⟩ where Λ is the agent and Ω is the
set of objects in the room. For each task distribution, we define a finite set of Colors := {red,
green, blue, yellow} and two-dimensional Locations := {(−5,−5), (−5, 5), (5,−5), (5, 5)}. At
reset, Λ is placed at location λΛ ∼ U(Locations). Two objects, ω1 and ω2, are generated, each
with a color cn and a location λn, with c1, c2 ∼ U{Colors}, λ1 ∼ U [{Locations} \ {λΛ}] and
λ2 ∼ U [{Locations} \ {λΛ, λ1}]. We define an environment configuration by a random variable
X = (xλΛ

, xc1 , xλ1
, xc2 , xλ2

), where a specific configuration is characterized by the vector x =
(Λλ, c1, λ1, c2, λ2).

We sample a goal ωg ∼ U{ω1, ω2} and assign the remaining object as distractor ωd. A language
generation function ψ : wg → L can be thought of as producing the goal specification i.e. language
instruction that a human would provide at deployment. An image generation function ϕ : Ω×X →
S renders vector x into an image state s, where the agent is a white circle, the goal a diamond of its
assigned color, and the distractor a diamond of its assigned color.

A task distribution D contains the parameters of the generation function (colors and locations of
the agent, goal, and distractor). For example, one such distribution could be {red, green} and
{(-5,-5),(-5,5)}. A specific task Di generates an environment as specified above, yielding a tuple
⟨ψ(ωg), ϕ(ωg, x0)⟩ = ⟨L, s0⟩ and describes a specific image and its associated goal specification.
We sample 100 tasks for each training distribution Dtrain and generate each an expert trajectory
d : (s0, a0, ...s20, a20) by taking continuous actions toward the goal object, yielding 100 trajectories
which we use to train our GCBC policy.
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