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ABSTRACT

Class-agnostic object counting (CAC) aims at counting the number of objects
in the unseen category in an image. In this paper, we design a generic class-
agnostic object counting network with Adaptive Offset Deformable Convolution
(AODC), which initially focus on the reference-less class-agnostic object count-
ing task without any exemplar. Our method calculates the self-similarity maps of
the image features and performing a 4D convolution on these maps, obtaining the
adaptive offsets for the deformable convolution, so that the model can obtain com-
plete information about the object at that location. Through this process, AODC
is able to recognise objects of different scales in a same sample. In addition to
this, we adopt our approach to both zero-shot setting and few-shot setting, the
former with semantic text and the latter with visual exemplars as references. We
conduct experiments on the few-shot object counting dataset FSC-147, as well
as other large-scale datasets, and show that our method significantly outperforms
state-of-the-art approaches on all the three settings.

1 INTRODUCTION

Object counting tasks have mainly focused on specific categories in the past, such as people (Shu
et al., [2022; | Abousamra et al., [2021; |Cai1 et al., [2023)), cars (Hsieh et al.l 2017) or animals (Arteta
et al |2016; Zavrtanik et al., 2020). In contrast, class-agnostic object counting (CAC) has received
considerable attention and development in recent years, especially after a dataset focusing on CAC is
proposed (Ranjan et al., |2021). Not only does CAC require less data annotations than class-specific
object counting, but it can also be applied to unseen categories. Using few provided visual references
as exemplars in few-shot setting, CAC obtains a generalised counting model by learning the process
of comparing the sample image and exemplars and regressing the feature representations.

In class-agnostic object counting, in addition to the few-shot setting, there is also a reference-less
setting where no exemplars are used, and a zero-shot setting where the category names are used
as references. Our approach focuses on all these domains, obtaining good performance for each
setting. In the reference-less setting, the effectiveness of the method in (Ranjan & Nguyen, 2022)
is highly dependent on the accuracy of the selected exemplars, which is difficult to guarantee. The
performance of (Hobley & Prisacariu, 2022)) relies on a pre-trained model that is trained with a
large amount of data. For research related to zero-shot setting, previous work has proposed many
effective approaches (Xu et al., 2023} Jiang et al.l 2023} |Kang et al.| 2023} |Amini-Naieni et al.,
2023). However, as described in (Oquab et al., 2023} [Paiss et al., 2023} |Zhai et al.l |2022; |Amini-
Naieni et al.| [2023)), general text encoding models, such as CLIP (Radford et al., 2021), lack the
awareness of object spatial structure. This heavily limits the performance of existing zero-shot
object counting methods. And in few-shot setting, many methods (Shi et al., [2022; |Lin et al., 2022;
Djukic et al.l[2023) usually take the average length and width of the bounding boxes as a fixed scale
when embedding object scale information, however, many objects within the sample images are
of varying scales, and this processing is usually not effective enough to recognise objects that are
extreme in scale.

Even if a person has never seen a certain category of objects, the human eyes can easily distinguish
its general shape and area within the field of view. This is because an object typically has great
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similarity in all parts of its body, which becomes more obvious when the object is in a background
with a large difference in colour compared to itself. For class-agnostic object counting task where
no exemplars are provided, the model cannot directly derive useful information from object features
when faced with unseen categories. However, since feature similarity is unbiased towards any spe-
cific category, we can take advantage of the ability of human eyes to recognise objects by calculating
and utilizing the self-similarity of the features to give the model the ability to recognise the shape
and size of unseen category objects.

Self-similarity map Offsets In this paper, we present an end-
to-end CAC model that can recog-
nise the shapes and sizes of a cate-
gory of objects, without the need for
visual exemplars, additional training
data or training stages. As illustrated
in Fig. after inputting an image
and extracting features, the similar-
ity value of each pixel in the fea-
ture map is computed with all other
Deformable convolution Density map pixels to obtain a 4D similarity map.
This is followed by a 4D convolu-

Figure 1: The general pipeline of our method. A setof 3 x 3 tion, which transforms the informa-

convolution kernels can be appropriately offset to cover the t@on about the sellf-simila!rity distribu-
entire object. tion of each point and its surround-

ings in the feature map into the hori-
zontal and vertical offsets of that pixel point to the similarity boundaries. The adaptive offsets are
used as the convolution kernel offsets to perform deformable convolution on the original feature
map. This fuses the overall information of each object in the feature map into the centre position of
the object, and further generates an accurate predicted density map in the final regression.

Image

Having achieved recognition of the spatial structure of objects in the reference-less setting, then
we can easily adapt our method to the zero-shot setting, where it is sufficient to embed the text
into the same feature space as the image feature using a pre-trained semantic model, and before
the computation of self-similarity maps we incorporate the semantic feature into the image feature
map using several cross-attention modules to highlight features that are of the same category as the
semantic feature. For the few-shot setting, since we have several more accurate visual exemplars, we
can replace the self-similarity computation with a cross-similarity between the image feature map
and the exemplar feature maps, which gives us more accurate offsets. The subsequent calculations
for both settings are then the same as for the reference-less setting.

We conduct experiments on a large-scale few-shot object counting dataset FSC-147 for all the three
settings, and the experimental results outperform recent state-of-the-art methods. In addition to this,
we also perform cross-dataset validation on car counting dataset CARPK (Hsieh et al.l [2017) and
two subsets that have pre-trained object detectors on the COCO dataset (Lin et al., [2014)), and the
superior performance also demonstrates the generalized ability of our method.

Our contributions are summarized as follows: (1) We design a novel reference-less class-agnostic
object counting network with Adaptive Offset Deformable Convolution (AODC), for counting un-
seen category objects without references. (2) We generalize AODC to zero-shot and few-shot set-
tings to form a generic class-agnostic object counting network.

2 RELATED WORK

2.1 CLASS-SPECIFIC OBJECT COUNTING

Class-specific object counting focuses on counting a specific class of objects, such as crowd (Liang
et al., 2023} ILin & Chanl [2023; |Du et al., 2023), animals (Arteta et al., [2016)), or cars (Hsieh et al.,
2017), among which crowd counting has received the most extensive excavation. The earliest count-
ing methods are based on object detection (Stewart et al., 2016, Wang & Wang, 2011), where the
number of objects is obtained by counting the detection results. However, this kind of methods
are less effective in identifying dense samples and require an additional object detection process.



Under review as a conference paper at ICLR 2025

To address this issue, counting methods based on density maps, which are called regression-based
methods, are developed and widely adopted. These methods generate a density map and sum it to
obtain the counting number. The model is trained by comparing the ground truth density map with
the predicted density map.

Recent research in regression-based methods, such as (Cheng et al., 2022), utilizes locally connected
multivariate Gaussian kernels as replacements for convolution filters. (Du et al 2023)) introduce
domain-invariant and -specific crowd memory modules to extract disentangled domain-invariant/-
specific features for each image. Moreover, a recent work (Liang et al., [2023)) proposes knowledge
transfer from a vision-language pre-trained model (CLIP) to unsupervised crowd counting tasks,
eliminating the need for density map annotation.

2.2 CLASS-AGNOSTIC OBJECT COUNTING

Class-agnostic object counting (CAC) is first studied in (Lu et al., 2019) and has gained significant
attention with the proposal of a challenged dataset (Ranjan et al., 2021)). In contrast to class-specific
object counting task, CAC can exhibit great generality by using a few exemplars to count objects of
unseen categories.

Several terrific methods have been proposed for CAC. As the first novel in the study of CAC, GMN
(Lu et al.| 2019)) integrates support and query features, subsequently applying regression to forecast
a density map from this amalgamation. Over the next few years, many methods in this area were
proposed (Ranjan et al., 2021} [Shi et al.| [2022; |Liu et al., [2022} |[Djukic et al., |2023; Wang et al.,
2024), leading to significant development of CAC tasks. The most recent approach, CACViT (Wang
et al., 2024) proposes a ViT-based extract-and-match paradigm for CAC, and introduces aspect-
ratio-aware scale embedding and magnitude embedding to compensate for the information loss.

For the setting without references, RepRPN-C (Ranjan & Nguyen| 2022) proposes a two-stage
counter. It consists of a novel region proposal network for finding exemplars from repetitive ob-
ject classes and a density estimation network to estimate the density map corresponding to each
exemplar. RCC (Hobley & Prisacariu), 2022) is based on the confirmed intuition that well-trained
vision transformer features are both general enough and contextually aware enough to implicitly
understand the underlying basis of counting. It is important to note that both CounTR (Liu et al.,
2022) and LOCA are tested in a setting without references and achieve positive performance.

The zero-shot object counting is first investigated by (Xu et al., |2023)), which proposes a reference
exemplar using the existing few-shot object counting methods and uses them for further counting.
following this work, several brand new zero-shot object counting methods have been proposed (Jiang
et al.,[2023; [Kang et al., 2023 |/Amini-Naieni et al., [2023) and have performed well.

2.3 GENERALIZED LOSS

In order to improve the performance of crowd counting methods, (Wan et al.,|[2021)) proposes a gen-
eralised loss function based on unbalanced optimal transport. In class-agnostic object counting, (Lin
et al., [2022) adopts this loss function and proposes a scale-sensitive generalised loss function that
can be applied to different loss calculation methods depending on the object categories of different
scales.

3 METHODOLOGY

3.1 PRELIMINARIES

Class-agnostic object counting divides the classes of the dataset into base classes Cpgse, Which has
been seen during training, and the unseen classes C),oper, Where Cpgse and Chye; do not intersect,
and the task of CAC is to be able to count samples containing objects from these unseen classes
Chovel at test time even if they have not been seen during training. For the few-shot setting, the
model has to count the number of objects of the same category in the image based on the given
K visual exemplars, whereas in the zero-shot setting, the exemplars are textual information about
this category, and the model needs to embed the category text into the feature space and compare
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Figure 2: The whole architecture of the proposed AODC framework.

with the image features. Additionally, when considering the reference-less setting, neither visual nor
textual exemplars are provided, and the model needs to identify the possible objects in the image.

Centre-pivot 4D Convolution. 4D convolution has been proposed and studied in previous work
(Rocco et al.; 2018;[Yang & Ramanan, 2019;|Min et al.,2021). In this paper, we use centre-pivot 4D
convolution from (Min et al., 2021) to speed up the convolution process. For the position (x,x’) of a
point in a 4D map M, define two sets P (x) and P (x’), which contain the points in a neighbourhood
of the size of the convolution kernel around x and x’, and the centre-pivot 4D convolution can be
formulated as:

(M *k) (x Z M (x,p" )k’ (p' — x') Z M (p,x ) k! (p — x), 1)
p'eP(x’) pPeP(x)

where k" and k! are the 2D kernels on 2D slices of 4D tensor M (x,:) and M (:,x’), and k =
(k% k']

3.2 BASIC REFERENCE-LESS FRAMEWORK

As shown in Fig. [2] Our framework is originally designed to solve the reference-less object counting
task, and both the zero-shot setting and the few-shot setting are adaptation of this foundational
framework. Given a sample image X, we need to identify and count the objects of the corresponding
category that may be present in the image without any reference, obtaining the predicted density map
D, and the counting number C), obtained by summing D,,.

Feature Extraction. we choose the pre-trained ResNet-50 (He et al.,|2016) as the AODC backbone.
Inspired by (Djukic et al.l [2023), we use the similar processing to extract the output feature maps
of the second and third layers, all resize to the size H x W of the second layer feature map, and
concatenate them together before a layer of convolution to channel C, and obtain the extracted
feature map F € REXH*W,

Adaptive Offsets. In order to perform deformable convolution with different offsets depending on
the object scale, we need to compute the corresponding convolution offsets based on the similarity
distribution between each pixel occupied by the object and its surroundings. First let the feature at
each position in F' be multiplied with all the features:

XO Xl = Re F(XO)'F(XI)
S (" >RLU<||F<><0>||F<X1>I>' )

Here, x° and x! denote 2-dimensional spatial positions of the two feature maps. - denotes vector
dot product. Then we obtain the self-similarity map S € R XWxHxW

To transform this 4D self-similarity map information into adaptive offsets at each position, we ap-
ply 4D convolution on it. After convolution, S is transformed into an adaptive offset feature map
Fo ffset:

Foffset :fe (S) ERCEXHXWXH,XW/a (3)
where C. is the offset feature channel length. f.() is an encoding module formed by concate-

nating several layer combinations. Each combination consists of a 4D convolutional layer, group
normalization (Wu & He, [2018)), and ReLLU activation function.
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Since the similarity of the two features is a single value, the input length to f.(-) is 1 and is convolved
to get the offset feature of length C,.. Multiple large strides in the convolution module reduce the last
two dimensions of the map to H' x W', which we then take the mean of to get F,, frset € RCexHXW

Deformable Convolution Module. Inspired by (Lin et al., 2022)), we design a similar deformable
convolution module to convolve F according to the offset information of Ff e At first, F and
F,ftset are each passed through a convolution module to obtain a local offset map Ojocq; and an
adaptive offset map Ogqqptive, T€Spectively, and then the two maps are concatenated together and
passed through a fusion convolution module to obtain the final offset map O € RCosssct XHXW
where Cofrser = k X k x (Ah, Aw) Indicates the offsets of the convolution kernel of size k x k at
each position in the feature map.

We define a convolution kernel W with size k& x k, and then perform deformable convolution on
F with O. For the point set P in a neighbourhood of this kernel size near position q, the output
Fp (q) is calculated as:

Fp(q)= > F(d+0(qqd-q)W(q -q). (4)
q'e€Pq
The obtained feature map F is further fed into a module formed by concatenating several self-
attention blocks.

--------------- Self-attention Block.  After de-

Fc Vi = ' formable convolution, some of the lo-

kL E ! cations of the feature map contain in-

F/Fp Attention I-‘ f = ' formation about the objects, and in

g r = = | | order to highlight and standardise the

E E”é features at these locations. We input

Fp into a sequence of several self-

attention blocks, where features with

Figure 3: The architecture of the two attention blocks. The objects of the same category are clus-

cross-attention block contains all the structures in the figure, tered together according to their de-

while the self-attention block excludes the cross-attention gree of similarity. The structure of a

part. single self-attention block is shown in

Fig. [3] where the feature map Fp is

simultaneously fed into the attention mechanism as Query, Key, and Value. The module output

is then fed into the next self-attention block and the final output goes into the regression head to
compute the predicted density map.

<|R|Q
X
[softmax]
Fan)
CE——. ...
noim

Regression. The regression head consists of several combinations of layers stacked on top of each
other, with each combination consisting of a 3 x 3 convolutional layer, a ReLU activation layer, and
an upsampling layer. The upsampling doubles the feature map size, and several upsampling layers
scale the feature map to the size of the original image. The final tail is a 1 x 1 convolutional layer
and ReLU activation layer, which regresses the feature channel to a density value and outputs the
predicted density map D,,.

3.3 ZERO-SHOT SETTING

Objects from other categories are often counted together in reference-less setting because category
information is not provided. The text provided in zero-shot setting can be used to highlight the cate-
gory objects that need to be counted and avoid interference from other categories. In order to embed
the category name C' in textual form into the feature space, we use a pre-trained CLIP (Radford
et al., 2021)) model to transform C' into a feature vector F. F¢ is fed into several cross-attention
blocks together with F to complete the fusion of feature information. The structure of the cross-
attention block is shown in Fig[3] and the difference with the structure of the self-attention block is
that the cross-attention block has one more cross-attention computation process in the middle part.
F is used as Query and F is used as Key and Value in the cross-attention.

3.4 FEW-SHOT SETTING

The bounding boxes of the location of the K exemplars are provided in the few-shot setting, from
which we can extract the exemplar features F; € REXCXhXW from the image feature map F using
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the ROIAlign method (He et all 2017). Because F'; contain more accurate object information,
we replace the self-similarity with the cross-similarity between F and F 7, and replace the second
feature map in Eq with Fz to compute to obtain the cross-similarity map S’:

S’ (x%x’) = ReLU ( F(x’) Fz(x) ) . )

IF OIHFZ ()]l

S’ instead of S is input to the subsequent 4D convolution module for computation, followed by the
same workflow in reference-less setting. It is worth noting that since we have K exemplars, the
channel length of input to the 4D convolution module changes from 1 to K in this setting.

3.5 GENERALIZED LOSS

In order to speed up the convergence of crowd counting and improve the performance, (Wan et al.,
2021)) proposes a generalized loss to measure the distance between the predicted density map and
the ground truth dot labels, which we also employ in this paper for supervised training of our model.

We define the predicted density map and the ground truth dot labels as A = {(a;,x;)};—, and
B = {(b;, yj)};.n:l, respectively, where a; is the predicted density value at location x; € R? and
n is the number of pixels, and we use this to set the predicted density map to be a = [a,],. y; and
b; are the location of the dot labels and the number of objects at that location, which we simplify to

b = [b;]; = 1,,,. The loss function is formulated as:
L(A,B) =min (C,D) — ¢H (D) + 7Dl - all; +7|D"1, - b|, . (6)

C denotes the cost required to move the predicted density to the ground truth dot label, D is the
transport matrix for cost calculation, and H (D) = — ;. D;;logD;; is the entropic regularization.
€ and 7 are two hyper-parameters to be tuned.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Datasets. FSC-147 is a multi-class few-shot object counting dataset that is comprehensive in nature.
It comprises 6,135 images that cover 89 different object categories. The dataset is further divided
into training, validation, and testing subsets, each containing 29 non-overlapping object categories.
the number of objects in images ranges from a minimum of 7 objects to a maximum of 3,731 objects,
with an average of 56 objects per image. Additionally, each image in the dataset is accompanied by
three to four exemplar images, all marked with bounding boxes for easier identification.

Metrics. The metrics used to evaluate our AODC method are Mean Average Error (MAE) and Root
Mean Squared Error (RMSE), which are commonly used in object counting tasks, and their formulas
are defined as follows:

N N
1 i i 1 i 7
MAFE = N E |Cp7‘ed -C 7RMSE = N E (Cpred -C )27 (7)
=1 =1

where N is the number of all the sample images, C"* and C’;m 4 are the ground truth and the predicted
number of objects for i-th image.

4.2 IMPLEMENTATION DETAILS

Architecture Details. The images in our method are uniformly resized to 384 x 576 and then fed
into the ResNet-50 pre-trained model, the feature channel length of the output feature map is 512.
4D convolution module has 4 layers and the output feature length is 8, 16, 32, 64, thus the offset
feature channel length C', is 64. The number of self-attention blocks is 3, and the number of cross-
attention blocks in the zero-shot setting is 2. The exemplar feature size in the few-shot setting is
32 x 32.
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Table 1: Comparison with state-of-the-art approaches on the FSC-147 dataset. ‘t’ means that the

method uses a customized text description.

Scheme Methods Backbone exemplars ‘ Val Test
| MAE RMSE MAE RMSE
FamNet (Ranjan et al.|2021) ResNet-50 Visual Exemplars | 23.75  69.07 22.08 99.54
BMNet+ (Shi et al.[|2022) ResNet-50 Visual Exemplars | 15.74 58.53 14.62 91.83
SAFECount (You et al.[|2023) ResNet-18 Visual Exemplars | 1528 47.20 1432 85.54
Few-shot SPDCN (Lin et al.|[2022) VGG-19 Visual Exemplars | 14.59 4997 13.51  96.80
CounTR (Liu et al.|[2022) ViT/ConvNet Visual Exemplars | 13.13  49.83 1195 91.23
LOCA (Djukic et al.|[2023) ResNet-50 Visual Exemplars | 10.24 3256 10.79  56.97
CACVIT (Wang et al.[[2024) ViT Visual Exemplars | 10.63 3795 9.13  48.96
AODC(Ours) ResNet-50 Visual Exemplars | 10.09 30.88 10.64 65.17
ZSC (Xu et al.||2023) ResNet-50/CLIP Text 2693 88.63 22.09 115.17
CLIP-Count (Jiang et al.|[2023) ViT/CLIP Text 1879 61.18 17.78 106.62
Zero-shot VLCounter (Kang et al.[[2023) ViT/CLIP Text 18.06 65.13 17.05 106.16
CounTX (Amini-Naieni et al.{[2023) ViT/CLIP Text 17.70  63.61 15.73 106.88
CounTX7t (Amini-Naienti et al.[[2023) ViT/CLIP Text 17.10 65.61 15.88 106.29
AODC(Ours) ResNet-50/CLIP Text 1427 4712 1472 104.90
RepRPN-C (Ranjan & Nguyen/[2022) ResNet-50 None 29.24  98.11 26.66 129.11
RCC (Hobley & Prisacariu/|2022) ViT None 1749 58.81 17.12 104.53
Reference-less CounTR (Liu et al.|[2022) ViT/ConvNet None 17.40 70.33 14.12 108.01
LOCA (Djukic et al.[[2023) ResNet-50 None 1743 5496 1622 103.96
AODC (Ours) ResNet-50 None 14.54 48.68 14.84 103.67

Training Details. Our model is trained end-to-end and the backbone parameters are frozen. We
apply AdamW (Loshchilov & Hutter,[2017) as the optimizer with a learning rate of 1 x 10~* and the
learning rate decays with a rate of 0.95 after each epoch. The parameters € and 7 in the generalized
loss function are set to 5 and 0.01, respectively. The batch size is 4 and the model is trained on a
single RTX A6000 for 100 epochs, which cost about 15 hours.

4.3 COMPARISON WITH STATE OF THE ART

We perform evaluation experiments of AODC on the few-shot object counting dataset FSC-147,
where we conduct experiments on all three settings and compare them to the state-of-the-art methods
on each setting separately and summarize the results in Tab.

In the few-shot setting, we mainly compare AODC with the most recent method CACViT (Wang
et al.l 2024), which is based on ViT pre-trained model on MAE and uses several post-hoc error
compensation routines as applied in CounTR (Liu et al., [2022)) to reduce the error during model
testing. Even so, AODC still manages to outperform CACVIT in the validation set, obtaining a
5.5% improvement on MAE and 18.6% on RMSE.

In the zero-shot setting, the existing methods have a bottleneck in performance that is difficult to
break through due to the lack of recognition of the spatial structure of the objects. AODC has a sig-
nificant improvement in performance relative to these methods because of the acquisition of spatial
structure information based on the basic reference-less framework. Compared to the first zero-shot
object counting method ZSC (Xu et al.| 2023), AODC has a huge improvement of 47.0% on MAE
and 46.8% on RMSE on the validation set, as well as 33.4% on MAE and 9.0% on RMSE on the
test set. Compared to the recent state-of-the-art method CounTX (Amini-Naienti et al.,|[2023)), AODC
achieves 19.4% on MAE and 25.9% on RMSE on the validation set. On the test set, AODC also
shows some improvement. Even compared to CounTX that uses special text descriptions, AODC
still outperforms it on all metrics.

In the reference-less setting, we compare and analyze each metric separately as several state-of-
the-art methods (Hobley & Prisacariu, 2022} [Liu et al., 2022} |Djukic et al.l [2023) have similar
performance. In the validation set, the MAE metrics of all three state-of-the-art methods are around
17.4, AODC exhibits an 16.4% improvement. And for RMSE, AODC achieves a 11.4% to 30.8%
improvement. In the test set, on MAE, except for CounTR, compared to the other two methods
AODC shows 8.5% to 13.3% improvement. While for RMSE, AODC exceeds all state-of-the-art
methods.

Qualitative Results. In each setting, we visualize some of the prediction results of AODC and
a state-of-the-art method for comparison and show them in Fig. [ It can be seen that AODC
has good prediction ability in all settings for both dense and sparse samples. Since AODC has
the ability to adaptively recognize objects without relying on a reference, it has a good abil-
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CACViT

AODC

Zero-shot

Figure 5: Results for samples containing objects from multiple categories in the reference-less set-
ting. Due to the lack of category information, the model recognizes as many objects present in the
image as possible.

ity to recognize mutilated or occluded objects. For example, CounTX in columns 5 and 7 does
not recognize some objects that are only partially revealed, resulting in a final prediction count
that is too small. LOCA, on the other hand, focuses too much on counting dense samples,
which makes its prediction ability for samples with larger objects and sparse distribution poor.
For example, in the 4 and 5 columns, the predic-
tion results of LOCA show a large error. Com-
paratively AODC has a good ability to recog-
nize both large or small objects and predicts the
correct densities for objects of different scales.

A issue that exists in the reference-less setting
is that, due to the lack of reference, the model

) o ) is unable to recognize which categories of ob-
Figure 6: Visualization of deformable convolution jects in the image should be counted and which

kernel positions for each object location. should not, and will count all objects as far as
possible, as in Fig. |§| On the other hand, with-
out providing category information, all categories are supposed to be counted. However, since the
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Table 2: Comparison with the state-of-the-art approaches on the cross-datasets.

CARPK Val-COCO Test-COCO

Scheme Methods

MAE RMSE | MAE RMSE | MAE RMSE

FamNet (Ranjan et al.| 2021) 28.84 4447 | 39.82 108.13 | 22.76  45.92

BMNet (Shi et al.| 2022) 1044 1377 | 2655 93.63 | 12.38 2476

Few-shot LOCA (Djukic et al.| 2023) 997 1251 | 1686 5322 | 1073 3131

CACViT (Wang et al.| [2024) 830 11.18 | 20.00 5897 | 855 18.42

AODC (Ours) 708  9.68 | 1824 52.67 | 11.13 26.05

CLIP-Count (Jiang et al.|2023) 1196 1661 | 2643 85.13 | 1635 38.86

Zero-shot CounTX (Amini-Naieni et al.]2023) 11.64 14.85 | 29.39 101.56 | 12.15 25.49

AODC (Ours) 729 1015 | 2258 6749 | 1135 2861

Reference.l RCC (Hobley & Prisacariu 2022) 1231 1540 | 2344 6821 | 13.07 2801

clerence-iess  AoDC (Ours) 731 1034 | 2274 6527 | 1232 2716

FSC-147 dataset only labels one category for each sample, it is not possible to accurately measure
the ability to count multiple categories.

To show more intuitively the effect of AODC in capturing and recognizing objects without refer-
ences, we display the offset convolution kernel positions obtained by the model for each ground
truth point location on the original image. As shown in Fig. [6] for objects of different scales and
shapes, our method is able to offset the convolution kernels to the appropriate positions to enclose
the whole objects as much as possible, thus obtaining complete and accurate information.

4.4 CROSS-DATASET GENERALIZATION

In addition to the few-shot object counting dataset FSC-147, we also cross-evaluate the performance
of AODC on the car-counting dataset CARPK (He et al., [2017)) and the COCO (Lin et al.|, [2014)
subsets of FSC-147. CARPK contains 1448 images from several parking lots taken from a bird’s
view, and the training set contains data from three parking lot scenes, while the test set has data
from one other scene. We put the AODC model trained on FSC-147 onto the test set of CARPK
for evaluation and the car category samples in the training set are eliminated. FSC-147 provides the
subsets that have pre-trained object detectors on the COCO dataset, Val-COCO and Test-COCO, for
comparing the performance on them with the object detection methods. The two subsets contain
277 and 282 images, respectively, and we validate the performance of AODC on these two sets. All
the results are shown in Tab. 21

Overall, AODC on the CARPK dataset outperforms all state-of-the-art methods by a large margin,
and it is noteworthy that the experimental results even on reference-less setting outperform the most
recent state-of-the-art CACVIT on the few-shot setting, which demonstrates the strong generaliza-
tion ability of AODC. For Val-COCO and Test-COCO, AODC also has superior performance. The
error values for most of the metrics of AODC are lower than the existing state-of-the-art methods.

4.5 ABLATION STUDY

To determine the contribution of the adaptive offset convolution to the model, we remove the adap-
tive offsets in the deformable convolution module to perform ablation experiments. In addition to
this, AODC also has a self-attention module and generalized loss to further enhance the model in ad-
dition to the necessary frame components. In order to verify the specific enhancement effect of these
components, we conduct the corresponding ablation experiments and display the results in Tab.
With or without a single component each forms four sets of comparison experiments: contrast the
addition of this component to a baseline model without any components, and the addition of this
component to a model with only one of the other two components alone, with the addition of this
component to a model with the other two components to form a complete AODC model. The results
of these experiments reflect the effect of each component on the overall enhancement of the model.

Adaptive Offsets. After removing the adaptive offsets, the deformable convolution can only obtain
the scale information of the object through the feature itself, which limits the recognition perfor-
mance of the model to a great extent. The experimental results show that the performance of the
model with adaptive offsets is significantly enhanced. An improvement of up to 21.2% on MAE
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and 27.8% on RMSE is obtained on the validation set, as well as an improvement of up to 18.1% on
MAE and 6.1% on RMSE on the test set.

Table 3: Ablation studies on the FSC-147 dataset. ‘G-Loss’ means gﬁlf-alttenti.on f ModfuLe.
Generalized Loss, ‘Self-attn’ means self-attention mechanism and e clustering effect of the

‘Adapt-O’ means Adaptive Offsets. self-attention mechanism
on features of the same

Adapt-O  Self-attn G—Loss‘ Val Test category of objects is
\MAE RMSE MAE RMSE significant, with the model

2529 7045 2468 11592 Lﬁ;;fgoyjpselfoatt‘fgl%?;:
2233 7046 2185 11294 o) MAE sl 23.6% on
2344 6819 2356 11431  RyOE i the wnlidation
2087 6852 2033 10976 (i and'uo to 16.1% on
1710 6374 17.69 10743 NAR w4 80% on RMSE
1845 6740 1813 11035 S0 O hosed

2071 6543 1949 108.02 ./ directly regressing on
14.54  48.68 14.84 103.67 the deformable convolved

features. This operation
not only standardizes the information representation of the individual objects, but also provides a
good separation between the objects and the background features.

WAX X XN X
NN X XA XX
R N N N

Generalized Loss. Since the principle of AODC is to localize to the center of the object by de-
formable convolution with the same offset as the object size, the generalized loss based on point
labels is more suitable for our method than the MSE loss. It can be observed from the experimental
results that the use of generalized loss gives a very significant improvement to the model, obtaining
up to 29.8% on MAE and 25.6% on RMSE on the validation set, and up to 23.9% on MAE and
5.3% on RMSE on the test set.

Table 4: Ablation studies of the number of attention blocks in the two attention modules.
Blocks 1 2 3 4 5 6

MAE 1620 1583 14.54 1523 1551 1572
RMSE 6045 5828 48.68 5194 5342 5283

MAE 1489 14.27 14.43 15.15 15.87 16.19
RMSE 59.04 47.12 5248 5980 6136 65.24

Self-attn

Cross-attn

Both the self-attention module and the cross-attention module each contain a sequence of several
attention blocks, and we conduct the corresponding experiments on the validation set of FSC-147 to
verify the optimal number of blocks for each. As shown in Tab. [4] as the number of self-attention
blocks increases from 1 to 6, the model performance gradually becomes stronger and reaches an
optimum at 3, after which the metrics begin to gradually increase, indicating that the model begins
to overfit. The case of cross-attention is similar, after the optimal performance is reached at a block
number of 2, the model performance is not improved as the number of blocks increases and the
model complexity rises, so the optimal number of cross-attention blocks can be determined from
this analysis.

5 CONCLUSION

We present a novel generic network for class-agnostic object counting task with adaptive offset
deformable convolution (AODC), which is initially designed for solving the counting task on the
reference-less setting and can be further generalized to the zero-shot and few-shot settings. AODC
obtains the scale offsets of the object corresponding to each position by using 4D convolution on
the self-similarity maps of the image features, and using the obtained offsets to perform deformable
convolution on the image features to capture the entire object, which in turn is regressed to obtain
an accurate predicted density map. Experiments are conducted on multiple datasets and the results
demonstrate that we achieve state-of-the-art performance on all the three settings.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Shahira Abousamra, Minh Hoai, Dimitris Samaras, and Chao Chen. Localization in the crowd
with topological constraints. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 872-881, 2021.

Niki Amini-Naieni, Kiana Amini-Naieni, Tengda Han, and Andrew Zisserman. Open-world text-
specifed object counting. In 34th British Machine Vision Conference 2023, BMVC 2023, Ab-
erdeen, UK, November 20-24, 2023. BMVA, 2023.

Carlos Arteta, Victor Lempitsky, and Andrew Zisserman. Counting in the wild. In Proceedings of
the European Conference on Computer Vision, pp. 483—498, 2016.

Yiqing Cai, Lianggangxu Chen, Haoyue Guan, Shaohui Lin, Changhong Lu, Changbo Wang, and
Gaoqi He. Explicit invariant feature induced cross-domain crowd counting. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 259-267, 2023.

Zhi-Qi Cheng, Qi Dai, Hong Li, Jingkuan Song, Xiao Wu, and Alexander G Hauptmann. Rethinking
spatial invariance of convolutional networks for object counting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 19638-19648, 2022.

Nikola Djukic, Alan Lukezic, Vitjan Zavrtanik, and Matej Kristan. A low-shot object counting
network with iterative prototype adaptation. pp. 18872—-18881, 2023.

Zhipeng Du, Jiankang Deng, and Miaojing Shi. Domain-general crowd counting in unseen scenar-
i0s. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 561-570,
2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770-778, 2016. doi: 10.1109/CVPR.2016.90.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV), pp. 2980-2988, 2017. doi: 10.1109/ICCV.2017.
322.

Michael Hobley and Victor Prisacariu. Learning to count anything: Reference-less class-agnostic
counting with weak supervision. arXiv preprint arXiv:2205.10203, 2022.

Meng-Ru Hsieh, Yen-Liang Lin, and Winston H Hsu. Drone-based object counting by spatially
regularized regional proposal network. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 4145-4153, 2017.

Ruixiang Jiang, Lingbo Liu, and Changwen Chen. Clip-count: Towards text-guided zero-shot ob-
ject counting. In Proceedings of the 31st ACM International Conference on Multimedia, pp.
4535-4545, 2023. ISBN 9798400701085.

Seunggu Kang, WonJun Moon, Euiyeon Kim, and Jae-Pil Heo. Vlcounter: Text-aware visual repre-
sentation for zero-shot object counting, 2023.

Dingkang Liang, Jiahao Xie, Zhikang Zou, Xiaoqing Ye, Wei Xu, and Xiang Bai. Crowdclip: Unsu-
pervised crowd counting via vision-language model. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2893-2903, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision—-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740-755. Springer, 2014.

Wei Lin and Antoni B Chan. Optimal transport minimization: Crowd localization on density maps

for semi-supervised counting. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 21663-21673, 2023.

11



Under review as a conference paper at ICLR 2025

Wei Lin, Kunlin Yang, Xinzhu Ma, Junyu Gao, Lingbo Liu, Shinan Liu, Jun Hou, Shuai Yi, and
Antoni Chan. Scale-prior deformable convolution for exemplar-guided class-agnostic counting.
In Proceedings of the British Machine Vision Conference, 2022.

Chang Liu, Yujie Zhong, Andrew Zisserman, and Weidi Xie. Countr: Transformer-based gener-
alised visual counting. In Proceedings of the British Machine Vision Conference, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Erika Lu, Weidi Xie, and Andrew Zisserman. Class-agnostic counting. In Proceedings of the Asian
Conference on Computer Vision, pp. 669-684, 2019.

Juhong Min, Dahyun Kang, and Minsu Cho. Hypercorrelation squeeze for few-shot segmentation.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 6941-6952,
2021.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin EI-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193,2023.

Roni Paiss, Ariel Ephrat, Omer Tov, Shiran Zada, Inbar Mosseri, Michal Irani, and Tali Dekel.
Teaching clip to count to ten. arXiv preprint arXiv:2302.12066, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021.

Viresh Ranjan and Minh Hoai Nguyen. Exemplar free class agnostic counting. In Proceedings of
the Asian Conference on Computer Vision, pp. 3121-3137, 2022.

Viresh Ranjan, Udbhav Sharma, Thu Nguyen, and Minh Hoai. Learning to count everything. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3394—
3403, 2021.

Ignacio Rocco, Mircea Cimpoi, Relja Arandjelovi¢, Akihiko Torii, Tomas Pajdla, and Josef Sivic.
Neighbourhood consensus networks. Advances in neural information processing systems, 31,
2018.

Min Shi, Hao Lu, Chen Feng, Chengxin Liu, and Zhiguo Cao. Represent, compare, and learn: A
similarity-aware framework for class-agnostic counting. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 9529-9538, 2022.

Weibo Shu, Jia Wan, Kay Chen Tan, Sam Kwong, and Antoni B Chan. Crowd counting in the
frequency domain. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 19618-19627, 2022.

Russell Stewart, Mykhaylo Andriluka, and Andrew Y Ng. End-to-end people detection in crowded
scenes. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

2325-2333, 2016.

Jia Wan, Ziquan Liu, and Antoni B Chan. A generalized loss function for crowd counting and lo-
calization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 1974-1983, 2021.

Meng Wang and Xiaogang Wang. Automatic adaptation of a generic pedestrian detector to a specific
traffic scene. In CVPR 2011, pp. 3401-3408. IEEE, 2011.

Zhicheng Wang, Liwen Xiao, Zhiguo Cao, and Hao Lu. Vision transformer off-the-shelf: A sur-

prising baseline for few-shot class-agnostic counting. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2024.

12



Under review as a conference paper at ICLR 2025

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3—19, 2018.

Jingyi Xu, Hieu Le, Vu Nguyen, Viresh Ranjan, and Dimitris Samaras. Zero-shot object counting.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1554815557, 2023.

Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. Ad-
vances in neural information processing systems, 32, 2019.

Zhiyuan You, Kai Yang, Wenhan Luo, Xin Lu, Lei Cui, and Xinyi Le. Few-shot object counting
with similarity-aware feature enhancement. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 6315-6324, 2023.

Vitjan Zavrtanik, Martin Vodopivec, and Matej Kristan. A segmentation-based approach for polyp
counting in the wild. Engineering Applications of Artificial Intelligence, 88:103399, 2020.

Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov,
and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18123-18133, 2022.

A APPENDIX

A.1 COMPUTATIONAL COST

Table 5: Comparison of computational cost.

Scheme Methods GFLOPs Params(M) Epochs
BMNet (Shi et al., [2022) 239.92 13.08 300
CounTR (L1u et al.,[2022) 84.75 99.26 1000
Few-shot LOCA (Djukic et al.|[2023) 395.95 32.46 200
CACViT (Wang et al.,[2024) 88.80 99.24 200
AODC (Ours) 109.12 32.40 100
CLIP-Count (Jiang et al., [2023) 246.00 236.02 200
Zero-shot VLCounter (Kang et al., 2023) 63.98 88.53 200
CounTX (Amini-Naieni et al., 2023 43.88 93.82 1000
AODC (Ours) 139.12 81.23 100
RCC (Hobley & Prisacariul [2022) 16.76 21.67 80
Reference-less LOCA (Djukic et al.,[2023) 49.49 31.85 200
AODC (Ours) 111.78 47.36 100

In order to show the complexity and computational cost of our method, we record the values of
FLOPs and the number of parameters for AODC and some other state-of-the-art methods and display
them in Tab.

From the values in the table, it can be seen that in the few-shot setting, the computational cost of
our method is smaller than that of LOCA and BMNet, and the number of parameters is almost the
same with LOCA. The number of epochs we need for training is half of that of other methods,
which makes the training of AODC more efficient and faster. In the zero-shot setting, the number of
parameters is not much different between the methods, while the training speed of AODC is better
than CLIP-Count and CounTX (CounTX is not as efficient because the number of epochs needed
for finetune is too large). The computational cost of CounTR on the Reference-less setting are not
listed here because they are almost the same with which on few-shot setting. The reason why the
computational cost of RCC is so small is because its performance mainly relies on a large amount
of data trained pre-training model, RCC does not need additional structure and computation, direct
regression can obtain certain results. Our training speed is similar compared to LOCA, while the
number of parameters is slightly higher.
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Table 6: Analysis of layer combinations of extracted features.

F \ Val Test
eature Layers
| MAE RMSE MAE RMSE
2 17.45 6284 17.29 109.21
243 1454 48.68 14.84 103.67
2+4 18.47 6492 17.86 108.52
2+3+4 15.42 5295 15.80 104.31
16.0
16.0 8
15.5

5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10
e(x107%) T
(a) Ablation of the hyper-parameter € (b) Ablation of the hyper-parameter 7

Figure 7: Ablation study of hyper-parameters in generalized loss.

In overall, the computational cost and training efficiency of AODC is moderate and perfectly ac-
ceptable for the performance it achieves.

A.2 ADDITIONAL ABLATION STUDY

For the multi-layer features from the pre-trained ResNet-50 backbone, we select different combina-
tions of these feature layers for the experiments. As shown in Tab. [6] we divide the feature layers
into four combinations and display the experimental results in the table. Among them, the second
layer of features is necessary because our method is carried out on the spatial size of this layer. The
experimental results show that combining the features of layers 2 and 3 gives the best performance,
while adding the fourth layer leads to a decrease in performance. This may be due to the fact that
too much spatial information is already lost in layer 4 and the oversized dimensions instead contain
redundant information that is not needed for the counting task, making the model performance neg-
atively affected. Dropping the layer 4 features not only optimizes performance, but also keeps the
computational complexity at a relatively acceptable level.

Two hyperparameters € and 7 are defined in our quoted generalized loss function, and in order to
determine the impact of these two parameters on the performance of our model, we conduct the
corresponding experiments on the FSC-147 validation set and show the results in Fig. The
performance of the model does not fluctuate too much with parameter variations for both € and 7,
and most of the value variations are within the range of 0.5. This indicates that the training effect
of the model is insensitive to parameter changes in the case that € and 7 do not take particularly
extreme values, ensuring the robustness of our method.

A.3 MORE EXPERIMENTAL RESULTS
We visualize more visualization of deformable convolutional kernel positions, more qualitative re-

sults in FSC-147 and some qualitative results in CARPK and display them in Fig. [§] Fig. 0]and Fig.
[I0lfor the readers to refer to.

14



Under review as a conference paper at ICLR 2025

BEE

Figure 8: More visualization of deformable convolutional kernel positions.
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Figure 9: More qualitative results on the FSC-147 dataset.
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Figure 10: Qualitative results on the CARPK dataset.
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