Conversation-based Multi-agent Reinforcement Learning
with LLM as a Policy

Anonymous ACL submission

Abstract

Reinforcement learning (RL) benefits from
Large language models (LLMs) for improved
reasoning and planning, but their application
in Multi-agent reinforcement learning (MARL)
remains challenging due to communication con-
flicts. We propose a novel framework where
agents engage in structured multi-round conver-
sations before taking actions, ensuring better
coordination and decision-making. By leverag-
ing LLMs’ reasoning capabilities and integrat-
ing techniques like Chain of Thought reasoning,
our approach enhances collaboration in MARL.
Experimental results show improved efficiency
and scalability, bridging the gap between single-
agent and multi-agent LLM applications.

1 Introduction

Reinforcement Learning (RL) has been widely
adopted to tackle sequential decision-making prob-
lems. However, traditional RL algorithms often
suffer from low sample efficiency and lack ex-
plainability, limiting their applicability in complex,
real-world scenarios. To address these issues, re-
searchers have begun integrating Large Language
Models (LLMs) into RL frameworks. LLMs have
demonstrated strong reasoning and planning capa-
bilities, making them a promising tool for enhanc-
ing RL performance.

Existing research has explored the use of LLMs
in various roles, such as planners, coders, and ex-
ecutors(Cao Yuji, et al., 2024). While these studies
have shown promising results in single-agent set-
tings, extending LL.M-based frameworks to Multi-
Agent Reinforcement Learning (MARL) presents
unique challenges. One critical issue is the po-
tential for conflicts in communication when mul-
tiple agents exchange messages simultaneously.
For instance, agents may send conflicting instruc-
tions, leading to inconsistencies in actions and re-
duced collaboration efficiency. Addressing this

problem requires designing effective communica-
tion mechanisms that can handle coordination and
information-sharing among agents.

Several techniques, such as Chain of Thought
(CoT) (Jason Wei, et al., 2023) reasoning, Reflec-
tion(Noah Shinn, et.al, 2023) , and Monte Carlo
Tree Search, have been proposed to enhance the
decision-making capabilities of LLMs. These ap-
proaches have proven effective in single-agent con-
texts by improving reasoning and learning effi-
ciency. However, their application to MARL re-
mains underexplored. In multi-agent systems, ac-
tions taken by one agent can directly influence
the environment and the decisions of other agents.
Therefore, it is essential to incorporate mechanisms
that allow agents to exchange and utilize each
other’s information, such as intentions, thoughts,
and actions, to achieve optimal collaboration.

In this paper, we propose a novel method to ad-
dress the communication challenges in MARL. Be-
fore deciding on actions, agents engage in struc-
tured conversations over a specified number of
rounds. Through these conversations, agents can
exchange information, align their strategies, and
reach agreements. By sharing sufficient informa-
tion, the proposed method reduces inconsistencies
between messages and actions, thereby enhanc-
ing coordination and decision-making efficiency.
Our approach leverages the reasoning capabilities
of LLMs and integrates them into a collaborative
framework designed specifically for multi-agent
environments.

We evaluate our method in multi-agent BabyAl
environments, comparing different communication
strategies with Reflexion and Llama 3.1 (70B). Re-
sults show that structured multi-round communi-
cation, especially the two-round alternating pro-
posal method, significantly improves coordination
efficiency. Compared to MAPPO, our approach
achieves faster learning and higher performance
without complex reward design, highlighting the

potential of LLM-driven MARL systems.

2 Related Work

2.1 Communication in MARL

Effective communication among agents in MARL
is a crucial aspect that has gained significant at-
tention in recent years. The ability for agents to
exchange information enables coordination, miti-
gates conflicts, and facilitates the accomplishment
of complex tasks in shared environments. Over
the years, various methods have been developed
to tackle the challenges associated with communi-
cation, ranging from centralized to decentralized
frameworks, and adaptive protocols.

Centralized Communication Approaches. Cen-
tralized methods rely on a central entity to ag-
gregate and distribute information among agents.
For instance, DIAL (Differentiable Inter-Agent
Learning) (Jakob N. Foerster, et al., 2016) employs
centralized training with decentralized execution
(CTDE). During training, agents share information
to learn implicit communication protocols, which
are later executed independently. While these meth-
ods enable effective learning in smaller setups, scal-
ability becomes a major challenge as the number of
agents increases, often leading to communication
bottlenecks and computational overhead.

Decentralized Communication Architectures. In
decentralized settings, agents communicate directly
with one another without a central mediator. Tech-
niques leveraging graph neural networks (GNN5s)
are often used to model inter-agent interactions
(Jiechuan Jiang, et al., 2020). Frameworks such as
CommNet embed messages exchanged between
agents into their policy networks, enabling de-
centralized information sharing. While these ap-
proaches improve scalability and remove reliance
on a central hub, they may face difficulties in en-
vironments requiring global coordination, as local
interactions might not always capture the bigger
picture.

Comma: A Coordinated Multi-Agent Approach.
Comma, short for Coordinated Multi-Agent Actor-
Critic, is a MARL algorithm designed to enhance
coordination among agents in complex environ-
ments. It employs CTDE, where a shared critic
uses global information during training, while
agents operate independently during execution. By
incorporating an attention mechanism, Comma al-
lows agents to prioritize relevant information from
peers, addressing non-stationarity and improving

coordination. Its scalability and efficiency make
it suitable for cooperative tasks such as multi-
agent navigation, resource allocation, and robotics
(Lianyu Hu, et al., 2024).

Emerging Trends in Adaptive Communication.
Recent advances focus on enabling agents to learn
their own communication protocols dynamically.
Methods like MADDPG (Multi-Agent Deep De-
terministic Policy Gradient) with communication
extensions (Ryan Lowe, et al, 2017) allow agents
to determine what information to share and how to
interpret received messages. These learned proto-
cols are highly adaptable, reducing redundant com-
munication and improving efficiency in dynamic
environments. By enabling agents to refine their
communication strategies based on environmental
feedback, these methods pave the way for robust,
scalable MARL solutions.

In summary, communication in MARL has
evolved from centralized frameworks to decentral-
ized architectures and adaptive protocols. While
centralized methods are effective in smaller, con-
trolled environments, decentralized and learned
communication approaches address scalability and
adaptability challenges. These advancements col-
lectively enhance the coordination capabilities of
agents in increasingly complex and dynamic set-
tings.

2.2 Employing LLM for Multiagent
Communication

Leveraging Large Language Models (LLMs) for
multi-agent communication has emerged as a
promising approach in reinforcement learning. In
GLAM (Grounded Language Model) (Thomas
Carta, et al., 2023), the agent’s state, obtained from
the environment, is input into the LLM to calculate
probabilities for each possible action. The action
with the highest probability is selected, as defined
by Equation 1. Here, LLM (a|s) represents the
probability of action a (in text form) being output
by the LLM when the state s (in text form) is input,
and A denotes the agent’s action space.

7(s) = argmaxLLM (a|s) (D)

acA
Using the reward r received as a result of the ac-
tion, the policy is updated through fine-tuning with
PPO (John Schulman, et al., 2017). This frame-
work enables agents to quickly adapt to novel tasks
by leveraging the extensive knowledge embedded

in the LLM, producing a versatile and robust agent
capable of addressing a variety of challenges.

Building upon GLAM, the FAMA (Fine-Tuned
Agent with Multi-Agent Learning) method (Oliver
Slumbers, et al., 2024) extends this approach to
a multi-agent setting. In FAMA, the LLM serves
as the policy model for each agent, enabling on-
line multi-agent learning with message exchanges.
This framework enhances the independent GLAM
model by incorporating inter-agent communication.
The overall architecture for two agents is depicted
in Figure 1.

Environment
]

S1, rll
RL-Agent, (LLM,)

e e W7o o |

1 Sy,
RL-Agent,(LLM,)

PPP| Y+ > |LPPO
Decision action Decision action
a; a;

Figure 1: Overview of FAMA

In FAMA, each agent inputs its state from the
environment into the LLM to generate a message
intended for the other agent. Upon receiving a mes-
sage, the agent combines its state with the received
message, inputs this combined information into
the LLM, and calculates probabilities for each ac-
tion. The action with the highest probability is then
selected, as defined by Equations 2 and 3. Here,
LLM;(a|s) represents the probability of action a
being output by agent :’s LLM when state s is in-
put. A; denotes the action space of agent ¢, and m;
is the message sent by agent 1.

71(s1) = argmaxLLM;(a|s1,me) (2)
acA;

mo(s2) = argmaxLLMs(alsa,m1) (3)
acAs
The messages m; and my are generated as
shown in Equations 4, where LLM;(+|s;) produces
the message to be sent by agent ¢ based on its state
S;.

This approach leverages the knowledge and rea-
soning capabilities of LL.Ms, allowing agents not
only to adapt quickly to the environment but also

to learn cooperative behaviors through efficient
message exchanges. By combining the agents’
states with received messages, the system achieves
a higher level of coordination and flexibility in
multi-agent tasks.

2.3 Text-Based Learning Framework

Reflexion (Noah Shinn, et.al, 2023) introduces a
novel framework to enhance language agents by
leveraging language-based feedback instead of con-
ventional weight updates through supervised or
reinforcement learning. This innovative approach
allows language models to refine their problem-
solving abilities by modifying their inputs dynami-
cally.

In the Reflexion framework, agents utilize a
short-term memory buffer to store information gath-
ered during each episode, including environmen-
tal observations and the agent’s actions. Feedback
from the environment, whether in the form of scalar
values or free-form text, is processed linguistically.
Agents analyze this feedback to identify potential
improvements and store reflective insights in a long-
term memory buffer, which persists across episodes.
This reflective process enables agents to iteratively
refine their decision-making strategies, outperform-
ing traditional methods in tasks such as sequential
decision-making, coding, and language reasoning
(Noah Shinn, et.al, 2023).

Additionally, the Reflexion framework intro-
duces two key communication strategies for multi-
agent systems: (1) unidirectional communication
and (2) alternating proposal communication. Uni-
directional communication minimizes conflicts and
inconsistencies by eliminating simultaneous bidi-
rectional exchanges, ensuring clearer and more re-
liable interactions. Alternating proposal communi-
cation allows agents to exchange and refine action
policies through iterative discussions, fostering im-
proved coordination.

To further enhance the learning process, Reflex-
ion replaces traditional PPO-based reinforcement
learning with prompt-based adjustments driven by
language feedback. This adjustment not only im-
proves agents’ inference capabilities but also en-
hances the explainability of their decisions, making
the framework well-suited for complex reasoning
and coordination tasks.

3 Proposed Method for Changing
Communication Between Agents

We introduce two novel communication strategies
for multi-agent systems using LLM-based agents:
(1) unidirectional message transmission and (2) al-
ternating proposals. These methods aim to address
limitations in existing frameworks like FAMA by
improving coordination and reducing conflicts. Ad-
ditionally, the proposed approaches integrate ad-
vanced reasoning techniques such as CoT (Chain
of Thought) (Jason Wei, et al., 2023) and Reflex-
ion (Noah Shinn, et.al, 2023) to enhance decision-
making and explainability.

3.1 Challenges in Bidirectional
Communication

Bidirectional communication, as seen in FAMA,
enables agents to exchange messages during
decision-making. However, it often leads to con-
flicts and inconsistencies between communicated
intents and actual actions (Zeyang Liu, et al., 2021).
For instance, if two agents send contradictory in-
structions to each other, they may act based on
conflicting assumptions, resulting in unintended
behaviors.

This issue is illustrated in Equations 5, where
actions . (s;) are derived without messages m;:

71 (s;) = argmaxLLM;(als;) ®)
acA;

Dependencies between states s;, messages m;,
and actions 7;(s;) can cause misalignment between
communicated intentions and actual behaviors.

Such contradictions hinder effective coordina-
tion, slowing learning and degrading performance
in cooperative tasks.

3.2 Unidirectional Message Transmission

To address the issues in bidirectional communica-
tion, we propose a unidirectional communication
method, where only one agent generates messages.
This approach eliminates conflicts and inconsisten-
cies while retaining relevant information exchange.
The process is illustrated in Figure 2.

Let N' = {1,2,..., N} denote the set of N
agents, and .4; be the action space of agent i. The
process is as follows:

1. Each agent i computes its message m; using
its state s;:

Environment

]
S1 1 lsz

RL-Agent, (LLM)) RL-Agent,(LLM,)

[o
‘ \

\w

Decision action Decision action
aq a

Figure 2: Overview of unidirectional communication

2. Each agent receives messages from all other
agents and combines them with its state to compute
the probabilities of actions:

mi(s;, m_;) = argmaxLLM;(a|s;,m_;) (7)
acA;

Here, m_; represents the set of messages from all
other agents:

m_; ={m;:j€N,j#i}

The following pseudocode demonstrates the
computation of actions for all agents:

Algorithm 1 Calculate Actions for N Agents

Require: {si,s2,...,sy} € States
Ensure: {m(s1),m2(s2),...,7n(sn)} € Ay X
./42 X - X .A]V
1: Initialize m < [| {Message list for all agents}

for alli € NV do
Append m; to m

end for

for all i € N do

mi(si,m_;) < argmaxLLM;(als;, m_;)
a€A;

9: end for
10: return {7 (s1),m(s2),..., 7N (sn)}

Example: Let us consider a two agent case. Us-
ing their state s;, Agent 1 generates a message m1
for Agent 2. Both agents then compute their ac-
tions based on their states and, in the case of Agent
2, the received message m:

m1(s1) = argmaxL LM (als1) ®)
acA

ma(s2) = argmaxL LMs(alse, my) 9)
acAz

3.3 Alternating Proposals for Multiple Agents

While unidirectional communication resolves con-
flicts, it lacks the collaborative dynamics of bidirec-
tional communication. To address this, we propose
an alternating proposals method where N agents
iteratively exchange messages for n rounds. This it-
erative exchange allows agents to reach a consensus
by sharing information and strategies. The process,
depicted in Figure 3, enhances coordination and
reduces inconsistencies.

Environment

]
. N S; Reflexion
Reflexipn (| |52 -
B Agent;(LLM;) Agent,(LLM,)
1
| L
—]
Generate ~ mi Generate
conversation Im™ . 2 conversation
‘ conversatigny m; ‘ conversatipny
Generate thought Generate thought
¥ thoguht, ¥ thoguht,
Decision action Decision action
a; a,

Figure 3: Overview of alternating proposals for multiple
agents

Messages exchanged during each round are
recorded in a global conversation log as follows:

conversation® = (mb,mi,mY,...,mF,
k k
My, ..oy M),
(10)

where mf is the message generated by agent ¢
during the k-th round.

After the n-th round, each agent uses the com-
plete conversation history, conversation™, along
with their respective states s;, to perform CoT rea-
soning and determine their actions. The action for
agent ¢ is computed as:

mi(s;) = argmax L LM;(a|s;, conversation™),

acA;
Y
where A; represents the action space of agent .

The pseudocode for this approach is shown in
Figure 4.

This approach generalizes the alternating propos-
als framework to any number of agents, enabling
collaborative behavior in environments requiring
complex coordination. Each agent contributes to
and benefits from the collective conversation, en-
suring consistent and coordinated action decisions
across the system.

Algorithm 2 Calculate 7y, 7o, ..., TN
Require: {s1,s2,...,55} € String?"
Ensure: {7(s1),m2(s2),...,7n(sn)} € A1 X
Ao x ... x An
1: conversation < ||
2: for k =1tondo
33 fori=1to N do
4: m¥ <« LLM;(-|s;, conversation)
5: conversation <— conversation + mf
6: end for
7: end for
8: for: =1to N do
9: a; « argmaxLLM;(als;, conversation)
acA;
10: end for
11: return {ai,asz,...,an}

Figure 4: Pseudocode for alternating proposals with N
agents

4 Evaluation

4.1 BabyAl and BabyAI-Text Environments

BabyAl (Maxime Chevalier-Boisvert, et al.,
2019) is a single-agent environment designed for
language-based learning, constructed by Chevalier-
Boisvert et al. As illustrated in Figure 5, the en-
vironment comprises a grid populated with agents
(triangles) and various objects (e.g., circles, boxes,
and keys). The agent performs actions repeatedly
based on limited observational information to ac-
complish diverse tasks.

Figure 5: Example of Bab- Figure 6: Example of Bab-
yAl environment (Maxime yAl multi-agent environ-
Chevalier-Boisvert, et al., ment

2019)

In the BabyAl environment, agents can observe
specific information about objects within their im-
mediate vicinity, including their position and di-
rection. Based on this observational information,
agents choose actions from the following: "go for-
ward", "turn right", "turn left", "pick up" (pick

up an object in front), "drop" (place a previously
picked object in front), "toggle" (open/close a box
or door in front).

These actions enable the agent to navigate the
field, transport objects, and move between rooms
by opening/closing doors. Combining these actions
allows the agent to accomplish tasks such as:

* GoToObj: Move next to a specific object

» PutNext: Place a specific object next to an-
other specific object

* UnlockPickup: Unlock a door and pick up an
object inside

* Pickup (BlockedUnlockPickup): Similar to
UnlockPickup, but with additional obstacles
in front of the door

Besides these predefined tasks, varying the grid
size, object placement, and completion conditions
enables the implementation of various tasks.

Because this environment facilitates the textual
description of states, BabyAl-Text was developed
by adding functionality to convert observations
from real-number vectors to text, as used in exper-
iments with GLAM and FAMA. Following these
studies, we also add a functionality to convert ob-
servations into text.

Additionally, experiments were conducted in a
multi-agent environment expanded from the origi-
nal setting, similar to previous studies (Oliver Slum-
bers, et al., 2024). Each agent operates within its
observable range, and multiple agents cooperate
to achieve a single goal. A visualization of the
multi-agent environment is shown in Figure 6.

Figure 6 shows the task “Pickup", which is ac-
complished by having one of the agents pick up the
red box in the room on the right. To reach the box,
the red ball in front of the blue door must be picked
up and removed, and the door must be opened with
the blue key.

4.2 Experiment Settings

In the experiment, for each condition in Table 1,
the task in "Pickup","PutNext" is performed until
learning converges. For each method using LLM,
Llama3.1 (70B) (Al@Meta, 2024)is used as the
language model. As a conventional reinforcement
learning method that does not use LLM, we use an
algorithm called MAPPO(Chao Yu, et al., 2022)
for training and comparison.

Table 1: Settings for each experiment

D Method Learning algorithm Other setting
(1) No Communication Reflexion -

2) Bidirectional Reflexion

3) Unidirectional Reflexion -

(4) Alternating Proposals Reflexion 1 round

(5) Alternating Proposals Reflexion 2 rounds

(6) Alternating Proposals Reflexion 3 rounds

(7) Alternating Proposals Reflexion 4 rounds

(8) - MAPPO No pseudo reward
) - MAPPO Pseudo reward

4.3 Experiment Results

Table 2 shows the averages over the 100-episode
runs for the number of steps accomplished in the
task with the learned model in each experiment.

Table 2: Average number of steps achieved in each
experiment

Task H @ G & & © O & O
Pickup 45.6 40.2 427 40.1 36.8 379 444 47.6 425
PutNext 98.1 902 90.0 844 725 765 934 992 763

From Table 2, we can see that the two-round
alternating proposal communication in (5) accom-
plished the two tasks in the shortest number of
steps.

For (2) and (3), both tasks are accomplished with
fewer steps than (1). However, the change from
bidirectional to unidirectional does not improve the
performance. In the alternately proposed commu-
nication in (5), we can see that the average number
of steps required for one episode is smaller than
the others for all tasks.

Figures 7 and 8 show the average number of
steps taken by the model at each learning stage to
accomplish the task when the model was trained
with the PickUp task for (2), (3), (5), (8), and (9)
in Table 1.

Average number of steps achieved

5 in each learning phase of Reflexion

—— (2) bidirectional
(3) unidirectional

45 - /\ —— (5) alternation proposal
—— Optimal solution (average)

35 A

step

30 A

25 T T T T T T T

episode

Figure 7: Comparison of each communication method
in learning

Average number of steps achieved
in each learning phase of MAPPO

~=T ==
N .~

50

3 l— (2) bidirectional
@ (3) unidirectional
(5) alternation proposal
(8)MAPPO no pesudo-reward
30 4 === (9)MAPPO with pesudo-reward

—— Optimal solution (average)

T T T T
40000 60000 80000 100000

episode

T T
0 20000

Figure 8: Comparison of LLM-based methods with
MAPPO in learning

4.4 Analysis

[Htis

Figure 9: Example of Figure 10: Example of
search wasted by both search wasted by one agent
agents due to contradiction due to lack of information
between message and ac-from green agent

tion

g

5

Figure 11: Example where conversation and agreement
led both agents to the key and the ball

Below are examples of messages and actions
in the Pickup task for each method. The follow-
ing messages were exchanged in the bidirectional
communication in (2).

Examples of messages in (2)

agentl: ... I'm planning to head to (2, 3) to pick up
the blue key next ...

agent2: ... I'm currently at (3, 2). I'm planning to
pick up the blue key ...

Both agents send a message that they are going
to retrieve the key themselves. The subsequent
thoughts of the agents by CoT are as follows.

Output of CoT

agentl: I should find something that clues. After
agent2 gets the key, I'll go to the door ...
agent2: ... I go forward to find something ...

Both agents decide that the other agent will take

the key and choose to search the surrounding area,
which is inconsistent with the message they sent.
The behaviors after the message are shown in Fig-
ure 9. All the agents do not pick up the key that
was in their sight, but move around and search the
surrounding area.

On the other hand, in the unidirectional commu-
nication in (3), a message is sent from agent 1 to
agent 2, asking agent 2 to look for other clues as
agent 1 picks up the key. Since agent 2 did not
give any feedback on the search results, the same
instructions were repeatedly sent to agent 1. There-
fore, agent 2 continued his search in vain. The
behavior after this message is shown in Figure 10.

In the communication of the alternate proposal
in (5), the following conversation took place.

-~ Examples of conversation in (5) —

agentl: ... there is the key at (3, 2), so I'll pick up
the key. Please find something that clues.

agent2: I'm at (2, 1) and near the green key. I’ll
move to (3, 2) and pick up the key.

agentl: Sounds like a good plan, I'll head east and
search for the box or any clues ...

agent2: If I pick up the key, I'll head to ...

- J
Agent 1 sends a message to agent 2 asking him to
pick up the key and search for other clues. Agent 2
then reports that there is a key nearby, and as a re-
sult of the alternation of suggestions, agent 2 picks
up the key and agent 1 searches for it, indicating
that the policy is well shared. The behavior after
this message is shown in Figure 11.

Figure 7 shows that the performance of Reflex-
ion is improved after about 15 episodes of learning.
In the case of bidirectional communication in (2),
the accuracy is not stable, going up and down. The
following is an example of output from Reflexion,
which seems to be the cause of the lower accuracy.

Example of Reflexion output in (2)

Triall: ... I should go to the key as agent2 said,
then turn right to get a better angle ...
Trial2: ... I should moved to position next to the
ball, then pick up it to find the box ...

Trial 1 shows that he should have picked up the key
himself, while Trial 2 shows the opposite, that he
should have checked the ball and other objects. Due
to the instability of the policy, Reflexion outputs
the opposite, which reduces the accuracy.
Although unidirectional communication in (3)
avoided unstable outputs compared to the bidirec-
tional communication, the lack of sufficient infor-
mation exchange resulted in repeated ambiguous

outputs in Reflexion, such as “we should have coor-
dinated more,” and the accuracy did not improved.

In the communication of the alternation proposal
in (5), the accuracy increased and converged faster
than the other methods. It is considered that the
stable learning is due to the fact that the output is
consistent and gradually becomes more specific, as
a result of referring to a stable history with conver-
sation.

A comparison with MAPPO is made based on
Figure 8. The MAPPO method is not as good as
the LLM-based method. This is due to the sparse
reward in (8), where the reward is given only when
the task is accomplished. Therefore, the accuracy
was improved by adding a pseudo-reward as in
(9). Thus, there is a possibility that MAPPO may
outperform the proposed method, depending on
the pseudo-rewards. On the other hand, it can be
said that the proposed method can achieve high
accuracy in a very short learning time without com-
plicated reward design.

5 Limitations

In this study, verification with realistic tasks is
insufficient. This is due to the lack of time and
money to conduct experiments in various condi-
tions. There are two main issues. The first is the
need for humans to adjust the prompts and the
mechanism for converting the state to text, which
is as time-consuming as designing rewards. Sec-
ond, the number of calls to the LLM is large even
though the output of the LLM is slow. Shortening
the prompts, decreasing the number of calls, and
SO on can save time and money.

6 Conclusion

We proposed a structured communication method
using an alternating proposal scheme for multi-
agent reinforcement learning with LLMs. Our ex-
periments in the Baby Al multi-agent environment
demonstrate that two-round alternating proposal
communication significantly enhances coordina-
tion, improving both learning speed and accuracy
compared to conventional reinforcement learning
and communication strategies.

References

Al@Meta. 2024. Llama 3 model card. https://github.c

om/meta-llama/llama3/blob/main/MODEL_CARD.md.

Cao Yuji, et al. 2024. Survey on large language model-
enhanced reinforcement learning: Concept, taxon-
omy, and methods. IEEE Transactions on Neural
Networks and Learning Systems.

Chao Yu, et al. 2022. The surprising effectiveness of
ppo in cooperative, multi-agent games. Advances in
Neural Information Processing Systems, 35:24611-
24624.

Jakob N. Foerster, et al. 2016. Learning to communi-
cate with deep multi-agent reinforcement learning.
30th Conference on Neural Information Processing
Systems.

Jason Wei, et al. 2023. Chain-of-thought prompting
elicits reasoning in large language models. Proceed-
ings of the 36th International Conference on Neural
Information Processing Systems.

Jiechuan Jiang, et al. 2020. Graph convolutional rein-
forcement learning for multi-agent cooperation. In-
ternational Conference on Learning Representations.

John Schulman, et al. 2017. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347.

Lianyu Hu, et al. 2024. Comma: Co-articulated multi-
modal learning. Proceedings of the AAAI Conference
on Artificial Intelligence.

Maxime Chevalier-Boisvert, et al. 2019. Babyai: A
platform to study the sample efficiency of grounded
language learning. In International Conference on
Learning Representations, ICLR.

Noah Shinn, et.al. 2023. Reflexion: Language agents
with verbal reinforcement learning. Proceedings of
the 37th Conference on Neural Information Process-
ing Systems.

Oliver Slumbers, et al. 2024. Leveraging large language
models for optimised coordination in textual multi-
agent reinforcement learning. arXiv:2304.07297v2,
cs.Al

Ryan Lowe, et al. 2017. Multi-agent actor-critic for
mixed cooperative-competitive environments. 31st
Conference on Neural Information Processing Sys-
tems, NIPS 2017.

Thomas Carta, et al. 2023. Grounding large language
models in interactive environments with online re-
inforcement learning. Proceedings of the 40th In-
ternational Conference on Machine Learning, pages
3676-3713.

Zeyang Liu, et al. 2021. Multi-agent intention shar-
ing via leader-follower forest. arXiv preprint
arXiv:2112.01078.

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2112.01078
https://arxiv.org/abs/2112.01078
https://arxiv.org/abs/2112.01078

	Introduction
	Related Work
	Communication in MARL
	Employing LLM for Multiagent Communication
	Text-Based Learning Framework

	Proposed Method for Changing Communication Between Agents
	Challenges in Bidirectional Communication
	Unidirectional Message Transmission
	Alternating Proposals for Multiple Agents

	Evaluation
	BabyAI and BabyAI-Text Environments
	Experiment Settings
	Experiment Results
	Analysis

	Limitations
	Conclusion

