
Under review as a conference paper at ICLR 2021

CERTIFIED ROBUSTNESS OF NEAREST NEIGHBORS
AGAINST DATA POISONING ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data poisoning attacks aim to corrupt a machine learning model via modifying,
adding, and/or removing some carefully selected training examples, such that
the corrupted model predicts any or attacker-chosen incorrect labels for testing
examples. The key idea of state-of-the-art certified defenses against data poisoning
attacks is to create a majority vote mechanism to predict the label of a testing
example. Moreover, each voter is a base classifier trained on a subset of the training
dataset. Nearest neighbor algorithms such as k nearest neighbors (kNN) and radius
nearest neighbors (rNN) have intrinsic majority vote mechanisms. In this work, we
show that the intrinsic majority vote mechanisms in kNN and rNN already provide
certified robustness guarantees against general data poisoning attacks. Moreover,
our empirical evaluation results on MNIST and CIFAR10 show that the intrinsic
certified robustness guarantees of kNN and rNN outperform those provided by
state-of-the-art certified defenses.

1 INTRODUCTION

Data poisoning attacks (Barreno et al., 2006; Nelson et al., 2008; Biggio et al., 2012; 2013a; Xiao
et al., 2015b; Steinhardt et al., 2017; Shafahi et al., 2018) aim to corrupt the training phase of a
machine learning system via carefully poisoning its training dataset including modifying, adding,
and/or removing some training examples. The corrupted model predicts incorrect labels for testing
examples. Data poisoning attacks pose severe security concerns to machine learning in critical
application domains such as autonomous driving (Gu et al., 2017), cybersecurity (Rubinstein et al.,
2009; Suciu et al., 2018; Chen et al., 2017), and healthcare analytics (Mozaffari-Kermani et al., 2014).
Unlike adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2014; Carlini & Wagner, 2017),
which add perturbation to each testing example to induce misclassification, data poisoning attacks
corrupt the model such that it misclassifies many clean testing examples.

Multiple certifiably robust learning algorithms (Ma et al., 2019; Rosenfeld et al., 2020; Levine &
Feizi, 2020; Jia et al., 2020) against data poisoning attacks were recently developed. A learning
algorithm is certifiably robust against data poisoning attacks if it can learn a classifier on a training
dataset that achieves a certified accuracy on a testing dataset when the number of poisoned training
examples is no more than a threshold (called poisoning size). The certified accuracy of a learning
algorithm is a lower bound of the accuracy of its learnt classifier no matter how an attacker poisons
the training examples with the given poisoning size. The key idea of state-of-the-art certifiably robust
learning algorithms (Levine & Feizi, 2020; Jia et al., 2020) is to create a majority vote mechanism to
predict the label of a testing example. In particular, each voter votes a label for a testing example
and the final predicted label is the majority vote among multiple voters. For instance, Deep Partition
Aggregation (DPA) (Levine & Feizi, 2020) divides the training dataset into disjoint partitions and
learns a base classifier (i.e., a voter) on each partition. Bagging (Jia et al., 2020) also learns multiple
base classifiers (i.e., voters), but each of them is learnt on a random subsample of the training dataset.
We denote by a and b the labels with the largest and second largest number of votes, respectively.
Moreover, sa and sb respectively are the number of votes for labels a and b when there are no
corrupted voters. The corrupted voters change their votes from a to b in the worst-case scenario.
Therefore, the majority vote result (i.e., the predicted label for a testing example) remains to be a
when the number of corrupted voters is no larger than d sa−sb2 e − 1. In other words, the number of
corrupted voters that a majority vote mechanism can tolerate depends on the gap sa − sb between the
largest and the second largest number of votes.

1

Under review as a conference paper at ICLR 2021

00 0

0

22 2

2

1

0

1

2

11

1 1

1

0

22 2

2

11

without attack joint certificationindividual certification

training example testing example poisoned example

r

r0
0 0

1

2

2 2

1

2

1

0

2

Figure 1: An example to illustrate individual certification vs. joint certification. Suppose rNN
correctly classifies the two testing examples without attack. An attacker can poison 3 training
examples. The attacker can make rNN misclassify each testing example individually. However,
the attacker cannot make rNN misclassify both testing examples jointly.

However, state-of-the-art certifiably robust learning algorithms achieve suboptimal certified accuracies
due to two key limitations. First, each poisoned training example leads to multiple corrupted voters
in the worse-case scenarios. In particular, modifying a training example corrupts two voters (i.e., two
base classifiers) in DPA (Levine & Feizi, 2020) and corrupts the voters whose training subsamples
include the modified training example in bagging (Jia et al., 2020). Therefore, given the same gap
sa − sb between the largest and the second largest number of votes, the majority vote result is robust
against a small number of poisoned training examples. Second, they can only certify robustness for
each testing example individually because it is hard to quantify how poisoned training examples
corrupt the voters for different testing examples jointly. Suppose the classifier learnt by a learning
algorithm can correctly classify testing inputs x1 and x2. An attacker can poison e training examples
such that the learnt classifier misclassifies x1 or x2, but the attacker cannot poison e training examples
such that both x1 and x2 are misclassified. When the poisoning size is e, existing certifiably robust
learning algorithms would produce a certified accuracy of 0 for the two testing examples. However,
the certified accuracy can be 1/2 if we consider them jointly.

k nearest neighbors (kNN) and radius nearest neighbors (rNN) (Fix & Hodges, 1951; Cover & Hart,
1967) have intrinsic majority vote mechanisms. Specifically, given a testing example, kNN (or
rNN) predicts its label via taking a majority vote among the labels of its k nearest neighbors (or
neighbors within radius r) in the training dataset. Our major contribution in this work is that we
show the intrinsic majority vote mechanisms in kNN and rNN make them certifiably robust against
data poisoning attacks. Moreover, kNN and rNN address the limitations of state-of-the-art certifiably
robust learning algorithms. Specifically, each poisoned training example leads to only one corrupted
voter in the worse-case scenario in kNN and rNN. Therefore, given the same gap sa− sb, the majority
vote result (i.e., predicted label for a testing example) is robust against more poisoned training
examples in kNN and rNN. Furthermore, we show that rNN enables joint certification of multiple
testing examples. Figure 1 illustrates an example of individual certification and joint certification
with two testing examples in rNN. When we treat the two testing examples individually, an attacker
can poison 3 training examples such that rNN misclassifies each of them. However, when we treat
them jointly, an attacker cannot poison 3 training examples to misclassify both of them. We propose
such joint certification to derive a better certified accuracy for rNN. Specifically, we design methods
to group testing examples in a testing dataset such that we can perform joint certification for each
group of testing examples.

We evaluate our methods on MNIST and CIFAR10 datasets. We use `1 distance metric to calculate
nearest neighbors. First, our methods substantially outperform state-of-the-art certifiably robust
learning algorithms. For instance, when an attacker can arbitrarily poison 1,000 training examples
on MNIST, the certified accuracy of rNN with r = 4 is 40.8% and 33.5% higher than those of
DPA (Levine & Feizi, 2020) and bagging (Jia et al., 2020), respectively. Second, our joint certification
improves certified accuracy. For instance, our joint certification improves the certified accuracy of
rNN by 15.1% when an attacker can arbitrarily poison 1,000 training examples on MNIST.

In summary, we make the following contributions:

2

Under review as a conference paper at ICLR 2021

• We derive the intrinsic certified robustness guarantees of kNN and rNN against data poison-
ing attacks.

• We propose joint certification of multiple testing examples to derive a better certified
robustness guarantee for rNN. rNN is the first method that supports joint certification of
multiple testing examples against data poisoning attacks.

• We evaluate our methods and compare them with state-of-the-art on MNIST and CIFAR10.

2 PROBLEM SETUP

Learning setting: Assuming we have a training dataset Dtr with n training examples. We denote by
M a learning algorithm. Moreover, we denote byM(Dtr,x) the label predicted for a testing input x
by a classifier learnt byM on the training dataset Dtr. For instance, given a training dataset Dtr and
a testing input x, kNN finds the k training examples in Dtr that are the closest to x as the nearest
neighbors, while rNN finds the training examples in Dtr whose distances to x are no larger than r as
the nearest neighbors. The distance between a training input and a testing input can be measured by
any distance metric. Then, kNN and rNN use majority vote among the nearest neighbors to predict
the label of x. Specifically, each nearest neighbor is a voter and votes its label for the testing input x;
and the label with the largest number of votes is the final predicted label for x.

Data poisoning attacks: We consider data poisoning attacks (Rubinstein et al., 2009; Biggio et al.,
2012; Xiao et al., 2015a; Li et al., 2016; Muñoz-González et al., 2017; Jagielski et al., 2018) that aim
to poison (i.e., modify, add, and/or remove) some carefully selected training examples in Dtr such
that the corrupted classifier has a low accuracy for testing examples indiscriminately. For simplicity,
we use D∗tr to denote the poisoned training dataset. Moreover, we define the poisoning size e as
the minimal number of modified/added/removed training examples that can turn Dtr into D∗tr. We
use S(Dtr, e) to denote the set of poisoned training datasets whose poisoning sizes are at most e.
Formally, we define S(Dtr, e) as follows:

S(Dtr, e) = {D∗tr|max{|D∗tr|, |Dtr|} − |D∗tr ∩Dtr| ≤ e}, (1)

where max{|D∗tr|, |Dtr|} − |D∗tr ∩Dtr| is the poisoning size of D∗tr. Note that modifying a training
example is equivalent to removing a training example and adding a new one. Given a training dataset
Dtr and a poisoning size e, an attacker aims to craft a poisoned training dataset D∗tr to minimize the
testing accuracy of the classifier learnt by algorithmM on D∗tr.

Certified accuracy: Given a training dataset Dtr and a learning algorithmM, we use certified accu-
racy on a testing dataset Dte = {(xi, yi)}ti=1 to measure the algorithm’s performance. Specifically,
we denote certified accuracy at poisoning size e as CA(e) and formally define it as follows:

CA(e) = min
D∗tr∈S(Dtr,e)

∑
(xi,yi)∈Dte

I(M(D∗tr,xi) = yi)

|Dte|
, (2)

where I is the indicator function andM(D∗tr,xi) is the label predicted for a testing input xi by the
classifier learnt by the algorithmM on the poisoned training dataset D∗tr. CA(e) is the least testing
accuracy on Dte that the learning algorithmM can achieve no matter how an attacker poisons the
training examples when the poisoning size is at most e. Our goal is to derive lower bounds of CA(e)
for learning algorithms kNN and rNN.

3 CERTIFIED ACCURACY OF KNN AND RNN

We first derive a lower bound of the certified accuracy via individual certification, which treats testing
examples in Dte individually. Then, we derive a better lower bound of the certified accuracy for rNN
via joint certification, which treats testing examples jointly.

3.1 INDIVIDUAL CERTIFICATION

Given a poisoning size at most e, our idea is to certify whether the predicted label stays unchanged
or not for each testing input individually. If the predicted label of a testing input x stays unchanged

3

Under review as a conference paper at ICLR 2021

(i.e.,M(Dtr,x) =M(D∗tr,x)) and it matches with the testing input’s true label, then kNN or rNN
certifiably correctly classifies the testing input when the poisoning size is at most e. Therefore, we can
obtain a lower bound of the certified accuracy at poisoning size e as the fraction of testing inputs in
Dte which kNN or rNN certifiably correctly classifies. Next, we first discuss how to certify whether
the predicted label stays unchanged or not for each testing input individually. Then, we show our
lower bound of the certified accuracy at poisoning size e.

Certifying the predicted label of a testing input: Our goal is to certify that M(Dtr,x) =
M(D∗tr,x) for a testing input x when the poisoning size is no larger than a threshold. Given a
training dataset Dtr (or a poisoned training dataset D∗tr) and a testing input x, we use N (Dtr,x) (or
N (D∗tr,x)) to denote the set of nearest neighbors of x in Dtr (or D∗tr) for kNN or rNN. We note that
there may exist ties when determining the nearest neighbors for kNN, i.e., multiple training examples
may have the same distance to the testing input. Usually, kNN breaks such ties uniformly at random.
However, such random ties breaking method introduces randomness, i.e., the difference of nearest
neighbors before and after poisoned training examples (i.e., N (Dtr,x) vs. N (D∗tr,x)) depends on
the randomness in breaking ties. Such randomness makes it challenging to certify the robustness
of the predicted label against poisoned training examples. To address the challenge, we propose to
define a deterministic ranking of training examples and break ties via choosing the training examples
with larger ranks. Moreover, such ranking between clean training examples does not depend on
poisoned ones. For instance, we can use a cryptographic hash function (e.g., SHA-1) that is very
unlikely to have collisions to hash each training example based on its input feature vector and label,
and then we rank the training examples based on their hash values.

We use sl to denote the number of votes in N (Dtr,x) for label l, i.e., the number of nearest
neighbors in N (Dtr,x) whose labels are l. Formally, we have sl =

∑
(xj ,yj)∈N (Dtr,x)

I(yj = l),
where l = 1, 2, · · · , c and I is an indicator function. kNN or rNN essentially predicts the label of the
testing input x as the label with the largest number of votes, i.e.,M(Dtr,x) = argmaxl∈{1,2,··· ,c} sl.
Suppose a and b are the labels with the largest and second largest number of votes, i.e., sa and sb
are the largest and second largest ones among {s1, s2, · · · , sc}, respectively. We note that there may
exist ties when comparing the labels based on their votes. We define a deterministic ranking of labels
in {1, 2, · · · , c} and take the label with the largest rank when such ties happen. In the worse-case
scenario, each poisoned training example leads to one corrupted voter in kNN or rNN, which changes
its vote from label a to label b. Therefore, kNN or rNN still predicts label a for the testing input x
when the number of poisoned training examples is no more than d sa−sb2 e − 1 (without considering
the ties breaking). Formally, we have the following theorem:
Theorem 1. Assuming we have a training dataset Dtr, a testing input x, and a nearest neighbor
algorithmM (i.e., kNN or rNN). a and b respectively are the two labels with the largest and second
largest number of votes among the nearest neighbors N (Dtr,x) of x in Dtr. Moreover, sa and sb
are the number of votes for a and b, respectively. Then, we have the following:

M(D∗tr,x) = a,∀D∗tr ∈ S(Dtr, e), e ≤ d
sa − sb + I(a > b)

2
e − 1. (3)

Proof. When an attacker poisons at most e training examples, the number of changed nearest
neighbors in N (Dtr,x) is at most e. We denote by s∗l =

∑
(xj ,yj)∈N (D∗tr,x)

I(l = yj) the number
of votes for label l among the nearest neighbors N (D∗tr,x) in the poisoned training dataset, where
l = 1, 2, · · · , c. Then, we have sl − e ≤ s∗l ≤ sl + e for each l = 1, 2, · · · , c. Therefore, when
e ≤ d sa−sb+I(a>b)

2 e−1, we have s∗a−s∗b ≥ sa−sb−2·e > 0 if a < b and s∗a−s∗b ≥ sa−sb−2·e ≥ 0
if a > b. Thus, the nearest neighbor algorithm still predicts label a for x in both cases based on our
way of breaking ties, i.e., we haveM(D∗tr,x) = a when e ≤ d sa−sb+I(a>b)

2 e − 1.

Deriving a lower bound of CA(e): kNN or rNN certifiably correctly classifies a testing input x if
it correctly predicts its label before attacks and the predicted label stays unchanged after an attacker
poisons the training dataset. Therefore, the fraction of testing inputs that kNN or rNN certifiably
correctly classifies is a lower bound of CA(e). Formally, we have the following theorem:
Theorem 2 (Individual Certification). Assuming we have a training dataset Dtr, a testing dataset
Dte = {(xi, yi)}ti=1, and a nearest neighbor algorithmM (i.e., kNN or rNN). ai and bi respectively
are the two labels with the largest and second largest number of votes among the nearest neighbors

4

Under review as a conference paper at ICLR 2021

N (Dtr,xi) of xi in Dtr. Moreover, sai and sbi are the number of votes for ai and bi, respectively.
Then, we have the following lower bound of CA(e):

CA(e) ≥
∑

(xi,yi)∈Dte
I(ai = yi) · I(e ≤ e∗i)
|Dte|

, (4)

where e∗i = d
sai
−sbi+I(ai>bi)

2 e − 1.

Proof. See Appendix A.

3.2 JOINT CERTIFICATION

We derive a better lower bound of the certified accuracy via jointly considering multiple testing
examples. Our intuition is that, given a group of testing examples and a poisoning size e, an attacker
may not be able to make a learning algorithm misclassify all the testing examples jointly even if it can
make the learning algorithm misclassify each of them individually. In particular, rNN enables such
joint certification. It is challenging to perform joint certification for kNN because of the complex
interactions between the nearest neighbors of different testing examples (see our proof of Theorem 3
for specific reasons). Next, we first derive a lower bound of CA(e) on a group of testing examples for
rNN. Then, we derive a lower bound of CA(e) on the testing dataset Dte via dividing it into groups.
Finally, we discuss different strategies to divide the testing dataset into groups, which may lead to
different lower bounds of CA(e).

Deriving a lower bound of CA(e) for a group of testing examples: Suppose we have a group of
testing examples which have different predicted labels in rNN. Our key intuition is that when an
attacker can poison e training examples, the attacker can only decrease the total votes for the testing
examples’ predicted labels by at most e in rNN, as the testing examples’ predicted labels are different.
We denote by U a group of testing examples with different predicted labels and by m its size, i.e.,
m = |U|. The next theorem shows a lower bound of CA(e) on the testing examples in U for rNN.
Theorem 3. Assuming we have a training dataset Dtr, the learning algorithm rNN, and a group
of m testing examples U = {(xi, yi)}mi=1 with different predicted labels. ai and bi respectively are
the two labels with the largest and second largest number of votes among the nearest neighbors
N (Dtr,xi) of xi in Dtr. Moreover, sai and sbi are the number of votes for ai and bi, respectively.
Without loss of generality, we assume the following:

(sa1 − sb1) · I(a1 = y1) ≥ (sa2 − sb2) · I(a2 = y2) ≥ · · · ≥ (sam − sbm) · I(am = ym). (5)

Then, the certified accuracy at poisoning size e of rNN for U has a lower bound CA(e) ≥ w−1
|U| ,

where w is the solution to the following optimization problem:

w = argmin
w′,w′≥1

w′ s.t.
m∑
i=w′

max(sai − sbi − e+ I(ai > bi), 0) · I(ai = yi) ≤ e. (6)

Proof. When an attacker can poison at most e training examples, the attacker can add at most e new
nearest neighbors and remove e existing ones in N (Dtr,xi) (equivalent to modifying e training
examples) in the worst-case scenario. We denote by s∗ai and s∗bi respectively the number of votes
for labels ai and bi among the nearest neighbors N (D∗tr,xi). First, we have s∗bi ≤ sbi + e for
∀i ∈ {1, 2, · · · ,m} since at most e new nearest neighbors are added. Second, we have s∗ai ≥ sai−ei
in rNN, where ei is the number of removed nearest neighbors in N (Dtr,xi) whose true labels are ai.
Note that kNN does not support joint certification because s∗ai ≥ sai − ei does not hold for kNN.

Next, we derive the minimal value of ei such that rNN misclassifies xi. In particular, we consider two
cases. If ai 6= yi, i.e., xi is misclassified by rNN without attack, then we have ei = 0. If ai = yi, xi
is misclassified by rNN when s∗ai ≤ s

∗
bi

if ai < bi and s∗ai < s∗bi if ai > bi after attack, which means
ei ≥ sai − sbi − e + I(ai > bi). Since ei ≥ 0, we have ei ≥ max(sai − sbi − e + I(ai > bi), 0).
Combining the two cases, we have the following lower bound for ei that makes rNN misclassify
xi: ei ≥ max(sai − sbi − e+ I(ai > bi), 0) · I(ai = yi). Moreover, since the attacker can remove
at most e training examples and the group of testing examples have different predicted labels, i.e.,
ai 6= aj ∀i, j ∈ {1, 2, · · · ,m} and i 6= j, we have

∑m
i=1 ei ≤ e. We note that the lower bound of

5

Under review as a conference paper at ICLR 2021

ei is non-increasing as i increases based on Equation (5). Therefore, in the worst-case scenario, the
attacker can make rNN misclassify the last m− w + 1 testing inputs whose corresponding ei sum to
be at most e. Formally, w is the solution to the optimization problem in Equation (6). Therefore, the
certified accuracy at poisoning size e is at least w−1|U| .

Deriving a lower bound of CA(e) for a testing dataset: Based on Theorem 3, we can derive a
lower bound of CA(e) for a testing dataset via dividing it into disjoint groups, each of which includes
testing examples with different predicted labels in rNN. Formally, we have the following theorem:
Theorem 4 (Joint Certification). Given a testing dataset Dte, we divide it into λ disjoint groups, i.e.,
U1,U2, · · · ,Uλ, where the testing examples in each group have different predicted labels in rNN.
Then, we have the following lower bound of CA(e):

CA(e) ≥
∑λ
j=1 µj · |Uj |∑λ
j=1 |Uj |

, (7)

where µj is the lower bound of the certified accuracy at poisoning size e on group Uj , which we can
obtain by invoking Theorem 3.

Proof. See Appendix B.

Strategies of grouping testing examples: Our Theorem 4 is applicable to any way of dividing the
testing examples in Dte to disjoint groups once the testing examples in each group have different
predicted labels in rNN. Therefore, a natural question is how to group the testing examples in Dte

to maximize our lower bound of certified accuracy. For instance, a naive method is to randomly
divide the testing examples into disjoint groups, each of which includes at most c (the number of
classes) testing examples with different predicted labels. We call such method Random Division (RD).
However, RD achieves suboptimal performance because it does not consider the certified robustness
of each individual testing example. In particular, some testing examples can or cannot be certifiably
correctly classified no matter which groups they belong to. However, if we group them with other
testing examples, the certified accuracy may be degraded because each group can have at most c
testing examples. For instance, if a testing example cannot be certifiably correctly classified no matter
which group it belongs to, then adding it to a group would exclude another testing example from the
group, which may degrade the certified accuracy for the group.

Therefore, we propose to isolate these testing examples and divide the remaining testing examples
into disjoint groups. We call such method Isolation and Division (ISLAND). Specifically, we first
divide the testing dataset Dte into three disjoint parts which we denote as D0

te, D
1
te, and D2

te. D
0
te

contains the testing examples that cannot be certifiably correctly classified at poisoning size e no
matter which group they belong to. Based on our proof of Theorem 3, a testing example (xi, yi) that
satisfies (sai − sbi − e + I(ai > bi)) · I(ai = yi) ≤ 0 cannot be certifiably correctly classified at
poisoning size e no matter which group it belongs to. Therefore, D0

te includes such testing examples.
Moreover, based on Theorem 1, a testing example (xi, yi) that satisfies e ≤ d sai

−sbi+I(ai>bi)
2 e − 1

can be certifiably correctly classified at poisoning size e. Therefore, D1
te includes such testing

examples. Each testing example in D0
te or D1

te forms a group by itself. D2
te includes the remaining

testing examples, which we further divide into groups. Our method of dividing D2
te into groups

is inspired by the proof of Theorem 3. In particular, we form a group of testing examples as
follows: for each label l ∈ {1, 2, · · · , c}, we find the testing example that has the largest value of
(sai − sbi − e+ I(ai > bi)) · I(ai = l) and we skip the label if there is no remaining testing example
whose predicted label is l. We apply the procedure to recursively group the testing examples in D2

te
until no testing examples are left.

4 EVALUATION

Datasets: We evaluate our methods on MNIST and CIFAR10. We use the popular histogram of
oriented gradients (HOG)1 (Dalal & Triggs, 2005) method to extract features for each example, which

1Public implementation: https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.hog

6

Under review as a conference paper at ICLR 2021

0 500 1000 1500 2000 2500 3000
Poisoning Size e

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

(C
A

(e
))

DPA

Bagging

kNN

rNN

(a) MNIST

0 200 400 600 800
Poisoning Size e

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

(C
A

(e
))

DPA

Bagging

kNN

rNN

(b) CIFAR10

0 500 1000 1500 2000 2500 3000
Poisoning Size e

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

(C
A

(e
))

individual certification

joint certification–RD

joint certification–ISLAND

(c) MNIST

0 200 400 600 800
Poisoning Size e

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

(C
A

(e
))

individual certification

joint certification–RD

joint certification–ISLAND

(d) CIFAR10

Figure 2: (a)–(b) comparing kNN and rNN with state-of-the-art methods. (c)–(d) comparing
individual certification with joint certification for rNN.

0 500 1000 1500 2000 2500 3000
Poisoning Size e

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

(C
A

(e
))

k=1,000

k=3,000

k=5,000

(a) MNIST

0 200 400 600 800
Poisoning Size e

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

(C
A

(e
))

k=1,000

k=3,000

k=5,000

(b) CIFAR10

0 500 1000 1500 2000 2500 3000
Poisoning Size e

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

(C
A

(e
))

r=3.0

r=3.5

r=4.0

(c) MNIST

0 200 400 600 800
Poisoning Size e

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

(C
A

(e
))

r=18

r=20

r=22

(d) CIFAR10

Figure 3: Impact of k ((a)–(b)) and r ((c)–(d)) on the certified accuracy of kNN and rNN.

we found improves certified accuracy. Note that previous work (Jia et al., 2020) used a pre-trained
model to extract features via transfer learning. However, the pre-trained model may also be poisoned
and thus we don’t use it. We didn’t find ties in determining nearest neighbors for kNN in our
experiments. We rank the labels as {1, 2, · · · , 10} to break ties for labels.

Parameter settings: While any distance metric is applicable, we use `1 in our experiments for both
kNN and rNN. Unless otherwise mentioned, we adopt the following settings: k = 5, 000 for both
MNIST and CIFAR10 in kNN; and r = 4 for MNIST and r = 20 for CIFAR10 in rNN, considering
the different feature dimensions of MNIST and CIFAR10. By default, we use the ISLAND grouping
method in the joint certification for rNN.

Comparing with DPA (Levine & Feizi, 2020) and bagging (Jia et al., 2020): Figure 2a and
Figure 2b show the comparison results of DPA, bagging, kNN, and rNN. DPA divides a training
dataset into ζ disjoint partitions and learns a base classifier on each of them. Then, DPA takes a
majority vote among the base classifiers to predict the label of a testing example. Bagging learns
N base classifiers, each of which is learnt on a random subsample with ξ training examples of the
training dataset. Moreover, bagging’s certified accuracy is correct with a confidence level 1− α. All
the compared methods have tradeoffs between accuracy under no attacks (i.e., CA(0)) and robustness
against attacks. Therefore, we set their parameters such that they have similar accuracy under no
attacks (i.e., similar CA(0)). In particular, we use the default k for kNN, and we adjust r for rNN, ζ
for DPA, and ξ for bagging. The searched parameters are as follows: r = 4, ζ = 5, 500, and ξ = 27
for MNIST; and r = 21, ζ = 900, and ξ = 400 for CIFAR10. Note that we set N = 1, 000 and
α = 0.001 for bagging following (Jia et al., 2020).

We have the following observations. First, both kNN and rNN outperform DPA and bagging. The
superior performance of kNN and rNN stems from two reasons: 1) each poisoned training example
corrupts multiple voters for DPA and bagging, while it only corrupts one voter for kNN and rNN,
which means that, given the same gap between the largest and second largest number of votes, kNN
and rNN can tolerate more poisoned training examples; and 2) rNN enables joint certification that
improves the certified accuracy. Second, rNN achieves better certified accuracy than kNN when the
poisoning size is large. The reason is that rNN supports joint certification.

Comparing individual certification with joint certification: Figure 2c and Figure 2d compare
individual certification and joint certification (with the RD and ISLAND grouping methods) for rNN.
Our empirical results validate that joint certification improves the certified accuracy upon individual
certification. Moreover, our ISLAND grouping method outperforms the RD method.

Impact of k and r: Figure 3 shows the impact of k and r on the certified accuracy of kNN and
rNN, respectively. As the results show, k and r achieve tradeoffs between accuracy under no attacks
(i.e., CA(0)) and robustness. Specifically, when k or r is smaller, the accuracy under no attacks, i.e.,
CA(0), is larger, but the certified accuracy decreases more quickly as the poisoning size e increases.

7

Under review as a conference paper at ICLR 2021

5 RELATED WORK

Data poisoning attacks have been proposed against various learning algorithms such as Bayes
classifier (Nelson et al., 2008), SVM (Biggio et al., 2012), clustering (Biggio et al., 2013b; 2014),
collaborative filtering (Li et al., 2016), regression models (Xiao et al., 2015a; Mei & Zhu, 2015b;
Jagielski et al., 2018), LDA (Mei & Zhu, 2015a), neural networks (Muñoz-González et al., 2017;
Shafahi et al., 2018; Suciu et al., 2018; Demontis et al., 2019; Zhu et al., 2019; Huang et al., 2020),
and others (Rubinstein et al., 2009; Vuurens et al., 2011).

To mitigate data poisoning attacks, many empirical defenses (Cretu et al., 2008; Rubinstein et al.,
2009; Barreno et al., 2010; Biggio et al., 2011; Feng et al., 2014; Jagielski et al., 2018; Tran et al.,
2018) have been proposed. Steinhardt et al. (2017) derived an upper bound of the loss function for data
poisoning attacks when the model is learnt using examples in a feasible set. However, these defenses
lack certified robustness guarantees. Recently, several certified defenses (Ma et al., 2019; Rosenfeld
et al., 2020; Levine & Feizi, 2020; Jia et al., 2020) were proposed to defend against data poisoning
attacks. These defenses provide certified accuracies for a testing dataset either probabilistically (Ma
et al., 2019; Jia et al., 2020) or deterministically (Rosenfeld et al., 2020; Levine & Feizi, 2020). All
these defenses except (Ma et al., 2019) create majority vote mechanisms to predict the label of a
testing example. In particular, a voter is a base classifier learnt on a perturbed version of the training
dataset in randomized smoothing based defenses (Rosenfeld et al., 2020), while a voter is a base
classifier learnt on a subset of the trainig dataset in DPA (Levine & Feizi, 2020) and bagging (Jia
et al., 2020). Ma et al. (2019) showed that a differentially private learning algorithm achieves certified
accuracy against data poisoning attacks. They also train multiple differentially private classifiers,
but they are not used to predict the label of a testing example via majority vote. Instead, their
average accuracy is used to estimate the certified accuracy. kNN and rNN have intrinsic majority vote
mechanisms and we show that they provide deterministic certified accuracies against data poisoning
attacks. Moreover, rNN enables joint certification. We note that DPA (Levine & Feizi, 2020) proposed
to use a hash function to assign training examples into partitions, which is different from our use of
hash function. In particular, we use a hash function to rank training examples. Moreover, both DPA
and our work rank the labels to break ties when comparing them with respect to their votes.

A line of works (Wilson, 1972; Guyon et al., 1996; Peri et al., 2019; Bahri et al., 2020) leveraged
nearest neighbors to clean a training dataset. For instance, Wilson (1972) proposed to remove a
training example whose label is not the same as the majority vote among the labels of its 3 nearest
neighbors. Peri et al. (2019) proposed to remove a training example whose label is not the mode
amongst labels of its k nearest neighbors in the feature space. Bahri et al. (2020) combined kNN
with an intermediate layer of a preliminary deep neural network model to filter suspiciously-labeled
training examples. Another line of works (Gao et al., 2018; Reeve & Kabán, 2019) studied the
resistance of nearest neighbors to random noisy labels. For instance, Gao et al. (2018) analyzed
the resistance of kNN to asymmetric label noise and introduced a Robust kNN to deal with noisy
labels. Reeve & Kabán (2019) further analyzed the Robust kNN proposed by (Gao et al., 2018) in the
setting with unknown asymmetric label noise. kNN and its variants have also been used to defend
against adversarial examples (Wang et al., 2018; Sitawarin & Wagner, 2019a; Papernot & McDaniel,
2018; Sitawarin & Wagner, 2019b; Dubey et al., 2019; Yang et al., 2020; Cohen et al., 2020). For
instance, Wang et al. (2018) analyzed the robustness of nearest neighbors to adversarial examples and
proposed a more robust 1-nearest neighbor. Several works (Amsaleg et al., 2017; Wang et al., 2018;
2019; Yang et al., 2020) proposed adversarial examples to nearest neighbors, e.g., Wang et al. (2019)
proposed adversarial examples against 1-nearest neighbor. These works are orthogonal to ours as we
focus on analyzing the certified robustness of kNN and rNN against general data poisoning attacks.

6 CONCLUSION AND FUTURE WORK

In this work, we derive the certified robustness of nearest neighbor algorithms, including kNN and
rNN, against data poisoning attacks. Moreover, we derive a better lower bound of certified accuracy
for rNN via jointly certifying multiple testing examples. Our evaluation results show that 1) both
kNN and rNN outperform state-of-the-art certified defenses against data poisoning attacks, and 2)
joint certification outperforms individual certification. Interesting future work includes 1) extending
joint certification to other learning algorithms, 2) improving joint certification via new grouping
methods, and 3) improving certified accuracy of kNN and rNN via new distance metrics.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Laurent Amsaleg, James Bailey, Dominique Barbe, Sarah Erfani, Michael E Houle, Vinh Nguyen,
and Miloš Radovanović. The vulnerability of learning to adversarial perturbation increases with
intrinsic dimensionality. In 2017 IEEE Workshop on Information Forensics and Security (WIFS),
pp. 1–6. IEEE, 2017.

Dara Bahri, Heinrich Jiang, and Maya Gupta. Deep k-nn for noisy labels. In ICML, 2020.

Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug Tygar. Can machine
learning be secure? In Proceedings of the 2006 ACM Symposium on Information, computer and
communications security, pp. 16–25, 2006.

Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar. The security of machine
learning. Machine Learning, 81(2):121–148, 2010.

Battista Biggio, Igino Corona, Giorgio Fumera, Giorgio Giacinto, and Fabio Roli. Bagging classifiers
for fighting poisoning attacks in adversarial classification tasks. In International workshop on
multiple classifier systems, pp. 350–359. Springer, 2011.

Battista Biggio, B Nelson, and P Laskov. Poisoning attacks against support vector machines. In
ICML, pp. 1807–1814, 2012.

Battista Biggio, Giorgio Fumera, and Fabio Roli. Security evaluation of pattern classifiers under
attack. IEEE transactions on knowledge and data engineering, 26(4):984–996, 2013a.

Battista Biggio, Ignazio Pillai, Samuel Rota Bulò, Davide Ariu, Marcello Pelillo, and Fabio Roli.
Is data clustering in adversarial settings secure? In Proceedings of the 2013 ACM workshop on
Artificial intelligence and security, pp. 87–98, 2013b.

Battista Biggio, Konrad Rieck, Davide Ariu, Christian Wressnegger, Igino Corona, Giorgio Giacinto,
and Fabio Roli. Poisoning behavioral malware clustering. In Proceedings of the 2014 workshop
on artificial intelligent and security workshop, pp. 27–36, 2014.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In IEEE
S&P, pp. 39–57. IEEE, 2017.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Gilad Cohen, Guillermo Sapiro, and Raja Giryes. Detecting adversarial samples using influence
functions and nearest neighbors. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 14453–14462, 2020.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967.

Gabriela F Cretu, Angelos Stavrou, Michael E Locasto, Salvatore J Stolfo, and Angelos D Keromytis.
Casting out demons: Sanitizing training data for anomaly sensors. In 2008 IEEE Symposium on
Security and Privacy, pp. 81–95. IEEE, 2008.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE
computer society conference on computer vision and pattern recognition (CVPR’05), volume 1, pp.
886–893. IEEE, 2005.

Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina Oprea,
Cristina Nita-Rotaru, and Fabio Roli. Why do adversarial attacks transfer? explaining transferability
of evasion and poisoning attacks. In USENIX Security Symposium, pp. 321–338, 2019.

Abhimanyu Dubey, Laurens van der Maaten, Zeki Yalniz, Yixuan Li, and Dhruv Mahajan. Defense
against adversarial images using web-scale nearest-neighbor search. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8767–8776, 2019.

Jiashi Feng, Huan Xu, Shie Mannor, and Shuicheng Yan. Robust logistic regression and classification.
In Advances in neural information processing systems, pp. 253–261, 2014.

9

Under review as a conference paper at ICLR 2021

Evelyn Fix and JL Hodges. Discriminatory analysis: Nonparametric discrimination, consistency
properties. Report No. 4, USAF School of Aviation Medicine, Randolph Field, Texas, Feb, 1951.

Wei Gao, Xin-Yi Niu, and Zhi-Hua Zhou. On the consistency of exact and approximate nearest
neighbor with noisy data. Arxiv, abs/1607.07526, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Isabelle Guyon, Nada Matic, Vladimir Vapnik, et al. Discovering informative patterns and data
cleaning. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data
Mining, 1996.

W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. Metapoison: Practical
general-purpose clean-label data poisoning. arXiv preprint arXiv:2004.00225, 2020.

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li.
Manipulating machine learning: Poisoning attacks and countermeasures for regression learning. In
2018 IEEE Symposium on Security and Privacy (SP), pp. 19–35. IEEE, 2018.

Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Intrinsic certified robustness of bagging against
data poisoning attacks. arXiv preprint arXiv:2008.04495, 2020.

Alexander Levine and Soheil Feizi. Deep partition aggregation: Provable defense against general
poisoning attacks. arXiv preprint arXiv:2006.14768, 2020.

Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. Data poisoning attacks on factorization-
based collaborative filtering. In NeurIPS, pp. 1885–1893, 2016.

Yuzhe Ma, Xiaojin Zhu, and Justin Hsu. Data poisoning against differentially-private learners:
Attacks and defenses. In International Joint Conference on Artificial Intelligence, 2019.

Shike Mei and Xiaojin Zhu. The security of latent dirichlet allocation. In Artificial Intelligence and
Statistics, pp. 681–689, 2015a.

Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks on
machine learners. In AAAI, pp. 2871–2877, 2015b.

Mehran Mozaffari-Kermani, Susmita Sur-Kolay, Anand Raghunathan, and Niraj K Jha. Systematic
poisoning attacks on and defenses for machine learning in healthcare. IEEE journal of biomedical
and health informatics, 19(6):1893–1905, 2014.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,
Emil C Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with back-gradient
optimization. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
pp. 27–38, 2017.

Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D Joseph, Benjamin IP Rubinstein, Udam
Saini, Charles A Sutton, J Doug Tygar, and Kai Xia. Exploiting machine learning to subvert your
spam filter. LEET, 8:1–9, 2008.

Nicolas Papernot and Patrick McDaniel. Deep k-nearest neighbors: Towards confident, interpretable
and robust deep learning. arXiv preprint arXiv:1803.04765, 2018.

Neehar Peri, Neal Gupta, W Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi, Tom Goldstein,
and John P Dickerson. Deep k-nn defense against clean-label data poisoning attacks. arXiv, pp.
arXiv–1909, 2019.

Henry WJ Reeve and Ata Kabán. Fast rates for a knn classifier robust to unknown asymmetric label
noise. arXiv preprint arXiv:1906.04542, 2019.

10

Under review as a conference paper at ICLR 2021

Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and J Zico Kolter. Certified robustness to
label-flipping attacks via randomized smoothing. In ICML, 2020.

Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D Joseph, Shing-hon Lau, Satish Rao,
Nina Taft, and J Doug Tygar. Antidote: understanding and defending against poisoning of anomaly
detectors. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement, pp.
1–14, 2009.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks. In
NeurIPS, pp. 6103–6113, 2018.

Chawin Sitawarin and David Wagner. Defending against adversarial examples with k-nearest neighbor.
arXiv preprint arXiv:1906.09525, 2019a.

Chawin Sitawarin and David Wagner. On the robustness of deep k-nearest neighbors. In 2019 IEEE
Security and Privacy Workshops (SPW), pp. 1–7. IEEE, 2019b.

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning attacks.
In Advances in neural information processing systems, pp. 3517–3529, 2017.

Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and Tudor Dumitras. When does
machine learning FAIL? generalized transferability for evasion and poisoning attacks. In USENIX
Security Symposium, pp. 1299–1316, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. In Advances
in Neural Information Processing Systems, pp. 8000–8010, 2018.

Jeroen Vuurens, Arjen P de Vries, and Carsten Eickhoff. How much spam can you take? an analysis
of crowdsourcing results to increase accuracy. In Proc. ACM SIGIR Workshop on Crowdsourcing
for Information Retrieval (CIR’11), pp. 21–26, 2011.

Lu Wang, Xuanqing Liu, Jinfeng Yi, Zhi-Hua Zhou, and Cho-Jui Hsieh. Evaluating the robustness of
nearest neighbor classifiers: A primal-dual perspective. arXiv preprint arXiv:1906.03972, 2019.

Yizhen Wang, Somesh Jha, and Kamalika Chaudhuri. Analyzing the robustness of nearest neighbors
to adversarial examples. In International Conference on Machine Learning, pp. 5133–5142, 2018.

Dennis L Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transac-
tions on Systems, Man, and Cybernetics, (3):408–421, 1972.

Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and Fabio Roli. Is
feature selection secure against training data poisoning? In ICML, pp. 1689–1698, 2015a.

Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao, Claudia Eckert, and Fabio Roli. Support
vector machines under adversarial label contamination. Neurocomputing, 160:53–62, 2015b.

Yao-Yuan Yang, Cyrus Rashtchian, Yizhen Wang, and Kamalika Chaudhuri. Robustness for non-
parametric classification: A generic attack and defense. In International Conference on Artificial
Intelligence and Statistics, pp. 941–951, 2020.

Chen Zhu, W Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, and Tom Goldstein.
Transferable clean-label poisoning attacks on deep neural nets. In ICML, pp. 7614–7623, 2019.

11

Under review as a conference paper at ICLR 2021

A PROOF OF THEOREM 2

Proof. We have the following:

CA(e) = min
D∗tr∈S(Dtr,e)

∑
(xi,yi)∈Dte

I(M(D∗tr,xi) = yi)

|Dte|
(8)

≥
∑

(xi,yi)∈Dte
minD∗tr∈S(Dtr,e) I(M(D∗tr,xi) = yi)

|Dte|
(9)

=

∑
(xi,yi)∈Dte

I(ai = yi)minD∗tr∈S(Dtr,e) I(M(D∗tr,xi) = ai)

|Dte|
(10)

=

∑
(xi,yi)∈Dte

I(ai = yi)I(e ≤ e∗i)
|Dte|

, (11)

where the last step is based on applying Theorem 1 to testing input xi.

B PROOF OF THEOREM 4

Proof. We have the following:

CA(e) = min
D∗tr∈S(Dtr,e)

∑
(xi,yi)∈Dte

I(M(D∗tr,xi) = yi)

|Dte|
(12)

= min
D∗tr∈S(Dtr,e)

∑λ
j=1

∑
(xi,yi)∈Uj I(M(D∗tr,xi) = yi)∑λ

j=1 |Uj |
(13)

≥
∑λ
j=1 minD∗tr∈S(Dtr,e)

∑
(xi,yi)∈Uj I(M(D∗tr,xi) = yi)∑λ
j=1 |Uj |

(14)

≥
∑λ
j=1 µj · |Uj |∑λ
j=1 |Uj |

, (15)

where we have Equation (15) from (14) based on applying Theorem 3 to group Uj .

12

	Introduction
	Problem Setup
	Certified Accuracy of kNN and rNN
	Individual Certification
	Joint Certification

	Evaluation
	Related work
	Conclusion and Future work
	Proof of Theorem 2
	Proof of Theorem 4

