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Abstract

Reinforcement learning (RL) benefits from001
Large language models (LLMs) for improved002
reasoning and planning, but their application003
in Multi-agent reinforcement learning (MARL)004
remains challenging due to communication con-005
flicts. We propose a novel framework where006
agents engage in structured multi-round conver-007
sations before taking actions, ensuring better008
coordination and decision-making. By leverag-009
ing LLMs’ reasoning capabilities and integrat-010
ing techniques like Chain of Thought reasoning,011
our approach enhances collaboration in MARL.012
Experimental results show improved efficiency013
and scalability, bridging the gap between single-014
agent and multi-agent LLM applications.015

1 Introduction016

Reinforcement Learning (RL) has been widely017

adopted to tackle sequential decision-making prob-018

lems. However, traditional RL algorithms often019

suffer from low sample efficiency and lack ex-020

plainability, limiting their applicability in complex,021

real-world scenarios. To address these issues, re-022

searchers have begun integrating Large Language023

Models (LLMs) into RL frameworks. LLMs have024

demonstrated strong reasoning and planning capa-025

bilities, making them a promising tool for enhanc-026

ing RL performance.027

Existing research has explored the use of LLMs028

in various roles, such as planners, coders, and ex-029

ecutors(Cao Yuji, et al., 2024). While these studies030

have shown promising results in single-agent set-031

tings, extending LLM-based frameworks to Multi-032

Agent Reinforcement Learning (MARL) presents033

unique challenges. One critical issue is the po-034

tential for conflicts in communication when mul-035

tiple agents exchange messages simultaneously.036

For instance, agents may send conflicting instruc-037

tions, leading to inconsistencies in actions and re-038

duced collaboration efficiency. Addressing this039

problem requires designing effective communica- 040

tion mechanisms that can handle coordination and 041

information-sharing among agents. 042

Several techniques, such as Chain of Thought 043

(CoT) (Jason Wei, et al., 2023) reasoning, Reflec- 044

tion(Noah Shinn, et.al, 2023) , and Monte Carlo 045

Tree Search, have been proposed to enhance the 046

decision-making capabilities of LLMs. These ap- 047

proaches have proven effective in single-agent con- 048

texts by improving reasoning and learning effi- 049

ciency. However, their application to MARL re- 050

mains underexplored. In multi-agent systems, ac- 051

tions taken by one agent can directly influence 052

the environment and the decisions of other agents. 053

Therefore, it is essential to incorporate mechanisms 054

that allow agents to exchange and utilize each 055

other’s information, such as intentions, thoughts, 056

and actions, to achieve optimal collaboration. 057

In this paper, we propose a novel method to ad- 058

dress the communication challenges in MARL. Be- 059

fore deciding on actions, agents engage in struc- 060

tured conversations over a specified number of 061

rounds. Through these conversations, agents can 062

exchange information, align their strategies, and 063

reach agreements. By sharing sufficient informa- 064

tion, the proposed method reduces inconsistencies 065

between messages and actions, thereby enhanc- 066

ing coordination and decision-making efficiency. 067

Our approach leverages the reasoning capabilities 068

of LLMs and integrates them into a collaborative 069

framework designed specifically for multi-agent 070

environments. 071

We evaluate our method in multi-agent BabyAI 072

environments, comparing different communication 073

strategies with Reflexion and Llama 3.1 (70B). Re- 074

sults show that structured multi-round communi- 075

cation, especially the two-round alternating pro- 076

posal method, significantly improves coordination 077

efficiency. Compared to MAPPO, our approach 078

achieves faster learning and higher performance 079

without complex reward design, highlighting the 080
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potential of LLM-driven MARL systems.081

2 Related Work082

2.1 Communication in MARL083

Effective communication among agents in MARL084

is a crucial aspect that has gained significant at-085

tention in recent years. The ability for agents to086

exchange information enables coordination, miti-087

gates conflicts, and facilitates the accomplishment088

of complex tasks in shared environments. Over089

the years, various methods have been developed090

to tackle the challenges associated with communi-091

cation, ranging from centralized to decentralized092

frameworks, and adaptive protocols.093

Centralized Communication Approaches. Cen-094

tralized methods rely on a central entity to ag-095

gregate and distribute information among agents.096

For instance, DIAL (Differentiable Inter-Agent097

Learning) (Jakob N. Foerster, et al., 2016) employs098

centralized training with decentralized execution099

(CTDE). During training, agents share information100

to learn implicit communication protocols, which101

are later executed independently. While these meth-102

ods enable effective learning in smaller setups, scal-103

ability becomes a major challenge as the number of104

agents increases, often leading to communication105

bottlenecks and computational overhead.106

Decentralized Communication Architectures. In107

decentralized settings, agents communicate directly108

with one another without a central mediator. Tech-109

niques leveraging graph neural networks (GNNs)110

are often used to model inter-agent interactions111

(Jiechuan Jiang, et al., 2020). Frameworks such as112

CommNet embed messages exchanged between113

agents into their policy networks, enabling de-114

centralized information sharing. While these ap-115

proaches improve scalability and remove reliance116

on a central hub, they may face difficulties in en-117

vironments requiring global coordination, as local118

interactions might not always capture the bigger119

picture.120

Comma: A Coordinated Multi-Agent Approach.121

Comma, short for Coordinated Multi-Agent Actor-122

Critic, is a MARL algorithm designed to enhance123

coordination among agents in complex environ-124

ments. It employs CTDE, where a shared critic125

uses global information during training, while126

agents operate independently during execution. By127

incorporating an attention mechanism, Comma al-128

lows agents to prioritize relevant information from129

peers, addressing non-stationarity and improving130

coordination. Its scalability and efficiency make 131

it suitable for cooperative tasks such as multi- 132

agent navigation, resource allocation, and robotics 133

(Lianyu Hu, et al., 2024). 134

Emerging Trends in Adaptive Communication. 135

Recent advances focus on enabling agents to learn 136

their own communication protocols dynamically. 137

Methods like MADDPG (Multi-Agent Deep De- 138

terministic Policy Gradient) with communication 139

extensions (Ryan Lowe, et al, 2017) allow agents 140

to determine what information to share and how to 141

interpret received messages. These learned proto- 142

cols are highly adaptable, reducing redundant com- 143

munication and improving efficiency in dynamic 144

environments. By enabling agents to refine their 145

communication strategies based on environmental 146

feedback, these methods pave the way for robust, 147

scalable MARL solutions. 148

In summary, communication in MARL has 149

evolved from centralized frameworks to decentral- 150

ized architectures and adaptive protocols. While 151

centralized methods are effective in smaller, con- 152

trolled environments, decentralized and learned 153

communication approaches address scalability and 154

adaptability challenges. These advancements col- 155

lectively enhance the coordination capabilities of 156

agents in increasingly complex and dynamic set- 157

tings. 158

2.2 Employing LLM for Multiagent 159

Communication 160

Leveraging Large Language Models (LLMs) for 161

multi-agent communication has emerged as a 162

promising approach in reinforcement learning. In 163

GLAM (Grounded Language Model) (Thomas 164

Carta, et al., 2023), the agent’s state, obtained from 165

the environment, is input into the LLM to calculate 166

probabilities for each possible action. The action 167

with the highest probability is selected, as defined 168

by Equation 1. Here, LLM(a|s) represents the 169

probability of action a (in text form) being output 170

by the LLM when the state s (in text form) is input, 171

and A denotes the agent’s action space. 172

π(s) = argmax
a∈A

LLM(a|s) (1) 173

Using the reward r received as a result of the ac- 174

tion, the policy is updated through fine-tuning with 175

PPO (John Schulman, et al., 2017). This frame- 176

work enables agents to quickly adapt to novel tasks 177

by leveraging the extensive knowledge embedded 178
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in the LLM, producing a versatile and robust agent179

capable of addressing a variety of challenges.180

Building upon GLAM, the FAMA (Fine-Tuned181

Agent with Multi-Agent Learning) method (Oliver182

Slumbers, et al., 2024) extends this approach to183

a multi-agent setting. In FAMA, the LLM serves184

as the policy model for each agent, enabling on-185

line multi-agent learning with message exchanges.186

This framework enhances the independent GLAM187

model by incorporating inter-agent communication.188

The overall architecture for two agents is depicted189

in Figure 1.190
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Figure 1: Overview of FAMA

In FAMA, each agent inputs its state from the191

environment into the LLM to generate a message192

intended for the other agent. Upon receiving a mes-193

sage, the agent combines its state with the received194

message, inputs this combined information into195

the LLM, and calculates probabilities for each ac-196

tion. The action with the highest probability is then197

selected, as defined by Equations 2 and 3. Here,198

LLMi(a|s) represents the probability of action a199

being output by agent i’s LLM when state s is in-200

put. Ai denotes the action space of agent i, and mi201

is the message sent by agent i.202

π1(s1) = argmax
a∈A1

LLM1(a|s1,m2) (2)203

π2(s2) = argmax
a∈A2

LLM2(a|s2,m1) (3)204

The messages m1 and m2 are generated as205

shown in Equations 4, where LLMi(·|si) produces206

the message to be sent by agent i based on its state207

si.208

mi = LLMi(·|si) (4)209

This approach leverages the knowledge and rea-210

soning capabilities of LLMs, allowing agents not211

only to adapt quickly to the environment but also212

to learn cooperative behaviors through efficient 213

message exchanges. By combining the agents’ 214

states with received messages, the system achieves 215

a higher level of coordination and flexibility in 216

multi-agent tasks. 217

2.3 Text-Based Learning Framework 218

Reflexion (Noah Shinn, et.al, 2023) introduces a 219

novel framework to enhance language agents by 220

leveraging language-based feedback instead of con- 221

ventional weight updates through supervised or 222

reinforcement learning. This innovative approach 223

allows language models to refine their problem- 224

solving abilities by modifying their inputs dynami- 225

cally. 226

In the Reflexion framework, agents utilize a 227

short-term memory buffer to store information gath- 228

ered during each episode, including environmen- 229

tal observations and the agent’s actions. Feedback 230

from the environment, whether in the form of scalar 231

values or free-form text, is processed linguistically. 232

Agents analyze this feedback to identify potential 233

improvements and store reflective insights in a long- 234

term memory buffer, which persists across episodes. 235

This reflective process enables agents to iteratively 236

refine their decision-making strategies, outperform- 237

ing traditional methods in tasks such as sequential 238

decision-making, coding, and language reasoning 239

(Noah Shinn, et.al, 2023). 240

Additionally, the Reflexion framework intro- 241

duces two key communication strategies for multi- 242

agent systems: (1) unidirectional communication 243

and (2) alternating proposal communication. Uni- 244

directional communication minimizes conflicts and 245

inconsistencies by eliminating simultaneous bidi- 246

rectional exchanges, ensuring clearer and more re- 247

liable interactions. Alternating proposal communi- 248

cation allows agents to exchange and refine action 249

policies through iterative discussions, fostering im- 250

proved coordination. 251

To further enhance the learning process, Reflex- 252

ion replaces traditional PPO-based reinforcement 253

learning with prompt-based adjustments driven by 254

language feedback. This adjustment not only im- 255

proves agents’ inference capabilities but also en- 256

hances the explainability of their decisions, making 257

the framework well-suited for complex reasoning 258

and coordination tasks. 259
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3 Proposed Method for Changing260

Communication Between Agents261

We introduce two novel communication strategies262

for multi-agent systems using LLM-based agents:263

(1) unidirectional message transmission and (2) al-264

ternating proposals. These methods aim to address265

limitations in existing frameworks like FAMA by266

improving coordination and reducing conflicts. Ad-267

ditionally, the proposed approaches integrate ad-268

vanced reasoning techniques such as CoT (Chain269

of Thought) (Jason Wei, et al., 2023) and Reflex-270

ion (Noah Shinn, et.al, 2023) to enhance decision-271

making and explainability.272

3.1 Challenges in Bidirectional273

Communication274

Bidirectional communication, as seen in FAMA,275

enables agents to exchange messages during276

decision-making. However, it often leads to con-277

flicts and inconsistencies between communicated278

intents and actual actions (Zeyang Liu, et al., 2021).279

For instance, if two agents send contradictory in-280

structions to each other, they may act based on281

conflicting assumptions, resulting in unintended282

behaviors.283

This issue is illustrated in Equations 5, where284

actions π′
i(si) are derived without messages mi:285

π′
1(si) = argmax

a∈Ai

LLMi(a|si) (5)286

Dependencies between states si, messages mi,287

and actions πi(si) can cause misalignment between288

communicated intentions and actual behaviors.289

Such contradictions hinder effective coordina-290

tion, slowing learning and degrading performance291

in cooperative tasks.292

3.2 Unidirectional Message Transmission293

To address the issues in bidirectional communica-294

tion, we propose a unidirectional communication295

method, where only one agent generates messages.296

This approach eliminates conflicts and inconsisten-297

cies while retaining relevant information exchange.298

The process is illustrated in Figure 2.299

Let N = {1, 2, . . . , N} denote the set of N300

agents, and Ai be the action space of agent i. The301

process is as follows:302

1. Each agent i computes its message mi using303

its state si:304

mi = LLMi(·|si) (6)305
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Figure 2: Overview of unidirectional communication

2. Each agent receives messages from all other 306

agents and combines them with its state to compute 307

the probabilities of actions: 308

πi(si,m−i) = argmax
a∈Ai

LLMi(a|si,m−i) (7) 309

Here, m−i represents the set of messages from all 310

other agents: 311

m−i = {mj : j ∈ N , j ̸= i} 312

The following pseudocode demonstrates the 313

computation of actions for all agents: 314

Algorithm 1 Calculate Actions for N Agents

Require: {s1, s2, . . . , sN} ∈ States
Ensure: {π1(s1), π2(s2), . . . , πN (sN )} ∈ A1 ×
A2 × · · · × AN

1: Initialize m← [ ] {Message list for all agents}

2: for all i ∈ N do
3: mi ← LLMi(·|si)
4: Append mi to m
5: end for
6: for all i ∈ N do
7: m−i ←m \ {mi}
8: πi(si,m−i)← argmax

a∈Ai

LLMi(a|si,m−i)

9: end for
10: return {π1(s1), π2(s2), . . . , πN (sN )}

Example: Let us consider a two agent case. Us- 315

ing their state s1, Agent 1 generates a message m1 316

for Agent 2. Both agents then compute their ac- 317

tions based on their states and, in the case of Agent 318

2, the received message m1: 319

π1(s1) = argmax
a∈A1

LLM1(a|s1) (8) 320

321
π2(s2) = argmax

a∈A2

LLM2(a|s2,m1) (9) 322
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3.3 Alternating Proposals for Multiple Agents323

While unidirectional communication resolves con-324

flicts, it lacks the collaborative dynamics of bidirec-325

tional communication. To address this, we propose326

an alternating proposals method where N agents327

iteratively exchange messages for n rounds. This it-328

erative exchange allows agents to reach a consensus329

by sharing information and strategies. The process,330

depicted in Figure 3, enhances coordination and331

reduces inconsistencies.332
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Figure 3: Overview of alternating proposals for multiple
agents

Messages exchanged during each round are333

recorded in a global conversation log as follows:334

conversationk = (m1
1,m

1
2, . . . ,m

1
N , . . . ,mk

1,

mk
2, . . . ,m

k
N ),
(10)335

where mk
i is the message generated by agent i336

during the k-th round.337

After the n-th round, each agent uses the com-338

plete conversation history, conversationn, along339

with their respective states si, to perform CoT rea-340

soning and determine their actions. The action for341

agent i is computed as:342

πi(si) = argmax
a∈Ai

LLMi(a|si, conversationn),

(11)343

where Ai represents the action space of agent i.344

The pseudocode for this approach is shown in345

Figure 4.346

This approach generalizes the alternating propos-347

als framework to any number of agents, enabling348

collaborative behavior in environments requiring349

complex coordination. Each agent contributes to350

and benefits from the collective conversation, en-351

suring consistent and coordinated action decisions352

across the system.353

Algorithm 2 Calculate π1, π2, . . . , πN

Require: {s1, s2, . . . , sN} ∈ StringN

Ensure: {π1(s1), π2(s2), . . . , πN (sN )} ∈ A1 ×
A2 × . . .×AN

1: conversation← []
2: for k = 1 to n do
3: for i = 1 to N do
4: mk

i ← LLMi(·|si, conversation)
5: conversation← conversation+mk

i

6: end for
7: end for
8: for i = 1 to N do
9: ai ← argmax

a∈Ai

LLMi(a|si, conversation)

10: end for
11: return {a1, a2, . . . , aN}

Figure 4: Pseudocode for alternating proposals with N
agents

4 Evaluation 354

4.1 BabyAI and BabyAI-Text Environments 355

BabyAI (Maxime Chevalier-Boisvert, et al., 356

2019) is a single-agent environment designed for 357

language-based learning, constructed by Chevalier- 358

Boisvert et al. As illustrated in Figure 5, the en- 359

vironment comprises a grid populated with agents 360

(triangles) and various objects (e.g., circles, boxes, 361

and keys). The agent performs actions repeatedly 362

based on limited observational information to ac- 363

complish diverse tasks.

Figure 5: Example of Bab-
yAI environment (Maxime
Chevalier-Boisvert, et al.,
2019)

Figure 6: Example of Bab-
yAI multi-agent environ-
ment

364
In the BabyAI environment, agents can observe 365

specific information about objects within their im- 366

mediate vicinity, including their position and di- 367

rection. Based on this observational information, 368

agents choose actions from the following: "go for- 369

ward", "turn right", "turn left", "pick up" (pick 370
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up an object in front), "drop" (place a previously371

picked object in front), "toggle" (open/close a box372

or door in front).373

These actions enable the agent to navigate the374

field, transport objects, and move between rooms375

by opening/closing doors. Combining these actions376

allows the agent to accomplish tasks such as:377

• GoToObj: Move next to a specific object378

• PutNext: Place a specific object next to an-379

other specific object380

• UnlockPickup: Unlock a door and pick up an381

object inside382

• Pickup (BlockedUnlockPickup): Similar to383

UnlockPickup, but with additional obstacles384

in front of the door385

Besides these predefined tasks, varying the grid386

size, object placement, and completion conditions387

enables the implementation of various tasks.388

Because this environment facilitates the textual389

description of states, BabyAI-Text was developed390

by adding functionality to convert observations391

from real-number vectors to text, as used in exper-392

iments with GLAM and FAMA. Following these393

studies, we also add a functionality to convert ob-394

servations into text.395

Additionally, experiments were conducted in a396

multi-agent environment expanded from the origi-397

nal setting, similar to previous studies (Oliver Slum-398

bers, et al., 2024). Each agent operates within its399

observable range, and multiple agents cooperate400

to achieve a single goal. A visualization of the401

multi-agent environment is shown in Figure 6.402

Figure 6 shows the task “Pickup", which is ac-403

complished by having one of the agents pick up the404

red box in the room on the right. To reach the box,405

the red ball in front of the blue door must be picked406

up and removed, and the door must be opened with407

the blue key.408

4.2 Experiment Settings409

In the experiment, for each condition in Table 1,410

the task in "Pickup","PutNext" is performed until411

learning converges. For each method using LLM,412

Llama3.1 (70B) (AI@Meta, 2024)is used as the413

language model. As a conventional reinforcement414

learning method that does not use LLM, we use an415

algorithm called MAPPO(Chao Yu, et al., 2022)416

for training and comparison.417

Table 1: Settings for each experiment

ID Method Learning algorithm Other setting
(1) No Communication Reflexion -
(2) Bidirectional Reflexion -
(3) Unidirectional Reflexion -
(4) Alternating Proposals Reflexion 1 round
(5) Alternating Proposals Reflexion 2 rounds
(6) Alternating Proposals Reflexion 3 rounds
(7) Alternating Proposals Reflexion 4 rounds
(8) - MAPPO No pseudo reward
(9) - MAPPO Pseudo reward

4.3 Experiment Results 418

Table 2 shows the averages over the 100-episode 419

runs for the number of steps accomplished in the 420

task with the learned model in each experiment.

Table 2: Average number of steps achieved in each
experiment

Task (1) (2) (3) (4) (5) (6) (7) (8) (9)
Pickup 45.6 40.2 42.7 40.1 36.8 37.9 44.4 47.6 42.5
PutNext 98.1 90.2 90.0 84.4 72.5 76.5 93.4 99.2 76.3

421
From Table 2, we can see that the two-round 422

alternating proposal communication in (5) accom- 423

plished the two tasks in the shortest number of 424

steps. 425

For (2) and (3), both tasks are accomplished with 426

fewer steps than (1). However, the change from 427

bidirectional to unidirectional does not improve the 428

performance. In the alternately proposed commu- 429

nication in (5), we can see that the average number 430

of steps required for one episode is smaller than 431

the others for all tasks. 432

Figures 7 and 8 show the average number of 433

steps taken by the model at each learning stage to 434

accomplish the task when the model was trained 435

with the PickUp task for (2), (3), (5), (8), and (9) 436

in Table 1.
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Figure 7: Comparison of each communication method
in learning
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MAPPO in learning

4.4 Analysis438

Figure 9: Example of
search wasted by both
agents due to contradiction
between message and ac-
tion

Figure 10: Example of
search wasted by one agent
due to lack of information
from green agent

Figure 11: Example where conversation and agreement
led both agents to the key and the ball

Below are examples of messages and actions439

in the Pickup task for each method. The follow-440

ing messages were exchanged in the bidirectional441

communication in (2).442

Examples of messages in (2)� �
agent1: ... I’m planning to head to (2, 3) to pick up
the blue key next ...
agent2: ... I’m currently at (3, 2). I’m planning to
pick up the blue key ...� �443

Both agents send a message that they are going444

to retrieve the key themselves. The subsequent445

thoughts of the agents by CoT are as follows.446

Output of CoT� �
agent1: I should find something that clues. After
agent2 gets the key, I’ll go to the door ...
agent2: ... I go forward to find something ...� �447

Both agents decide that the other agent will take448

the key and choose to search the surrounding area, 449

which is inconsistent with the message they sent. 450

The behaviors after the message are shown in Fig- 451

ure 9. All the agents do not pick up the key that 452

was in their sight, but move around and search the 453

surrounding area. 454

On the other hand, in the unidirectional commu- 455

nication in (3), a message is sent from agent 1 to 456

agent 2, asking agent 2 to look for other clues as 457

agent 1 picks up the key. Since agent 2 did not 458

give any feedback on the search results, the same 459

instructions were repeatedly sent to agent 1. There- 460

fore, agent 2 continued his search in vain. The 461

behavior after this message is shown in Figure 10. 462

In the communication of the alternate proposal 463

in (5), the following conversation took place. 464

Examples of conversation in (5)� �
agent1: ... there is the key at (3, 2), so I’ll pick up
the key. Please find something that clues.
agent2: I’m at (2, 1) and near the green key. I’ll
move to (3, 2) and pick up the key.
agent1: Sounds like a good plan, I’ll head east and
search for the box or any clues ...
agent2: If I pick up the key, I’ll head to ...� � 465

Agent 1 sends a message to agent 2 asking him to 466

pick up the key and search for other clues. Agent 2 467

then reports that there is a key nearby, and as a re- 468

sult of the alternation of suggestions, agent 2 picks 469

up the key and agent 1 searches for it, indicating 470

that the policy is well shared. The behavior after 471

this message is shown in Figure 11. 472

Figure 7 shows that the performance of Reflex- 473

ion is improved after about 15 episodes of learning. 474

In the case of bidirectional communication in (2), 475

the accuracy is not stable, going up and down. The 476

following is an example of output from Reflexion, 477

which seems to be the cause of the lower accuracy. 478

Example of Reflexion output in (2)� �
Trial1: ... I should go to the key as agent2 said,
then turn right to get a better angle ...
Trial2: ... I should moved to position next to the
ball, then pick up it to find the box ...� � 479

Trial 1 shows that he should have picked up the key 480

himself, while Trial 2 shows the opposite, that he 481

should have checked the ball and other objects. Due 482

to the instability of the policy, Reflexion outputs 483

the opposite, which reduces the accuracy. 484

Although unidirectional communication in (3) 485

avoided unstable outputs compared to the bidirec- 486

tional communication, the lack of sufficient infor- 487

mation exchange resulted in repeated ambiguous 488
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outputs in Reflexion, such as “we should have coor-489

dinated more,” and the accuracy did not improved.490

In the communication of the alternation proposal491

in (5), the accuracy increased and converged faster492

than the other methods. It is considered that the493

stable learning is due to the fact that the output is494

consistent and gradually becomes more specific, as495

a result of referring to a stable history with conver-496

sation.497

A comparison with MAPPO is made based on498

Figure 8. The MAPPO method is not as good as499

the LLM-based method. This is due to the sparse500

reward in (8), where the reward is given only when501

the task is accomplished. Therefore, the accuracy502

was improved by adding a pseudo-reward as in503

(9). Thus, there is a possibility that MAPPO may504

outperform the proposed method, depending on505

the pseudo-rewards. On the other hand, it can be506

said that the proposed method can achieve high507

accuracy in a very short learning time without com-508

plicated reward design.509

5 Limitations510

In this study, verification with realistic tasks is511

insufficient. This is due to the lack of time and512

money to conduct experiments in various condi-513

tions. There are two main issues. The first is the514

need for humans to adjust the prompts and the515

mechanism for converting the state to text, which516

is as time-consuming as designing rewards. Sec-517

ond, the number of calls to the LLM is large even518

though the output of the LLM is slow. Shortening519

the prompts, decreasing the number of calls, and520

so on can save time and money.521

6 Conclusion522

We proposed a structured communication method523

using an alternating proposal scheme for multi-524

agent reinforcement learning with LLMs. Our ex-525

periments in the BabyAI multi-agent environment526

demonstrate that two-round alternating proposal527

communication significantly enhances coordina-528

tion, improving both learning speed and accuracy529

compared to conventional reinforcement learning530

and communication strategies.531
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